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ABSTRACT
The basic problem in the PAC model of computational learn-
ing theory is to determine which hypothesis classes are ef-
ficiently learnable. There is presently a dearth of results
showing hardness of learning problems. Moreover, the ex-
isting lower bounds fall short of the best known algorithms.

The biggest challenge in proving complexity results is to
establish hardness of improper learning (a.k.a. representa-
tion independent learning). The difficulty in proving lower
bounds for improper learning is that the standard reduc-
tions from NP-hard problems do not seem to apply in this
context. There is essentially only one known approach to
proving lower bounds on improper learning. It was initiated
in [21] and relies on cryptographic assumptions.

We introduce a new technique for proving hardness of im-
proper learning, based on reductions from problems that
are hard on average. We put forward a (fairly strong) gen-
eralization of Feige’s assumption [13] about the complexity
of refuting random constraint satisfaction problems. Com-
bining this assumption with our new technique yields far
reaching implications. In particular,

• Learning DNF’s is hard.

• Agnostically learning halfspaces with a constant ap-
proximation ratio is hard.

• Learning an intersection of ω(1) halfspaces is hard.

Categories and Subject Descriptors
F [Theory of Computation]: Computational Learning
Theory

∗A full version of this paper, containing proof details, can
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1. INTRODUCTION
Valiant’s celebrated probably approximately correct (=PAC)

model [34] of machine learning led to an extensive research
that yielded a whole scientific community devoted to com-
putational learning theory. In the PAC learning model, a
learner is given an oracle access to randomly generated sam-
ples (X,Y ) ∈ X × {0, 1} where X is sampled from some
unknown distribution D on X and Y = h∗(X) for some un-
known function h∗ : X → {0, 1}. Furthermore, it is assumed
that h∗ comes from a predefined hypothesis class H, con-
sisting of 0, 1 valued functions on X . The learning problem
defined by H is to find a function h : X → {0, 1} that min-
imizes ErrD(h) := PrX∼D(h(X) 6= h∗(X)). For concrete-
ness’ sake we take X = {±1}n, and we consider the learning
problem tractable if there is an algorithm that on input ε,
runs in time poly(n, 1/ε) and outputs, w.h.p., a hypothesis
h with Err(h) ≤ ε.

Assuming P 6= NP, the status of most basic computa-
tional problems is fairly well understood. In a sharp con-
trast, 30 years after Valiant’s paper, the status of most ba-
sic learning problems is still wide open – there is a huge
gap between the best algorithms’ performance and hardness
results:

• No known algorithms can learn depth 2 circuits, i.e.,
DNF formulas. In contrast, we can only rule out learn-
ing of circuits of depth d, for some unspecified constant
d [22]. This result is based on a relatively strong as-
sumption (a certain subexponential lower bound on
factoring Blum integers). Under more standard as-
sumptions (RSA in secure), the best we can do is rule
out learning of depth logn circuits [21].

• It is possible to agnostically learn halfspaces with an

approximation ratio of O
(

n
logn

)
. On the other hand,

the best known lower bound only rules out exact ag-
nostic learning ([15], based on [27], under the assump-

tion that the Õ
(
n1.5

)
unique shortest vector problem

is hard).

• No known algorithm learns intersections of 2 halfs-
paces, whereas we can only rule out learning intersec-
tions of polynomially many halfspaces ([27], assuming



that Õ
(
n1.5

)
-uSVP is hard).

The crux of the matter, leading to this state of affairs,
has to do with the learner’s freedom to return any hypoth-
esis. A learner who may return hypotheses outside the
class H is called an improper learner. This additional free-
dom makes such algorithms potentially more powerful than
proper learners. On the other hand, this added flexibility
makes it difficult to apply standard reductions from NP-
hard problems. Indeed, there was no success so far in prov-
ing intractability of a learning problem based on NP-hardness.
Moreover, as Applebaum, Barak and Xiao [2] showed, many
standard ways to do so are doomed to fail, unless the poly-
nomial hierarchy collapses.

The vast majority of existing lower bounds on learning uti-
lize the crypto-based argument, suggested in [21]. Roughly
speaking, to prove that a certain learning problem is hard,
one starts with a certain collection of functions, that by as-
sumption are one-way trapdoor permutations. This immedi-
ately yields some hard (usually artificial) learning problem.
The final step is to reduce this artificial problem to some
natural learning problem.

Unlike the difficulty in establishing lower bounds for im-
proper learning, the situation in proper learning is much
better understood. Usually, hardness of proper learning is
proved by showing that it is NP-hard to distinguish a real-
izable sample from an unrealizable sample. I.e., it is hard to
tell whether there is some hypothesis in H which has zero
error on a given sample. This, however, does not suffice
for the purpose of proving lower bounds on improper learn-
ing, because it might be the case that the learner finds a
hypothesis (not from H) that does not err on the sample
even though no h ∈ H can accomplish this. In this paper
we present a new methodology for proving hardness of im-
proper learning. Loosely speaking, we show that improper
learning is impossible provided that it is hard to distinguish
a realizable sample from a randomly generated unrealizable
sample.

Feige [13] conjectured that random 3-SAT formulas are
hard to refute. He derived from this assumption certain
hardness of approximation results, which are not known to
follow from P 6= NP. We put forward a (fairly strong) as-
sumption, generalizing Feige’s assumption to certain predi-
cates other that 3-SAT. Under this assumption, we show:

1. Learning DNF’s is hard.

2. Agnostically learning halfspaces with a constant ap-
proximation ratio is hard, even over the boolean cube.

3. Learning intersection of ω(1) halfspaces is hard, even
over the boolean cube.

4. Learning finite automata is hard.

5. Learning parity is hard.

We note that result 4 can be established using the crypto-
graphic technique [21]. Result 5 is often taken as a hardness
assumption. We also conjecture that under our generaliza-
tion of Feige’s assumption it is hard to learn intersections
of even constant number of halfspaces. We present a pos-
sible approach to the case of four halfspaces. To the best
of our knowledge, these results easily imply most existing
lower bounds for improper learning.

1.1 Comparison to the cryptographic technique

There is a crucial reversal of order that works in our
favour. To lower bound improper learning, we actually need
much less than what is needed in cryptography, where a
problem and a distribution on instances are appropriate if
they fool every algorithm. In contrast, here we are presented
with a concrete learning algorithms and we devise a problem
and a distribution on instances that fail it.

Second, cryptographic assumptions are often about the
hardness of number theoretic problems. In contrast, the av-
erage case assumptions presented here are about CSP prob-
lems. The proximity between CSP problems and learning
problems is crucial for our purposes: Since distributions are
very sensitive to gadgets, reductions between average case
problems are much more limited than reductions between
worst case problems.

1.2 On the role of average case complexity
A key question underlying the present study and several

additional recent papers is what can be deduced from the
average case hardness of specific problems. Hardness on
average is crucial for cryptography, and the security of al-
most all modern cryptographic systems hinges on the aver-
age hardness of certain problems, often from number theory.
As shown by Kearns and Valiant [21], the very same hard-
ness on average assumptions can be used to prove hardness
of improper PAC learning of some hypothesis classes.

Beyond these classic results, several recent works, start-
ing from Feige’s seminal work [13], show that average case
hardness assumptions lead to dramatic consequences in com-
plexity theory. The main idea of [13] is to consider two pos-
sible avenues for progress beyond the classic uses of average
hardness: (i) Derive hardness in additional domains, (ii)
Investigate the implications of hardness-on-average of other
problems. For example, what are the implications of average
hardness of 3-SAT? What about other CSP problems?

Feige [13] and then [1, 4] show that average case hard-
ness of CSP problems have surprising implications in hard-
ness of approximation, much beyond the consequences of
standard complexity assumptions, or even cryptographic as-
sumptions. Recently, [8] and [12] show that hardness on av-
erage of planted clique and 3-SAT have implications in learn-
ing theory, in the specific context of computational-sample
tradeoffs. In particular, they show that in certain learning
tasks (sparse PCA and learning halfspaces over sparse vec-
tors) more data can be leveraged to speed up computation.
As we show here, average case hardness of CSP problems
has implications even on the hardness of very fundamental
tasks in learning theory. Namely, determining the tractabil-
ity of PAC learning problems, most of which are presently
otherwise inaccessible.

2. NOTATIONS
For standard definitions and terminology of learning the-

ory and CSP problems, the reader is referred to the full
version of this paper (that can be found on the authors’ web-
sites). Let P : {±1}K → {0, 1} be some boolean predicate.
A P -constraint with n variables is a function C : {±1}n →
{0, 1} of the form C(x) = P (j1xi1 , . . . , jKxiK ) for jl ∈ {±1}
and K distinct il ∈ [n]. An instance to the problem CSP(P )
is a collection J = {C1, . . . , Cm} of P -constraints and the
objective is to find an assignment x ∈ {±1}n that maxi-
mizes the fraction of satisfied constraints (i.e., constraints
with Ci(x) = 1). The value of the instance J , denoted



VAL(J), is the maximal fraction of constraints that can be
simultaneously satisfied. If VAL(J) = 1, we say that J is
satisfiable.

For 1 ≥ α > β > 0, the problem CSPα,β(P ) is the de-
cision promise problem of distinguishing between instances
to CSP(P ) with value ≥ α and instances with value ≤ β.
Denote VAL(P ) = Ex∼Uni({±1}K) P (x). We say that P is
approximation resistant if, for every ε > 0, the problem
CSP1−ε,VAL(P )+ε(P ) is NP-hard. We say that P is approx-
imation resistant on satisfiable instances if, for every ε > 0,
the problem CSP1,VAL(P )+ε(P ) is NP-hard. We say that P
is heredity approximation resistant on satisfiable instances if
every predicate that is implied by P (i.e., every predicate
P ′ : {±1}K → {0, 1} that satisfies ∀x, P (x) ⇒ P ′(x)) is
approximation resistant on satisfiable instances. Similarly,
we define the notion of heredity approximation resistance.

Fix 1 ≥ α > VAL(P ) and a function m(n). We de-

note by CSPα,rand
m(n) (P ) the problem of distinguishing between

instances with value ≥ α and instances with m(n) ran-
dom (uniform and independent) constraints. Throughout,
we only consider such problem if m grows fast enough, so
that the probability that a random instance with m(n) con-
straints will have value ≥ α is on(1).

3. THE METHODOLOGY
We first discuss the methodology in the realm of realiz-

able learning. Treatment of agnostic learning can be found
in the full version of this paper. To motivate the approach,
recall how one usually proves that a class H cannot be ef-
ficiently properly learnable. Let Π(H) be the problem of
distinguishing between an H-realizable sample S and one
with ErrS(H) ≥ 1

4
. If H is efficiently properly learnable

then this problem is in1 RP: To solve Π(H), we simply in-
voke a proper learning algorithm A that efficiently learns
H, with examples drawn uniformly from S. Let h be the
output of A. Since A learns H, if S is a realizable sample,
then ErrS(h) is small. On the other hand, if ErrS(H) ≥ 1

4

then, since h ∈ H, ErrS(h) ≥ 1
4
. This gives an efficient

way to decide whether S is realizable. We conclude that if
Π(H) is NP-hard, then H is not efficiently learnable, unless
NP = RP.

However, this argument does not rule out the possibility
that H is still learnable by an improper algorithm. Suppose
that A efficiently and improperly learns H. If we try to use
the above argument to solve Π(H), we get stuck – suppose
that S is a sample and we invoke A on it, to get a hypothesis
h. As before, if S is realizable, ErrS(h) is small. However, if
S is not realizable, since h not necessarily belongs to H, it
still might be the case that ErrS(h) is small. Therefore, the
argument fails. We emphasize that this is not only a mere
weakness of the argument – there are classes for which Π(H)
is NP-hard, but yet, they are learnable by an improper algo-
rithm2. More generally, Applebaum et al [2] indicate that it
is unlikely that hardness of improper learning can be based
on standard reductions from NP-hard problems, as the one
described here.

We see that it is not clear how to establish hardness of

1The reverse direction is almost true: If the search version
of this problem can be solved in polynomial time, then H is
efficiently learnable.
2This is true, for example, for the class of DNF formulas
with 3 DNF clauses.

improper learning based on the hardness of distinguishing
between a realizable and an unrealizable sample. The core
problem is that even if S is not realizable, the algorithm
might still return a good hypothesis. The crux of our new
technique is the observation that if S is randomly generated
unrealizable sample then even improper algorithm cannot
return a hypothesis with a small empirical error. The point
is that the returned hypothesis is determined solely by the
examples that A sees and its random bits. Therefore, if A
is an efficient algorithm, the number of hypotheses it might
return cannot be too large. Hence, if S is “random enough”,
it likely to be far from all these hypotheses, in which case
the hypothesis returned by A would have a large error on S.

We now formalize this idea. Denote Z = Xn × {0, 1}
and let D = {Dm(n)

n }n be an ensemble of distributions, such

that Dm(n)
n is a distribution on Zm(n)

n and m(n) ≤ poly(n).

Think of Dm(n)
n as a distribution that generates samples that

are far from being realizable by H. We say that it is hard
to distinguish D-random sample from a realizable sample if
there is no efficient randomized algorithm A with the fol-
lowing properties:

• For every realizable sample S ∈ Zm(n)
n ,

Pr
internal coins of A

(A(S) = “realizable”) ≥ 3

4

• If S ∼ Dm(n)
n , then with probability 1− on(1) over the

choice of S, it holds that

Pr
internal coins of A

(A(S) = “unrelizable”) ≥ 3

4

For functions p, ε : N→ (0,∞), we say that D is (p(n), ε(n))-
scattered if, for large enough n, it holds that for every func-
tion f : Xn → {0, 1}, Pr

S∼Dm(n)
n

(ErrS(f) ≤ ε(n)) ≤ 2−p(n).

Theorem 3.1. Every hypothesis class that satisfies the
following condition is not efficiently learnable. There exists
β > 0 such that for every c > 0 there is an (nc, β)-scattered
ensemble D for which it is hard to distinguish between a D-
random sample and a realizable sample.

Remark 3.2. The theorem and the proof below work ver-
batim if we replace β by β(n), provided that β(n) > n−a for
some a > 0.

Proof. Let H be the hypothesis class in question and
suppose toward a contradiction that algorithm L learns H
efficiently. Let M (n, 1/ε, 1/δ) be the maximal number of
random bits used by L when run on the input n, ε, δ. This
includes both the bits describing the examples produced
by the oracle and “standard” random bits. Since L is ef-
ficient, M (n, 1/ε, 1/δ) < poly(n, 1/ε, 1/δ). Define q(n) =
M (n, 1/β, 4)+n. By assumption, there is a (q(n), β)-scattered
ensemble D for which it is hard to distinguish a D-random
sample from a realizable sample. Consider the algorithm A
defined below. On input S ∈ Zm(n)

n ,

1. Run L with parameters n, β and 1
4
, such that the ex-

amples’ oracle generates examples by choosing a ran-
dom example from S.

2. Let h be the hypothesis that L returns. If ErrS(h) ≤ β,
output “realizable”. Otherwise, output “unrealizable”.



Next, we derive a contradiction by showing that A distin-
guishes a realizable sample from a D-random sample. In-
deed, if the input S is realizable, then L is guaranteed to
return, w.p. ≥ 1 − 1

4
, a hypothesis h : Xn → {0, 1} with

ErrS(h) ≤ β. Therefore, w.p. ≥ 3
4
A will output “realiz-

able”.
What if S is drawn from Dm(n)

n ? Let G ⊂ {0, 1}Xn be
the collection of functions that L might return when run
with parameters n, ε(n) and 1

4
. We note that |G| ≤ 2q(n)−n,

since each hypothesis in G can be described by q(n) − n
bits. Namely, the random bits that L uses and the descrip-
tion of the examples sampled by the oracle. Now, since D
is (q(n), β)-scattered, the probability that ErrS(h) ≤ β for

some h ∈ G is at most |G|2−q(n) ≤ 2−n. It follows that
the probability that A responds “realizable” is ≤ 2−n. This
leads to the desired contradiction and concludes our proof.
2

4. THE STRONG RANDOM CSP ASSUMP-
TION

In this section we put forward and discuss a new assump-
tion that we call “the strong random CSP assumption” or
SRCSP for short. It generalizes Feige’s assumption [13], as
well as the assumption of Barak, Kindler and Steurer [4].
This new assumption, together with the methodology de-
scribed in section 3, are used to establish lower bounds for
improper learning. Admittedly, our assumption is strong,
and an obvious quest, discussed in the end of this section
is to find ways to derive similar conclusions from weaker
assumptions.

The SRCSP assumption claims that for certain predicates
P : {±1}K → {0, 1}, d > 0 and α > 0, the decision prob-

lem CSPα,rand

nd
(P ) is intractable. We first consider the case

α = 1. To reach a plausible assumption, let us first dis-
cuss Feige’s assumption, and the existing evidence for it.
Denote by SAT3 : {±1}3 → {0, 1} the 3-SAT predicate
SAT3(x1, x2, x3) = x1 ∨ x2 ∨ x3.

Assumption 4.1 (Feige). For every sufficiently large

C > 0, CSP1,rand
C·n (SAT3) is intractable.

Let us briefly summarize the evidence for this assumption.
Hardness of approximation. Feige’s conjecture can

be viewed as a strengthening of Hastad’s celebrated result
[17] that SAT3 is approximation resistant on satisfiable in-
stances. Hastad’s result implies that under P 6= NP, it is
hard to distinguish satisfiable instances to CSP(SAT3) from
instances with value ≤ 7

8
+ ε. The collection of instances

with value ≤ 7
8

+ ε includes most random instances with
C · n clauses for sufficiently large C. Feige’s conjecture says
that the problem remains intractable even when restricted
to these random instances.

We note that approximation resistance on satisfiable in-
stances is a necessary condition for the validity of Feige’s
assumption. Indeed, for large enough C > 0, with probabil-
ity 1− on(1), the value of a random instance to CSP(SAT3)

is ≤ 7
8

+ε. Therefore, tractability of CSP1, 7
8

+ε(SAT3) would

lead to tractability of CSP1,rand
C·n (SAT3).

Performance of known algorithms. The problem of
refuting random 3-SAT formulas has been extensively stud-
ied. The best known algorithms [14] can refute random in-
stances with Ω

(
n1.5

)
random constraints. Moreover reso-

lution lower bounds [7] show that many algorithms run for

exponential time when applied to random instances with
O
(
n1.5−ε) constraints.

We aim to generalize Feige’s assumption in two aspects
– (i) To predicates other than SAT3, and (ii) To problems
with super-linearly many constraints. Consider the prob-
lem CSP1,rand

m(n) (P ) for some predicate P : {±1}K → {0, 1}.
As above, the intractability of CSP1,rand

m(n) (P ) strengthens the

claim that P is approximation resistant on satisfiable in-
stances. Also, for CSP1,rand

m(n) (P ) to be hard, it is necessary

that P is approximation resistant on satisfiable instances.
In fact, it is easy to see that if P ′ : {±1}K → {0, 1} is im-

plied by P , then the problem CSP1,rand
m(n) (P ) can be easily

reduced to CSP1,rand
m(n) (P ′). Therefore, to preserve the argu-

ment of the first evidence of Feige’s conjecture, it is natural
to require that P is heredity approximation resistant on sat-
isfiable instances.

Next, we discuss what existing algorithms can do. The
best known algorithms for the predicate SATK(x1, . . . , xK) =

∨Ki=1xi only refute random instances with Ω
(
nb

K
2
c
)

con-

straints [11]. This gives some evidence that it becomes
harder to refute random instances of CSP(P ) as the number
of variables grows. Namely, that many random constraints
are needed to efficiently refute random instances. Of course,
some care is needed with counting the “actual” number of
variables. Clearly, only certain predicates have been stud-
ied so far. Therefore, to reach a plausible assumption, we
consider the resolution refutation complexity of random in-
stances to CSP(P ). And consequently, also the performance
of a large class of algorithms, including Davis-Putnam style
(DPLL) algorithms.

DPLL algorithms have been subject to an extensive study,
both theoretical and empirical. Due to the central place that
they occupy, much work has been done since the late 80’s, to
prove lower bounds on their performance in refuting random
K-SAT formulas. These works relied on the fact that these
algorithms implicitly produce a resolution refutation during
their execution. Therefore, to derive a lower bound on the
run time of these algorithms, exponential lower bounds were
established on the resolution complexity of random instances
to CSP(SATK). These lower bounds provide support to the
belief that it is hard to refute not-too-dense random K-SAT
instances.

We define the 0-variability, VAR0(P ), of a predicate P as
the smallest cardinality of a set of P ’s variables such that
there is an assignment to these variables for which P (x) =
0, regardless of the values assigned to the other variables.
By a simple probabilistic argument, a random CSP(P ) in-
stance with Ω (nr) constraints, where r = VAR0(P ) is al-
most surely unsatisfiable with a resolution proof of constant
size. Namely, w.p. 1 − on(1), there are 2r constraints that
are inconsistent, since some set of r variables appears in all
2r possible ways in the different clauses. On the other hand,
we show in the full version of this paper, a random CSP(P )
problem with O (nc·r) constraints has w.h.p. exponential
resolution complexity. Here c > 0 is an absolute constant.
Namely,

Theorem 4.2. There is a constant C > 0 such that for
every d > 0 and every predicate P with VAR0(P ) ≥ C · d,
the following holds. With probability 1 − on(1), a random
instance of CSP(P ) with n variables and nd constraints has

resolution refutation length ≥ 2Ω(
√
n).



To summarize, we conclude that the parameter VAR0(P )
controls the resolution complexity of random instances to
CSP(P ). In light of the above discussion, we raise the fol-
lowing assumption.

Assumption 4.3 (SRCSP – part 1). There is a func-
tion f : N → N such that the following holds. Let P be a
predicate that is heredity approximation resistant on satis-
fiable instances with VAR0(P ) ≥ f(d). Then, it is hard to
distinguish between satisfiable instances of CSP(P ) and ran-
dom instances with nd constraints.

Next, we motivate a variant of the above assumption, that
accommodates predicates that are not heredity approxima-
tion resistant. A celebrated result of Raghavendra [31] shows
that under the UGC [23], a certain SDP-relaxation-based al-
gorithm is (worst case) optimal for CSP(P ), for every pred-
icate P . Barak et al. [4] conjectured that this algorithm
is optimal even on random instances. They considered the
performance of this algorithm on random instances and pur-
posed the following assumption, which they called the “ran-
dom CSP hypothesis”. Define VAL(P ) = maxD Ex∼D P (x),
where the maximum is taken over all pairwise uniform dis-
tributions3 on {±1}K .

Assumption 4.4 (RSCP). For every ε > 0 and suffi-
ciently large C > 0, it is hard to distinguish instances with
value ≥ VAL(P )− ε from random instances with C · n con-
straints.

Here we generalize the RCSP assumption to random in-
stances with much more than C · n constraints. As in as-
sumption 4.3, the 0-variability of P serves to quantify the
number of random constraints needed to efficiently show
that a random instance has value < VAL(P )− ε.

Assumption 4.5 (SRSCP - part 2). There is a func-
tion f : N→ N such that for every predicate P with VAR0(P ) ≥
f(d) and for every ε > 0, it is hard to distinguish between
instances with value ≥ VAL(P ) − ε and random instances
with nd constraints.

Terminology 4.6. A computational problem is SRCSP-
hard if its tractability contradicts assumption 4.3 or 4.5.

4.1 Toward weaker assumptions
The SRCSP assumption is strong. It is highly desirable

to arrive at similar conclusions from weaker assumptions. A
natural possibility is the SRCSP assumption, restricted to
SAT:

Assumption 4.7. There is a function f : N → N such
that for every K ≥ f(d), it is hard to distinguish satisfi-
able instances of CSP(SATK) from random instances with
nd constraints.

We are quite optimistic regarding the success of this direc-
tion: Our lower bounds use the SRCSP-assumption only for
certain predicates, and do not need the full power of the
assumption. Moreover, for the hypothesis classes of DNF’s,
intersection of halfspaces, and finite automata, these pred-
icates are somewhat arbitrary. In [13], it is shown that for

3A distribution is pairwise uniform if, for every pair of co-
ordinates, the distribution induced on these coordinates is
uniform.

predicates of arity 3, assumption 4.5 is implied by the same
assumption restricted to the SAT predicate. This gives a
hope to prove, based on assumption 4.7, that the SRCSP-
assumption is true for predicates that are adequate to our
needs.

5. SUMMARY OF RESULTS

5.1 Learning DNF’s
A DNF clause is a conjunction of literals. A DNF formula

is a disjunction of DNF clauses. Each DNF formula over n
variables induces a function on {±1}n. We define the size
of a DNF clause as the number of its literals and the size of
a DNF formula as the sum of the sizes of its clauses. For
a function q : N → N, denote by DNFq(n) the hypothesis
class of functions over {±1}n that can be realized by DNF

formulas of size at most q(n). Also, let DNFq(n) be the
hypothesis class of functions over {±1}n that that can be
realized by DNF formulas with at most q(n) clauses. Since

each clause is of size at most n, DNFq(n) ⊂ DNFnq(n).
Already in [34], it is shown that for constant q, learning

DNFs with ≤ q clauses is tractable. The running time of
the algorithm is, however, exponential in q. Also, the algo-
rithm is improper. For general polynomial-size DNF’s, the

best known result [26] shows learnability in time 1
ε
·2
Õ

(
n

1
3

)
.

Better running times (quasi-polynomial) are known under
distributional assumptions [28, 29].

As for lower bounds, properly learning DNF’s is known to
be hard [30]. However, proving hardness of improper learn-
ing of polynomial DNF’s has remained a major open ques-
tion in computational learning theory. Noting that DNF
clauses coincide with depth 2 circuits, a natural generaliza-
tion of DNF’s is circuits of small depth. For such classes, cer-
tain lower bounds can be obtained using the cryptographic
technique. Kharitonov [22] has shown that a certain subex-
ponential lower bound on factoring Blum integers implies
hardness of learning circuits of depth d, for some unspec-
ified constant d. Under more standard assumptions (that
the RSA cryptosystem is secure), best lower bounds [21]
only rule out learning of circuits of depth log(n).

As mentioned, for a constant q, the class DNFq is effi-
ciently learnable. We show that for every super constant
q(n), it is SRCSP-hard to learn DNFq(n):

Theorem 5.1. If limn→∞ q(n) =∞ then learning DNFq(n)

is SRCSP-hard.

Since DNFq(n) ⊂ DNFnq(n), we immediately conclude that
learning DNF’s of size, say, ≤ n log(n), is SRCSP-hard. By a
simple scaling argument, we obtain an even stronger result:

Corollary 5.2. For every ε > 0, it is SRCSP-hard to
learn DNFnε .

Remark 5.3. Following the Boosting argument of Schapire
[33], hardness of improper learning of a class H immediately
implies that for every ε > 0, there is no efficient algorithm
that when running on a distribution that is realized by H,
guaranteed to output a hypothesis with error ≤ 1

2
−ε. There-

fore, hardness results of improper learning are very strong, in
the sense that they imply that the algorithm that just makes
a random guess for each example, is essentially optimal.



5.2 Agnostically learning halfspaces
Let HALFSPACES be the hypothesis class of halfspaces

over {−1, 1}n. Namely, for every w ∈ Rn we define hw :
{±1}n → {0, 1} by hw(x) = sign (〈w, x〉), and let HALFSPACES =
{hw | w ∈ Rn}. We note that usually halfspaces are defined
over Rn, but since we are interested in lower bounds, look-
ing on this more restricted class just make the lower bounds
stronger.

The problem of learning halfspaces is as old as the field
of machine learning, starting with the perceptron algorithm
[32], through the modern SVM [35]. As opposed to learning
DNF’s, learning halfspaces in the realizable case is tractable.
However, in the agnostic PAC model, the best currently
known algorithm for learning halfspaces runs in time ex-
ponential in n and the best known approximation ratio of

polynomial time algorithms is O
(

n
log(n)

)
. Better running

times (usually of the form npoly( 1
ε )) are known under distri-

butional assumptions (e.g. [20]).
Proper agnostic learning of halfspaces was shown to be

hard to approximate within a factor of 2log1−ε(n) [3]. Using
the cryptographic technique, improper learning of halfspaces
is known to be hard, under a certain cryptographic assump-
tion regarding the shortest vector problem ([15], based on
[27]). No hardness results are known for approximately and
improperly learning halfspaces.

Theorem 5.4. For every constant α ≥ 1, it is SRCSP-
hard to approximately agnostically learn HALFSPACES with
an approximation ratio of α.

5.3 Learning intersection of halfspaces
For a function q : N → N, we let INTERq(n) be the hy-

pothesis class of intersection of ≤ q(n) halfspaces. That is,
INTERq(n) consists of all functions f : {±1}n → {0, 1} for
which there exist w1, . . . wk ∈ Rn such that f(x) = 1 if and
only if ∀i, 〈wi, x〉 > 0.

Beside being a natural generalization of learning halfs-
paces, the importance of INTERq stems from its connection
to neural networks [9]. A neural network composed of layers,
each of which composed of nodes. The first layer consists of
n nodes, containing the input. The nodes in the rest of the
layers calculates a value according to a halfspace 4 applied
on the nodes in the previous layer. The final layer consists
of a single node, holding the output of the whole network.
Very simple neural networks can realize INTERq: those with
only an input layer, a single hidden layer consisting of only
q(n) nodes, and an output layer. Therefore, lower bounds on
improperly learning intersection of halfspaces implies lower
bounds on improper learning of neural networks.

Exact algorithms for learning INTERq(n) run in time ex-
ponential in n. Better running times (usually of the form

npoly( 1
ε )) are known under distributional assumptions (e.g.

[25]). It is known that properly learning intersection of even
2 halfspaces is hard [24]. For improper learning, Klivans
and Sherstov [27] have shown that learning an intersection
of polynomially many half spaces is hard, under a certain
assumption about the shortest vector problem. Noting that
every DNF formula with q(n) clauses is in fact the com-
plement of an intersection of q(n) halfspaces5, we conclude

4Or a“soft”halfspace obtained by replacing the sign function
with a sigmoidal function.
5In the definition of INTER, we considered halfspaces with

from theorem 5.1 that intersection of every super constant
number of halfsapces is hard.

Theorem 5.5. If limn→∞ q(n) =∞ then learning INTERq(n)

is SRCSP-hard.

In the full version of this paper we describe a route toward
the result that learning INTER4 is SRCSP-hard.

5.4 Additional results
We show that learning the class of finite automata of poly-

nomial size is SRCSP-hard. Hardness of this class can also
be derived using the cryptographic technique, based on the
assumption that the RSA cryptosystem is secure [21]. We
also show that agnostically learning parity with any constant
approximation ratio is SRCSP-hard. Parity is not a very in-
teresting class for practical machine learning. However, this
class is related to several other problems in complexity [10].
We note that hardness of agnostically learning parity, even in
a more relaxed model than the agnostic PAC model (called
the random classification noise model), is a well accepted
hardness assumption.

We also prove lower bounds on the size of a resolution refu-
tation for random CSP instances. In addition, we show that
unless the polynomial hierarchy collapses, there is no “stan-
dard reduction” from an NP-hard problem (or a CoNP-
hard problem) to random CSP problems.

5.5 On the proofs
Next, we outline the proof for DNFs. The proof for half-

spaces and parities is similar. Given c > 0, we start with
a predicate P : {±1}K → {0, 1}, for which the problem

CSP1,rand
nc (P ) is hard according to the SRCSP-assumption,

and reduce it to the problem of distinguishing a (Ω(nc), 1
5
)-

scattered sample from a realizable sample. Since c is arbi-
trary, the theorem follows from theorem 3.1.

The reduction is performed as follows. Consider the prob-
lem CSP(P ). Each assignment naturally defines a function
from the collection of P -constraints to {0, 1}. Hence, if we
think about the constraints as instances and about the as-
signments as hypotheses, the problem CSP(P ) turns into
some kind of a learning problem. However, in this interpre-
tation, all the instances we see have positive labels (since
we seek an assignment that satisfies as many instances as
possible). Therefore, the problem CSP1,rand

nc (P ) results in
“samples” which are not scattered at all.

To overcome this, we show that the analogous problem
to CSP1,rand

nc (P ), where (¬P )-constraints are also allowed,
is hard as well (using the assumption on the hardness of

CSP1,rand
nc (P )). The hardness of the modified problem can be

shown by relying on the special predicate we work with. This
predicate was defined in the recent work of Huang [19], and it
has the property of being heredity approximation resistant,

even though |P−1(1)| ≤ 2O(K1/3).
At this point, we have an (artificial) hypothesis class which

is SRCSP-hard to learn by theorem 3.1. In the next and final
step, we show that this class can be efficiently realized by
DNFs with ω(1) clauses. The reduction uses the fact that
every boolean function can be expressed by a DNF formula
(of possibly exponential size). Therefore, P can be expressed

no threshold, while halfspaces corresponding to DNFs do
have a threshold. This can be standardly handled by
padding the examples with a single coordinate of value 1.



by a DNF formula with 2K clauses. Based on this, we show
that each hypothesis in our artificial class can be realized by
a DNF formula with 2K clauses, which establishes the proof.

The results about learning automata and intersection of
ω(1) halfspaces follow from the result about DNFs: We show
that these classes can efficiently realize the class of DNFs
with ω(1) clauses. In the full version of this paper we suggest
a route toward the result that learning intersection of 4 half-
spaces is SRCSP-hard: Assuming the UGC, we show that a
certain family of predicates are heredity approximation re-
sistant. We show also that for these predicates, the problem
CSP1,α(P ) is NP-hard for some 1 > α > 0. This leads
to the conjecture that these predicates are in fact heredity
approximation resistant. Conditioning on the correctness of
this conjecture, we show that it is SRCSP-hard to learn in-
tersection of 4-halfspaces. This is done using the strategy
described for DNFs.

The proof of the resolution lower bounds relies on the
ideas of [16, 6, 5] and [7]. The proof that it is unlikely that
the correctness of the SRCSP-assumption can be based on
NP-hardness uses the idea introduced in [2]: we show that if

an NP-hard problem (standardly) reduces to CSPα,rand
m(n) (P ),

then the problem has a statistical zero knowledge proof. It
follows that NP ⊂ SZKP, which collapses the polynomial
hierarchy.

6. FUTURE WORK
Weaker assumptions? First and foremost, it is very

desirable to draw similar conclusions from assumption sub-
stantially weaker than SRCSP (see section 4.1). Even more
ambitiously, is it possible to reduce some NP-hard problem
to some of the problems that are deemed hard by the SRCSP
assumption? In the full version of this paper, we show that a
pedestrian application of this approach is doomed to fail (un-
less the polynomial hierarchy collapses). This provides, per-
haps, a moral justification for an “assumption based” study
of average case complexity.

The SRCSP-assumption. We believe that our results,
together with [13, 1, 12, 8] and [4], make a compelling case
that it is of fundamental importance for complexity theory
to understand the hardness of random CSP problems. In
this context, the SRCSP assumption is an interesting con-
jecture. There are many ways to try to refute it. On the
other hand, current techniques in complexity theory seem
too weak to prove it, or even to derive it from standard
assumptions. Yet, there are ways to provide more circum-
stantial evidence in favor of this assumption:

• As discussed above, try to derive it, even partially,
from weaker assumptions.

• Analyse the performance of existing algorithms. In
section ?? it is shown that no Davis-Putnam algorithm
can refute the SRCSP assumption. Also, Barak et al
[4] show that the basic SDP algorithm [31] cannot re-
fute assumption 4.5, and also 4.3 for certain predicates
(those that contain a pairwise uniform distribution).
Such results regarding additional classes of algorithms
will lend more support to the assumption’s correctness.

• Lower bound the refutation complexity of random CSPs
in systems stronger than resolution.

For a further discussion, see [4]. Interest in the SRCSP
assumption calls for a better understanding of heredity ap-

proximation resistance. For recent work in this direction,
see [18, 19].

More applications. We believe that the method pre-
sented here and the SRCSP-assumption can yield additional
results in learning and approximation. Here are several ba-
sic questions in learning theory that we are unable to resolve
even under the SRCSP-assumption.

1. No algorithm learns the class of decision trees. Is it
SRCSP-hard to learn decision trees?

2. What is the real approximation ratio of learning halfs-
paces under SRCSP? Likewise for learning large mar-
gin halfspaces and parity.

3. Is it SRCSP-hard to learn intersections of a constantly
many halfspaces? Maybe even 2 halfspaces? in the full
version of this paper, we suggest a route to provide a
positive answer for 4 halfspaces.

Besides application to learning and approximation, it would
be fascinating to see applications of the SRCSP-assumption
in other fields of complexity. It will be a poetic justice if
we could apply it to cryptography. We refer the reader to
[4] for a discussion. Finding implications in fields beyond
cryptography, learning and approximation would be even
more exciting.
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