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Abstract

How much can an imperfect source of randomness affect an algo-
rithm? We examine several simple questions of this type concerning
the long-term behavior of a random walk on a finite graph. In our
setup, at each step of the random walk a “controller” can, with a cer-
tain small probability, fix the next step, thus introducing a bias. We
analyze the extent to which the bias can affect the limit behavior of
the walk. The controller is assumed to associate a real, nonnegative,
“benefit” with each state, and to strive to maximize the long-term
expected benefit. We derive tight bounds on the maximum of this ob-
jective function over all controller’s strategies, and present polynomial
time algorithms for computing the optimal controller strategy.

1 Introduction

Ever since the introduction of randomness into computing, people have been
studying how imperfections in the sources of randomness affect the outcome
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of the computation. A number of authors [17, 19, 4, 14] consider the same
problem from the source’s viewpoint. There are many ways for the source
to deviate from perfect randomness, but for most models the source is an
adversary who can select a strategy from a given repertoire, and whose goal
is to derail the randomized algorithm. While the randomized algorithm is
searching for a witness, the source tries to fail this search. Lichtenstein et
al. [14] point out the control-theoretic flavor of this problem, namely, we
are studying a stochastic process (the randomized algorithm) on which an
agent (source, controller, adversary...) can exert some bias. The strategies
available to the controller are given by some rules, and there are certain goals
that he strives to achieve. Some qualitative information about the optimal
strategy can be obtained using Markov decision theory, but we are mainly
interested in quantitative questions: how much can the controller’s bias
affect the stochastic process, and which stochastic processes are the hardest
to influence? The only instances of this problem for which answers are
available [17, 19, 4, 14, 6, 2, 3, 10] are (either originally thus stated, or easily
translated into these terms) random walks on a finite tree, which is directed
from the root to the leaves. The decision which branch to take is determined
locally and the controller can bias this decision with a certain probability.
The present paper concerns similar questions pertaining to random walks
on finite graphs, which, in contrast, are time-infinite. This instance of the
general problem is particularly appealing in the context of weakly-random
sources, since witness-searching through random walks (mostly on expander
graphs) has proved highly successful [1, 8, 12].

An instance of our problem is specified by an n-vertex connected graph
G and a fixed 1 > ε > 0. We will be concerned mostly with regular graphs,
and use d to denote their degree. We consider the following variation of
the standard random walk on the vertices of G: each step of the walk is
preceded by an (ε, 1 − ε)-coin being flipped. With probability 1 − ε one of
the d neighbors is selected uniformly at random, and the walk moves there.
With probability ε the controller gets to select which neighbor to move to.
The selection can be probabilistic, but it is time independent. In other words
if the original transition probability matrix of the random walk was Q, then
the modified transition probability matrix is

P = (1− ε)Q+ εB,

where B is an arbitrary stochastic matrix chosen by the controller, with
support restricted to the edges of G. The interesting situation is when ε is
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not substantially larger than 1/d; otherwise, the process is dominated by
the controller’s strategy.

This setup is a special case of a Markov decision process, where a con-
troller is selecting from a set of available actions to bias the behavior of a
Markov chain. Much is known about Markov decision processes (see e.g.
[9]). For example, we could have defined our problem in terms of time-
dependent strategies. However, for every Markov decision process there is
a time independent optimal strategy, and hence all of our definitions and
results consider only time independent strategies. Further conclusions from
Markov decision theory are presented in Section 4 below. Our problem dif-
fers from the classic setup in that we desire quantitative information: how
much can the controller affect characteristics of the random walk such as its
stationary distribution? Which are the hardest graphs to influence? These
type of questions are not addressed in the general theory.

The problem considered here can also be viewed as a special case of
the question: “How do perturbations in a matrix affect the eigenvectors?”.
There is a rich literature on this subject (see e.g. [13, 16, 11]). Nevertheless,
the general results are not very useful for our case – typically the estimate
of the change depends on the the eigenvalues of the original matrix. For
instance, for general matrices (see [13]), the change is inversely proportional
to the difference between the first and the second eigenvalue, which may
be unbounded. Here, we consider a very restricted situation: the original
matrix is stochastic and describes a random walk on a graph, and the sup-
port of the perturbation matrix is restricted to the support of the original
matrix. This enables us to derive uniform upper and lower bounds (that is,
independent of the original matrix or its eigenvalues), whereas the general
theory provides only non-uniform upper bounds and no lower bounds.

There are a number of goals for the controller which are worth studying.
The present article concentrates on affecting the limit, or long-term behavior
of the walk. For example, we may want to make the visit of a particular
vertex as likely as possible, or as unlikely as possible. More generally, if
we define a weight vector w that associates with every vertex x the benefit
wx of visiting it, it is of interest to find out how to maximize the expected
benefit in the limit, i.e.,

∑
x∈V πxwx, where π is the limit distribution of the

biased walk.
We say that a strategy is simple if there is a function b : V → V , such

that whenever the controller gets to decide where the walk goes, if the walk
is at x, the controller forces it to go to b(x).

Here are our main results:
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1. In the special case when w equals 1 at one particular vertex (called root
or favored vertex) and 0 everywhere else, that is, the controller tries
to maximize the limit frequency of a certain vertex, we can show that
under the controller’s best strategy, the root’s limit probability goes
up from 1

n to ( 1
n)1−cε, where c depends only on d. (Clearly the result

is meaningful only for ε small enough.) For instance, in a d-regular
tree, for n and d fixed, as ε→ 0 the root’s limit probability is less than

n
−1+ε( d

ln(d−1)
+f(n,d))+O(ε2)

,

where, as n→∞ and d is fixed, f(n, d) = O(1/ log n).

Furthermore the best strategy has a simple characterization in terms of
the hitting time to the root. (“Go closer to the root” is not necessarily
the best strategy!)

2. The aforementioned bound is tight and is achieved on any expander.
That is, if G is an expander, then any strategy for the controller cannot
make the limit probability of any vertex larger than ( 1

n)1−cε.

3. Analogous results hold for w which is the characteristic function of a
set of vertices S ⊆ V , and the limit probability can be raised from |S|

n

to ( |S|n )1−cε.

4. We can also find an optimal strategy in polynomial time when the goal
is to minimize any weighted average of the expected hitting times to
a set S ⊆ V .

The first three results are presented in Section 3, while the fourth appears
in Section 5. For completeness we present the relationship of our problem to
Markov decision theory in Section 4, where we draw the following conclusions
from the general theory:

1. For any benefit function w : V → R, we can find an optimal strategy
which maximizes

∑
x∈V πxwx. This strategy is found in time polyno-

mial in n and in the number of bits needed to represent w.

2. There is always a simple optimal strategy.

3. When the controller wants to maximize the stationary probability of a
target vertex v, a strategy is optimal if and only if it has the property
that at each vertex the bias is toward a neighbor with minimal biased
hitting time to v.
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Regarding the increase in limit probability in part (1), there is an in-
teresting similarity that we would like to point out. Ben-Or and Linial [6]
study the following question: Given a full binary tree, where a fraction p of
the leaves are considered “success”, we perform a walk, starting at the root,
until we reach a leaf. Suppose the decision where to proceed at internal
vertices of the tree is determined by a set of n players. “Honest” players are
supposed to take random moves, while the “dishonest” ones may play an
optimal strategy to maximize the chance of hitting a success leaf. Ben-Or
and Linial show that for every ε > 0, there is a choice of εn dishonest players
who have a strategy that increases the probability of success from p to p1−ε.
We conjecture that this result is also true in our case:

Conjecture 1 In any graph, a controller can increase the stationary prob-
ability of any vertex from p to p1−ε.

We have proved that the stationary probability can be raised to p1−O(ε) only
for regular, bounded-degree graphs.

A preliminary version of this paper has appeared in [5].

2 Example: The d-regular Tree

Consider a d-regular tree of depth l; by this we mean a rooted (d − 1)-ary
tree with a self-loop at the root and d−1 self-loops at each leaf. The number
of vertices is n = ((d− 1)l+1 − 1)/(d− 2).

Suppose that the goal of the controller is to maximize the stationary
probability of the root. It is clear in this case that the best bias strategy is
for each vertex to bias towards its neighbor closest to the root. Let L(i) be
the set of vertices at distance i from the root. Let pi be the limit probability
of being at level i in the tree, that is pi =

∑
v∈L(i) πv. Let α = (1− ε)/d+ ε

be the probability on edges pointing to the root. Then we have:

p0 = αp0 + αp1

pi = (1− α)pi−1 + αpi+1 for 0 < i < l

pl = (1− α)pl−1 + (1− α)pl

One can check the solution to these equations is pi = p0(1−α
α )i, and hence

πroot = p0 =
(∑

i

1− α
α

)−1

.
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For n and d fixed, as ε→ 0 we have

p0 ≤ n−1+ε( d
ln(d−1)

+f(n,d))+O(ε2)
,

where, as n→∞ and d is fixed, f(n, d) = O(1/ log n).

3 Bounds on the Controller’s Influence

3.1 Preliminaries

We review the following elementary definitions and theorem from Markov
chain theory.

Let Q be the transition probability matrix of a finite irreducible, ape-
riodic Markov chain. Let π be the vector of stationary probabilities of Q
(i.e. πQ = π). Let htij be the the probability that the first visit to state
j starting at state i occurs at the t’th transition. (h0

ii = 1.) Let hi(j) be
the expected hitting time to state j starting at state i. (hi(j) =

∑
t≥1 th

t
ij ,

hi(i) = 0.) For j 6= i, hi(j) clearly satisfies the relation

hi(j) = 1 +
∑
k

Qi,khk(j).

We will use hi instead of hi(j), whenever the target vertex j is clear from
the context.

Let f ti be the the probability that the first return to state i starting at
state i occurs at the t’th transition. Let Ri =

∑
t≥1 tf

t
i . The basic limit

theorem of Markov chains states that

lim
n→∞

Qnji = πi =
1
Ri
.

We need the following elementary lemma.

Lemma 1 Let Q denote the transition probability matrix of an irreducible
Markov chain with a finite state space S, and say |S| = n. Consider h =
h(0) = (h0(0) = 0, h1(0), . . . , hn−1(0)), the vector of hitting times to state
0. If h′ = (h′0, h

′
1, . . . , h

′
n−1) satisfies h′0 = 0 and for i 6= 0, h′i ≤ 1 +∑

j∈S Qi,jh
′
j, then h′ ≤ h. Similarly if for each vertex except the origin,

h′i ≥ 1 +
∑
j∈S Qi,jh

′
j, then h′ ≥ h.
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Proof: We have for c = 1 +
∑
j Q0,jhj and c′ = 1 +

∑
j Q0,jh

′
j

Qh = h−~1 + ce0

Qh′ ≥ h′ −~1 + c′e0

and therefore
Q(h′ − h) ≥ (h′ − h) + (c′ − c)e0.

Hence h′−h is sub-harmonic: at all states except state 0, h′−h is bounded
above by a weighted average of h′− h at the “neighboring states” (states to
which there is a non-zero transition probability). By irreducibility it follows
that if h′ − h is not constant, it must have a maximum at the origin. Thus
h′ ≤ h. 2

We will also need the following theorem due to Metropolis et al. [15]:

Theorem 1 (Metropolis et al.) Let G(V,E) be a graph, and let π be a
strictly positive probability distribution on V . Let dx denote the degree of
vertex x. For each edge (x, y) ∈ E, let

Mx,y =

{
1
dx

if πx/dx ≤ πy/dy
1
dy

πy

πx
otherwise,

and add a self-loop at each vertex with Mx,x = 1−
∑
y∈N(x)Mx,y. Then π is

the stationary distribution of the Markov chain with transition probabilities
Mx,y.

Proof: For each edge (x, y) ∈ E,

πxMx,y = min{πx
dx
,
πy
dy
} = πyMy,x.

Therefore

πxMx,x +
∑

y∈N(x)

πyMy,x = πxMx,x +
∑

y∈N(x)

πxMx,y = πx,

so π is the stationary distribution of the Markov chain given by the transition
probabilities Mx,y. 2
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3.2 Lower Bound

Theorem 2 Let G = (V,E) be a connected graph, S ⊂ V , v ∈ S and
x ∈ V . Let ∆(x, v) be the length of the shortest path between vertices x
and v in G and ∆(x, S) = minv∈S ∆(x, v). Let β = 1 − ε. There is a
bias strategy for which the stationary probability at S (i.e. the sum of the
stationary probabilities of v ∈ S) is at least∑

v∈S dv∑
v∈S dv +

∑
x 6∈S β

∆(x,S)−1dx
.

Proof: Define a probability distribution πM by πMv = γdv for v ∈ S, and
πMx = γβ∆(x,v)−1dx for each x /∈ S, where

γ =
1∑

v∈S dv +
∑
x 6∈S β

∆(x,S)−1dx
.

Let M be the transition probability matrix given by the Metropolis theorem,
so that πM is the stationary distribution for M . For all x ∈ V let Px,x = 0
and for all y 6= x Px,y = Mx,y/(1 − Mx,x) (Mx,x < 1 by construction).
Note that P is a transition probability matrix. We claim (1) that P is the
transition probability matrix of a ε-biased random walk, and (2) that for
each state in S its stationary probability under P is at least its stationary
probability under M , which leads to the desired bound.

For (1) note that Px,y ≥ Mx,y ≥ (1 − ε)/dx for y ∈ N(x), so P is the
transition probability matrix of an ε-biased walk. For (2) denote by hM (v)
the hitting times to vertex v ∈ S. For each vertex x 6= v,

hMx (v) = 1 +
∑

y∈N(x)

Mx,yh
M
y (v) +Mx,xh

M
x (v).

or
hMx (v) =

1
1−Mx,x

+
∑

y∈N(x)

Mx,y

1−Mx,x
hMy (v)

≥ 1 +
∑

y∈N(x)

Px,yh
M
y (v).

Hence by Lemma 1, for every v ∈ S, hM (v) ≥ hP (v), where hP (v) is the
vector of hitting times to v in the Markov chain P . Now let RMv and RPv be
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the expected return times to v in the two chains:

1/πMv = RMv

= 1 +
∑

y∈N(v)

Mv,yh
M
y (v)

= 1 +
∑

y∈N(v)

Pv,yh
M
y (v)

≥ 1 +
∑

y∈N(v)

Pv,yh
P
y (v) = RPv = 1/πPv .

The last equality follows from the fact that there is no bias at v ∈ S. In
particular, if v ∈ S and y ∈ N(v), then Mv,y = Pv,y = 1/dv. Lastly we have

∑
v∈S

πPv ≥
∑
v∈S

πMv =
∑
v∈S dv∑

v∈S dv +
∑
x 6∈S β

∆(x,S)−1dx
.

2

Corollary 1 Let G = (V,E) be any connected, d-regular graph and let S ⊂
V . Then there is a bias strategy for which

∑
v∈S πv is at least

(
|S|
n

)1−cε
, for

a constant c > 0 depending only on d.

Proof: For d-regular graphs, the lower bound given by the theorem is just
|S|/(|S|+

∑
x 6∈S β

d(x,S)−1). It is minimized for graphs with (d−1)i|S| nodes
at distance i from S. 2

3.3 Upper Bound

It can be seen that the above bound for a single target vertex is tight by
considering expander graphs.

Theorem 3 Let G = (V,E) be a d-regular expander graph, i.e., the second
eigenvalue of its adjacency matrix does not exceed d − δ for some δ > 0.
Then for any bias strategy, the stationary probability at any vertex is at
most ncε−1 for some constant c depending only on d and δ.

Proof: Let A be G’s adjacency matrix and let Q = 1
dA be the transition

probability matrix of the standard random walk on G. It is standard (by

9



the spectral theorem) that Q(k)
vw (the probability of reaching w in a k-step

walk starting from v) satisfies

Q(k)
vw =

1
n

+O(λk2),

where λ2 is the second largest eigenvalue of Q. By assumption, λ2 ≤ 1−δ/d
so for some c′ depending only on δ

d

Q(c′ lnn)
vw =

1
n

(
1 +O

(
1
n

))
,

for all v, w. Fix any bias strategy, and let P (k)
vw be the probability of reaching

w in a k-step biased walk starting from v. We have (for k = c′ lnn)

πw =
∑
v∈V

πvP
(k)
vw ≤

∑
v∈V

πvQ
(k)
vw

(
1−ε
d + ε

1
d

)k

≤
∑
v∈V

πv
1
n

(
1 +O

(
1
n

))( 1−ε
d + ε

1
d

)c lnn

≤ e(d−1)εk 1
n

(
1 +O

(
1
n

))
= ncε−1,

for some constant c depending only on d and δ. 2

3.4 The biased return time equation

The biased return time to the target satisfies a simple equation.

Theorem 4 Let G = (V,E) be a connected, d-regular graph and let v0 ∈ V .
Consider any simple bias strategy B. For each vertex v ∈ V , consider
hv = hv(v0), the biased hitting time to v0 (in a walk starting at v), and let
b(v) be the neighbor of v that is biased towards in B. Then R0, the return
time at v0, satisfies

R0 = n− ε
∑
v∈V

(
hv − hb(v)

)
.

Proof: For each vertex v, hv satisfies

hv = 1 +
1− ε
d

∑
u∈N(v)

hu + εhb(v)
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and the return time satisfies

R0 = 1 +
1− ε
d

∑
u∈N(v0)

hu + εhb(v0).

Adding these equations for all v gives

R0 +
∑
v∈V

hv = n+
1− ε
d

∑
v∈V

∑
u∈N(v)

hu + ε
∑
v∈V

hb(v)

= n+ (1− ε)
∑
v∈V

hv + ε
∑
v∈V

hb(v)

and therefore
R0 = n− ε

∑
v∈V

(
hv − hb(v)

)
.

2

Specializing to the case where ε is small yields the following result.

Corollary 2 Let G = (V,E) be a connected, d-regular graph and let v0 ∈ V .
Consider any simple bias strategy B. For each vertex v ∈ V , consider
h̄v = h̄v(v0), the unbiased hitting time to v0 (in a walk starting at v), and
let b(v) be the neighbor of v that is biased towards in B. Then the stationary
probability at v0 satisfies

πv0 =
1
n

(
1 +

ε

n

∑
v∈V

(h̄v − h̄b(v))

)
+O(ε2), ε→ 0.

Proof: Follows from the above theorem, noting that πv0 = 1/R0, and
h̄v = hv +O(ε) for each vertex v. 2

The assumption that the bias strategy is simple involves no loss of gen-
erality (see Theorem 7). Thus the optimal strategy for small ε is to bias
towards the neighbor with the smallest unbiased hitting time.

4 Connections with Markov Decision Theory and
the Properties of the Optimal Strategy

As noted in the introduction, the problem considered in this paper is an
instance of a Markov decision problem. This section presents the elements
of Markov decision theory that yield useful results in this context. Wherever
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a theorem has a natural proof in the restricted context of biased random
walks, the proof is presented.

We have considered controller strategies that maximize objective func-
tions of the following type:

∑
v∈V wvπv. If we allow time-dependent con-

troller strategies, then πv may not be well defined. We use the relationship
between biased random walk strategies and Markov decision theory [9] in
order to show that there is a time-independent optimal strategy.

A Markov decision process can be described as follows. Consider a sys-
tem, that at each discrete point of time (t = 0, 1, 2, . . .) is observed and
classified into one of a possible number of states, denoted by I. (I is fi-
nite.) After each observation of the system, one of a set of possible actions
is taken. Let Ki be the set of actions possible when the system is in state
i. A (possibly randomized) policy R is a set of distributions Da(Ht−1, Yt),
where a is an action in KYt meaning that if Ht−1 is the history of states and
actions up to time t− 1, and Yt is the state at time t, then the probability
that action a is taken at time t is Da(Ht−1, Yt). The actions can be such that
they change the state of the system. We define this precisely by saying that
qij(a) is the probability of the system being in state j at the next instant,
given that the system is in state i and action a is taken. Another way of
saying this is that no matter what policy R is employed,

Pr(Yt+1 = j|Ht−1, Yt = i, At = a) = qij(a),

where At is the action taken at time t.
An additional set of parameters associated with a Markov decision pro-

cess are costs: when the chain is in state i and action a is taken, a known
cost cia is incurred.

Let SR,T (i) be the expected cost of operating a system up to time
T using the policy R, given that Y0 = i. In other words, SR,T (i) =∑

0≤t≤T
∑
j

∑
a PrR(Yt = j, At = a)wja.

A standard problem in Markov decision theory is to minimize the ex-
pected average cost per unit time, i.e. to find a policy R to minimize (or
maximize)

lim sup
T→∞

SR,T (i)
T

.

Another standard problem is the optimal first passage problem. This
problem consists of finding a policy R that minimizes SR,τ (i), where τ de-
notes the smallest positive value of t such that Yt = j.

12



Our problem of determining the optimal controller strategy to maximize
objective functions of the form

∑
v∈V wvπv is a problem of the first type. A

biased random walk on a graph G = (V,E) can be phrased as the following
Markov decision process {Yt}: the set I is the set of vertices V of G and the
set of actions Ku is the set of neighbors, N(u), of u in G. The transition
probabilities quv(x) are then

quv(x) =


(1−ε)
du

+ ε if v = x
(1−ε)
du

if v 6= x and v ∈ N(u)
0 otherwise

The cost of taking action x in state u, cux, is wu. Clearly, in the time-
dependent case, for a given controller strategy R, the limit

lim sup
T→∞

SR,T (i)
T

is the natural replacement for the sum
∑
v∈V wvπv that we used in the

time-independent case. (Indeed, the limit reduces to
∑
v∈V wvπv if the time

dependence is eliminated.)
The following theorem is a basic theorem in Markov decision theory.

Theorem 5 ([9], p. 25) There is an optimal policy that is memoryless,
time-invariant and deterministic.

Therefore, in our context there is an simple time-independent optimal
strategy.

4.1 Computing the Optimal Strategy

It follows from results about Markov decision theory that there is an ex-
plicit linear programming algorithm for determining the optimal controller
strategy. Our specialized setup allows a simpler construction. We present a
natural linear program for computing a controller strategy which maximizes
(resp. minimizes)

∑
x∈V πxwx for any weight function w. We consider here

the more general case of directed graphs, and do not require regularity.
We use the following notation. Let dx denote the out-degree of node

x and let N+(x) be the set of vertices that can be reached from x by a
directed edge. Similarly, N−(x) is the set of vertices with an edge into x.
Let E denote the set of directed edges. If the walk is at x, with probability
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1 − ε it moves to a vertex from N+(x) selected uniformly at random; with
probability ε the controller selects a neighbor of x according to some dis-
tribution. So as before, if the original transition probability matrix of the
random walk was Q, the modified transition probability matrix is

P = (1− ε)Q+ εB,

where B is an arbitrary stochastic matrix with support restricted to the
directed edges of G, chosen by the controller.

Consider the following system of inequalities:

∀x ∈ V : πx ≥ 0

∀x ∈ V : πx =
∑

y∈N−(x)

1− ε
dy

πy +
∑

y∈N−(x)

εBy,xπy

∀(x, y) ∈ E : Bx,y ≥ 0

∀x ∈ V :
∑

y∈N+(x)

Bx,y = 1

∑
x∈V

πx = 1

Clearly the set of feasible solutions to the above system is in one to one
correspondence with the set of possible strategies of the controller. The
apparent difficulty suggested by the fact that these equations are quadratic
can be easily overcome.

Theorem 6 The controller strategy that maximizes
∑
x∈V πxwx for any

weight function w can be found in polynomial time.

Proof: We convert the quadratic system into a linear program by defining
∀(x, y) ∈ E, ex,y = Bx,yπx. This yields

∀x ∈ V : πx ≥ 0

∀x ∈ V : πx =
∑

y∈N−(x)

1− ε
dy

πy +
∑

y∈N−(x)

εey,x (1)

∀(x, y) ∈ E : ex,y ≥ 0

∀x ∈ V :
∑

y∈N+(x)

ex,y = πx (2)

∑
x∈V

πx = 1
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The objective function remains

max
∑
x∈V

wxπx .

This linear program can be solved in polynomial time to obtain an opti-
mal strategy and its value. Note that the polytope of the feasible solutions
is non-empty since the stationary distribution of an unbiased strategy is
always a feasible solution. The polytope is also bounded, e.g. by the unit
cube, thus an optimal strategy always exists. 2

4.2 Properties of the Optimal Strategy

In this section we present some additional properties of the optimum con-
troller strategy. The following theorem follows from Markov decision theory.
For completeness we include a proof.

Theorem 7 There exists a simple optimal bias strategy, i.e. there is an
optimal solution to the linear program, such that for each vertex x there is
exactly one vertex y ∈ N(x) such that ex,y > 0.

Proof: It is straightforward to verify that there is a redundant equation
out of the 2n + 1 equations of the linear program. (Sum the equations (1)
for all x ∈ V , interchange the order of summation and substitute equations
(2) to get an identity.) Therefore a vertex of the polytope can have at
most 2n non-zero coordinates. Since n nonzero variables are accounted for
by positive stationary probabilities, at most n of the variables ex,y can be
positive. Since for each x, there is at least one y with ex,y positive, we
conclude that there is exactly one of y with ex,y positive. Therefore, there
is a simple optimal strategy. 2

The following two theorems characterize the best controller strategy
when there is a single target vertex. Analogous results hold when the con-
troller wants to avoid a single vertex.

Theorem 8 When the controller wants to maximize the stationary proba-
bility of a target vertex v, the optimal strategy has the property that at each
vertex the bias is toward a neighbor with minimal biased hitting time to v.

Proof: Fix a bias strategy, represented by a matrix B. Consider the vector
h of biased hitting times to the target vertex. Assume there is a vertex x,
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with neighbors y and z, such that hy < hz but bx,z > 0. We will show that
B cannot be optimal.

Construct a new bias matrix B′, that differs from B in just two places:
b′x,z = 0 and b′x,y = bx,y + bx,z. By Lemma 1 (the “similarly” part, with
h and h′ exchanging roles), the vector h′ of hitting times in the new chain
satisfies h′ ≤ h. In fact we have strict inequality at x, and because the graph
is connected, there must be strict inequality at some neighbor of the target.
Therefore the return time to the target is smaller in the new chain. Hence,
the stationary probability at the target is strictly larger in the new chain
than the old chain and B is not optimal. 2

The converse to the above theorem is also true:

Theorem 9 Let B be a strategy that biases in the direction of its own biased
hitting time to the favored vertex v, and let h be the corresponding hitting
times to v. Let h′ be the hitting times to v for any other strategy. Then
h ≤ h′, and B is an optimal strategy.

Proof: For each vertex x let b(x) be the neighbor of x that has the least
biased hitting time to the target: b(x) must be the vertex that the controller
biases towards from x in strategy B. If there are ties, we can assume without
loss of generality that the controller biases completely towards just one of
its neighbors with least biased hitting time.

Now consider any other simple bias strategy, represented by b′, with
associated hitting times h′. We have:

h′x = 1 +
(1− ε)
dx

∑
y∈N(x)

h′y + εh′b′(x) .

However, the definition of b gives us

hx = 1 +
(1− ε)
dx

∑
y∈N(x)

hy + εhb(x)

≤ 1 +
(1− ε)
dx

∑
y∈N(x)

hy + εhb′(x) .

Hence by Lemma 1 we have h ≤ h′, so πv ≥ π′v, and B is optimal. 2

Comparing the above two theorems with Corollary 2 we see that for small
enough ε, the optimal strategy is to bias towards the neighbor with least
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unbiased hitting time to the target v. Under this strategy the stationary
probability at v is

πv =
1
n

(
1 +

ε

n

∑
x∈V

(h̄x − h̄b(x))

)
+O(ε2), ε→ 0,

where now b(x) denotes the neighbor of x with least unbiased hitting time
to v.

Corollary 3 The strategy that maximizes the stationary probability at a
vertex v minimizes hx(v) for all x.

Proof: Let h be the vector of hitting times to v under the strategy that
maximizes the stationary probability at v, and let h′ be the hitting times
to v under any other bias strategy. By Theorem 8 and Theorem 9, we have
h ≤ h′. 2

Lastly we note some properties of the value of the optimal strategy, as
a function of ε.

Theorem 10 The value of the optimal strategy is a non-decreasing function
of ε. It is continuous and piecewise differentiable.

Proof: The first fact follows because any legal bias strategy for ε′ is also a
legal strategy for ε if ε′ < ε. Secondly, the value for any strategy is given
by the solution to a set of linear equations, hence is a rational function of
ε. For each ε, the optimum strategy is obtained by choosing the minimum
value simple strategy. Hence the optimum value is the minimum of a finite
collection of rational functions of ε, so the optimum value is a continuous
and piecewise differentiable function of ε. 2

5 The Hitting Time

In this section we consider the biased hitting time problem. We are given
the same graph and random walk as before, but now the goal is to minimize
the hitting time to some set S ⊂ V from all vertices. More precisely, for
a bias strategy B, let hx(S) be the expected biased hitting time from x to
the set S. Clearly for each x ∈ S, hx(S) = 0. Our objective function is
to minimize over all possible bias strategies

∑
x∈V lxhx(S) where lx is the

weight of vertex x. We will assume that for each vertex x, lx ≥ 0.
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The biased hitting time problem is an example of an optimal first-passage
problem from Markov decision theory. The model is the same as that used
for our previous problem, except that now the cost of every action cia is 1
and we start from an initial distribution proportional to lx. Consequently
we once again have

Theorem 11 ([9], p. 29) There is an optimal controller strategy for the
biased hitting time problem which is memoryless, time-invariant and deter-
ministic.

The main result of this section is

Theorem 12 Given S, there is a controller strategy for the hitting time
problem that is optimal for all objective functions such that for all x, the
weight lx is non-negative. The strategy can be found in polynomial time.

Proof: Consider the graph GS in which the nodes in S are shrunk into a
single node s. The graph GS may have multiple edges: the number of edges
between a vertex v /∈ S and s will be the number of neighbors of v in S.
Now for any vertex v /∈ S and for any bias strategy, the hitting time from
v to S in G is equal to the hitting time from v to s in GS . We now show
how to find a strategy that minimizes this hitting time, using the results on
maximizing the stationary probability at a target vertex.

Firstly we can find a bias strategy for GS that maximizes the stationary
probability at vertex s using linear programming, as shown in Section 4.1.
Note that the results of Section 4.1 still hold even though GS has multiple
edges. In the notation of that section, dy is now the number of edges leaving
a vertex y, and N−(y) is a multi-set, with a vertex x appearing once for
each edge (y, x).

Now let h be the vector of hitting times to s under this optimum strategy.
By Corollary 3 hx(s) is minimal for every x. (Note again that the Corollary
is still valid when GS has multiple edges.) Therefore, for any non-negative
objective function l, the bias strategy that maximizes the stationary prob-
ability at vertex s is also an optimal strategy for the biased hitting time
problem to S. 2
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