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ABSTRACT
Let X be a probability space and let f: X™ — {0,1} be a measurable
map. Define the influence of the k-th variable on f, denoted by Iy (k),
as follows: For u = (u1,us,...,un—1) € X"~ consider the set Iz(u) =

{{m1 g, ooy =1, Wk - - Jun—1): t € X},
I; (k) =Pr(u € X™1 . fis not constant on I (u)).

More generally, for S a subset of [n] = {1,...,n} let the influence of 5
on f, denoted by I;(S), be the probability that assigning values to the
variables not in S at random, the value of f is undetermined.

THEOREM 1: There is an absolute constant 1 so that for every function
f: Xm — {0,1}, with Pr(f~1(1)) =p < ;—, there is a variable k so that

logn
I (k) 2 cp—t

o
=
THEOREM 2: For every f: X™ — {0,1}, with Prob(f = 1) = %, and every
€ > 0, there is 8§ C [n],|S| = e2(e)n/log n so that I;(5) > 1—e.

These extend previous results by Kahn, Kalai and Linial for Boolean func-
tions, i.e., the case X = {0,1}.

1. Introduction
Let X be a probability space and let f: X® — {0,1} be a measurable map.
Define the influence of the k-th variable on f, denoted by Iz(k), as follows:

For u = (%1, Uz, ...y %n—1) € X1 consider the set

() = {(u1, Uny eeey Yk—1,F, Uy oy Un—1) 1 T € X}

(1) I#(k) = Pr(u € X" : f is not constant on lx(u)).

More generally, for S a subset of [n] = {1,...,n} let the influence of S on i
denoted by I;(S), be the probability that assigning values to the variables not
in S at random, the value of f is undetermined. (Note that I;({k}) = Iz(k).)
The purpose of this note is to supplement the papers by Kahn, Kalai and Linial
[KKL, KKL'], which study the influence of variables on Boolean functions, i.e.,
the case X = {0,1}. The reader is referred to [BL, KKL, KKL'] for background
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o this problem and its relevance to extremal combinatorics and theoretical com-
ter science.

pu
Given X and f as above we can replace X by the unit interval [0,1], and f

by an appropriate function g so that the influences of f and g will be the same.
Therefore, there will be no loss of generality in assuming that X = [0, 1].
An easy consequence of Loomis and Whitney’s inequality [LW] is:

TaeOREM 0: Every function f: X™ — {0,1} with Pr(f = 1) = p < 1 satisfies
S 1
) > If(k) 2 pIog(;).
k=1

The following examples show that for p > (3)" this inequality is sharp (up to
a constant factor): If ()1 >p> (3)F let f =1iff p!/* > 2, fori=1,...,k.
Theorem 0 implies that for some variable k,

T
I (k) > plog(=)=.
f()_pog(p)n

Here we improve this estimate to

THEOREM 1: There is an absolute constant ¢; so that for every function
f: X* = {0,1},

with Pr(f = 1) = p < 1, there is a variable k so that

Repeated applications of Theorem 1 yields:

':LHEOREM 2: Forevery f: X™ — {0,1}, with Prob(f =1) = 1, and every € > 0,
ereis § C [n], |S| = co(e)n/logn so that I;(8) > 1 —e.

The assertions of Theorems 1 and 2 for Boolean functions (i.e., for the special
]‘;::—éf =d{0,.1;}) are proved in [KKL,KKL'], in response to a conjecture by
i r a;z Linial [BL.]. That Theorems 1 and 2 are asymptotically optimal for
thms ;n t)ih— {0,1} is shlown ‘Iby the “tribes” function f from [BL]. Here, and
5 ghout the papa?r‘, we 1dt?nt1fy elements of {0,1}" with subsets S of [n] in

€ usual way. Partition [n] into subsets S1,...,Sk of size logn — loglogn + ¢




e
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(c is an appropriate constant) and define f(T) =1 f T contains S; for some j.
Obviously, a similar function can also be realized for X = [0,1].
An example which exists only in the latter case but not for X = {0,1} is the

function f which equals 1 fa: = pll'" for every i, 1 <1 < n. It shows the

Loomis-Whitney inequality to be tight for any p > 0 and also shows why the
proof in [KKL, KKL'] needs to be modified to handle general probability spaces

X.

2. Proofs
|

The proof of [KKL] relies on Beckner’s hypercontractive estimate. In order to

extend it to our more general case we need some additional considerations. We

also sketch a variant of the proof based on another hypercontractive estimate.
%, leaving the minor adjustment

For simplicity we prove Theorem 1 for p =
needed for general p to the reader.

LEMMA 1: Given a function g: [0,1]* — {0,1}, there is a monotone function

£:[0,1]" — {0,1} such that I,(k) = I(k) for every k.

Proof: Consider the restriction of f to the unit segment I (u). Define Tk(f ) as
the function which is monotone on Ix(u) and satisfies Pr(Te(f)~2(0) N lk(w)) =
Pr(f~1(0) N lx(w)) for every u € xn-1, Note that I(k) = I, (p(k) and I;(j) 2
I (5(j) for j o k. Repeated applications of these operations yields in a limit &

function which is fixed under all Tk, hence monotone. |

Remark 1: The proof of Lemma 1is a standard combinatorial shifting argumenty

(see [A, Bo, F, BL] ) and is also similar to the well-known Steiner symmetrizations

Remark 2: The same argument implies that I,(S) = I 7(S) for every S.
At this point we replace X =[0,1] by the interval of integers

v a {01,020 = 0

(with uniform probability distribution). It suffices to prove Theorem 1 with /
instead of X as long as our constants do not depend on m. It will be useful 0
identify ¥ with the discrete m-dimensional cube {0, 1l

This allows one to express functions f: ¥ — R in their

by the binary expansion:
Walsh—Fourier expansio®

(3) f=3 {f(Sus:5cml

T
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where ug is the function defined by ug(T) = (—1)I57TI,

For a function f: ¥ — R, we wri
: write the W: o : . ;
sollowing fove ] e Walsh—Fourier expansion of f in the

(4) F = AF(51,- )81, 5, |51 € [mye - 5,85 € [}
Here us,,...s, (T, , Tn) = [] us,(Ts).

.\f.\fe aIWayS VIEW Y as a i Y glVe! a CT10: ' =
probablllt Space, ﬂnd SO
Uunction . Y R,

1
1l = (p 2 1A

scy
Parseval’s identity asserts that ||f||2 = Yoy ]Ez(S). We also define
(5) w(f)= > FS)ISI.
5C[m]
Clearly, w(f) = 0 for every function f and w(f) = 0 if and only if f is a constant

function.

Lemma 2: ([KKL, CG]) For f: {0,1}™ — {0,1}

() e e L
k=1

A function f from ¥ to {0,1} is monotone iff for some ¢, f(i) = 0 when

0<i<tand f(z) = 1 wh ]
5 = = ent<:< 2™ —1. Thi . = o -
Walsh transform. is has some implications on f’s

LEM ; :
MA 3: Let f: Y — {0,1} be a monotone function. Then w(f) < 2.

Proof: e -
Or;(o : By definition I¢(k) is 2=™*! times the number of pairs v, w with f(v) =
yJw) = 1 1 7 o
o ; (k)l -so ;hat v is obtained from w by flipping the k-th coordinate. (Note:
y L5(k) is the influence of a function from ¥ . :
o nilsiei om Y to {0,1} regarded as a Boolean
The monotonicity of f implies that

1

To{i] = b
o(m=2)""

2(m-1)’

If(Z)S ",I_f(m)SI

(in fa.ct,
1
) =5

Unlegg t < 9k—1
i or ¢ > 2™ — 95-1). Therefore Y31
this ;5 what we need. 1] ) T Ek:l If(k) < 2, and by Lemma 2




60 J. BOURGAIN ET AL. Isr. J. Math.

LEMMA 4: ([KKL]) For f: {0,1}" — {0,1}, define To(f) = S {f(S)elSlus :
S C [r]}. Then

(7) ITefllz < I fllige2-
Proof: Asshown in [KKL] this follows at once from Lemmas 1 and 2 in Beckner’s

paper [Be]. (We will need the case r = mn.) |

Remark: For our purposes 1 + €* can be replaced by any 2 — é(€), so Beckner’s ‘

Lemma 1 can be replaced here by an obvious estimate. |

Here is a quick outline of the proof of Theorem 1. We assume that f is

monotone. Consider the restriction g of f to a function from Y to {0,1} obta.inec’.{z
by assigning values to all variables except the k-th one. I¢(k) is the probability
(assignments being selected at random) that g is not constant. The proof is base 1
on two observations: First, that w(g) is bounded between 0 and 2 with w(g) = 0if
g is constant. The second observation is that if r is obtained by subtracting from
g its average value, then r is bounded, and we can give an absolute upper boun'
for the (4/3)-norm of r. These two observations combined with Lemma 4 haye

consequences on the Walsh-Fourier coefficients of f which imply our theorem.

Proof of Theorem 1: Let f: Y™ — {0,1} be a function with Pr(f =1) = 1.

will show that for some k,
logn
I = :
£(k) 2 e1—>

By Lemma 1 we may assume that f is monotone.

Let T: Y — R be given by T(Z) = Y sus(Z)|S[*/?, ie. T(S) = |S['/? fai
all S. The convolution of T with a function g: ¥ — R is denoted T * g, i.€
Txg(S) = §(S)|S|'/* and

(8) IT*gl3 =Y §(S)IS|=w(g).

SC[m]

Fix an index n > k > 1, and define a function
g= 9[51, ...,Sk_1,5k+1, vesy Sn]l Y — {0, 1}

by

(9) 9[51: rrey Sk—h Sk+11 ey Sn]('sl) = f(Sh S‘Z) pesy Sk—! ) Sl Sk+1; veey Sn.)-

Vol. 77, 1992 INFLUENCE OF VARIABLES 61

Define also a function v — R e Sgpn SRR by
(10) v[51,5'2,---,Sk~1,5k+1,--v,3u] e PR T ST ]
b LEREY nj-

By equation (8), |[v]2 = w(g), and b
) , y Lemma 3, 0 < 2 i
constant function then lv]|3 = 0. RN T
Deﬁne. now Wk(..sl,Sg,...,Sn) = u[Sl,...,Sk_.l,Skq.],...,Sn](S];). Wi is the
convolution of f with the real function Ty on Y7 given by Ty(S, S. Sy)
! s ] 192,30 ) =
T:(Sk) if S; = 0 for every i # k and Ti(S1, 82, ..., Su) = 0 otherwise. Note that
Tk(51, 52, ., Sn) = [Sk|'? and therefore

(11) Wi(S1, 82,1, 82) = f(51,50, .., 5,)[Su 3,
and
(12) W} = Y (W(S1, S, ..., S))% = 2 P51, 8, S0IS4.

On the other hand,

LA S

Sl C[m.ls---?sn C[m]

- lyf—n+1 Z

B1505 8k =1, Sk 14055, 5

‘U{SI, sy S};—l, Sk+1} teey Sn]z(Sk)

(13)
[0[S1, -ves Sk1, Skt1, .., Sall 2.

But we saw that the value of [|0[S1, ..., S,

ded by 2, and is equal to zero if g[S, ..
tion, l

Sk+1y -0, Snl 12 is non-negative, boun-
o Sk=15 Skp1,one, Sn] is the constant fune-

Therefore we have

14
E Wil < 21,08,

Assume now that for every £,

I5(k) < o, 287
n

It fOHQWS that
i
Wiz = 2
= f (51 =isat Sn 5. Sk
i 51C[m],.,,,sﬂc[m] )(' ll + ISZI 2 + 'Snj)

(15)
< 2¢; log n.
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Thus, more than half of the weight of ||f]3 is concentrated where |S1| 4 |Sz2| +
oo 4 |Sn| < Beylogn.
To reach a contradiction write Rk = 25,0 f(SH_ O e Note that
Ri(S1, .3 Sk=15 5k Shirr e On) =101, s heensi S )
(16) #Egkf{Sl,...,Sk,...,Sn).

Here, Es, f(S1,--5 5k ...;Sp) is the average value of f(S;,...,S’k,...,Sn} over all

values of Sk. Therefore |Rk| is bounded (say by 2), and Ri(S1 .-

g[Sl, eany Sk..-1, Sk+1, vaey Sn]
It follows that

is a constant function.

| RI4/ < BI(k)-

(17) e
Le.,
(18) || Rellz/s < (BI; (k)%

and by Lemma 4 for e = V/3/3
L
2

(19) SOITRl; < I1Relys < ca(logn)in
k=1 k=1

Note that

TR = ZRk(Sla ol A Sn)élsl 1+"'+|Sn|u(s‘1 i Sn.)

and that Be(S1,-..,Sn)=0o0r F(8y;000550)

not. Therefore,

S NTeRl3 = ¥,

51C[m],.-»Sn C[m]

Ji-'Z(Si . Sn)#(SH 4 Sn)52|51 |+..+2|Sal

(20) < cg(logn)in3,

where p(S1-+-Sxn) = [{J: 5; # 0}
The last relation implies that more than half the w

where |S1|+[Sz|+- -+ |Sn| > calogn which is a con
small. |

tradiction if ¢; is sufficie®

,Sn) = 0 if

, depending on S being empty OF

eight of || f |13 1s conoent'r-ﬂ'
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All )
ernative proof for Theorem 1 (sketch): Let us assume again that X = [0,1]

" . .
and that f is monotone. The (ordinary) Fourier expansion of f is:

(21) f= Z f{z)(;,?fri(z,z).
Z€Zn

Define

(22 B(f) =Y PRIk

Clearly w(f) is non-negative and w(f) = 0iff f is a constant functi
ion.

LEMMA 3': Let f: X
f: X — {0,1} be a monotone function, then W(f) < ¢ for some

absolute constant c.
Proof: Easy.

LEMMA 4': Define P, =¥ 8 gami
=Y a**e*™. Then for a > 0 small
9:[0,1] = R, ||Pa % gll2 < |lg]las- oy
Proof: Thi i i
is follows easily by the Riesz interpolation theorem by showing that
a

fora >0 i
- rju:ﬁf;enﬂy small, || Fs * glleo < |lg]l2 and ||Pa * g]lx < [|g]]1.
proof of Theorem 1 proceeds as before: Just define

23
( ) ch = Z f(z)zi/362ﬁi<z,z>
zZ€Z" &

(24)
Re % e,

ZEZ™, 21 F#0
and
replace the operator T, by g = (Q" P.) x ¢
) * g.

Remary
: In [KKL] i i
O inflgencq. ([I (IISJ stronger inequalities concerning the L,-norms of the vect
F(1),...,I¢(n)) are proved, and some estimates on the a.bso(lzuct)r
e

COIISta.IltS 1
are given heo W
det '13_ €11, rem 1 can be sharpened ina s:mlla.r ay e omit the
way. 1
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ABSTRACT
In this paper we want to prove the following theorem: Let ¥ be an infinite
set of non-abelian finite simple groups. Then the free group Fy on 2 gen-
erators is residually x. This answers a question first posed by W Magnus
and later by A. Lubotzky [9], Yu. Gorchakov and V. Levchuk [4] i

1. Introduction

A group G is called residually & if the intersection of all normal subgroups N4 G
suc-h that G/N € X is the trivial group. In this paper we consider a cert:a.i
reszd1-1a1 property of free groups F;, on n generators (n > 2). We consider th:
.case .1n which every group in X is a non-abelian finite s_irnple group and & i
infinite. For these classes we prove the following theorem: :

THEO : infini
e REM 1: Let & be any infinite set of non-abelian finite simple groups. Then
€ iree group F on 2 generators is residually X.

Thi i

g ISY ansgers a question first posed by W. Magnus and later by A. Lubotzky

res:idul;l orchakov and V. Levchuk [4]. As every non-abelian free group F, is
y {F2} [14], the transitivity implies that F,, is also residually &, So the

theorem still w.
1 hOldS f y i i
; i or any free group Fn, here ni1s a ca.rchnal number greater

T
0 prove Theorem 1 we show the following:
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