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AbstraeL Let A be a subset of the unit ball in R n, and let 0 < r < 1 be real. Find a point 
x for which the intersection of the r-neighborhood of x with A has a large measure. Tight 
bounds on this measure are found. 

1. General  

After  dinner a round bowl of  chocolate-and-vanil la  ice-cream is served. )~ percent  of  the 
ice-cream is chocolate, your favorite flavor. You have a round scoop with which to probe 
the dessert and your goal  is to maximize  the percentage of  chocolate ice-cream in your 
scoop. How well can you do? 

More formally, let A be a measurable  subset of  the unit bal l  • in IR n. We seek, for every 
r < 1, an r-central point  Xr-- i .e . ,  a point  whose r -ne ighborhood has a large intersection 
with A. Specifically we aim to maximize  # ( A  f~ Br(xr) ) / l z (A) .  

This question can also be turned around: What  is the largest  measure of  A c_ B in Ig n 
that intersects every ball  of  radius r in a set of  measure < t? As stated, this is a natural 
question in integral geometry. For  analogous problems in the realm of  finite graphs, see 
[LPRS]. 

We also consider the existence of  a central point x* for which # ( A  A Br(X*)) / Iz (A)  
is reasonably large for all r < 1. 

For  both questions, we seek answers that hold for every measurable set A. Our  results 
are presented in the following two theorems: 

* This work was supported in part by grants from the Israeli Academy of Sciences, the Binational Science 
Foundation Israel-USA and the Niedersachsen-lsrael Research Program. 



468 S. Hoory and N. Linial 

T h e o r e m  1.1. There is a constant c > 0 such that, f o r  every A c_ ]~ and every r < 1, 
there is a point  Xr ~ R ~ f o r  which 

Iz(A f) Br(Xr) ) C" r n-I  

t z (A)  - 1 / r  -F .r - r 2 

This result is tight up to the constant c. 

T h e o r e m  1,2. There is a constant c > 0 such that, f o r  every A c_ •, there is a point  
x* E ]R n such that, f o r  every r <_ 1, 

l z (A tq Br(X*)) 

~ ( A )  

2.  N o t a t i o n  

The asymptot ic  notations ~9, O, f2 are used throughout. Let  f ,  g be two posit ive functions 
o f  n (possibly o f  other parameters  as well).  Then: 

�9 f = O(g)  i f  there are constants no, c > 0 such that, for every n > no, f ( n )  < 
c .  g(n) .  

�9 f = f2(g) i f  there are constants no, c > 0 such that, for every n > no, f ( n )  >_ 
c .  g(n) .  

�9 f ---- |  i f f  = O(g)  and f = f2(g).  

We always reserve n to denote the dimension of  the space R n containing A, while no, c 
denote absolute constants. Also,  we occasional ly  use a notat ion such as (1 - O ( l / n ) )  n, 
where the O ( 1 / n )  stands for some unspecified function that is O ( 1 / n ) .  

l e t  Br(x) : {y E ~n:  IlY -- xll _< r} be the ball  o f  radius r around x,  and let 

~']r(x) = {Y ~ lRn: [lY - x l l  = r} 

be the sphere of  radius r around x.  I f  the center is the origin we u s e  Br, ]~r instead o f  

nr  (0), ]~r (0). 

3. F o r  E v e r y  r T h e r e  is an  r - C e n t r a l  P o i n t  

We start with two easy attempts at proving Theorem 1.1. These approaches provide  the 
desired proof  for r < 1/.,/'ft. The first a t tempt is introduced in: 

L e m m a 3 . 1 .  l f  A c ]~, then f o r  any r <_ 1 there is a point  x ~ ~ "  such that 

( , + r )  n [d,(A ('~ nr (X) )  > 

i z (A)  -- 
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Proof. The proof follows from the fact that the balls Br(x) for x e Bl+r cover A 
uniformly, so at least one of  these balls must achieve the average, i.e., there is a point 
x E Bl+r such that 

b e ( A n B r ( x ) ) >  be(a)be(Br) ( l ~ r )  n - be(Bl+r) = be(A) . [] 

An asymptotic improvement is offered by: 

L e m m a  3.2.  I f  A c_ B, then for  every r < 1 there is a po in tx  ~ R n such that 

#(A n Br(x)) 
be(A) 

r n 

Proof. The proof is a slight variation on the previous one. Namely, it is shown that the 
family of  balls {Br(x) Ix e B l~ / i~}  covers B almost uniformly, to within a factor of  

two. To see this note that the half ball H = {y e Br(x)l < x, y - x > < 0} is contained 
in B 1~/7~- ~ n Br (x). Of course H ___ Br (x) and H _c B l~/i-~-7, since, for every y e H,  

Ilyll 2 = Ilxll 2 + Ily - xl[ 2 4- 2(x, y - x) < Ilxll 2 + Ily - xll 2 < 1 q- r 2. 

Now be(H) = ll, Z(Br(X)), SO 

#(Br(x) )  > be(Br(x) n B IV/~r2) >_ �89 

Rewrite this as 

Ix(Br(x)) >_ Ix({y e B ~'~Ix �9 Br(y)}) >_ �89 . (1) 

Hence, the balls {Br(y)ly E BI~v/T-~r2} cover B almost uniformly within a factor of  

two (of course the same holds for covering A c ~), i.e., 

maXxeA /z({y e B l~/i-~r, lX ~ Br(y)}) <_ 2 minxeA Ix({Y e B l'4'i-~r:lX ~ Br(y)}) . 

This allows us to derive the desired conclusion as in Lemma 3.1 with a loss of  at most 
a factor of  two. [] 

R e m a r k  3.1.  
this range, the bound in Theorem 1.1 is 

rn--1 

1/ r 4- ~/-ff ~/1 -- r 2 

and a point Xr as found in Lemma 3.2 yields 

These simple arguments prove Theorem 1.1 for the range r _< 1/~/'~. In 

Ix(A n Br(xr)) 

Ix(A) 

= O(r~), 

1 r n 1 
> - > = ~( r~) ,  
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as needed. That Theorem 1.1 is tight in this range follows by considering A ---- B and 
observing that, for any x, 

u ( A  n Br(X)) I z ( B , ( x ) )  
< 

Iz (A)  - I.t(A) 
- -  r n" 

Therefore from now on we are only interested in the range 1/x/'n < r < 1. 
Here spherical shells (i.e., the difference set of two concentric balls) play a central 

role in our considerations. We start by proving (Lemma 3.5) that if  A is a spherical shell 
of width (9 (1 / n), then the best choice of xr achieves 

Iz(A tq Br(xr))  

Ix(A) 
( = o 1 / r  

Since this establishes the tightness (upper bound) of the theorem, we only need to find 
a point xr achieving the required bound for the general A _c B. This is done first for A 
being a subset of the spherical shell of width t0(1/n)  (Lemma 3.6), and then for a general 
A by considering its intersection with concentric spherical shells. The decomposition of 
B into concentric shells is in the same spirit as the Calder6n-Zygmund decomposition 
[T]. 

First we derive certain estimations that will be needed throughout. 

Fact 3.1 (see [C]). The surface area o f  an n-dimensional  sphere o f  radius p is Sp = 
trnp "-1 where tr, = 2rcn/2 / F ( n / 2 ) .  

Lemma 3.3. For n an integer and 0 < e < zr /2 ,  let In (e) f f r / z  = ae COS n a d a .  Then 

( COS n+l  E ~ . 
In(e) 

= | ~r 0 ~ / - ~ s i n e )  ] 

Proof. 

Then 

Assume n > 1 and define An (e) through the relation 

cos(e + An(e)) = (1 -- 1 )  cose. 

= lncose  - Incos(e + An(e)) 

e+An(e) 
= tan x dx .  

Since tan x is an increasing function, and the left-hand side does not depend on e, 
An(e) must decrease with e. 

Definee0 = e, ei+l = e i + S i  whereS/ = An(e i ) .Observe tha t cos  n ei+l ~ (1  - -  1 /n )  n 
cos n ei = O(cos n ei). This allows us to estimate In(e) = ~,i=of~i+lcosnCr ot d c t - ~  

()-~4 =0  8i  cosn ei )" The last sum is bounded below by its first term 80 cos n e. Since 8i are 

,n(, 1) 
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oo l ~--- decreasing, an upper bound for this sum is 80 (cos n c)-  )'-~-i=0 ( - 1 /n)  ni O (60 cosn c), 
i.e., 

In(c) = O(So cos" c) = O(An(c) cos" c). (2) 

To estimate An (e) consider 

cos  
= c o s c - - c o s ( c + A n ( c ) ) = 2 s i n  c + ~  sin 

n 

The fact that sinz = |  for 0 < z < zr/2 implies 

| ( c o s t )  
A , ( c ) ( e  + AN(c)) = - - -~ - - - /  . 

So 

cV/~ ( c o s t )  c 
t,n(c~ = + o . - - n - - .  

O((cos  e)/n) 

~/e2/4 + O((cos  e)/n) + c/2 

\ n s i n  c + n c~ / - f f -~ f f~ , ]  " 

Therefore 

In(c) = (9 .r (.r c + ~/~6"~) = | ~rff .  (~/-dsinc + 1) 

as needed. The last step is justified by separately considering the cases c < 1/4eft and 
e _> U - f  ft. [ ]  

Define for 0 < t < 1 the function 

, v ( t )  = 
tn--I 

1 +~/-ff~r-l--t2 

L e m m a  3.4. Consider the n-dimensional spherical cap of radius p having a head 
angle 2or0 < yr. Its surface area Sp.~o is 

Sp.60 = | (Sp qJ (sin or0)). 

Proof. Sp,a o = fo  ~ crn-l (p sin a ) n - 2 p  dc~. Therefore,  

Sr an-l fo~~ a n - I f  "/2 , ,  = s i n  n - 2  o~ do~ ~ ~ c o s  n - 2  c~d~. 
Sp cr n crn J~r/2-~o 

By Lemma  3.3, and the fact that crn-1/~r~ = | we get the required result. []  
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) 
Fig. 1. Maximizing t~o. 

Corol lary 3.1. The largest area of  a spherical cap Br(x) f') Ep where 0 < r < p is 

Proof. The estimate of  Sp,~ o in Lemma 3.4 is an increasing function of  or0. The largest  
possible  angle Oto of  the cap is obtained when sin Oto = r /p ,  as can be seen in Fig. 1. []  

L e m m a  3.5. 
Then 

Let A be the shelIB\Bl_~ in IR" where e = |  and 1/~/'ff < r < 1. 

# ( A  t3 Br(x)) 
max - -  |  

x At(A) 

Proof. Define )~ = m a x x ( # ( A  fq Br(X))/At(A)). Then our goal  is to show that )~ = 
|  Also let t r (p ,  Ilxll) be half  the head angle of  the spherical  cap Br(x) r Ep 
(obviously only the norm o f x  matters). Then 

f11_~ Sp,c~(p,llxrl) dp 
X = max (3) 

x f l  I Sp dp 
--F,  

Since e = O(1/n)  the variable surface areas Sp differ from the constant $1 only by 
a constant factor. This allows us to write 

X = | ( l f l '  Sp'c'(p'llxll) -~ -~ Sp = O(mdax I f  1Sp'u(p'd) Sp . (4) 

Consider  first r < 1 - 2e. Then the angle or(p, d)  is determined by the tr iangle shown 
in Fig. 2. Now r 5 1 - 2e < 1 - e < p < 1 implies  that the angle t~(p, d)  5 = / 2 ,  so 
Lemma 3.4 can be applied, and thus 

) )~ = | tP(s inot(p,  d))  dp . (5) 
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d 

Fig. 2. The angle o~(p, d). 

Our intention is to show that the integrand ~ (sin ot (p,  d))  varies at most  by a constant 
factor over the integration range 1 - e < p < 1. More  specifically, we claim that 
sin or(p, d)  varies by no more than a 1 4- O ( 1 / n )  factor, while c o s a ( p ,  d)  varies by no 
more than a constant factor over that range. 

To get our analysis started we consider  din, the d that maximizes  ~.. For  fixed p and 
r ,  or(p, d)  is a unimodal function o f d  that is maximized  when d 2 -t- r 2 = p2. Then d,n 
must  satisfy 

(1 - -  E )  2 ~__ d 2 + r 2 <_ 1. (6) 

Otherwise,  say d 2 + r z > 1 > p2.  Then by decreasing d slightly, the unimodal  ot (p,  d)  
increases for all p ' s ,  and since q'  and sin(-) are increasing the integral must  grow. The 
other case is handled similarly. F rom now on d : =  d,n is fixed. 

We turn to estimating the change in sin a ( p ,  d) and cos a ( p ,  d) over the integration 
r a n g e l - e < p <  1. Now 

1 - -  r 2 > ( l  - -  6 )  2 - -  r 2 = ( 1  - -  6 - -  r ) ( 1  - -  e + r )  

= l ( 1 - - r + ( 1 - - 2 6 - - r ) ) ( l + r + ( 1 + r - - 2 6 ) )  

> �88 -- r ) (1  + r )  = �88 -- r2). 

Whence 1 - r 2 = 19((1 - e) 2 - -  r2 ) .  Rewrite (6) as 

( 1 - - e ) 2 - - r  2 ~ d2_< 1 - r  2, 

which by the last remark says that 

d 2 = |  - e ) 2 _  r e ) = 19(1 - r2), 

so, for every 1 - e _< p _< 1 ,  this implies  

p2 _ r 2 = i ~ ( d 2 ) .  (7) 

By the cosine theorem, 

p2 + d 2 _ r z 
cos c~ (p ,  d)  = (8) 

2pd  

U s i n g ( 7 ) a n d p  = 49(1) wecanrewr i t e  (p2 + d 2 _ r2 ) / 2pd  = (d z + O ( d Z ) ) / 2 p d  = 

| (d),  so 

cos ct (p ,  d)  _-- O ( 1V/]--~-- r 2 ) 
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d 

Fig. 3. The angle/~(p,  d).  

and 

1 = 1 9 (  ~/_ 1 l~i__L_7_ r 2 )  (9) 
1 + q/-ff cos  ot (p ,  d )  1 + " 

To es t imate  the change  in s ino t (p ,  d)  over  1 - r < p < 1, def ine  a l so  the ang le  
/3(p,  d)  by  the t r iangle  shown in Fig .  3. B y  h igh - schoo l  t r i gonome t ry  

r p ~ ( d 2 - t - r 2 - - p 2 )  2 
sin ~ (p ,  d)  = - s in/3 (p ,  d)  = r ~ / 1  --  cos  2/3 (p ,  d )  = 1 - 

P P 4 r 2 d  z 

F r o m  (1 - e) z < p 2 ,  d 2 + r 2 < 1 we conc lude  

( d  2 + r 2 - . p 2 )  2 

4 r 2 d  2 

(1 - (1 - ~ )2 )  2 4E 2 
< ,< 
- -  4 r 2 ( ( 1  - -  e )  2 - -  r 2)  - -  4 r 2 ( ( 1  - -  E) 2 - -  r 2 ) "  

The d e n o m i n a t o r  is un imoda l  as a funct ion  o f  r over  1/4eft  < r < 1 - -  2e,  so  the  
m i n i m u m  is ob ta ined  at e i ther  end.  S ince  e = 19 (1 / n  ), i t  can be checked  that  at bo th  ends  

the d e n o m i n a t o r  is 19(1 /n ) ,  so (d 2 + r e - pZ)2/4r2d2 = O(1/n), a n d w e  c o n c l u d e  tha t  

s i n u ( p , d ) = r ' ( l + O ( 1 ) ) .  (10) 

There fore  sin n-1 or(p, d)  = O ( r n - 1 ) .  Toge ther  wi th  (9) this y i e lds  the de s i r ed  
�9 ( s i n u ( p ,  d ) )  = 19(qJ ( r ) ) ,  and by  (5) we  get  X = 19(qJ(r) )  as needed.  

N o w  turn to the case  1 - 2e < r < 1 and show that  both  kO(r) and ~. are 19(1) in this  
range,  so X = o ( q s ( r ) )  as needed.  

S ince  ~/1 - r 2 < ~/1 - (1 - 2e)  2 = ~/4e(1  - e ) a n d  e = 1 9 ( i / n ) ,  it  fo l lows  that  
~/1 - r 2 = O(1/~ / -n) ,  i.e., 1 + .r162 _ r 2 = 19(1). The re fo re  

tP(r) = r n-I 
1 + ~-ff~/1 - -  r 2 

= O(r n-l) = 0 ( 1 ) .  

Obv ious ly  ~ < 1, so  it is enough  to show that  ~. = f2(1).  To see that,  c h o o s e  x such 
that  d = I lx l l  = 4 ~  - r 2, and cons ide r  the poss ib i l i t i e s  for  the ang le  .oe (p ,  d ) :  

�9 I foe (p ,  d)  is obtuse ,  then at  leas t  a h emi sphe re  o f  Ep  is con ta ined  in Br(x) ( i ndeed  
or(p,  d)  m a y  get  as large as zr i f  Zp C Br(x)). Then  Sp.~(p.a~/Sp > �89 = f2 (1). 
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s I f  a(p, d) is acute, then, by L e m m a  3.4, Sp.~p,a)/Sp = |  d ) ) ) .  By  

(8), 

p2 + d  2 _ r 2 p2 + 1 - 2 r  2 p --  (2r 2 --  1)/p 
cos or(p, d)  = = - -  

2pd 2p~/1  - r 2 2-v/'i " - r 2 

This  express ion increases  wi th  p and p < 1, and since r > 1 - 2e we  get  

coso t (p ,  d)  < ~/1 - r 2 < x/1 - (1 - 2e)  2 < ~ = O(1/~/ ' f f ) .  So, 

sin n- I  t r (p ,  d)  
t P ( s i n a ( p ,  d) )  = 

1 + ~/-ffcosot(p,  d)  

is 19(1). The  denomina to r  is 19(1) and for  the numera to r  

sin "-1 u ( p ,  d)  = (1 - cos2(ot(p,  d))) ~n-1~/2 = (1 - O(1/n)) 1~-1~/2 = 19(1). 

Then,  for all 1 - e < p < 1, Sp.~p,d)/Sp = f2(1),  and (4) y ie lds  X = f2(1) as 

needed.  [7 

R e m a r k  3,2. This  l e m m a  proves  the upper  bound  (t ightness)  o f  T h e o r e m  1.1 for  

1/~/-ff < r < 1 since in this range  ~ ( r )  = |  + ~-ff~/1 - r2)) .  This  is 

ver i f ied by separately cons ider ing  r < �89 and r > I_ 
- -  2 "  

R e m a r k  3.3. In the above  proof,  it turned out  that for  all 1/~rff  < r < 1 the cho ice  o f  

x such that  Ilxll = ~/1 - r 2 is op t imal  up to a cons tan t  factor,  and that  for  this cho i ce  

Sp,~(p.llxll)/S p = |  for  all 1 - e < p < 1. 

We now m o v e  on to sets A which  are contained in s o m e  spherical  shell .  

Lemma 3.6. 
< 1 ,  

Let A c_ B\B1_~ in I~ n where e = O ( 1 / n ) .  Then, for every 1/~/-ff < r 

#(A tq Br(x)) 
m a x  --  [2 (qJ(r ) ) .  

x /z (A)  

Proof. The  p r o o f  is by averag ing  over  all x E led, where  d = ~/1 --  r 2. Le t  # t  be the 

normal ized  Haar  measure  on Et.  We saw in the p r o o f  o f  L e m m a  3.5 that 

Sp,a(p,d) 
# p ( B r ( x )  N ~ p )  - -  - -  - -  O ( ~ ( r ) ) ,  

Sp 

where Ilxll = d ( =  v ~  - r2).  In tegra t ing  o v e r x  e I:d wi th  respect  t o / z a  y ie lds  

# ({ (x ,  y)  e Ed x ~p :  IIx - yl l  -< r}) = O ( q J ( r ) ) ,  (11) 

where  # = / z a  x #p .  
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We need to evaluate lzd(Br (y) M Ea) for y E B\Bl_e .  Keeping r, d fixed this expres- 
sion depends only on I lyll = p. Integrating over all y ~ Zp and using (11) we conclude 
that 

#d(Br(y) rq Ea) = O ( ~ ( r ) ) .  

Since the result is independent of  p, the numbers lZd (Br (y) N Ea) as y varies over the 
shell B \Bl_e  change only by a constant factor, In particular, 

maXyeA #d({X E ZdIY e nr(x)})= 0 k(YeI~#d({XE ZdlY 6 Br(x)}))./ 

An averaging argument as in the proof  of  Lemma 3.2 implies that there is a point 
x ~ Zd such that #(A N Br(x))/Iz(A) >_ cql(r) for some constant c, as needed. []  

Proof of Theorem 1.1. By Remarks 3.1 and 3.2 we only need to find the desired x = xr, 
and we may assume 1/~r < r < 1. Let k, k {gi}i=O be such that 

Ro = I, Ri l -  <_ Ri+l <_ Ri l -  f o r i = 0  . . . . .  k - l a n d R k = r .  

It is easily verified that such Ri can be found. Define the shells C/ = Be, \B&+j for 
0 ~ i < k, and the core Ck = Bek = Br. Consider the following situations: 

�9 There is shell Cj such that 

u(A n c:) > 0.01 g2(r_____~). (12) 
#(a)  -- qd(r/Rj) 

In such a situation, since r/Rj > r > 1/v/-ff apply Lemma 3.6 to A fq Cj to find a 
point x for which 

Iz(A n Q n Br(x)) 
Iz(A O Cj) 

> c ~  

So 

#(A r Br(x)) Iz(A ('1 Cj n Br(x)) qJ(r) 
> �9 0 . 0 1 - -  > c -  0.01kO(r). 

#(A) -- u(A f3 Cj) qJ(r/Rj) - 

�9 The core Ck = Br satisfies 

/z(A n Ck) 
> 0.01O2(r). (13) 

/z(A) 

Here the obvious choice x = 0 yields the required result. 

Otherwise, if (12) holds for no 0 < j < k and (13) does not hold, then summing up 
the (reverse) inequalities, we conclude 

k qJ(r) u(a n c j )  
< O.Ol. 

j=0 /z(A) j=0 
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The left-hand side is 1 since A n Cj for j = 0 . . . . .  k constitute a partition of  A. The 
right-hand side is 

k ~ ( r )  
0 . 0 1 - E  qJ(r/Rj)  

j=o 

k rn-1 1 + ~rff~/1 -- ( r /R j )  z 
O.O1- 

X-" 

y~=o 1 + ~/-ff~/1 - r 2 " ( r /R j )  "-1 

k 1 + ~rff~/1 -- ( r /R j )  2 k 
= 0 0 1  R ;  - l  �9 < 0 0 1  R; -1 

j=o 1 + ~/-f f~/~ - -  r 2 - -  j=O 

oo ( 1 ) (n- , ) - j  
< 0.01 �9 E 1 - < 0.01 �9 e - j l l O  

j=o 1On j=o 

0.01 
- -  < 1 ,  

1 - -  e - l / l ~  

a contradiction. [] 

4.  T h e r e  Is  a C e n t e r  G o o d  f o r  E v e r y  r 

The proof of  Theorem 1.2 is split into Theorems 4.1 and 4.2. 

T h e o r e m  4.1. For every A c_ B, there is a point x E ]R n such that, for  all 0 <_ r < 1, 

Iz(A n Br(x))  > o 
lz(A) -- 

Proof  We construct a sequence of  cubes {li} i where li has side 2 -6-1)  and satisfies 
tz(A O I i ) / Iz (A)  >_ 2 -hi. To begin, I0 = [ - 1 ,  1] n will do. Now, given li, decompose 
t n " "o" (i) (2.) �9 . i to 2 disj l n t  c u b e s  ]i . . .  I i by halvmg it along each coordinate. By an averaging 

argument we can choose Ii+l = lid) such that /z(A n li d)) >__ 2-n/z(A n li) >_ 2 -n(i+l). 
Since li is a decreasing sequence of closed sets, there is a point x ~ hi_>0 li. Given r, 
choose the least i such that li c_ Br(x).  Whence r < 4~/'n/2 i (two times the diameter 
of  li), and we have 

Iz(A O B r ( x ) ) >  Iz(A n I i ) 2 _ h i  ( + ) n  
_ > --__ . [ ]  

lz(A) Iz(A) - 

T h e o r e m  4 .2 .  For every A C_ B, there is a point x E ~n such that, for  all 0 < r < 1, 

# ( A  n Br(x)) > 

#(A)  - c .  ln'~2/r) 

Proof Fix A _c •, 0 < r < 1 and introduce a parameter 0 < ot < 1 to be determined 
later. Construct sequences {Xi}i>O, {Xi}i> 0 so that 

xic_B ,(xi) and u(xina)  ( > . (14) 
# ( A )  - \ 1 - - ~  ] 
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For i = 0, the choice X0 = • and x0 = 0 clearly satisfies (14). To proceed by 
induction on i, let (14) hold with xi, Xi. By Lemma 3.1 (scaled by ot i and shifted by xi), 
there is a point x e R n such that 

Ix(Ba'+J(x)nxina) ( ~ "~n ( ~ ) n >  oti = 
Ix(xi n A) - ~-~i+l ] . (15) 

Setting Xi+l = x, Xi+l = Ba,+l (x) O Xi yields 

IX(Xi+I O A) IX(Xi+ 1 n A) Ix(Xi n A) / ct "X n(i+l) 
_ _  >- 

IX(A) IX(Xi n A) ix(A) - k , ] - - ~ /  ' 
I I 

completing the inductive step. Since {Xi} is a decreasing sequence of closed sets, we 
can choose x e n ~176 xi. Let i = [log~ r/21. Then Xi C Br/2(xi) C Br(x). Therefore i=O -- -- 

i x ( A A B r ( x ) ) > _ i x ( A N X i )  > ( O l ~  n[l~ > ( o t ~  nl~ ~ ( r )  n 

ix(A) ix(A) - \ ' i-"-~ ,l - \ T ' - ~  ] "~F ' 

where 2 /=  (1/o0(1 + or) l~ Then 

( 1 )  ln(i + or)ln(i/o0 ( 2 )  ( 1 )  ln(2/r)  l ny  = In + ln(1  +or) + In < I n  + In 2 + (1/or) ln(lot ) 

Choose 0 < or0 < 1 to be the (unique) solution of the equation 

Then 

or0--1 in lc~0 = In ( ~ )  

1 
lny  < l n - -  + I n 2 +  1. 

0t0 

Now, In(I/or0) > 1 since otherwise 

( 2 )  1 1 l 1 
- 1  < l n l n 2 < l n l n  = l n - - + l n l n - -  < - - + I n  < - 1 .  

- Oto oto 10 ]'-6 

So 

l ay  < l n l n ( ! ) - - l n l n  or0--1 + l n 2 + l  < l n l n ( ! )  - l n 1 - ! 6 + l n 2 + l  < l n l n ( 2 )  +6" 

Therefore 

for some c > 0, as claimed. [] 

Remark  4.1. We still do not know the best possible bound for Theorem 1.2. However, 
we do know it to be weaker than that of Theorem 1.1. Consider the situation where the 
set A is a very thin shell. Since the center x wilt have to be good for all 0 < r < 1, 
we have to choose x e A although for any r we can do asymptotically better by letting 
Ilxll = ~ / 1 - r  2. 
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