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Abstract Let us denote by Ωn the Birkhoff polytope of n × n doubly stochastic ma-
trices. As the Birkhoff–von Neumann theorem famously states, the vertex set of Ωn

coincides with the set of all n × n permutation matrices. Here we consider a higher-
dimensional analog of this basic fact. Let Ω

(2)
n be the polytope which consists of all

tristochastic arrays of order n. These are n×n×n arrays with nonnegative entries in
which every line sums to 1. What can be said about Ω

(2)
n ’s vertex set? It is well known

that an order-n Latin square may be viewed as a tristochastic array where every line
contains n − 1 zeros and a single 1 entry. Indeed, every Latin square of order n is
a vertex of Ω

(2)
n , but as we show, such vertices constitute only a vanishingly small

subset of Ω
(2)
n ’s vertex set. More concretely, we show that the number of vertices of

Ω
(2)
n is at least (Ln)

3
2 −o(1), where Ln is the number of order-n Latin squares.

We also briefly consider similar problems concerning the polytope of n × n × n

arrays where the entries in every coordinate hyperplane sum to 1, improving a result
from Kravtsov (Cybern. Syst. Anal., 43(1):25–33, 2007). Several open questions are
presented as well.
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1 Introduction

Let Ωn ⊂ R
n2

be the Birkhoff polytope, namely the set of order-n doubly stochastic
matrices. The defining equations and inequalities of Ωn are

n∑

i=1

xi,j = 1 for all 1 ≤ j ≤ n,

n∑

j=1

xi,j = 1 for all 1 ≤ i ≤ n,

and

xi,j ≥ 0 for all 1 ≤ i, j ≤ n.

The vertex set of Ωn is determined by the Birkhoff–von Neumann theorem [1, 11].

Theorem 1.1 The vertex set of Ωn coincides with the set of permutation matrices of
order n.

We consider here some higher-dimensional analogs of the polytope Ωn and ask
about their vertex sets in light of Theorem 1.1.

A line in an n×n×n array A is the set of entries obtained by fixing two indices and
letting the third vary from 1 to n. A line of the form A(·, j, k) is called a column, a line
of the form A(i, ·, k) is a row and a line of the form A(i, j, ·) is a shaft. A coordinate
hyperplane in A is the n×n matrix obtained by fixing one index and letting the other
two vary. Such a hyperplane of the form A(·, ·, k) is called a layer of A. We denote
the kth layer of A by Ak . We denote the support of an array A by supp(A).

Let Ω
(2)
n be the polytope of all tristochastic arrays of order n. Namely, n × n × n

arrays with nonnegative entries in which every line sums to 1. Latin squares of order
n can be viewed as two-dimensional permutations and it is easily verified that every
Latin square of order n is a vertex of Ω

(2)
n . Does the natural analog of Theorem 1.1

hold true? As we show (Theorem 1.5), this is far from the truth. Of the v = vn vertices
of Ω

(2)
n only fewer than v2/3+o(1) correspond to Latin squares.

In Sect. 3 we establish a similar phenomenon for a related polytope. Namely, now
we consider n × n × n arrays of nonnegative reals in which every coordinate hy-
perplane sums to 1. It is shown in [8] that a natural, combinatorially defined set of

vertices, comprise no more than v
2
3 +o(1) of the v vertices of this polytope. We im-

prove this bound to v
1
2 +o(1).

The polytopes that we consider here have been studied in various contexts. For an
extensive coverage, see [3, 12]. These earlier studies were motivated mostly by in-
terest in optimization problems. The (original) Birkhoff polytope plays an important
role in assignment problems. Likewise, its higher-dimensional analogs are of interest
in the study of transportation polytopes, multi-index assignment problems and other
classical optimization problems.
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1.1 Background Material

A Latin square L of order n is an n × n matrix with entries from [n] := {1, . . . , n}
such that each symbol appears exactly once in every row and column. Equivalently, it
is an n× n× n array A of zeros and ones in which every line has exactly one 1 entry.
The correspondence between the two definitions is this: A(i, j, k) = 1 ⇔ L(i, j) = k.
We denote the number of order-n Latin squares by Ln.

The permanent of an n × n matrix A is defined as

Per(A) =
∑

σ∈Sn

n∏

i=1

ai,σ (i).

A lower bound on permanents of doubly stochastic matrices was conjectured by
van der Waerden and proved by Falikman and by Egorychev [4, 5].

Theorem 1.2 If A is an n × n doubly stochastic matrix, then

Per(A) ≥ n!
nn

.

An upper bound on the permanent of zero/one matrices was conjectured by Minc
and proved by Brègman [2].

Theorem 1.3 Let A be an n × n matrix of zeros and ones with ri ones in the ith row.
Then

Per(A) ≤
n∏

i=1

(ri !)1/ri .

The following argument of van Lint and Wilson [10] utilizes these two bounds to
derive an estimate for Ln by constructing a Latin square A and bounding the number
of ways to do this. Consider the n × n × n zero-one array representation of a Latin
square layer by layer. Each layer is a permutation matrix, so that there are n! choices
for the first layer. Having already specified k −1 layers, the number of choices for the
kth layer can be expressed as the permanent of B , a zero/one matrix where bij = 1
iff aijt = 0 for all k > t . Using the above upper and lower bounds on per(B) we have
the following.

Theorem 1.4

Ln =
((

1 + o(1)
) n

e2

)n2

.

1.2 A Higher-Dimensional Birkhoff Polytope

1.2.1 Definitions

Let Ω
(d)
n be the set of [n]d+1 nonnegative arrays such that the sum of each line is 1.

Thus, Ω
(1)
n = Ωn, the set of order-n doubly stochastic matrices. Likewise, we call
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a member of Ω
(d)
n a (d + 1)-stochastic array. Maintaining the analogy, we let S

(d)
n

be the set of [n]d+1 arrays of zeros and ones with a single one in each line. In other
words, S

(d)
n consists of all (d + 1)-stochastic arrays all of whose entries are zero or

one. Thus, S
(1)
n is the set of order n permutation matrices and S

(2)
n coincides with the

set of order-n Latin squares. Members of S
(d)
n are called d-permutations.

In the literature, the set of all nonnegative d-dimensional arrays with line sums
equal to 1, which we denote by Ω

(d−1)
n , is called the d-index planar assignment poly-

tope. In Sect. 3 we consider the polytope of all nonnegative d-dimensional arrays
with hyperplane sums equal to 1, and denote it by Σ

(d−1)
n . In the literature this poly-

tope is called the d-index axial assignment polytope. These polytopes are instances
of multi-way transportation polytopes. See [9] for a survey of what is known about
these more general objects.

We turn to investigate the vertex set of Ω
(d)
n . It is easily verified that every member

of S
(d)
n is a vertex of Ω

(d)
n . However, as we show here Ω

(d)
n can have numerous

additional vertices.

1.3 A Motivating Example

It is instructive to consider the smallest such example. Namely, the following array A

is a vertex of Ω
(2)
3 :

A1 =
⎡

⎢⎣

1 0 0

0 1
2

1
2

0 1
2

1
2

⎤

⎥⎦ , A2 =
⎡

⎢⎣
0 1

2
1
2

1
2

1
2 0

1
2 0 1

2

⎤

⎥⎦ , A3 =
⎡

⎢⎣
0 1

2
1
2

1
2 0 1

2
1
2

1
2 0

⎤

⎥⎦

To see that A is indeed a vertex, assume to the contrary that A = αB + (1 − α)C

for some 0 < α < 1 and B �= C in Ω
(2)
3 . If A(i, j, k) is 0 or 1, then necessarily

A(i, j, k) = B(i, j, k). So wherever A(i, j, k) �= B(i, j, k), there holds A(i, j, k) = 1
2 .

Consider the graph G = G(A) whose vertices are the 1
2 entries of A, where two

vertices are adjacent iff they are on the same line. Since A is tristochastic, it fol-
lows that B(i, j, k) + B(i′, j ′, k′) = 1 for every two neighbors (i, j, k) and (i′, j ′, k′)
in G. Specifically, if B(i, j, k) = 1

2 + ε, then B(i′, j ′, k′) = 1
2 − ε. Consequently, the

connected component of G which contains the vertices (i, j, k) and (i′, j ′, k′) is bi-
partite. The color of a vertex is determined according to whether the B entry is 1

2 ± ε.
However, it is easy to verify that G is connected and not bipartite, which proves our
claim.

1.4 A Scheme for Constructing Vertices

The above example suggests a construction for vertices of Ω
(2)
n . Let A be an order-n

tristochastic array whose support consists of exactly two 1
2 entries in each line. The

graph G = G(A) defined as above is 3-regular and has 2n2 vertices. As we now show,
A is a vertex of Ω

(2)
n iff no connected component of G is bipartite.

Indeed, suppose that G has a bipartite connected component with parts P and Q.
Let � be the [n]3 array with ±1 entries at the elements of P,Q, respectively, and 0
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everywhere else. Note that every line of � sums to zero. To see that A is not a vertex,
note that A = X+Y

2 , where X,Y = A ± 1
2� are clearly tristochastic.

Conversely, suppose that A = αB + (1 − α)C with 1 > α > 0 and B �= C in Ω
(2)
n

is not a vertex. The same consideration that worked for the above example shows that
the relevant component of G is bipartite.

This discussion suggests that we construct A so that no connected component
of G(A) is bipartite. This should not be too hard, since G is 3-regular. Indeed, we
suspect (but we still cannot show) that with high probability a randomly chosen tris-
tochastic array with two 1

2 ’s in each line is a vertex. This idea still yields the following

lower bound on the number of vertices of Ω
(2)
n .

Theorem 1.5 The polytope Ω
(2)
n has at least L

3
2 −o(1)
n vertices.

2 Proof of Theorem 1.5

2.1 The Construction

Let I = (i1, i2, . . . , in) and J = (j1, j2, . . . , jn) be two permutations of [n]. We let

H(I,J ) := {
(i1, j1), (i2, j1), (i2, j2), (i3, j2), . . . , (in, jn), (i1, jn)

}
,

and call such a collection of index pairs an H -cycle. If the elements of an H -cycle
are interpreted as the indices of entries in an n × n matrix, there are exactly
two such entries in every row and column. Note that H(I,J ) = H(I ′, J ′) where
I ′ = (i2, i3, . . . , in, i1) and J ′ = (j2, j3, . . . , jn, j1). Likewise, if we “reverse” the or-
der of the iν and the jν by replacing I with I ′ = (i1, in, in−1, . . . , i2) and J with
J ′ = (jn, nn−1, . . . , j1), H(I,J ) remains unchanged. Consequently, the number of
H -cycles is 1

2n!(n − 1)!.
Definition 2.1 Let n be an even integer. An order n double Latin square is an n × n

matrix with entries from {1, . . . , n
2 } where each symbol appears exactly twice in each

row and column.

We say that a double Latin square X is Hamiltonian if the indices of the k-entries
of X constitute an H -cycle for every k ∈ {1, . . . , n

2 }. (This explains the choice of the
term H -cycle.)

Let A be a t × t matrix and let σ ∈ St be a permutation. We denote by σ(A)

the matrix obtained from A by applying σ to its rows. We need the following result
from [7]:

Proposition 2.2 Let A,B be two order n
2 Latin squares and let σ ∈ S n

2
be a cyclic

permutation. Then the block matrix

X =
(

A B

σ(A) B

)

is an order n Hamiltonian double Latin square.
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It follows that the number of Hamiltonian order-n double Latin squares is at least

( n
2 − 1)! · L2

n
2

= ((1 + o(1)) n

2e2 )
n2
2 .

We want to construct a tristochastic array A with exactly two 1
2 ’s in each line, in

such a way that G(A) is non-bipartite and connected (and therefore A is a vertex).
The idea is to use a Hamiltonian double Latin square X to define the top n

2 layers
of A. We use the fact that X is Hamiltonian to complete A in such a way that G(A) is
connected, and then “plant” an odd cycle in G(A) to ensure that G(A) is not bipartite.

Given a Hamiltonian double Latin square X, we use it as the “topographical map”
of the top n

2 layers of A. Namely, A(i, j, k) = 1
2 ⇔ X(i, j) = k. Let us observe the

subgraph of G(A) spanned by the entries of A that reside in these top layers. Every
positive entry A(i, j, k) = 1

2 comes from X(i, j) = k, and X has exactly two k entries
in each line. Therefore this subgraph of G(A) is 2-regular. Moreover, since X is
Hamiltonian, for every 1 ≤ k ≤ n

2 the vertices of G(A) that correspond to supp(Ak)

constitute a cycle of length 2n. In other words, the subgraph of G(A) corresponding
to the entries of the top half of A is the disjoint union of n

2 cycles of length 2n.
At this point, there are two 1

2 entries in every line that resides in one of the top n
2

layers of A, and a single 1
2 entry in every shaft.

We turn to define the next layer, An
2 +1. Our purpose is to choose the 1

2 entries
in this layer so as to form a single cycle of length 2n. The vertices of this subgraph
should also be connected to each of the cycles in the top n

2 layers. Clearly, if we
manage to accomplish this task, then the part of G(A) that is already revealed is
connected. Furthermore, note that every shaft contains a positive entry in the top half
of A. Therefore, G(A) will remain connected regardless of our choices in the lower
layers of A.

In order to achieve our goals concerning An
2 +1, we want to find n

2 index pairs
(i1, j1), . . . , (i n

2
, j n

2
) such that X(il, jl) = l for all 1 ≤ l ≤ n

2 and no two of them
share a row or a column. We find such pairs successively as follows: Suppose
that, for some k < n

2 , we already have k pairs (i1, j1), . . . , (ik, jk) with X(i1, j1) =
1, . . . ,X(ik, jk) = k and no two pairs share a row or column. We claim that there is
an additional pair (ik+1, jk+1) that does not share a row or column with any of the
above index pairs, and X(ik+1, jk+1) = k+1. Since X is a double Latin square, every
row and column of X has exactly two elements that equal k + 1. Therefore at most
4k of these entries share a row or column with a previous pair. But 2n > 4k, so that
such an index pair (ik+1, jk+1) must exist.

We choose n
2 more pairs of indices (i n

2 +1, j n
2 +1), . . . , (in, jn) in such a way that

no two pairs of (i1, j1), . . . , (in, jn) share a row or a column.
It is possible to rename, if necessary, the set of chosen pairs {(iα, jα)|α = 1, . . . , n}

as {(ν, τν)|ν = 1, . . . , n} for some permutation τ ∈ Sn. Let P be the permutation
matrix of τ . We next select a permutation σ ∈ Sn whose permutation matrix P ′ is
such that P + P ′ consists of a single cycle. (We note that given τ , there are exactly
(n − 1)! possible choices for σ ). We achieve our aim by setting An

2 +1 := 1
2 (P + P ′).

The purpose of our choices for An
2 +2 is to introduce an odd cycle into G(A). This

odd cycle must use elements from the top half of A. Additionally, the indices of the
1
2 entries in An

2 +2 must avoid all index pairs used in An
2 +1, so as not to create a shaft

with three 1
2 entries.
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To this end, we seek two vertices x = (x1, x2, k) and y = (y1, y2, k) with x1 �= y1
and x2 �= y2 that are connected by a path of odd length in the part of G(A) con-
structed so far. The construction of An

2 +2 will yield a length four path between x

and y, ensuring that G(A) is not bipartite. This path will have the form x, x′,w,y′, y
where x′ = (x1, x2,

n
2 + 2), y′ = (y1, y2,

n
2 + 2) and w is either (x1, y2,

n
2 + 2) or

(y1, x2,
n
2 + 2).

A simple counting argument shows the feasibility of this construction. Two ver-
tices from the same layer can serve as x and y if their distance in that layer is odd and
≥3. There are Ω(n2) such pairs in every layer with a total of Ω(n3) such candidate
pairs. On the other hand, as we show below, only O(n2) such pairs are ruled out, so
at least for large n a good choice of such x, y must exist.

The reason that an entry cannot play the role of x is that its shaft meets
supp(An

2 +1). There are O(n) vertices in x’s layer which might serve as y, and

supp(An
2 +1) has cardinality 2n, so only O(n2) pairs x, y get ruled out for this

reason. It remains to see how the pair x = (x1, x2, k) and y = (y1, y2, k) can be
disqualified when both x’s and y’s shaft do not meet supp(An

2 +1). This can hap-
pen only if both (x1, y2,

n
2 + 2) and (y1, x2,

n
2 + 2) are unavailable to us, namely

A(x1, y2,
n
2 + 1) = A(y1, x2,

n
2 + 1) = 1

2 . There are only O(n2) such instances, one
per each pair of vertices in the 2n-cycle residing in An

2 +1.
By doing these computations carefully, one shows that already for n ≥ 10 there

must exist a good pair for the above argument.
Next we need to complete supp(An

2 +2). We are currently committed to three el-

ements and 2n − 3 more 1
2 entries need to be chosen, so that altogether there are

exactly two in each row and column. The locations that must not be chosen are those
in the “shadow” of supp(An

2 +1). It is easily seen that we need the following simple
graph-theoretic claim.

Proposition 2.3 Let G = (L,R,E) be a (n − 2)-regular bipartite graph with |R| =
|L| = n ≥ 6 and let M be a path of length 3 in G. Then there is a 2-factor in G which
contains the three edges of M .

Proof Let M = x1, x2, x3, x4. A bipartite graph with sides of size k and degrees ≥k/2
has a perfect matching. Let Φ be a perfect matching in G \ {x1, x2, x3, x4}. Next
let Ψ be a perfect matching in G \ {x2, x3} \ Φ . The desired 2-factor is Φ ∪ Ψ ∪
{(x1, x2), (x2, x3), (x3, x4)}. �

To recap, the graph G(A) is connected, it contains an odd cycle, and these proper-
ties are retained regardless of how the remaining n

2 − 2 layers are completed.
The remaining layers are constructed as follows. Let K be an n × n matrix where

K(i, j) = 1 or 0 according to whether the shaft A(i, j, ·) has one or two 1
2 entries.

Each row and column of K has n − 4 one-entries. In other words, K is the adjacency
matrix of an (n − 4)-regular bipartite graph which, therefore, has a 2-factor. This
process can be completed layer by layer. This is just an existential argument and we
next turn to estimate the number of ways in which our construction can be realized.

To this end we will multiply the number of ways to construct the top half and the

appropriate number for the bottom half. As stated above, there are L
1
2 +o(1)
n ways to
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construct the top half. The estimate for the bottom n
2 −2 layers is a slight variation on

van Lint and Wilson’s [10] approximate enumeration of Latin squares. By the van der
Waerden bound [4, 5], a k-regular (n,n) bipartite graph H has at least ((1+o(1)) k

e
)n

perfect matchings. By the same argument, there are at least ((1 + o(1)) k−1
e

)n ways to
complete a perfect matching in H to a 2-factor. The product of these two numbers is
an overcount, since every cycle in the 2-factor can be split in two ways between the
first and second 1-factors. Consequently, H has at least

((
1 + o(1)

)k(k − 1)

e2
√

2

)n

2-factors.
We think of K as the adjacency matrix of such an H , and each layer is just a

2-factor supported by K . With each choice, the edges of the chosen 2-factor are
removed from H , which goes from being d-regular to (d − 2)-regular. This yields
the following lower bound on the number of choices:

∏

2≤k≤n−4,k is even

((
1 + o(1)

)k(k − 1)

e2
√

2

)n

= (n − 4)!n ·
(

1 + o(1)

e2
√

2

)n(n−4)/2

=
((

1 + o(1)
) n

2
1
4 e2

)n2

= L1−o(1)
n .

The product of the bound for the top half and the bound for the bottom half yields

a total of L
3
2 −o(1)
n .

3 A Variation on the Theme

Here is another natural extension of the notion of doubly stochastic matrices. Namely,
let Σ

(d)
n be the set of all [n]d+1 arrays of nonnegative reals such that the entries in

each coordinate hyperplane sum to one. The collection of such arrays clearly consti-
tutes a convex polytope. Our goal is to investigate the vertex set of this polytope.

The vertices of Σ
(d)
n have been studied before [6, 8]. It is a well-known fact that

these polytopes have some noninteger vertices. V.M. Kravtsov [8] has considered
the problem of enumerating the vertices, and gave a lower bound of (n!)3+o(1). Our
construction improves this result and yields a lower bound of (n!)4+o(1).

The arithmetic properties of vertices of Σ
(d)
n have also been studied. Kravtsov

wrote a series of papers discussing constructions of vertices, and in particular showed
that the denominator of the fractional elements of a vertex can grow exponentially
with n. Gromova [6] gave a characterization of the sets of numbers that can appear
as entries in a vertex.

Let us define T
(d)
n as the collection of all [n]d+1 arrays of zeros and ones with

a single one in each coordinate hyperplane. It is clear that T
(d)
n is included in the

vertex set of Σ
(d)
n . There is a natural bijection between tuples (σ1, . . . , σd) ∈ S

d
n and



Discrete Comput Geom (2014) 51:161–170 169

members A ∈ T
(d)
n which is given by A(i, σ1(i), . . . , σd(i)) = 1 for all 1 ≤ i ≤ n. In

particular |T (d)
n | = (n!)d .

As it happens, noninteger vertices are easy to construct. Here is the smallest ex-
ample:

A1 =
[ 1

2 0
0 1

2

]
, A2 =

[
0 1

2
1
2 0

]
.

Clearly A ∈ Σ
(2)
2 . We now consider the graph Ḡ(A) with vertex set supp(A) with

an edge between every two vertices that lie in the same coordinate hyperplane. As
in Sect. 1.2.1, we show that A is a vertex by observing that Ḡ(A) has no bipartite
connected component. In the present case, Ḡ = K4.

Our general construction is similar in nature to this example. We first construct
an n × n matrix M with entries from [n] in which every row and column contains
exactly two nonzero entries and where each integer in [n] appears exactly twice in M .
We view M as a way to encode A as follows: M(i, j) = k for some k �= 0 says
that A(i, j, k) = 1/2 and A(i, j, k′) = 0 for all k′ �= k. Also M(i, j) = 0 means that
A(i, j, l) = 0 for all l. It is not hard to verify that if the graph Ḡ corresponding to M

is connected and non-bipartite, then A is a vertex of Σ
(2)
n .

We now turn to construct many such matrices M and thus generate many vertices
for Σ

(2)
n which are not in T

(2)
n . Let

H = {
(i1, j1), (i2, j1), (i2, j2), . . . , (in, jn), (i1, jn)

}

be an H -cycle and let

M(i1, j1) = M(i2, j2) = 1 and M(i2, j1) = 2.

The remaining entries of the H -cycle M(iα, jα) and M(iα+1, jα) are filled arbi-
trarily with the elements of the multiset {2,3,3,4,4, . . . , n, n}. Note that the re-
sulting graph Ḡ is connected, due to the fact that the first two indices of the 1

2
elements of A form an H -cycle, and non-bipartite, since it contains the triangle

{(i1, j1,1), (i2, j2,1), (i2, j1,2)}. There are 1
2n!(n − 1)! choices for H and (2n−3)!

2n−2

ways to map the multiset to the nonzero entries of M . Altogether, this construction
yields more than (n!)4 = (T

(2)
n )2 vertices of Σ

(2)
n .

4 Conjectures and Some Experimental Results

This paper raises many open questions. Here are several of them:

• Get a better estimate for the number of vertices of Ω
(2)
n .

• The analogous question for Ω
(d)
n with d > 2 seems completely open at this writing.

• The polytope Ω
(2)
n is defined by requiring that one-dimensional subsets of the array

sum to one. In the definition of Σ
(2)
n this is required of two-dimensional subsets.

For larger d there are a whole range of possible polytopes to consider, depending
on which sets of entries sum to 1.
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If we knew the support size of vertices in Ω
(d)
n , we could make progress on these

questions. By standard linear programming arguments, every vertex of Ω
(d)
n has at

least aff-dim(Ω
(d)
n ) zero coordinates. Since aff-dim(Ω

(d)
n ) = (n−1)d+1, every vertex

has support size at most nd+1 − (n − 1)d+1 ≤ (d + 1) · nd .

It follows that Ω
(d)
n has at most

(
nd+1

(d+1)nd

) ≤ ( ne
d+1 )(d+1)nd

vertices. In particular,

Ω
(2)
n has fewer than n3n2

vertices. If we knew, say, that a typical vertex of Ω
(2)
n

has support size ≤ αn2 vertices, we could conclude that it has at most n(1+o(1))αn2

vertices.
We have conducted some numerical experiments to get a sense of the numbers.

Using linear programming tools, it is possible to find the vertex that maximizes a
randomly chosen linear objective function. Needless to say, this distribution on the
vertices is by no means uniform. We nevertheless hope that our experiments do tell
us something meaningful about the properties of typical vertices. We selected the
coordinates in the objective function independently from normal distribution. The
average value of α in these experiments seems to increase slowly with n. We do not
know whether the typical support size of a vertex converges to 3n2 or to αn2 for some
α < 3.
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