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Abstract. Let A be a subset of the unit ball in R”, and let 0 < r < 1 be real. Find a point
x for which the intersection of the r-neighborhood of x with A has a large measure. Tight
bounds on this measure are found.

1. General

After dinner a round bowl of chocolate-and-vanilla ice-cream is served. A percent of the
ice-cream is chocolate, your favorite flavor. You have a round scoop with which to probe
the dessert and your goal is to maximize the percentage of chocolate ice-cream in your
scoop. How well can you do?

More formally, let A be a measurable subset of the unit ball B in R". We seek, for every
r < 1, an r-central point x,—i.e., a point whose r-neighborhood has a large intersection
with A. Specifically we aim to maximize u(A N B, (x,))/ 1 (A).

This question can also be turned around: What is the largest measure of A € Bin R"
that intersects every ball of radius r in a set of measure < #? As stated, this is a natural
question in integral geometry. For analogous problems in the realm of finite graphs, see
[LPRS].

We also consider the existence of a central point x* for which (A N B, (x*))/u(A)
is reasonably large for all r < 1.

For both questions, we seek answers that hold for every measurable set A. Our results
are presented in the following two theorems:

* This work was supported in part by grants from the Israeli Academy of Sciences, the Binational Science
Foundation Israel-USA and the Niedersachsen-Israel Research Program.
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Theorem 1.1. There is a constant ¢ > 0 such that, for every A C B and everyr < 1,
there is a point x, € R" for which

/‘L(A N Br(xr)) C- rn—l

WA St

This result is tight up to the constant c.

Theorem 1.2. There is a constant ¢ > O such that, for every A C B, there is a point
x* € R” such that, for everyr < 1,

HANB (&) ( c-r )"
1(A) ~ \min(\/n,In2/r)))

2. Notation

The asymptotic notations @, O, §2 are used throughout. Let £, g be two positive functions
of n (possibly of other parameters as well). Then:

e f = O(g) if there are constants ng, ¢ > 0 such that, for every n > ng, f(n) <

c-gn).

e [ = S2(g) if there are constants ng, ¢ > 0 such that, for every n > ng, f(n) >

c-g(n).

e [=0()if f=0(g) and f = Q(g).

We always reserve n to denote the dimension of the space R” containing A, while ng, ¢
denote absolute constants. Also, we occasionally use a notation such as (1 — O(1/n))",
where the O(1/n) stands for some unspecified function that is O(1/n).

Let B, (x) = {y € R": ||y — x|| < r} be the ball of radius r around x, and let

Zx)={yeR": |lly—x||=r}
be the sphere of radius r around x. If the center is the origin we use B,, X, instead of
B, (0), Z,(0).
3. For Every r There is an r-Central Point

We start with two easy attempts at proving Theorem 1.1. These approaches provide the
desired proof for r < 1/./n. The first attempt is introduced in:

Lemma 3.1. [fA C B, thenfor anyr < 1 there is a point x € R" such that

u(AﬂBr(x))>( r )"
u(A) “\14+r/)
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Proof. The proof follows from the fact that the balls B,(x) for x € B4, cover A
uniformly, so at least one of these balls must achieve the average, i.e., there is a point
x € By, such that

A B,
WA B, () = MARB) _ ) ay (

4 ) . O
u(Byyr) 147

An asymptotic improvement is offered by:

Lemma 3.2. If A C B, then for everyr < 1 there is a point x € R" such that

(AN B,(x)) > l( r )n
w(A) -2 1+r2)

Proof. The proof is a slight variation on the previous one. Namely, it is shown that the
family of balls {B,(x) |x € B m} covers B almost uniformly, to within a factor of

two. To see this note that the half ball H = {y € B,(x)| < x, y —x > < 0} is contained
in B~/1+7 N B,(x). Of course H € B,(x)and H C B ot since, forevery y € H,
IPI% = 1l + 1y = I + 200, y —x) < [IXIP+ly —xIP < 1+7%
Now u(H) = 3u(B;(x)), so
w(B,(x) = u(Br(x) N B /=) 2 30(B,(x)) .

Rewrite this as

w(B,(x)) z u{y € B /==lx € B:(y)}) = 31 (B (X)) . ¢y

Hence, the balls {B,(y)]y € B m} cover B almost uniformly within a factor of

two (of course the same holds for covering A € B), i.e.,

max u({y € B =lx € B,()) <2 min u(ly € B_j5lx € BO))) -

This allows us to derive the desired conclusion as in Lemma 3.1 with a loss of at most
a factor of two. O

Remark 3.1. These simple arguments prove Theorem 1.1 for the range r < 1/4/n. In
this range, the bound in Theorem 1.1 is

rn—l

1/r+/nd1 =12

and a point x, as found in Lemma 3.2 yields

= 0",

=Q"),

=

w(A N B, (x;)) > 1 ( r )"
1412

1
n(A) 2 + 2
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as needed. That Theorem 1.1 is tight in this range follows by considering A = B and

observing that, for any x,

HANB () _ wB ) _
w(A) T wu(4)

Therefore from now on we are only interested in the range 1/./n <r < 1.

Here spherical shells (i.e., the difference set of two concentric balls) play a central
role in our considerations. We start by proving (Lemma 3.5) that if A is a spherical shell
of width ®(1/n), then the best choice of x, achieves

RANB &) _ o ( rr=l )
w(A) T O\l r+mv1=12)

Since this establishes the tightness (upper bound) of the theorem, we only need to find
a point x, achieving the required bound for the general A € B. This is done first for A
being a subset of the spherical shell of width @(1/n) (Lemma 3.6), and then for a general
A by considering its intersection with concentric spherical shells. The decomposition of
B into concentric shells is in the same spirit as the Calder6n-Zygmund decomposition
[T].

First we derive certain estimations that will be needed throughout.

Fact 3.1 (see [C]). The surface area of an n-dimensional sphere of radius p is S, =
0,0" " where 0, = 27" /T (n/2).

Lemma 3.3. Forn anintegerand 0 < e < 7/2,let I,,(e) = f /2 cos" ada. Then

£

Cosn+1

£
«/'7-(1+«/ﬁsin€))'

Proof. Assume n > 1 and define A, (¢) through the relation

In(g) =0 (

1
cos(e + A,(8)) = (1 - —) COS E.
n
Then

1
—In (1 — —) = Incose — Incos(e + A, (&)
n

£+A,(E)
= / tanx dx.
£

Since tan x is an increasing function, and the left-hand side does not depend on &,
A, (e) must decrease with ¢.

Define gy = ¢, €41 = €;+6; where§; = An(g;). Observethatcos" g;, = (1 — 1/n)"
cosg; = ©(cos" g;). This allows us to estimate [,(g) = ?io f:“ cos"ada =
e (Z:’io §; cos” g;). The last sum is bounded below by its first term §; cos” €. Since §; are
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decreasing, an upper bound for this sum is 8y (cos” £) 'Z.?io (1 —1/n)™ = O(8ycos™ €),
ie.,
I,(e) = O§gcos™ g) = O(A,(g) cos” €). 2)
To estimate A, (¢g) consider

cosf _ cos & — cos{e + Ap(e)) = 2sin (s + A (8)) sin (A"(e)) .
n 2 2

The fact that sinz = ©(z) for 0 < z < 7 /2 implies

An(s)(e+An<s>)=®(°‘f8) .

So

s = r0(2)-5

©®((cose)/n)
Ve*/4+ O((cose)/n) + /2

_ @( cose
- nsine + /ncose )

Therefore

cos"*tl g cos"tle
I,(e)=© ; =0 :
Jn - (Jnsing + /cose) Jn-(fnsing +1)
as needed. The last step is justified by separately considering the cases ¢ < 1/./n and

> 1//n. O

Define for 0 < ¢ < 1 the function
n—1

14+ /n/1=12"

Lemma 3.4, Consider the n-dimensional spherical cap of radius p having a head
angle 209 < 7. Its surface area S,, 4, is

V() =

Sy = O(S, W (sin ap)).

Proof.  Spa = f3° on-1(p sina)"2p der. Therefore,

S On_t o o Op1 /2
L = 2 sin" 2 ada = — cos"? ada.
0 b4

Sp Oy On /2—ao

By Lemma 3.3, and the fact that 0, /5, = ©(/n) we get the required result. O
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y
Fig.1. Maximizing ay.

Corollary 3.1. The largest area of a spherical cap B, (x) N X, where 0 <r < p is

r
“(o(3)
77 \p
Progf. The estimate of S, ,, in Lemma 3.4 is an increasing function of og. The largest
possible angle a of the cap is obtained when sina = r/p, as can be seen in Fig. 1. O

Lemma 3.5. Ler A be the shell B\B,_, in R" wheree = ©(1/n)and 1/ /n<r < 1.
Then
U(AN B.(x))

= OV .
1 o (A) (w(r)

Proof. Define A = max,(u(A N B,(x))/u(A)). Then our goal is to show that A =
O(W(r)). Also let a(p, |Ix||) be half the head angle of the spherical cap B,(x) N £,
(obviously only the norm of x matters). Then

1
S d
_ fl—e 0.a(p.lix])) @0
A= mfx : < 4 .
fl—a 14 ,0

Since & = O(1/n) the variable surface areas S, differ from the constant S, only by
a constant factor. This allows us to write

1 ('S 1 (s
A=®(max—/ L"‘(‘L”Z‘ﬁdp)=@(max_/ Mdp). 4)
* & J1- Sp d eJie S

Consider first < 1— 2¢. Then the angle a(p, d) is determined by the triangle shown
inFig. 2. Nowr <1—2¢ <1—¢ < p <1 implies that the angle a(p, d) < /2, so
Lemma 3.4 can be applied, and thus

3

1
A=0 (max l/ Y (sina(p, d)) dp) . (5)
d & Jq

—&
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P r
o(p,d)
d

Fig. 2. The angle a(p. d).

Our intention is to show that the integrand W (sin « (o, d)) varies at most by a constant
factor over the integration range 1 — £ < p < 1. More specifically, we claim that
sina(p, d) varies by no more than a 1 + O(1/n) factor, while cos ¢ (p, d) varies by no
more than a constant factor over that range.

To get our analysis started we consider d,,, the d that maximizes A. For fixed p and
r, a(p, d) is a unimodal function of d that is maximized when d? + r? = p?. Then d,,

must satisfy
(1-e <di+r’=1l. ©)

Otherwise, say d2 +r2 > 1 > p®. Then by decreasing d slightly, the unimodal a(p, d)
increases for all p’s, and since ¥ and sin(-) are increasing the integral must grow. The
other case is handled similarly. From now on d := d, is fixed.

We turn to estimating the change in sin«(p, d) and cos @(p, d) over the integration
range 1 — e < p < 1. Now

1—rP> Q-8 ~r*=l-e—-rQ—c+r)
=3l-r+(0=2e=rHA+r+0+r—2e)
> la-na+n=1a-r.
Whence 1 — r? = O((1 - e)‘é — r2). Rewrite (6) as
1-e?-r’<d*<1-r%
which by the last remark says that
d2=0((1-e?-r)=001-rY,
so, for every 1 — ¢ < p < 1, this implies
p* =1’ =e(d. )
By the cosine theorem, ‘

24 d?—r?

20d ®)

cosa(p,d) =

Using (7)and p = ©(1) we canrewrite (02 + d?> — r?)/2pd = (d*> + ©(d?))/2pd =

O(d), so
cosa(p, d) =®(\/1 -—r2)
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p T
alp,a) PP)

d

Fig. 3. The angle 8(p, d).

and

! —@(———1———) ©
14+ . /ncosa(p,d) 1+ /a1 —1r2 '

To estimate the change in sina(o,d) over 1 — & < p < 1, define also the angle
B(p, d) by the triangle shown in Fig. 3. By high-school trigonometry

d2 2 __ A2 2
sina(p,d) = —sin (o, d) = —/1— cos? B(p, d) = L\/l _@rr-py
P P p arid?

From (1 — £)°® < p?,d* + r? < 1 we conclude

@+r2—p’ _ a-a-9y _ 462
Arid®> T A (1—e) =) T 4r2((1—e) —r?)

The denominator is unimodal as a function of r over 1/,/n < r < 1 — 2¢, so the
minimum is obtained at either end. Since £ = ©(1/n), it can be checked that at both ends
the denominator is @(1/n), so (d2 + r2 — p2)°/4r2d? = 0(1/n), and we conclude that

sina(p,d)=r- (1 0 (%)) . (10)

Therefore sin" ' a(p,d) = O@F"'). Together with (9) this yields the desired
Y(sina(p, d)) = O (¥ (r)), and by (5) we get L. = ® (W (r)) as needed.

Now turn to the case 1 — 2¢ < r < 1 and show that both ¥(r) and A are ®(1) in this
range, so A = O(¥(r)) as needed.

Since /1 —7r2 < /1 — (1 —2¢)*> = /4e(1 —¢)and ¢ = ©(1/n), it follows that
V1 —r2=0(1//n),ie., 1+ /nv1—r2 =0(). Therefore

w(r)=r"! =" H=0eQ.

1
1+ /nv1—r2

Obviously A < 1, so it is enough to show that A = (1). To see that, choose x such
that d = ||{x|} = +~/1 — 2, and consider the possibilities for the angle a(p,d):

e Ifa(p, d) is obtuse, then at least a hemisphere of T, is contained in B, (x) (indeed
a(p,d) may get as large as 7w if £, C B, (x)). Then S, 4(0.4)/Sp = % = Q(D).
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o If ¢(p, d) is acute, then, by Lemma 3.4, S, 4(5.9)/S, = @ (¥ (sina(p, d))). By
3,
PP+di—r?  pP+1-27 p—QrP—1)/p

’d = — —_—
cose(p, d) 2pd 201 =712 2V/1 =72

This expression increases with p and p < 1, and since r > 1 — 2e¢ we get

cosa(p,d) <+1—r2</1-(1-2¢) </de = 0(1//n). So,

sin" " a(p, d)
14+ /ncosa(p,d)

Y(sina(p,d)) =

is ®(1). The denominator is @ (1) and for the numerator

(n=1/2 _

sin"a(p, d) = (1 — cos®(a(p, d))) (1—01/n)* V2 =0(1).

Then, forall 1 —e < p < 1, Spap.a)/Ss = S2(1), and (4) yields A = Q(1) as
needed. O

Remark 3.2. This lemma proves the upper bound (tightness) of Theorem 1.1 for
1//n < r < 1 since in this range ¥(r) = O™ /(1/r + /ns/1 — r2)). This is
verified by separately considering r < % andr > %

Remark 3.3. In the above proof, it turned out that for all 1/./n < r < 1 the choice of
x such that ||x|| = /1 — r? is optimal up to a constant factor, and that for this choice
Soaexin/Se = O (r)) foralll —e < p < 1.

We now move on to sets A which are contained in some spherical shell.
Lemma 3.6. Let A C B\B,_, in R" where ¢ = @(1/n). Then, for every 1//n <r
S 1’

K(A N B, (x))

= Q¥ (r)).
ax = (¥ ()

Proof. The proof is by averaging over all x € T, where d = +/1 — r2. Let u, be the
normalized Haar measure on X,. We saw in the proof of Lemma 3.5 that

= 0¥ (),

S,
Up(B(Xx)NX,) = Pv;(p,d)

I
where ||x|] = d (= +/1— r?). Integrating over x € I, with respect to u, yields
n{(x,y) € g X Tyt |lx — yll = r}) = OV (), (1D

where 4 = pg X .
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We need to evaluate uy (B, (y) N Z,) for y € B\ B;_.. Keeping r, d fixed this expres-
sion depends only on ||y|| = p. Integrating over all y € T, and using (11) we conclude
that

ma(Br(y) N Zg) = O(¥(r)).

Since the result is independent of p, the numbers 1, (B, (y) N ;) as y varies over the
shell B\ B;_, change only by a constant factor. In particular,

I;leajwd({x € Lyly € B,(x)}) =06 (ryrggud({x € Zyly € B,(x)})) .

An averaging argument as in the proof of Lemma 3.2 implies that there is a point
x € X, such that u(A N B,(x))/u(A) = c¥(r) for some constant c, as needed. O

Proof of Theorem 1.1. By Remarks 3.1 and 3.2 we only need to find the desired x = x,,
and we may assume 1/./n <r < 1. Letk, {R,~}f=0 be such that

1 1
Ry=1, R,‘(l—'— SRH—ISRi 11— — fori =0,....,.k—1land Ry =r.
n 10n

It is easily verified that such R; can be found. Define the shells C; = Bg \Bg,,, for
0 <i <k, and the core C; = By, = B,. Consider the following situations:
o There is shell C; such that
u{ANCcj) > 0.01 W(r) .
1(A) Y (r/R;)

In such a situation, since r/R; > r > 1/./n apply Lemma3.6to ANC; to find a
point x for which

(12)

pANCNB(x) (L)

WA N Cj) R;
So
u(AN B, (x)) _ u(ANC;N B, (x)) W(r)
-0.01 -0.01¥
WA = mAnc Vo/R) > .
e The core C; = B, satisfies
u(ANGC)
7;)— > 0.01¥(r). (13)

Here the obvious choice x = 0 yields the required result.

Otherwise, if (12) holds for no 0 < j < k and (13) does not hold, then summing up
the (reverse) inequalities, we conclude

HANG) _ v
E w(A) Z ‘I’("/R)

j=0
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The left-hand side is 1 since ANC; for j =0, ..., k constitute a partition of A. The
right-hand side is
i YO _ oo1 i rn-1 1+ /1= (r/R;)?
Yr/R) T L1+ /a1 (r/R)"!
k 14+ ./n/1 = (r/R)? k
= 001-) R <001-) R
= 14+ /nd1—r2 =

0 1 (n—1)-§ o0 .
< 0.01- Z (1 - _) <0.01- Ze"/lo
= 10n

j=0

001 _
= 1w =

a contradiction. a

4. There Is a Center Good for Every r
The proof of Theorem 1.2 is split into Theorems 4.1 and 4.2.

Theorem 4.1. For every A C B, there is a point x € R" such that, forall0 <r <1,

#(A N B (x) >( r )"
n(A) ayn)

Proof. We construct a sequence of cubes {I;}; where I; has side 27~V and satisfies
w(A N I)/u(A) = 2. To begin, Iy = [—1, 11" will do. Now, given I;, decompose
it to 2" disjoint cubes 1’_(1) -1 @ by halving it along each coordinate. By an averaging

argument we can choose I;; = I,.(” such that (A N 1,.(’)) >27"u(AN 1) > 27"+,
Since I; is a decreasing sequence of closed sets, there is a point x € N;>q ;. Given r,
choose the least i such that I; € B,(x). Whence r < 4Jr7 /2" (two times the diameter

of I;), and we have
(A N B, (x)) > n(A N L) >0 ( r )”. 0
1(A) 1(A) 4n
Theorem 4.2. For every A C B, there is a point x € R” such that, forall0 <r <1,
1(A N B.(x)) S r "
K(A) “\e-In@2/r))

Proof. Fix A CB,0 < r <1 and introduce a parameter 0 < a < 1 to be determined
later. Construct sequences {x;};»¢, {X;};>0 so that

. 1(X; N A) a \*
Xi © Byi(x;) and A 2(1+a) : (14)
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For i = 0, the choice Xy = B and xqg = O clearly satisfies (14). To proceed by
induction on i, let (14) hold with x;, X;. By Lemma 3.1 (scaled by ' and shifted by x;),
there is a point x € R" such that

w(Byin(x)NX;NA) - 'ai+l. n _ o n | s
H(X, n A) —\o +ait! 1+a
Setting Xi+1 = X, Xij11 = By (x) N X; yields
pXinNA) _ pXinn NA) p(XiNA) ( o )n(i+1)
H#(A) uX;nA)  w@A “\l+a ’

completing the inductive step. Since {X;} is a decreasing sequence of closed sets, we
can choose x € N2, X;. Leti = [log, r/2]. Then X; € B,;2(x;) € B, (x). Therefore

u(AnB,(x))>u(AﬂX,~)>( o )n[logar/2'|>( o )nloga(ar/2)_(r)n
w(A) = uwAd) T \l+a “\l+4«a “\2y /)

where y = (1/a)(1 + «)"%@"?_ Then

(1), In(l+a) (2 1 _In@/r)
Iny =In (a) 4o+ 3 (r) =l (a) 2t Ty ne)

Choose 0 < o < 1 to be the (unique) solution of the equation

Then
1
Iny <In— +1n2+1.
Qg

Now, In(1/ag) > % since otherwise

2 1 1 1 1
-1 <lnln2§lnln(—) =In—+Ihln— < —+In— < —1.

r [0 44 [0 4 10 10
So
2 1 2 1 2
Iny <lnln{-)—Inln—+In2+4+1<Inln{ - —lnm+ln2+l <Inln{-]+6.
r o r r
Therefore
()
y<c-In{-
r
for some ¢ > 0, as claimed. O

Remark 4.1. We still do not know the best possible bound for Theorem 1.2. However,
we do know it to be weaker than that of Theorem 1.1. Consider the situation where the
set A is a very thin shell. Since the center x will have to be good forall 0 < r < 1,
we have to choose x € A although for any r we can do asymptotically better by letting
lIx]] = v/1T—72.
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