
COMBINATORICA
Bolyai Society – Springer-Verlag

0209–9683/100/$6.00 c©2000 János Bolyai Mathematical Society

Combinatorica 20 (4) (2000) 545–568

A DETERMINISTIC STRONGLY POLYNOMIAL ALGORITHM
FOR MATRIX SCALING AND APPROXIMATE PERMANENTS

NATHAN LINIAL∗, ALEX SAMORODNITSKY, AVI WIGDERSON†

Received October 15, 1998

We present a deterministic strongly polynomial algorithm that computes the permanent
of a nonnegative n×n matrix to within a multiplicative factor of en. To this end we develop
the first strongly polynomial-time algorithm for matrix scaling — an important nonlinear
optimization problem with many applications. Our work suggests a simple new (slow)
polynomial time decision algorithm for bipartite perfect matching, conceptually different
from classical approaches.

1. Introduction

1.1. The permanent

Background. Let A=(aij) be an n×n matrix. The number

per(A) =
∑
σ∈Sn

n∏
i=1

aiσ(i),

where Sn is the symmetric group on n elements, is called the permanent of
A. For a 0,1 matrix A, per(A) counts the number of perfect matchings in
G, the bipartite graph represented by A. We freely interchange between a
0,1 matrix and the corresponding graph.
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It is #P -hard to compute the permanent of a nonnegative (even 0,1)
matrix [31], and so it is unlikely to be efficiently computable exactly for all
matrices. In fact, even the existence of an efficient algorithm that computes
the permanent of an exponentially small fraction (appropriately defined) of
all 0,1 matrices implies a collapse of the polynomial hierarchy [9]. Planar
graphs provide the only interesting class of matrices for which a (beautiful)
polynomial-time algorithm is known for the permanent [20].

The realistic goal, then, is to try and approximate the permanent effi-
ciently as well as possible, for large classes of matrices.

There are deep and interesting upper and lower bounds on the permanent
in certain classes of matrices. The most well known is Egorychev’s [7] and
Falikman’s [8] resolution of van der Waerden’s conjecture: The permanent
of a doubly stochastic n×n matrix is at least n!

nn ≥e−n. Bregman [5] resolved
the Minc conjecture and proved a tight upper bound on the permanent of
a zero-one matrix with given row sums. Both bounds are easy to compute,
and indeed were the starting point of our approach.

Efficient poly-time probabilistic algorithms that approximate the per-
manent extremely tightly (1+ε factor) were developed for several classes of
graphs, e.g., dense graphs and random graphs [18], and others. This line of
work has led to an exp(O(

√
n))-time probabilistic algorithm that achieves

(1+ε)-approximation for every graph [19].
How well can the permanent be approximated in polynomial time? The

first result that provides a 2O(n)-factor approximation for arbitrary positive
matrices was recently obtained by Barvinok [2]. His work can be viewed as
a continuation of earlier papers where certain random variables are shown
to be unbiased estimators for the permanent. Barvinok introduced new such
estimators for which he was able to establish a strong enough concentration
of measure. He went on [3], [4] to develop a probabilistic polynomial time
algorithm with a cn-factor approximation, c≈ 1.31, currently the record in
this area.

We remark [3] that any polynomial-time 2n
1−α

approximation, 0<α≤1
yields a polynomial-time (1+ε)-approximation.
Our results. We achieve O(en)-factor approximation deterministically.
Our algorithm is strongly polynomial.

Theorem 1.1. There is a function f , such that

per(A) ≤ f(A) ≤ enper(A)

holds on every nonnegative n×n matrix A. The function f is computable
in Õ(n5) elementary operations.



A DETERMINISTIC STRONGLY POLYNOMIAL ALGORITHM 547

Our approach to this problem is completely different from the previously
taken routes. It involves a natural reduction technique between problem in-
stances: scaling. Observe the following linearity of permanents: Multiplying
a row or column by a constant c, multiplies the permanent by c as well.
More generally, we say that a matrix B is a scaling of A (by positive vec-
tors x,y ∈ (�+)n) if B = XAY , where X = diag(x) and Y = diag(y) are
diagonal matrices with x (resp. y) on their diagonal (these being the fac-
tors that multiply the rows and the columns respectively). As observed,
per(B) = (

∏
ixi)(

∏
i yi)per(A). Thus scaling reductions not only allow us

to compute per(A) from per(B), but in fact any k-factor approximation of
per(B) efficiently yields the same approximation for per(A).

The idea, then, is to scale an input matrix A into a matrix B whose
permanent we can efficiently approximate. A natural strategy is to seek an
efficient algorithm for scaling A to a doubly stochastic B. For suppose we
succeed: the permanent of B is clearly at most 1, and per(B)≥n!/nn>e−n

by the lower bound of [7,8]. Consequently, per(A) is also approximated to
within an en factor, as claimed.

Note that such a scaling may not always exist — when per(A)=0. More-
over, even if scaling exists, the scaling vectors x,y may have irrational co-
ordinates, so we may have to settle for an approximately doubly stochastic
matrix. The scaling algorithm must, therefore, be accompanied by approx-
imate versions of the van der Waerden bound, and indeed we prove results
of the following type (see also proposition 5.1).

Lemma 1.2. Let B be a nonnegative n×n matrix, in which all row sums
are 1, and where no column sum exceeds 1+ 1

n2 , then per(B)≥e−(n+1).

So we want to efficiently scale A to an almost doubly stochastic matrix.
This scaling problem that so naturally arose from our considerations, turned
out to have been studied in other contexts as well. The next subsection
briefly describes these as well as scaling algorithms - old and new.

1.2. Matrix scaling

Background.
Our discussion will be restricted to square matrices, though everything

generalizes to rectangular matrices (and some of it even to multidimensional
arrays).

Let r,c ∈ (�+)n be two positive vectors with
∑
ri =

∑
cj . A matrix B

is an (r,c)-matrix if r and c are the vectors of row and columns sums of B
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respectively. An (r,c)-scaling of a matrix A consists of two vectors x,y for
which B=XAY is an (r,c)-matrix. (Again X = diag(x) and Y = diag(y).)
Given A,r,c one is led to consider the existence of a scaling, its uniqueness,
and of course the complexity of deciding and finding (or approximating)
such a scaling. Note that scaling to a doubly stochastic matrix is exactly
(1̄, 1̄)-scaling. Since multiplying the vectors r and c by the same constant
does not change the problem, we will assume

∑
ri =

∑
cj = n (to make it

consistent with the doubly stochastic case).

The (r,c)-scaling problem arose in such diverse contexts as statistics [30,
10], numerical analysis [32], operations research [28], image reconstruction
[17], engineering [6], and as we were not surprised to discover, permanents
[12]. Here are a couple of quick examples: To solve the linear system of
equations Av = u, we consider instead the scaled system B(Y v) = X−1u.
A judicious choice of scaling can increase numerical stability, and indeed
this method is used for matrix preconditioning [32]. In computer tomogra-
phy and some statistical applications we wish to reconstruct a (sometimes
multidimensional) array of new data, from complete old data and some ad-
ditional information. Different dimensions represent essential (spatial or sta-
tistical) parameters. The assumption is that data was modified as a result of
a (multiplicative) change in “intensity” or “importance” of the parameters,
leading naturally to the scaling problem. Finally, observe also that scaling
does not affect the zero/nonzero pattern of the matrix, and this (along with
linear constraints on the marginals and positivity requirements) is a natural
constraint in various optimization problems.

The mathematical literature abounds with equivalent formulations of the
problem, connections with other problems, and various necessary and suf-
ficient conditions for existence and uniqueness of an (r,c)-scaling (see e.g.
[29] and the references therein). Again our discussion is very brief: The max-
flow-min-cut theorem provides a necessary and sufficient condition for the
existence of scaling. The scaling vectors are then the (unique) optimal so-
lution of a nonlinear program which can be made convex (but ugly) after
appropriate changes of variables.

Finally, the algorithmics: Here the literature seems quite sparse. We note
that (r,c)-scalability can be decided in polynomial time, using network flows.
Thus we will assume that the input matrix A is (r,c)-scalable, and the task
is to find (or approximate to a desired accuracy) the target matrix and the
scaling vectors.
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The original paper by Sinkhorn [30] already introduced an iterative al-
gorithm for this task1. The idea is simple — apply a sequence of scalings
to the given matrix A, alternately normalizing the row sums to r (say in
odd steps) and the column sums to c (in even steps). Let At be the matrix
generated after t iterations. Sinkhorn proved that this sequence converges to
an (r,c)-matrix, but gave no bound on convergence rates. It should be clear
that each iteration is computationally trivial, and that the final scaling vec-
tors are obtained by keeping a running product of the scaling vectors used
at odd and even steps.

To quantify convergence rates, let ε be the desired accuracy (say in L∞),
and L(A) the binary input length (i.e. log of the ratio of the largest to
smallest nonzero entries) of A.

The convergence rate of this procedure was first considered by Franklin
and Lorenz [11]. They showed that each step in Sinkhorn’s method is a con-
traction map in the Hilbert projective metric. By estimating the contraction
constant in terms of L(A), they concluded that the number of iterations is
bounded by

O(L(A) · 1/ε).
This shows that Sinkhorn’s is an approximation scheme, but of course not
polynomial in log(1/ε).

Moreover, simple examples show that the dependence on the input length
cannot be improved. This is the best existing bound for the general (r,c)-
scaling problem.

For the (1,1)-scaling problem, Kalantari and Kachiyan [21] have recently
developed an approximation scheme based on convex optimization via the
ellipsoid method. Their algorithm requires

O
(

log(L(A))n4 log(n/ε)
)

arithmetic operations on integers of length O(L(A) log(n/ε)). This is thus
a polynomial time approximation scheme, which is, however, not strongly
polynomial.

This still leaves open the polynomiality of the general (r,c)-problem, and
the quest for a strongly polynomial scheme, both of which we accomplish in
the present paper.
Our results. We develop two strongly polynomial algorithms. The first is
restricted to the (1,1)-scaling problem, and the other works for the general
(r,c)-scaling problem.

1 Sinkhorn suggested his procedure (sometimes called the RAS procedure) only for the
(1,1)-scaling problem he was interested in, but it was naturally extended to the general
problem.
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For (1,1)-scaling our approach is this: We start with a certain preprocess-
ing step that’s followed by Sinkhorn’s procedure. This, along with a different
convergence analysis, yields a strongly polynomial scheme. Our preprocess-
ing is itself also a scaling step that is attained through a weighted matching
algorithm. Following this step, there is a generalized diagonal of A each ele-
ment of which is largest in its respective row. This guarantees a lower bound
of n−n on the permanent. The analysis then proves (and this is simple) that
every step in Sinkhorn’s procedure increases the permanent. Moreover, this
increase can be quantified in terms of the distance of the matrix from being
doubly stochastic. This allows us to bound the number of iterations till an
ε approximation is attained by

O((n/ε)2)

Note that the number of iterations does not involve L(A) (Naturally the
arithmetic operations are applied to integers of length L(A)O(1).) However,
it is only polynomial in 1/ε, so this is not a fully polynomial approximation
scheme. Still, for the purpose of approximating the permanent ε=n−2 suf-
fices, and Theorem 1.1, (with a total running time of O(n6)) follows. These
results are described in Section 3.

For the general (r,c)-scaling problem, we develop a new algorithm. Like
Sinkhorn’s it is iterative, and every odd step normalizes the row sums to r.
In the even steps, however, a more elaborate scaling procedure is performed
on the columns. This scheme allows us to quantify the progress we make:
After odd steps, when row sums are as designated, the Euclidean distance
of the vector of current columns sums to its target c shrinks by a constant
factor. This comprises a fully polynomial approximation scheme that is also
strongly polynomial, with the number of iterations bounded by

Õ(n7 log(1/ε)).

These results are described in section 4.2

2. Preliminaries

We start with a general overview of the setting in which our algorithms work
and of the features they share. We also discuss the complexity matters, and
introduce the necessary notation.

2 Leonid Gurvits [15] had pointed out to us, that algorithms of similar spirit are pre-
sented, without performance analysis, in [27].
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First we describe the setting in which our algorithms are applicable. Let
A be a nonnegative n×n matrix and let r= (r1, . . . ,rn), c= (c1, . . . , cn) be
two positive vectors. We say that A is an (r,c) matrix if the i-th row sum
of A is ri and the j-th column sum is cj .

Next we would like to introduce the notion of (r,c)-scalability. It turns
out that there are several pertinent definitions, which we now present.

The matrix A is said to be exactly (r,c)-scalable, if there exist positive
finite n-tuples (x1, . . . ,xn), (y1, . . . ,yn) such that B = (bij) = (xiaijyj) is an
(r,c) matrix.

We are also interested in a weaker notion of approximate scalability:
Given an ε>0, we say that B is an “ε−(r,c)” if B’s row sums are given by
the vector r, whereas B’s columns sums c′j, satisfy3:

n∑
j=1

(c′j − cj)2 ≤ ε.(1)

We say that A is ε− (r,c)-scalable if there exist positive finite n-tuples
(x1, . . . ,xn), (y1, . . . ,yn) such that B=(bij)=(xiaijyj) is an ε−(r,c) matrix.

Since our official business (in the doubly stochastic case) is in approxi-
mating the permanent, we will be satisfied if we can scale A arbitrarily close
to a (r,c)-matrix. This leads to a notion of an almost (r,c) scalable matrix,
which turns out to be precisely the notion we need, and therefore deserves
a formal definition:

Definition 2.1. A nonnegative n×n matrix is almost (r,c)-scalable if it is
ε−(r,c) scalable for any ε>0.

The following Proposition [29] characterizes exact and approximate scal-
ability.

Proposition 2.2. A nonnegative matrix A is exactly (r,c)-scalable iff for
every zero minor Z×L of A,

1. ∑
i∈Zc

ri ≥
∑
j∈L

cj equivalently
∑
i∈Z

ri ≤
∑
j∈Lc

cj .

2. Equality in 1 holds iff the Zc×Lc minor is all zero as well.

A nonnegative matrix A is almost (r,c)-scalable iff condition 1 holds.

3 Note it is always possible to normalize the row sums to the desired ri. (Or, alternatively,
normalize the column sums. Doing both is the challenge.) Thus, henceforth all our matrices
are row-normalized.
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In particular, a nonnegative matrix A is almost (1,1)-scalable iff
Per(A)>0.

Note that the (r,c) scaling algorithm presented in Theorem 4.5 gives
an alternative proof of the sufficiency of the first condition for almost-(r,c)
scalability. Indeed, the algorithm accepts as input a matrix satisfying con-
dition 1 of the proposition and an ε> 0, and proceeds to (efficiently) scale
the matrix to an ε−(r,c) matrix.

We observe that almost (r,c)-scalability of A can be efficiently checked.

Lemma 2.3. The question whether a given matrix A satisfies condition 1
of proposition 2.2 can be decided in polynomial time (via a max-flow for-
mulation [14]).

Proof. For completeness’ sake, here is the translation to a flow problem:
Let F be a graph with 2n+2 vertices, of which two are special: the source and
the sink. Corresponding to the rows of A are n vertices and the remaining
n vertices correspond to the columns. The source is adjacent to every row
vertex of F and the n edges have capacities r1, . . . ,rn. In the same way, every
column vertex of F is adjacent to the sink with edge capacities c1, . . . , cn.
There is an edge from the i-th row vertex to the j-th column vertex iff Aij>
0 and such edges have infinite capacities. The max-flow, min-cut theorem
easily implies that the maximal flow in F is

∑
i ri =

∑
j cj iff condition 1

holds.

We proceed to describe two scaling algorithms. We call our (1,1) scal-
ing algorithm DSS — for Doubly Stochastic Scaling, and the general (r,c)
scaling algorithm is RCS — for (r,c)-Scaling.

Given a matrix A to be scaled, the two algorithms operate by producing
a sequence of matrices A = A0,A1, . . . ,AN , where At+1 = f(At), t = 1, . . .,
and the last matrix AN is nearly (r,c).4 The function f is specific to the
algorithm and is denoted by fDSS and fRCS correspondingly. The matrices
At are always row-normalized, i.e., the i-th rows sum of At is ri, for all t and
n. An iteration of the algorithm proceeds from At to At+1, and therefore N is
the number of iterations required for the approximate scaling. To quantify
the notion of “proximity”, we define N(ε) to be the number of iterations
required for ε-scaling, namely so that AN is an ε−(r,c) matrix.

Let I denote the number of arithmetic operations needed for one itera-
tion of the algorithm. Then the total complexity of the ε-scaling problem
is NDSS(ε) · IDSS in the doubly stochastic case, and NRCS(ε) · IRCS in the

4 Henceforth, in this section, we refer only to (r,c) scaling, which includes the doubly
stochastic scaling as a special case.
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general case. We also set L(ε) denote the maximal length of numbers en-
countered in the ε-scaling process. (Recall that L(A) denotes the binary
input length of A.)

3. Doubly stochastic scaling algorithm

In this section we present a modification of Sinkhorn’s matrix scaling algo-
rithm, which, given an (1,1) scalable, nonnegative n×n matrix converges
rapidly to an almost doubly stochastic matrix. (“Almost” is quantified later
on, but the idea is that an approximate version of the van der Waerden
conjecture holds.) After preprocessing the input matrix, this algorithm per-
forms the Sinkorn algorithm, namely repeatedly normalizes the columns and
the rows.

3.1. The DSS algorithm

DSS(A)
Input (1,1)-scalable matrix A.
1. A1 = Preprocess(A)
2. For t=1,2, . . . ,N=O(n2 log(n)) do At+1 =fDSS(At).
3. Output AN .
Preprocess(A)
Find a permutation σ ∈ Sn, such that σ is the “heaviest” generalized

diagonal of A, i.e.,
n∏
i=1

Aiσ(i) = max
τ∈Sn

n∏
i=1

Aiτ(i).

Find a positive diagonal matrix Y , such that the matrix B=AY , satisfies:

∀ 1 ≤ i, j ≤ n Biσ(i) ≥ Bij.(2)

Normalize the rows of B.
Output A1.
fDSS(·).
Input Nonnegative matrix At with unit row sums and positive column

sums.
1. Normalize(columns)
2. Normalize(rows)
3. Output At+1.
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3.2. Theorems

Theorem 3.1. (The preprocessing step)
Let A be a nonnegative matrix in which σ is a “heaviest” generalized diag-
onal, i.e.,

n∏
i=1

Aiσ(i) ≥
n∏
i=1

Aiτ(i)

for every permutation τ . Then, there exists a positive diagonal matrix Y
such that B=AY , satisfies:

∀ 1 ≤ i, j ≤ n Biσ(i) ≥ Bij.(3)

The diagonal σ and the matrix Y can be found in O(n5 logn) arithmetic
operations.

Theorem 3.2. (Number of iterations)

The number NDSS

(
1

n logn

)
of DSS iterations required for 1

n logn -scaling is

at most O(n2 log(n)).

Theorem 3.3. (Iteration cost)
The number of arithmetic operations per each iteration of DSS is at most
O(n2).

Theorem 3.4. (Number size)

The maximal length LDSS

(
1

n logn

)
of numbers that appear in the 1

n logn -

scaling algorithm is at most poly(L(A),n)).

Corollary 3.5. Given an (1,1)-scalable matrix A, modified Sinkorn’s algo-
rithm solves the 1

n logn -scaling problem for A in at most O(n5 log(n)) ele-

mentary operations on numbers of length at most poly (L(A),n)).

Remark 3.6. Below (Proposition 5.1) we show that if A if 1
n logn -doubly

stochastic then per(A) ≥ (1
e )n+o(n). Therefore Corollary 3.5 enables us to

use a version of the van der Waerden conjecture.

Remark 3.7. The number of iterations of the Unmodified Sinkorn’s proce-
dure required to solve the 1

n logn -scaling problem may be arbitrarily large.
This is demonstrated in the following example:
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Example 3.8. Let A be a 3×3 matrix,

A =


 1

2
1
2 0

α α 1 − 2α
α α 1 − 2α


 ,

with (arbitrarily) small positive α. This matrix satisfies the conditions of
proposition 2.2, so Sinkhorn’s algorithm converges to a doubly stochastic
matrix. However, note that per(A) = O(α) and that each application of
DSS increases the permanent by a factor no bigger than 5. Consequently,
it takes at least Ω

(
log
(

1
α

))
steps, for the matrix A to become close enough

to doubly stochastic.

3.3. Proofs

Proof of Theorem 3.1.
Given A, a “heaviest” generalized diagonal σ corresponds to a maximum-
weight perfect matching in a bipartite graph, so σ may be found in at most
O(n3) arithmetic operations [1,13]. It is convenient (and kosher) to assume
henceforth that σ is the identity permutation.

We turn to the main part of the theorem, namely to show that the matrix
Y exists and can be found in polynomial time.

We start with the existential part. Define the matrix Â via Âij =log(Aij),
1≤ i,j≤n, (with the convention log(0)=−∞) and restate the theorem thus:
Let Â be an n×n matrix where

∑n
i=1 Âii≥

∑n
i=1 Âiτ(i) for every permutation

τ . Then there exist numbers µ1, . . . ,µn, such that

∀ 1 ≤ i, j ≤ n, Âii + µi ≥ Âij + µj

i.e.
µi − µj ≥ Âij − Âii.(4)

Note, that we are only concerned with indices i,j for which Âij>−∞, since
in the other case the inequalities obviously hold. By LP-duality, if this system
of inequalities is inconsistent, this may be established by linearly combining
these inequalities. So, assume that there exist nonnegative weights wij, so
that

1.
∑
wij(µi−µj)=0, i.e., the nonconstant terms are eliminated, and

2.
∑
wij(Âij− Âii)>0, i.e., the combination of constant terms is positive.
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The first condition implies that the map which assigns value wij to the edge
(i,j), is a circulation inKn. By the Circulation Theorem, w is a positive com-
bination of the characteristic functions of directed cycles: w =

∑
γ∈Γ λγ1γ ,

where each γ ∈Γ is a directed cycle and the λγ are positive. But then, the
second condition implies that for some γ∈Γ :∑

i∈γ
Âiγ(i) >

∑
i∈γ

Âii.

Define a permutation τ ∈ Sn, by setting τ(i) = γ(i) for i ∈ γ, and τ(i) = i

otherwise. Clearly,
∑n

i=1 Âiτ(i)>
∑n

i=1 Âii, contrary to our assumptions.
We return to the computational part of the theorem. Note, that (4) is

a system of m=n2 linear inequalities with only two variables per inequal-
ity. Such a system is solvable [26] by a strongly polynomial algorithm in
O(mn3 log(n)) = O(n5 log(n)) arithmetic operations.

Proof of Theorem 3.2.
Theorem 3.1 shows how to perform the Preprocessing Step in the Modified
Sinkhorn’s algorithm. Our gain is that following this preprocessing, the per-
manent of the resulting matrix A1 is ≥ 1

nn , since all the elements on the
σ-diagonal of A1 are ≥ 1

n .
Now, recall that At is the matrix generated from A1 after t−1 iterations

of DSS. At+1 = fDSS(At). Our goal is to estimate the convergence rate of
At to the set of doubly stochastic matrices. We measure our progress with
the help of a potential function, namely, per(At).

Lemma 3.9. Let B be a nonnegative matrix with unit row sums. Then

per(DSS(B)) ≥ per(B)

and the inequality is strict unless B is doubly stochastic.

Proof. Let C be obtained by normalizing B’s columns, and D= DSS(B)
be the row normalization of C. We claim per(D)≥per(C)≥per(B), and the
inequalities are strict unless B=C=D, are doubly stochastic.

Let cj be the j-th column sum of B. All cj are positive, and
∑n

j=1 cj =n.
Clearly, per(C) = per(B)∏n

j=1
cj

. The arithmetic-geometric inequality applied to

{cj}nj=1 yields
∏n

j=1 cj ≤ 1, with equality only if all the cj are 1. The same
argument proves also the second claim, switching rows and columns.

We have seen, in fact, that each iteration of DSS multiplies the perma-
nent by at least 1∏n

j=1
cj

. The convergence rate can be estimated through the

following lemma:
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Lemma 3.10. Let x1, . . . ,xn be positive reals with
∑n

i=1xi = n, and∑n
i=1(xi−1)2 =∆. Then

n∏
i=1

xi ≤ 1 − ∆

2
+O(∆

3
2 ).

Proof. Let xi−1=ρi. Then
∑n

i=1ρi=0, and
∑n

i=1ρ
2
i =∆.

It is easily verifiable, that 1+ t≤et− t2

2
+ t3

3 , for all real t, therefore:
n∏
i=1

xi =
n∏
i=1

(1 + ρi) ≤ exp(
n∑
i=1

ρi −
1
2

n∑
i=1

ρ2
i +

1
3

n∑
i=1

ρ3
i ) ≤

≤ exp(−1
2

n∑
i=1

ρ2
i +

1
3

(
n∑
i=1

ρ2
i )

3
2 ) =

= exp(−∆
2

+
1
3
∆

3
2 ) = 1 − ∆

2
+O(∆

3
2 ).

Now we have to show that NDSS

((
1

n logn

))
≤ O(n2 log2n). Indeed, as

long as Condition (1), with ε= 1
n logn , doesn’t hold, each iteration of DSS

multiplies the permanent by at least 1+Ω
(

1
n logn

)
. The bound on N follows,

since per(A1)≥ 1
nn and for any t, per(At)≤

∏n
i=1 ri=1.

Proof of Theorem 3.3.
The statement of the theorem follows immediately from the definition of the
DSS-iteration.

Proof of Theorem 3.4.
To perform the preprocessing, we solve a special system of n2 linear inequal-
ities aiiyi≥aijyj, for 1≤ i,j≤n. As already mentioned, we employ here the
strongly polynomial algorithm from [26].

Now, let fDSS act on A= (aij) and produce A′ = (a′ij). We observe that
for our purposes it suffices to remember only the first O(log(n/ε)) significant
bits of aij (see lemma 4.8 for a proof).

Since all the entries in A,A′ are numbers between zero and one, every
iteration of DSS decreases an entry by a multiplicative factor of at most n2,
and therefore increases the input length by at most 2logn.

4. Strongly polynomial scaling algorithm

In this section we present a strongly polynomial algorithm, which, given an
(r,c)-scalable nonnegative n×n matrix A and an ε>0, solves the ε-scaling
problem for A.
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4.1. The RCS algorithm

RCS(A)
Input Nonnegative vectors r and c; an almost (r,c)-scalable matrix A=

A1 and an ε>0.
1. For t=1,2, . . .N=O

(
n5 log

(n
ε

))
do At+1 =fRCS(At).

2. Output AN .
fRCS(·).
Input An almost (r,c)-scalable matrix At with row sums ri and positive

column sums c′j .
1. Sort the differences dj =c′j−cj . (We assume, for convenience, that they

are already ordered: d1≤d2 . . .≤dn.)
2. If

∑n
j=1d

2
j ≤ε Stop.

Remark: in this case we are done.
3. Otherwise, let j0 be the index where the largest gap occurs between

consecutive dj , and set:

G := dj0+1 − dj0 = maxj{dj+1 − dj}.

4. Find δ0, the smallest positive δ, such that |aµν(δ)−aµν |= G
8n for some

indices µ and ν. Here At(δ) = (aij(δ)) is the matrix obtained from At by
multiplying each lacunary column j ∈ L := {1 . . . j0} by a factor 1 + δ, and
then renormalizing the rows.

5. Output At+1 =At(δ0).

4.2. Theorems

Theorem 4.1. Existence of δ0
An RCS iteration can always be performed, i.e., the positive real δ0 in step
4 of the iteration is well defined.

Theorem 4.2. Number of iterations
The number of RCS iterations required for ε-scaling is at most NRCS(ε)≤
O
(
n5 log

(
n
ε

))
.

Theorem 4.3. Iteration cost
Each iteration of RCS involves at most O(n2 log(n)) elementary operations.

Theorem 4.4. Number size
The maximal length LRCS(ε) of numbers that appear in the ε-scaling algo-

rithm is at most poly
(
L(A),n, log

(
1
ε

))
.
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Corollary 4.5. Given an (r,c)-scalable matrix A, RCS algorithm solves
the ε-scaling problem for A in at most O

(
n7 log(n) log

(
n
ε

))
elementary op-

erations on numbers of length at most poly
(
L(A),n, log

(
1
ε

))
.

4.3. Proofs

Proof of Theorem 4.1.
For notational convenience we prove the existence and the uniqueness of δ0
for the first iteration. In this case, At is simply A. Let δ be a positive real
number. The expression for the (i, l) entry in A(δ) is:

ail(δ) =

{
(1 + δ) · ailri

ri+δwi
if l ∈ L

ailri
ri+δwi

if l /∈ L ,

where wi=
∑

j∈Laij is the contribution of the lacunary columns to the i-th
row sum in A. Since all wi ≤ ri, the function aij(δ) is nondecreasing for
j ∈L, and nonincreasing for j /∈L. Therefore the quantity dj(δ) = c′j(δ)− cj
is nondecreasing for j ∈L, and nonincreasing for j /∈L. We show that as δ
grows, at least one of these quantities reaches the midpoint M of the largest
gap G.

Lemma 4.6. Let A be a nonnegative (r,c)-scalable n×n matrix with row
sums ri and column sums c′j . Then, there are j∈L and k �∈L and a (possibly
infinite) δ>0 for which dj(δ)=dk(δ). Consequently, there is an index l and
δ>0 for which dl(δ)=M.

Proof. Let Z be the set of rows i for which wi = 0. Note that aij = 0 for
i∈Z and j ∈L, so for l ∈L, c′l(δ) = (1+ δ) ·∑i∈Zc

aijri

ri+δwi
. Therefore, for

l∈L, when δ→∞,
dl(δ) →

∑
Zc

ailri
wi

− cl.

Summing these expressions for all l∈L we conclude:

∑
l∈L

dl(δ) →
∑
l∈L

(∑
Zc

ailri
wi

− cl

)
=
∑
i∈Zc

ri −
∑
l∈L

cl ≥ 0.

The inequality being from Proposition 2.2. On the other hand, for j �∈L, as
δ→∞,

dj(δ) →
∑
Z

aij − cj
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whence ∑
j �∈L

dj(δ) →
∑
j �∈L

∑
i∈Z

aij −
∑
j �∈L

cj =
∑
i∈Z

ri −
∑
j �∈L

cj ≤ 0

again by Proposition 2.2.
Therefore two indices j∈L, k �∈L exist for which lim

δ→∞
(dj(δ)−dk(δ))≥0.

Recall that M is the middle of the interval [dj0 ,dj0+1]. The Lemma tells
us, that there is a column l and a possibly infinite positive δ such that
dl(δ)=M , implying |dl(δ)−dl|≥ G

2 . It follows, that |dl(δ)−dl|≥ G
4 , for some

positive finite δ. Therefore there is a row i, for which |ail(δ)−ail|≥ G
4n . This

of course implies the existence of δ0, the smallest positive real for which
|aµν(δ)−aµν |= G

8n for some indices µ and ν. (Note, that we settle for a step
— G

8n — that is smaller than what can be attained, namely G
4n . This choice

is intended to control the length of the binary representation of the matrix
A(δ) — see Theorem 4.4). Note also, that δ0 is uniquely specified in view of
the fact that the functions aij(δ) are monotone and continuous.

Proof of Theorem 4.2.
In order to find out how many iterations of RCS are required for the solution
of the ε-scaling problem, we have to estimate the rate of convergence of the
sequence {At} to the set of (r,c)-matrices. We assess our progress, through
the decrease of the l2 norm ‖d‖2 =

√∑n
j=1d

2
j . We now show that our choice

of δ0 in the fourth step of the RCS iteration suits our needs. Once again we
assume, for convenience, that we deal with the first iteration

Lemma 4.7.
‖d(δ0)‖2

2 ≤ ‖d‖2
2 · (1 −Ω(n−5)).

Proof. First we show that

‖d(δ0)‖2
2 ≤ ‖d‖2

2 −G2/64n2.

Let j=(1, . . . ,1). Since both inner products <d(δ0), j> and <d, j> are 0, it
follows that

‖d‖2
2 − ‖d(δ0)‖2

2 = ‖d−M · j‖2
2 − ‖d(δ0) −M · j‖2

2,(5)

and so we may consider the change in ‖d−M ·j‖2. The definition of δ0 implies
for all i, that aij≤aij(δ0)≤aij + G

8n , for all j∈L, and aik≥aik(δ0)≥aik− G
8n

for all k �∈ L. Therefore, for all j ∈L,k �∈ L, dj ≤ dj(δ0) ≤M ≤ dk(δ0) ≤ dk,
implying that |dj(δ)−M |≤ |dj−M | for all 1≤ j≤n. Our gain comes from
the ν-th coordinate, and is, at least G2

64n2 .
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To conclude, we need to compare between G and ‖d‖2
2. Recall that

∑
dj =

0 and |dj−dj−1|≤G for all j. The maximum of ‖d‖2
2 under these conditions

is attained when dj −dj−1 =G for all j, in which case ‖d‖2
2 =Θ(n3G2). In

other words, G≥Ω(‖d‖2 ·n−3/2). This, together with (5) implies the claim
of the lemma.

It immediately follows, that in N = O
(
n5 log

(n
ε

))
iterations we have

‖d‖2
2≤ε, and therefore AN is an ε−(r,c) matrix.

Proof of Theorem 4.3.
To perform the t-th iteration of RCS we have to find δ0 and then compute
the matrix At(δ0). Given δ0, the computation of At(δ0) requires O(n2) el-
ementary operations. To find δ0 we define δij for each pair of indices i,j
via |aij(δij)−aij | = G

8n which is a linear equation in δij , and δ0 = minij δij .
Consequently, this involves only O(n2 log(n)) elementary operations.

Proof of Theorem 4.4.
Let an iteration RCS act on At = (aij) and produce At+1 = (a′ij). Since
all the entries in At,At+1 are numbers between zero and one, we only have
to worry about an entry in At+1 suddenly becoming very small — thus
requiring a long representation.

This is probably the right moment to specify that the entries of At are
represented in floating point. Namely, aij is represented as (bij ,αij), where
an integer bij and 1

2<αij≤1 are uniquely determined via aij =2−bijαij .
Our first observation is, that for our purposes it suffices to remember

only the first few bits of αij . This is the contents of the following lemma.

Lemma 4.8. Truncating all but the most significant 12log
(n
ε

)
bits in every

αij changes the permanent by a multiplicative factor of at most eO(ε12/n11);

and changes ‖d‖2
2 =
∑n

j=1(c′j−cj)2 by an additive term of at most O
(
ε12

n9

)
.

Proof. The truncation affects each entry by a multiplicative factor of at
most 1+ ε12

n12 . This gives the first claim of the lemma.
Since all entries are bounded above by n, the truncation affects each

entry by an additive term of at most ε12

n11 . Therefore each c′j is changed by
at most ε12

n10 and the second claim of the lemma follows.

Corollary 4.9. The “truncated” RCS algorithm terminates in at most
O
(
n5 log

(n
ε

))
iterations.

It follows that the representation length required will be polynomial in
log(bij), log(n) and log

(
1
ε

)
. It therefore suffices to control the growth of B=
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maxij bij . Namely, to prove the proposition we have to verify that log(B)<
poly(L(A),n).

Let χ(A) be the smallest non-zero entry of A. We show:

χ(A′) > Ω

(
χ2(A)
n

)
.(6)

Consequently, after t iterations B≤O
(
2t ·(2L(A) + t log(n))

)
. Since RCS is

iterated only poly(n) times, this suffices for our purposes.
Recall, that we know exactly how the entries change:

a′il =




(1 + δ) · ailri
ri+δwi

if l ∈ L

ailri
ri+δwi

if l /∈ L
,(7)

where δ is the smallest positive real for which

|a′µν − aµν | =
G

8n
.(8)

for some indices µ and ν. It is only for l /∈L that ail decreases, so we have
to bound a′il for l /∈L from below. By lemma 4.6 there exist indices s, t for
which

|a′st − ast| =
G

4n
.(9)

We will assume that the equality in (9) is obtained for t∈L (the other case
is quite similar). It is convenient at this point to introduce the following
notation: For any pair of indices i and j and for any positive ∆, let us
denote by δij(∆) the minimal positive x such that |aij(x)−aij |=∆, if such
an x exists.

By (9) and the explicit formula (7) we conclude:

δst

(
G

4n

)
=

Grs
4nast(rs − ws) −Gws

< +∞.

In particular, the denominator ρ= 4nast(rs−ws)−Gws is strictly positive,
i.e. 4nast(rs−ws)>Gws. This implies:

δ = δµν

(
G

8n

)
≤ δst

(
G

8n

)
=

Grs
8nast(rs −ws) −Gws

≤ Grs
Gws

=
rs
ws
.

Therefore, for any 1≤ i≤n, l /∈L

a′il =
ailri

ri + δwi
≥ ail
δ · wi

ri
+ 1

≥ Ω

(
ail
δ

)
≥ Ω

(
ailws

rs

)
≥ Ω

(
ailast
rs

)
.

Since rs≤n, we obtain a′il≥Ω
(
χ2(A)
n

)
, proving (6), and we are done.
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5. Approximating the permanent

In this section we prove Theorem 1.1. Since our algorithms produce matrices
that are only approximately doubly stochastic, we need lower bounds for the
permanent of such matrices.

Proposition 5.1. Let A be a nonnegative n×n matrix in which all row
sums are 1. Let cj be the j-th column sum of A and let ε>0. If

n∑
j=1

(cj − 1)2 <
1

n1+ε
,

then

per(A) ≥ Ω


 1

e
n

(
1+n− ε

2

)

 .

In particular,
n∑

j=1

(cj − 1)2 <
1

n log n
,

implies

per(A) ≥ Ω


 1

e
n(1+ 1√

log n
)


 .

Proof. We start with a simple lemma.

Lemma 5.2. With the same notation, if

n∑
j=1

(cj − 1)2 <
1
n
,

then

per(A) > 0.

Proof. If per(A)=0, then by König–Hall:

A =
(
O B
C D

)
,(10)
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where O is an s×n−s+1 zero submatrix. Since all row sums are 1, the sum
of all entries in B is s. Since A is nonnegative, it implies

∑n
j=n−s+2 cj ≥ s.

By Cauchy–Schwartz:
n∑

j=0

(cj − 1)2 ≥
n∑

j=n−s+2

(cj − 1)2 ≥

1
s− 1

(
n∑

j=n−s+2

(cj − 1))2 ≥ 1
s− 1

>
1
n
.

We return to the proof of the proposition. We claim that A can be ex-
pressed as A=D+Z. Here D=λ∆ with ∆ doubly stochastic and λ≥0; Z is
nonnegative, and per(Z)=0. The only problem in finding such a decompo-
sition is in satisfying the requirement per(Z)=0. So, suppose that we have
such a decomposition with per(Z)>0. Then, there is a permutation π, with
miniZi,π(i) = α > 0. Let P = Pπ be the corresponding permutation matrix.
Note that D′=D+αP is also a positive multiple of a doubly stochastic ma-
trix. Let Z ′=Z−αP . Replace the representation A=D+Z by A=D′+Z ′.
After a finite number of repetitions, a decomposition A=D0+Z0 =λ∆0+Z0

with per(Z0) = 0 is obtained. If λ = 1, then Z0 = 0, the zero matrix, A is
doubly stochastic, and per(A) ≥ n!

nn , so we are done. If λ < 1, consider the
matrix B= Z0

1−λ . The row sums in B are 1 and its column sums are c′j = cj−λ
1−λ .

Clearly,
n∑

j=1

(c′j − 1)2 =
1

(1 − λ)2
·

n∑
j=1

(cj − 1)2 <
1

n1+ε(1 − λ)2
.

On the other hand, per(B) = 0, so lemma 5.2 implies 1
n1+ε(1−λ)2 >

1
n . That

is, λ>1−n− ε
2 . The proof is concluded by observing that

per(A) ≥ per(D0) ≥ λnper

(
D0

λ

)
≥ Ω(e−n1− ε

2 ) · n!
nn

≥ Ω

(
1

en(1+n− ε
2 )

)
.

Proposition 5.1 together with the estimates on the running time of the
DSS algorithm imply:

Corollary 5.3. Let A be a nonnegative n×n matrix with a positive per-
manent. Then scaling factors x1, . . . ,xn and y1, . . . ,yn may be found, such
that the matrix B=(bij)=(xiaijyj) is nearly doubly stochastic. Specifically(

1
e

)n+o(n)

≤ per(B) ≤ 1.
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The scaling factors can be found in at most O(n5 log2n) elementary opera-
tions.

Since per(B)=
∏n

i=1xi
∏n

j=1 yj per(A) the corollary implies theorem 1.1,
and we are done.

5.1. Perfect matchings

The goal of this short subsection is to emphasize the following curious and
potentially promising aspect of this work. Our new scaling algorithm may
be used to decide whether a given bipartite graph has a perfect matching.
The approach we use is conceptually different from known methods.5 More-
over, it is certainly the simplest to describe and code. We cannot resist the
temptation to present it here — it is a simple exercise to prove its correct-
ness, which otherwise might be derived from corollary 3.2 and lemma 5.2.
Note that no preprocessing is required here, since the permanent of a 0–1
matrix, if nonzero, is already known up to a multiplicative factor of nn.
A simple perfect matching algorithm
Given a 0–1 matrix A
Begin
for n2 log(n) iterations do

Normalize(columns);
Normalize(rows);
If(
∑n

j=1(cj−1)2< 1
n)

return(*Perfect Matching*);
return(*No Perfect Matchings*);
End

The maximum matching problem [25] is, of course a classical question in
the theory of algorithms. Among the more recent interesting findings is the
fact that this problem is in RNC [24,23]. It is a major challenge to find an
NC algorithm for it. While our work is very far from resolving this difficulty,
it may shed some new light, and may be useful in discovering alternative
routes to deciding the existence of perfect matchings.

The above algorithm is polynomial-time, though much inferior to stan-
dard algorithms. We note that each iteration of the present scheme can be
carried out in NC. If one can find another iterative NC-realizable scheme
that requires only polylogarithmic many iterations, this would finally put the
decision problem for perfect matchings in NC.

5 Essentially the same algorithm has been independently developed in [16].
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6. Conclusions

With respect to matrix scaling, we have hardly begun investigating the ad-
vantage in applying our new algorithms rather than existing ones. Nor have
we studied the possible extensions of our algorithm to more general scaling
and nonlinear optimization problems from this literature.

With respect to permanent approximation, it is again but a first step on
a path that advocates simple reduction of the input matrix into one that
may be easily approximated. An obvious challenge is of course to develop a
polynomial time (1+ε)-factor approximation scheme. At present even finding
a (1+ε)n-factor approximation scheme seems hard and challenging. This is
at present even elusive for 0,1 matrices with a constant number of 1’s in
every row and column.
Acknowledgement. We are grateful to Yuri Rabinovitch for opening our
eyes to the fact that what we were doing was actually matrix scaling. We
also thank Leonid Gurvits for interesting remarks.
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