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In the beginning

Let us recall the classical (early 60’s) work of Erdős
and Rényi on random graphs. They come in three
flavors, all being probability distributions on
n-vertex graphs:

I G (n,M) - Uniform choice among all graphs
with M edges.

I G (n, p) - For every pairs of vertices x , y pick
the edge xy independently with probability p.

I The evolution of random graphs. Start with no
edges. Sequentially add edges at random.
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The connectivity threshold

The same question for all three variants.

What is
the critical parameter for graph connectivity?

I What is the critical number of edges M in the
G (n,M) model for the transition between
connected/disconnected?

I What is the critical edge density p in the
G (n, p) model?

I Hitting time version: At which moment does
the evolving graph become connected?
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Theorem (Bollobas and Thomason ’85)
With probability 1− on(1) the random graph
process becomes connected at exactly that step
when the last isolated vertex disappears.

Corollary
The critical density for graph connectivity is
p = log n

n .

The easy part - If p < (1− ε) log nn , then with almost
certainty the graph is not only disconnected, it even
has isolated vertices.
It takes some work to show that for p > (1 + ε) log nn ,
the graph is asymptotically almost surely connected.
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Enter simplicial complexes

A major contact points between combinatorics and
geometry (more specifically - with topology).

Combinatorially speaking, this is just a down-closed
family of sets.
Graphs are the ideal tool for modeling large systems
that are governed by pairwise interactions, and
simplicial complexes can play a similar role in
dealing with systems whose constituents exhibit
multiway interactions.
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Definition
Let V be a finite set of vertices. A collection of
subsets X ⊆ 2V is called a simplicial complex if it
satisfies the following condition:

A ∈ X and B ⊆ A⇒ B ∈ X .

A member A ∈ X is called a simplex or a face of
dimension |A| − 1. A face of dimension k is often
called a k-face.
The dimension of X is the largest dimension of a
face in X and a d-dimensional simplicial complex is
often called a d-complex.
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A simple but crucial observation

A graph is the synonymous with

a one-dimensional
simplicial complex.
So - Essentially everything that we know about
graphs makes sense for simplicial complexes.
Here we tell some of the story on random simplicial
complexes.
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Simplicial complexes as geometric objects

We view A ∈ X and |A| = k + 1 as a k-dimensional
simplex.

k = 3

k = 0

k = 1

k = 2
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Putting simplices together properly

The intersection of every two simplices in X is a
common face.
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Geometric equivalence

Combinatorially different complexes may correspond
to the same geometric object (e.g. via subdivision)
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Geometric equivalence

So
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Geometric equivalence

and
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Geometric equivalence

are two different combinatorial descriptions of the
same geometric object
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A sketch for a road-map

We want to develop a theory of random complexes,
in the general spirit of random graph theory.

In
order to get started we need

I A higher-dimensional analog to G (n, p).

I A dictionary to translate basic graph-theoretic
terms to the realm of high-dimensional
simplicial complexes.

Then we can take whatever we know about G (n, p)
graphs and seek the high-dimensional counterparts.
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Our lingua franca - Linear algebra spoken
here

I To say that G = (V ,E ) is connected we use
A = AG , the incidence matrix of G .

I It is a V × E matrix, indexed by vertices resp.
edges. If e = [i , j ] ∈ E , then

ai ,e = 1, aj ,e = −1 ∀k 6= i , j ai ,k = 0.
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I Clearly, 1A = 0, since every column of A
contains one +1 and one −1 and all other
entries are zero.

I Likewise, if S is the vertex set of a connected
component of G , then 1SA = 0.

I It is not hard to see that G is connected if and
only if the left kernel of A is one-dimensional.

This brings us back to topology
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Now with subtitles in topologese

The linear transformation corresponding to the
matrix A is the boundary operator, usually denoted
by ∂ and the condition that it has just the trivial
left kernel means that the zeroth homology of G
vanishes.
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The many roads not taken...

Very often scenarios and concepts that are simple,
even obvious, for d = 1 (graph theory) are much
richer in higher dimension.

The d-dimensional
analog of graph connectivity that we discuss here is:
The (d − 1)-st homology vanishes.
and only mention in passing beautiful work of
Babson Hoffman and Kahle on the threshold for the
vanishing of the fundamental group in random
2-dimensional complexes.
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Setting the ground

Our paper with Roy Meshulam (’06) introduces
Xd(n, p), a d-dimensional analog of G (n, p).

This is a d-dimensional complex on n vertices. It
has a full (d − 1)-dimensional skeleton. Namely,
every face of dimension ≤ d − 1 is present. Every
d-face is joined in independently with probability p.
Note that X1(n, p) is identical with G (n, p).
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More groundwork

The full d-dimensional boundary operator ∂d is an(
n
d

)
×

(
n

d+1

)
matrix indexed by subsets of [n] of

cardinalities d and d + 1 resp.

If R ⊂ S , with S \ R = {x} the (R , S) entry is
(−1)i where x is the i -th largest element of S .
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In linear algebra terms, to sample a graph from
G (n, p) we start from the above-mentioned n ×

(
n
2

)
matrix and pick each column independently and
with probability p.

In general, to sample a d-complex from Xd(n, p) we
start from the above

(
n
d

)
×

(
n

d+1

)
and pick each

column independently with probability p.

We can now spell out in elementary terms what it
means that the (d − 1)-st homology vanishes.
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It is easy to verify that

∂d−1∂d = 0

and the left kernel of ∂d is the row space of ∂d−1.
Clearly if p → 1, then the same should also hold for
Y ’s boundary operator. On the other hand, if
p → 0, the left kernel gets larger.
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Specifically, if p is small enough so there is a
all-zero row, then we clearly get new vectors in the
left kernel. Note that for d = 1 an all-zero row
corresponds to an isolated vertex. So we are
considering the critical density for the existence of
isolated vertices.

In this respect the high-dimensional answer is
consistent with the one-dimensional case. Namely,
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and indeed

Theorem (Linial-Meshulam ’06,

Meshulam-Wallach ’09)
The threshold for the vanishing of the (d − 1)-st
homology in Xd(n, p) over any finite ring of
coefficients is

p = (1 + o(1))
d ln n

n
.
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Again it’s easy to see that for p < (1− ε)d ln n
n the

(d − 1)-st homology is nonzero, since we get an
all-zero row in Y ’s boundary operator.

The proof shows that in the complementary range
p > (1 + ε)d ln n

n there is nothing additional in the
left kernel of Y ’s boundary operator.
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Another good story we must skip
(intended for the mavens)

It is conjectured that p = d ln n
n is also the threshold

for the vanishing of the (d − 1)-st homology over Z.

This is presently known for d = 2 (Luczak and
Peled ’16).

It is also known up to a constant factor for all d
(Hoffman, Kahle, Paquette ’14+).
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Phase transition in G (n, p)

Perhaps the most famous discovery of Erdős and
Rényi refers to p = 1

n (≈time n
2). At this point

several dramatic changes occur.

This is the first time when the graph is almost
surely no longer a forest.

Namely, for every ε > 0 there is 1 > q(ε) > 0, such
that the probability for a G (n, 1−εn ) graph to be a

forest is (1 + on(1))q(ε), but a graph in G (n, 1+εn ) is
almost surely not a forest.
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At around this time a giant component emerges.

Namely, almost every graph graph in G (n, 1+εn ) has
a connected component on c(ε) · n vertices, where
c(·) is some well-specified function.

Nati Linial, Hebrew U. with L. Aronshtam, T. Luczak, R. Meshulam, Y. PeledTransitions and phase transitions



At around this time a giant component emerges.
Namely, almost every graph graph in G (n, 1+εn ) has
a connected component on c(ε) · n vertices, where
c(·) is some well-specified function.

Nati Linial, Hebrew U. with L. Aronshtam, T. Luczak, R. Meshulam, Y. PeledTransitions and phase transitions



Can we say these things in high-dimenese?

At least some of them we do recognize. Right?

I A forest is just an acyclic graph. We know
what cycles are in all dimensions. Agree? Well,
not so fast. We’ll see.

I But one thing is certainly a problem - There is
no obvious notion of connected components in
dimensions d ≥ 2. So how should we proceed?
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Cycles in all dimensions

Definition
The cycle space of a simplicial complex is the right
kernel of the corresponding boundary operator.
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A theorem from Discrete Math 101

Theorem
TFAE for an n-vertex graph G = (V ,E ) with n − 1
edges.

I It is connected.

I It is acyclic.

I It is collapsible.

Actually collapsibility is not usually discussed in
undergraduate class, although it’s completely
elementary.
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Collapsibility

Definition

I d = 1, graphs. An elementary collapse is a step
where we eliminate a vertex of degree 1 and
the single edge that contains it.

I General d . Let σ be a (d − 1)-dimensional face
that is contained in a single d-dimensional face
τ . In the corresponding elementary collapse
step we delete both σ and τ from the complex.
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d -Collapsibility

Definition
A d-dimensional simplicial complex is said to be
d-collapsible if it is possible to eliminate all its
d-dimensional faces by a series of elementary
collapses.

It is easy to see, using either very elementary
topological or combinatorial arguments that:

Proposition
A d-collapsible d-dimensional complex is acyclic.
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A little surprise
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The triangulation of the projective plane is
non-collapsible but is R-acyclic (and F2-cyclic...).
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Questions that suggest themselves

I What is the threshold for d-collapsibility in
Xd(n, p)?

I For acyclicity (= the vanishing of the d-th
homology)?

I Clearly pcollapsibility ≤ pacyclicity, but is the
inequality strict?
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The short answer

Theorem
There are explicit constants γd and cd for all d ≥ 2,
such that in Xd(n, p)

I The threshold for d-collapsibility is p = γd
n .

I The threshold for acyclicity is p = cd
n .

The asymptotics in d are

γd = (1 + o(1)) log d

and
cd = d + 1− o(1)
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A taste of the ideas that go into the
proofs - d -collapsibility

The k-core of a graph G is the largest induced
subgraph in which every vertex has degree ≥ k .

You
can find it by repeatedly removing from G every
vertex of degree < k . If this process reminds you of
the concept of collapsing, you are right. It was a
major achievement of random graph theory to
determine when the k-core emerges in the evolution
of random graphs. Indeed ideas from that domain
have played a crucial role for us.
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Some ideas around the d -collapsibility
threshold

A key idea in the study of k-cores and other
problems in random graph theory is to consider the
local structure of the graph that’s being generated.

This is often done using the machinery of
Galton-Watson trees. Here we do something
analogous with complexes. More generally, the idea
of weak local limits is crucial for the whole line of
research.
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Some ideas around the acyclicity threshold

It is a simple linear-algebra observation that a
d-complex with more d-faces than (d − 1)-faces is
cyclic.

This implies immediately that cd ≤ d + 1.
But more is true: Being acyclic is a topological
property, so it’s not affected by collapse steps.
Moreover, the above observation remains valid if we
eliminate every (d − 1)-face that is not contained in
any d-face.
This argument, when formalized, gives the right
value of cd .
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And what about the giant component?

A key idea in our work, and already in even more
recent papers is that of a shadow.

As usual, we start with graphs. Let G = (V ,E ) be
a graph, and let e be an edge not in E . We say that
e is in G ’s shadow if its addition to G creates new
cycles in G . In other words, both vertices of e are in
the same connected component of G .
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Shadows in higher dimension

Let X be a d-complex and σ is a d-face that is not
in X .

We say that σ is in X ’s shadow if its addition
to X creates new cycles in X .
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Back to random graphs

An easy but crucial observation:

In the evolution of random graphs, around time n/2
the following things happen more-or-less
simultaneously:

I The graph almost surely has a cycle.

I The giant componnet of Ω(n) vertices emerges.

I The shadow attains its asymptotic full size of
Θ(n2) edges.
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and in high dimensions

As part of our main theorem we prove that

The threshold for cyclicity coincides with the
emergence of the giant shadow of Θ(nd+1) d-faces.

But there is a difference
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A view of phase transition in G (n, p)
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Phase transition in X2(n, p) complexes
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Phase transitions

We see a second order phase transition in G (n, p) -
the limit function is continuous, but its derivative
has a discontinuity at the critical point.

In contrast, at dimensions d ≥ 2, the limit function
is discontinuous at the critical point.
We can now prove it.
But don’t worry, there are still many mysteries in
this territory.
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