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This  pape r  conta ins  two resul ts  on influence in collective decision games .  The  first par t  deals  
wi th  general  perfect  in format ion  coin-fl ipping g a m e s  as defined in [3]. Baton passing (see [8]), an  
n - p l a y e r  g a m e  f rom th is  ,class is shown  to have  the  following proper ty:  If S is a coali t ion of size 

at  mos t  n t hen  the  influence of S on the  g a m e  is only 0 ( nl~t ) This  comp lemen t s  a resul t  3 o-]-d"~ ' 
\ / 

f rom [3] t h a t  for every k there  is a coali t ion of size k wi th  influence f~(k/n). T h u s  the  best  possible 
b o u n d s  on influences of  coali t ions of size up to th is  th resho ld  are known,  and  the re  need not  be 
coali t ions up to this  size whose  influence a sympto t i ca l ly  exceeds thei r  f ract ion of  the  popula t ion .  
Th i s  resul t  m a y  be expec ted  to p lay  a role in resolving the  mos t  o u t s t a n d i n g  prob lem in this  area: 
Does every n - p l a y e r  perfect  in format ion  coin flipping g a m e  have a coali t ion of o(n) players  wi th  
influence 1 - o ( 1 ) ?  (Recent ly  Alon and  Naor  [1] gave a negat ive  answer  to th is  quest ion.)  In 
a recent  pape r  Kahn ,  Kalai  and  Linial [7] showed t ha t  for every  n - v a r i a b l e  boolean func t ion  of 

r nw(n) variables whose influence is expec ta t ion  bounded  away f rom zero and  one, there  is a set or logn 

1 - o ( 1 ) ,  where  w(n) is any  func t ion  t end ing  to infinity wi th  n. T h e y  raised the  ana logous  ques t ion  
where  1 -  o(1) is replaced by any  posi t ive cons tan t  and  specu la ted  t ha t  a cons t an t  influence m a y  
be always achievable by signif icantly smal ler  sets  of  variables.  Th i s  p rob lem is a lmos t  comple te ly  
solved in the  second par t  of  this  article where  we es tab l i sh  the  exis tence of boolean funct ions  

where  only sets  of  at  least  ft n var iables  can  have influence b o u n d e d  away f rom zero. 

1. I n t r o d u c t i o n  

This paper makes two contributions to the area of influences on collective decision 
procedures (see [3]). The most intriguing open problem in this area is whether 
in every n -p l aye r  perfect information coin-flipping game (definitions will be given 
below) there is a coalition of o(n) players whose influence on the game is 1 - o(1). 
In other words, is it true that in every such game there is a negligible minority 
which, by deviating from random behavior can almost surely dominate the game. 
Consider for integers n > k the largest number r = r  such that in every 
n -p l aye r  coin flipping game there is a coalition of k players with influence r k). 
A theorem of Ben-Or and Linial [3] asserts that r  > c~- for some constant 
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c. In light of this remark we are essentially dealing with the question: Are there 
games in which the influence of every coalition is proportional to its fraction of the 
population of players? And if such games do not exist, at which coalition size does 
a disproportionate influence necessarily show up? 

Now [3] introduced a game ("iterated majority of 3") the analysis of which 
shows that  for k=O(n a) where a = l o g 3 2 = 0 . 6 3 . . ,  indeed r In the 
present paper it is shown, that  the same holds for larger k and in fact r 

O ( n ) .  For all that  is known, this might be the largest k = 
% 

e ( k / n )  for all k = 

k(n) for which this statement holds. The proof is based on a detailed analysis of 
the so-called baton passing game (Saks [8]) whose description follows: Player P1 is 
the first to hold the baton; a player receiving the baton should pass it at random 
to a player who had not held it yet. The last player to hold the baton is to flip 
a coin and this bit is the outcome of the game. Saks showed that  influences in 
this game depend in a strong way on the relationship between the coalition size 

and l o ~ '  In particular, coalitions of size o ( ~ . )  have influence o(1), while those 
% 

of size asymptotically bigger than n have influence 1 -  o(1). In this paper the ogr~ 
n then the influence of a size k coalition analysis is refined to show that if k < 

is only O(k/n). The proof depends on a (fairly complicated) closed form formula 
for the probability of a coalition of a given size to win the game. An asymptotic 

analysis of this formula is than carried out to conclude that  no disproportionate 
n influence comes up as long as k < 3 o-l-Q-~' 

If indeed the answer to the above problem is positive, and small dominant 
coalitions always exist, this clearly resembles a result of Kahn, Kalai and Linial 
[7]. In that paper it is shown that  in simple coin flipping games, or what is the 
same, in any boolean function a small dominant coalition (set of variables) must 
exist. Specifically, for any n-var iable  boolean function whose expected value is 

bounded away from zero and one there is a set of n~(n) variables whose influence log n 
is 1-o(1) ,  where co(n) can be any function which tends to infinity with n. There is, 
however, a significant difference between the two situations, of simple and general 

In a simple game there always exists a player with influence f / ( ~ )  that 
% 

games. 
\ / 

1 fraction of the population of the players (this is is asymptotically more than its 

the main theorem of [7]). More generally for k=O , ( ~ ) '  k-coMitions exist with 
/ 

influence t2 (-kn). In other words, disproportionate influence is present already for 
N ] 

the smaller coalition size. Now if indeed r  1 -  o(1) for some k = k(n)= o(n) 
n (possibly ~ )  then for general games a disproportion between a coalition's size 

and its influence occurs only for larger cardinalities, and rather suddenly (in terms 
of k). The explanation of this phenomenon may well differ from the one which was 
discovered in simple games. 

If on the other hand, the answer to the question is negative, and perfect 
information games can be constructed with no small dominant coalitions, then it 
is reasonable to expect the baton passing game to be useful in such constructions, 
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because this game exhibits the best possible behavior of restricting influences of 
small coalitions. 

The other part  of the paper  concerns influences in simple games. Simple 
games and boolean functions are one and the same and the terminology of boolean 
functions is adopted. As mentioned already, Kahn, Kalai and Linial have shown 

for n -  variable boolean functions the existence of a set of r ~ o ~  variables with 

influence 1-o(1) .  This result is tight, except for the w term. However, they pointed 
out that  in all the examples known at that  time, much smaller sets of variables 
existed whose influence was bounded away from zero. It was even speculated that  
a constant influence may always be achievable by sets of cardinality only n c for 
some constant c <  1. This is not the case, and indeed it is shown here that  boolean 
functions exist where a constant influence can be achieved only by sets of at least 

ft ( lo-~n)  variables. Probably the best bound is closer to ~ ( l ~ g n ) b u t  the present 

proof does not yield that.  

2. P r e l i m i n a r i e s  

All background material  may be found in [3], [4], [81 and [7]. For completeness'  
sake we repeat  the fundamental  definitions. Let f be a boolean function on a set of 
variables X and let S be a subset of X.  Consider the following statistical experiment 
wherein all variables not in S are assigned a value, uniformly and independently. 
There are three possible outcomes: either the partial  assignment forces f to be zero, 
or one or it leaves f undetermined. Call the probabilities of these events qo,ql and 
q2 respectively, also let Pl be the expectation of f i.e., the probability that  f = 1 
when all variables are set at random. The influence of S on f towards one (zero) 
is defined as I}(S):=ql + q 2 - P l  (resp. I~(S):=q0+q2-  ( 1 - P l ) . )  The influence 
o r s  on f may be defined in two equivalent ways If(S):=q2 = I ~ ( S ) + I } ( S ) ,  the 
equivalence of the two definitions is easy to check. 

A perfect-information coin flipping game can be specified as follows: As before 
let X be a set of players and consider a full binary tree T whose leaves are labeled 
zero and one and whose internal nodes are labeled by names of members in X. The 
interpretation is that  the game proceeds, start ing at the root of T and the player 
whose name appears  in that  node is to flip a coin, according to the outcome of 
which the game proceed to either the left or right child of that  node in T. When a 
leaf is reached the game is over and the outcome is the label of that  leaf. What  a 
conspiring coalition can do is to supply the right-left instructions according to an 
optimal  coordinated strategy and not by flipping coins. 

Let Pl = P l  (T) be the probabili ty of reaching a "1" leaf when all steps are taken 
at random and consider the situation where coalition S plays the best s trategy to 
maximize the probabili ty of a 1 outcome in the game. Say that  by S playing this 
s t rategy the probabili ty of a 1 outcome increases to Pl + 5- This c is defined as 
/~ (S) ,  the influence of S towards 1 in the game T. A similar definition is made for 
influence towards zero and the influence of S is defined as previously by IT(S ) := 
I~ + I~(S). As remarked in [3] this class of games is broad enough to include 
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apparently more general coin flipping protocols, in the sense tha t  more general 
perfect information coin-flipping games may be simulated by this class of games. 
In the simulation the influence of any coalition will not increase by more than an 
arbitrarily small amount,  though no guarantees are made, about  the length of the 
simulation and games with a small number of rounds may have to be simulated by 
much longer games. 

3. A f o r m u l a  for  b a t o n - p a s s i n g  

The first analysis of this game appears in Saks [8]. Here are its rules: Player 
P1 receives the baton first, a player receiving the baton should pass it at random 
to a player who had not held it yet. The last player to hold the baton is to flip a 
coin and this coin flip is the outcome of the game. Consider the game when played 
by s + t players, of which s abide by the rules, while the complementary coalition 
of t, called C plays a best strategy to bring about  a desired outcome in the game. 
Thus members of C pass the baton according to some optimal  rule, rather than 
at random. It  is quite clear that  C succeeds only by having one of its members  
come out last (and announce the desired bit, rather than flip a coin). A moment ' s  
reflection shows that  the best strategy for C is to always pass the baton out to 
players not in C. Let f ( s , t )  be the probabili ty of winning for C where it is assumed 
that  the first player to hold the baton is chosen at random. In view of the optimal  
strategy for C as described above, it is easy to see that  

s t 
f ( s , t )  = ~ - ~ f ( s  - 1,t) + 7 - ~ f ( s  - 1 , t  - 1) 

with boundary conditions f ( s ,  1)=  s@l for s >_0 and f ( 0 , t ) =  1 for all t > 1. 
In order to state the results, define for n > r > 1 the following sums, the first of 

which is the harmonic series: 

1 
hT( ) := E 11 x-; 

l<xl<.. .<xr<n 

and h 0 ( n ) = l  for n>O,  for all n < r  set h r ( n ) = O .  

T h e o r e m  3.1. 

s ( i  - j ) !  

where the  s u m m a t i o n  is over r >_ i >_ j > 0 sub jec t  to t - 1 > r + i. 
In particular,  if t < s__+_t__ then f (s, t) < cs-- ~ for some absolute  constant  c. - -  3 l o g s  

Proof. Notice first that  the hr satisfy: 

(1) hr (n )  = hr ( n -  1) + l hr_  1 (n - 1). 



THE INFLUENCE OF LARGE COALITIONS 133 

To facilitate the proof, some additional definitions are required. Set g (s, t ) : =  
( s+t) f  (s,t)  and note that  g satisfies: 

g( s , t )  = g ( s -  1,t) + 
s + t - 1  
- - g ( s - l , t - 1 )  

s 

with boundary conditions g (s, 1 )=  1 for s > 0 and g (0 , t )=  1 for t_> 1. 
We will express g in the form: 

(2) g(s,t)= E Ar(s,t) hr(s), 
0< r< t - ]  

and translate the recurrence and boundary conditions for g to be stated in terms 
of the A's. We rewrite the recurrence for g in these new terms, and obtain: 

t-1 
s E ( h r ( s ) A r ( s , t ) -  hr(s - 1 ) A r ( s -  1, t)) = 

r---0 
t -2  

(s + t -  1) E hr(s- 1)At (s-  1, t -  1). 
r=O 

Replace hr (s) by hr ( s -  1) + hr-1 (s - 1) / s  and equate the coefficients of hr (s - 1) 
on either side. The conclusion is that  g can indeed be expressed as in equation 2, 
provided we can find A's satisfying: 

Ar+l (s, t)  = (s + t -  1)At  ( s -  1 , t -  1) - s (Av  (s, t)  - Ar ( s -  1,t)) 

as well as A 0 ( 0 , t ) = l  for t > l  and A 0 ( s , 1 ) = l  for s > 0 .  
We look for an expression for the A's of the form: 

(3) A r ( s ' t )  = E ( - 1 ) i a r ' i ( s  + t -  r -  i - 1 )  

where the summation is over r > i > 0 with t - 1 > r + i. 
Again, equation 3 will be justified in that  the A's can indeed be presented this 

way, provided we can find a ' s  which satisfy an appropriate  recurrence and boundary 
conditions. The recurrences for the A's translate into the following conditions the 
a ' s  need to satisfy for all 0 < r < t -  1: 

( ,2) 
i----0 i=O 

(( ) (  ) (  )) + s E ( - 1 ) ~ a r , i  s + t - r - i - 3  + s + t - r - i - 2  _ s + t - r - i - 1  . 
i=0 s - - 1  s - - 1  s 
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The sum of the last three binomial coefficients simplifies to -(~+t-~-i-3) .  
Also, in the previous sum replace (S+tsr_li-3) by (s+t-r-i-2)-(s+t-rs-i-3), After 

these steps the right hand side of equation 4 becomes 

( ) ( t _ l )  E (_ l ) i a r ,  i s + t - r - i - 2  + 
i = 0  8 

+ ( ~  + t -  J~) ~ ( - 1 ) % , ~ _ ~  s + t - ~ - i - 2 . 

i = 1  8 . 

Replace t - 1  by ( t -  r - i -  2)+ (r+i + 1) in the first sum and change the index of 
summation in the second from i to i - 1  thus obtaining 

~ - C ~ , : . . t  - ~ - ~ - 2 )  + (~ + i + 1))  - 

i = 0  ,S 

( ) _ ( ~ + t _ l ) Z ( _ l ) % , ~  ~ + ~ - ~ - i - 3  = 
8 

i = 0  T ( ) 
E ( _ t ) i C ~ r , i ( s + t _ r _ i _ 2 )  s §  § 

8 
i = 0  

~ ( - i ) % , ~ ( ~  +i  § 1) ~ + t - ~ - i - 2  
8 

i = 0  

~ ( _ l ) i ~ , i ( s + t _ l  ) s + t - r - i - 3  = 
8 

i = 0  

~(_1) i~ ,~(~  + i  + t ) ~ + t - ~ - ~ - 2  
8 

i = 0  

~ ( _ l ) i a , , i ( r + i + l  ) s + t - r - i - a  . 
8 

i = 0  

Again change the variable in the last sum to conclude the necessity of the condition: 

( 
i = 0  

r - i - 2  = -1) ( r + i + l )  s + t - r - i - 2  
8 i=0 S 

+ E ( _ l ) i a n i _ l ( r + i  ) s + t - r - i - 2  . 
8 

i = 1  

+ 

We thus arrive at the recurrence for the a's: 

(5) ar+1,~ = (r + i § I) ~r,~ + (r + i) ar,'~-1 
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for all r > i > 0. The boundary conditions are not hard to establish, viz., a0,0 = 1 
a n d  olr,_ 1 =o~r,r+ 1 =0  for all r_>0. We claim that  for all r,i there holds O~r,i=~r,i, 
where 

i 

/~r,i = (r + i)! ~ n (-1)i-J(i-j)! hj (r + j).  
j , J  

Let us verify the boundary conditions first. That ~.0,0--1 and 27r,-1 = 0 are easily 
verified. Rather than showing directly that/~r,r+l =0,  we show that/30, i =0  for all 
i _> 1 and observe that c~0,i = 0 for all i > 1 along with the recurrence (5), imply that  
O~r,i=O for all i>r>_O. To show/~01i =0  note also that hj ( j ) =  ~. and so 

i (-1)i-J K-" 
i! z . . ,  ( i  - j ) ! j !  

j=0 

which is zero if i > 1. 
The only part left is to establish equation 5 for the ~'s. That is, we need to 

show: 
i " " 

(6) (r+i+l),j~o(~il)~ff.~rhj(r+j+l)=.: 

i ( _ 1 ) i _  j . i - 1  
= (r + i +  1 ) ! ~  "~ _-- ~.t hj(r + j )+ (r + i)! E ( h.(r + J). 

. ~= j = 0 ( i - j - 1 ) !  3 

To prove this identity, divide out by (r + i)! and consider the difference between the 
first two sums, using the recurrence 1 for the h's. The result is 

2 

(r + i + 1) 
( -1 ) i - J  1 

j= l  (-i~-)-~~ " r + j +~hj-1 (r + j) 

(note that  the j = 0 term vanished) which is split into two 
i - 1  

( -1 ) i - Jh j_ l ( r+j )+  E ( -1)  i - j  1 
j= l  ( i -  j)! (i--~j --1)! r + j + 1 hi-1 (r + j) j=l 

again the j= i  term in the last sum vanished. Return now to the third sum in (6), 
which becomes after dividing by (r +i)! and a change in summation variable: 

j = l  -~---- ~'~ hj-1 ( r+ j  -- l) = 

~'~ ( - 1 ) i - j  (r ~ ( - 1 ) i - j  1 
j = l  -~---~l'hJ-1 +J ) -  j= l  -~--_~w. r + j h j  - 2 ( r + j - 1 ) "  

Which is seen to be identical with the previous expression after a change of the 
summation variable. This concludes the derivation of the closed fGrm formula. 
We now turn to the asymptotic analysis. | 
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4. A s y m p t o t i c  ana lys i s  o f  t h e  f o r m u l a  

It is not hard to show (e.g., by induction based on equation 1 that  for s > r >  
1, there holds: 

hr (s) < 3 l~ S 

- -  r !  

The analysis of the previous section now yields: 

t - 1  log r s 
g(s't)<-aZA (s't) r! 

r..~O 
Since O~r, i are nonnegative for r > i > 0 the A's may be bounded: 

r ( s + t - - ; - - i - - 1 )  ~ ( t  ~r+i+l 
i=0  i = 0  

An upper bound for the a 's  is easy to derive from either the recurrence they satisfy 
or from their closed form formula: 

ar, i < (r + i)!hi (r + i) < 3 (r + i)! l~ 
(r + i) 

- - i !  

The straightforward derivation is omitted. 
Putt ing everything together, we arrive at: 

f(s,t) ~gE (r-~i) logi(r-~i) ( t ) r+i+l r ~ log r s, 

the summation being over all r > i > 0 with t - 1 > r + i. We overestimate the sum, 
replacing (r+i) by 2 r+i, and log / (r + i) by log / s, thus concluding that  

t ( 2 t l o g s ~  r+i 
f (s , t)  <_ 9s + t ~-~ \ ~ - - ~ -  ] �9 

As long as 2tlogs is bounded away from 1, the sum clearly converges and we s+t 
�9 

get f (s, t) = 0 , as desired. | 

5. B o o l e a n  f u n c t i o n s  w i t h o u t  smal l  in f luen t i a l  coa l i t i ons  

T h e o r e m  5.1. There is a sequence of boolean functions fn on n =  1,2, . . .  variables, 
having expectation 1/2, such that for every e > O, for any large enough n, the 
influence of any set of ~ variables is 0 (e). 

Remark 5.1 The boolean function called the tribes introduced in [3] has n variables, 

its expectation is 1/2 and all individual variables have influence O (l~ and in 
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this sense it is best possible by [7]. The functions considered here are somewhat 
related to that  function. 

Remark 5.2 At first we show that functions fn as above exist, except their expec- 
tations are �89 + o(1). This construction is then modified to yield the theorem. 
Proof. Some definitions are required first: for a positive integer n let In] := {1,... ,  n}. 

If b is a positive integer, let n=nb be the smallest multiple of b with - ( 1 -  2-b)nb/b< 

log2 Writing b in the form b=log2n-21og21og2n+R and substituting it in the 
n b  " 

inequality ( 1 -  2-b)n/b<_ lOg2n it is easy to see that b=log2nb--21og21og2nb+o(1 ) 

and (1--2-b)nb/b>_ '~ (1--l~ 

Fix an integer b and let n =nb as above. Let O = @n be the set of all partitions 
of [n] into classes of size b. The collection of all sequences (T1, . . . ,T n) where all 

T i C ~) is denoted ff = 5ra. The j - th  class of partition T i is denoted Tr Also F is 

the set of all mappings from [n] to {0,1}. The collection of all (gl,... ,gn) with gi c 
F is denoted by N. 

For T C 3" and g E N let F = FT,g be the boolean function defined by 

f(xl'''"2;n) = i V i (Xk =--gi(k))" 
1<i<~ l <_j<_~/b kcT~ 

In other words F (x) = 1 iff for all 1 < i < n there is a class T~ of partit ion T i so 

that  x coincides .with the function gi on each element of Tj ~. Such a class is called 
a strike for the assignment x. For future reference, we also define 

F i ( x l , . . . , x n ) =  V i ( x k = g i ( k ) ) "  
l<j<./b keT~ 

We consider a probability space consisting of all functions FT,g with a uniform 
probability distribution. Our goal is to show, via a probabilistic argument, that 
most functions in this collection have the property that  no small sets of variables are 
influential. It is also shown that  most members in this collection have expectation 
very close to 1/2, and consequently, can be slightly modified to make the expectation 
equal 1/2 without creating small influential sets. 

Let Q be a set of variables of a given cardinality, and T a partition from O. 
For any k < b let a k = ak (Q, T) be the number of blocks in T which have k elements 
in common with Q. For fixed Q and a randomly selected T, (or vice versa, it does 
not matter),  it is easy to find the distribution of the integers ak. Skipping the 
details for the moment, Q and T are said to match if all integers ak do not exceed 
their expectation by too much. Classes of T which have a nonempty intersection 
with Q are called Q-classes, others are non-@ As usual, when we say that  almost 
all members in a set have a certain property, it means that the family of sets is 
parameterized and when the relevant parameter tends to infinity the fraction of 
members having that  property tends to 1. In the whole discussion 1/10 > c > 0 is 
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kept fixed. We always assume n to be large enough so as to make all the inequalities 
needed valid. 

The main steps of the proof are as follows: 
(i) For all choices of T,  and almost all g, the expectation of Fw,g is �89 +o(1) 

(Proposition 5.4). 
~n variables, at least (1 - o(1)) n (ii) For almost all T,  and every set Q of q--- 

partitions T i in T match Q (proposition 5.3). 
(iii) Fix an arbitrary partit ion T z E 0 ,  and gi C F. Then the influence any set 

Q of q variables can have on F i is < A (Proposition 5.1). - - n  

(iv) If, moreover, T i and Q match, then 

(Proposition 5.2). 

Proposition 5.1. For any parti t ion T i E (9, and a gi E F, the influence of any set Q 
of  q=  en variables, o n F  i is <-I 

Proof. Randomly assign values only to those variables which are in non-Q classes 
of T i. We show that  with probability > 1 - ~ such a partial assignment already 

determines that  F i = 1. T h e  number of Q-classes in T is at most q. So we have 
n - q  non-Q classes. For each fixed non-Q class from the 2 5 possible assignments 
of the variables exactly one ensures that  the class is a strike. So the probability 
that  a fixed non-Q class is a strike is 2 -b, moreover these events are independent 
for different classes. Therefore, the probability that  no non-Q class is a strike does 
not exceed: 

- -  - -  n "  

as claimed. | 

Definition 5.1 A partition T C O and a set Q q [n] are said to match if for each 1 <_ 
k < b the number of classes J in T with IQN JI >-k does not exceed 

Proposit ion 5.2. Let  parti t ion T i match  the set Q of  q variables, and let gi E F be 
arbitrary. The  influence of  Q on F i is at most  9~ 

n 

Proof. An assignment to all variables not in Q leaves F i undetermined only if the 
following two conditions hold: (i) There is no strike among non-Q classes. (ii) There 
is a Q-class where the assignment completely agrees with gi. These two events are 
independent, (i) occurs with probability < 1 /n  by Proposition 5.1, so let's consider 
(ii): 
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Let J be a fixed class of T i with [JNQI = k for some k >__ 1. Obviously the 
probability that  xs = gi (s) for all s E J - Q  equals 2 -(b-k) .  But T i matches Q, so 
p, the probability under consideration is bounded as follows: 

P <  E 4nb- lk2 (bk )  (q)kn 4n (bk) 2- (b -k )  = _ _  ~ k 2 z k, 
- b2 b 

l < k < b  

where z = ~ (For each fixed k the fact that  T i matches Q gives an upper 
n " 

bound on the number of classes J with IJ•QI = k.) Note that ~;~.k2(b)z k = 

bz( l  + z) b-2 ( l+bz ) ,  hence 

Using that  b = l o g n -  21oglogn+o(1),  2 b > (1 + o ( 1 ) ) n l  (logn) 2 and q = c n l  (logn) 2 
we get 

p ~ 8c ( 1 +  o(1)) 1 +  1 +  < 9 c ,  

as claimed. | 

In the following proposition we use Chernoff's inequality several times. The 
version of this theorem that we now state appears in [5], p. 13, (see also [6]). 

Chernoff's inequality. Let n independent trials be performed, each with proba- 
bility p of success. Assume that 0 < p <  1/2, that 0 <  c_< 1/12, and that cp(1 - p )  n>>_ 
12. Let Sn be the number of  successful trials, and let M - - p n  be the expected num- 
ber of successful trims. Then 

( ) - l / 2e - c2M/3"  P r  (Is,, - Mf >_ cM)  <_ c2M 

We will also use a second version (it is an immediate consequence of e.g. 
Corollary A. 7. in [2]). 

For all c > O, ~' > 0 if  m, i are suf~ciently large then the following holds: if we 
repeat a trial independently i times and the expected number of successes is m and 

S is the actual number of successes then P r ( [ S - m [ > m ' / 2 + E )  <e'. 

Proposition 5.3. Almost  every T E J has the property that every set Q of q variables 
matches at least ( 1 -  o(1))n partitions in T.  

Proof. Let 1 < k < b and j <_ n/b be fixed. First we estimate the probability of 
[T~ n Q[ > k. We may think of the partit ion T i as given and the set Q (with q 
elements) being selected at random. Then 

P r  I T ~ n Q [ > k  < q q - 1  q - k §  < 
- - n n - l " " n - k + l  - n " 
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So the expected number of classes with at least k elements in common with Q is 

at most Ek = ~ (~) (ns k. The probability that tile actual number is at least 4k 2 

times the expectation does not exceed (1/4k2). This is true for every k; for small 
numbers k we will need a bet ter  upper bound. 

Assume that 1 < k < 1/5 where 5 > 0 is a small constant. We will denote by 
Yj the event ITj n QI > k (with k fixed as above.) Whether  or not Q and T i match 

depends on the question if more than 4k2Ek of the events ~. hold. We want to use 

Chernoff's inequality to prove that Q and T i match with high probability, that  is 
the probability that Yj hold for too many numbers j is small. Unfortunately the 
events Yj are not independent since the set Q is randomized with the condition 
tQI = q- (If x c Q would be randomized independently for each x with a probability 
n/q then the events Yj would be independent.) 

To circumvent this problem we will do the following; we randomize Q in two 
steps, first we take a truly pointwise random set Q~ where each elements will belong 
to Q / w i t h  a probability of q/n independently, then change QJ. Suppose that Q/ 
has q + r elements. (The second version of Chernoff's inequality implies that  with 

5a 
a probability of higher than 1 - 7 we have Irl <_ n2/3). If r is positive we discard 
r random element from Q if r is negative we add r random elements to Q. The 
point is that  in both cases we changed Qr in at most n 2/3 classes Tj. Let YS be the 

analogue of Yj defined by using Q~ instead of Q. To use Chernoff inequality for the 
trials I~ ~ we need a lower bound on the expected number of successful trials. 

we give a lower bound for Pr(ITiNQ'I>k~ for an arbirary fixed j.  First 
\ J  / 

For each fixed j we have 

WC_Tj,LWI:k 

n - b  

)  oon For a fixed W ocurring in the sum Pr NQ'= W = (q) 

( be _> (q/2n) k > 21o-~gn Since the number of possible sets W is (b) > 

e k we havethat P r ( [ r j n Q ' l > k ) > ( ~  ) > �89 if n issufficiently large. 

This implies that  the expected number M'  of classes with 

is greater than 2n 2/3. Therefore Chernoff's inequality implies that  the probability 
that  the numnber of successes for Yj is more than twice its expected value is smaller 

than g3/2. 
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This together with the bounds Pr(Jrl>n 2/a) <5 3/2, M'> 2n 2/3 and the fact 

that Ek is an upper bound for the number of successes for Yj~, imply that P r ( fo r  

more than 4k2Ek indices j the event Yj holds) <_ 53. That  is in the range 1 <_ 
k _< 1/5 for each fixed k the probability that  the number of classes with at least k 
common elements with Q is at least @2 times the expectation is at most 5 a. Using 
our previous estimate for an arbitrary k we get that  the probability that this does 

1 3 1 Eb>l/g 1/k2 > 1 -5 /2 .  Thus, not occur for any 1 < k < b is at least -Y'~k<l/~ 5 - ~ 

for any fixed i the probability that  T i does not match Q is at most 5/2. Since the 
different partitions T i are independent, Chernoff's inequality implies that 

Pr (l{il Tidoes not matchQ} I > 5n) < 2 -~2n/2. 

This inequality holds for every fixed Q. Since the number of possible sets Q is (q) = 

( ~nz~__~ ), the probability that  there is a Q matching fewer than ( 1 -  5)n partitions 
log z n 

in T is < 2--52n/2(na). Select 5 to be 

This choice guarantees that  
l o g  n 

infinity and the proposition follows. 

o(1), but also asymptotically bigger than 

this expression tend to zero as n tends to 
| 

Assume now that T C ff is such that  every set v ~ -  ~ variables matches all 

but o(n) of the T i. Consider a function F = FT,g, and let us estimate the influence 
of a set Q of q variables on F.  ~[he fact that  an assignment to some of the variables 
leaves the function h undetermined is denoted by the shorthand h = *. Consider a 
random assignment to variables not in Q. If all F i are determined by this partial 
assignment, then F is determined and Q does not influence its value. Therefore, 

i 

Break this sum in.to two parts according, to whether T i matches Q or not. There 
are only o(n) indices i for which Q and T z do not match. Each of the corresponding 
terms is at most 1, by Proposition 5.1, for a total of o(1). Those terms where T i 

9e and Q do match are, of course, no more than n in number, each _< n "  The whole 
sum, thus, does not exceed < 10s, as claimed. 

Proposition 5.4. For all sequences (TI , . . . ,T '~)  in Jn and almost all (g] , . . .  ,gn) E 
the expectation of F=FT,g is �89 +o(1).  

Proof. The partitions ( T 1 , . . . , T  n) will be fixed once and for all. The function F =  
FT,g under consideration, is thus uniquely defined by the choice of functions g. We 
first reduce the problem to the proof of the following statement. 

Claim 5.1. Let the functions g be selected at random, thus defining F. Consider 
randomly chosen inputs, x and y for F. The probability for these selections to 
satisfy F ( x ) = F ( y )  is �89 +o(1).  

That  the claim proves our proposition is shown as follows: For a boolean 
f and two randomly selected inputs Zl,Z2, it is easily verified that  P r ( f ( z l )  = 
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f ( z2 ) )  = -12 + 2  ( E ( f ) -  1 2 ~) , where E(f )  s tands  for f ' s  expecta t ion.  Therefore  the 
1 2 probabil i tyconsideredintheclaimequals�89247 ) ,  where the  internal  

expec ta t ion  refers to r a n d o m  selection of inputs  to F ,  while the  external  one refers 

to 'the r andom selection of F ,  via a choice of g. If  indeed E ( ( E  ( F ) -  1 )2)  = o(1), 

as s ta ted  in the claim, then  for a lmost  all choices of g it holds t ha t  IE(F) - 1 7[ = 
o(1), as the proposi t ion says. 

I t  is easily verified tha t  the  claim follows if we can show Pr(F(y) = l lF (x  ) = r )  = 
�89 +o(1) ,  for any T E {0, !}, wi th  F, x ,y  r andomly  chosen, as in the  proposi t ion.  Ac- 
tually, we 'd  like to pass to a more  restr ict ive conditioning. Firs t  observe t h a t  the 
m app ing  which replaces y by y@x, each gi by giGx, and x itself by 0 (where ~) 
s tands  for rood 2 sum) i's an i somorphism of our probabi l i ty  space. Therefore  no 
general i ty is lost if we assume x = 0. Let  S i be the ( random) set of classes in T i 
which x = 0 strikes. Not  only would we like to condit ion on F ( 0 ) =  T, bu t  on a 
much more  detai led condition, viz., the collection of all S i (n>_i> 1). (Clearly, the 
list of all S i, determines  F (0 ) . )  We 'd  like to main ta in  tha t  despite  the condit ion- 

ing, it still holds t ha t  for each i the  probabi l i ty  for F i (y) = 1 is close to ] - l~ 
and tha t  these equalities for varying i are independent .  Of  course, nei ther  claim is 
correct as it s tands.  However,  we notice, t ha t  with the  except ion of a cer ta in  rare 
event the previous s t a t emen t s  are a lmost  correct.  We s ta r t  by considering this rare 
event U in fl, the space defined by r andom choice of y and gi for i =  1 , . . . , n .  

Defini t ion 5.2 A class J E T i is a zero class if gi is identically zero on it. I t ' s  a y 
class if y res t r ic ted to it is all zeros. If  T i has a class which is b o t h  a zero and a 
y-class, we say tha t  i is exceptional. 

Consider  the following three  events in ~:  
(P1) No T i has more  t han  p =  101og2n y-classes. 
(P2) No T i has more  t han  p zero classes. 
(P3) There  are __< p except ional  indices. 
Let  U=~P1U-~P2U~P3. First  we prove tha t  Pr(U)=o(.1). Since Pr(U)<_ 

Pr (-~P1) -t- Pr (-~P2) + Pr (-~P3) it is enough to prove t ha t  all of the three  events 
separa te ly  has a probabi l i ty  of o(1). 

Let  Z ( J )  be the  event t ha t  J is a zero class and Y ( J )  is the  event t ha t  J is 
a y class. For any fixed class J we have Pr (Z (J))< 2 -b~  2s/q and Pr (Y (J))< 
2 -b <_ 2r Inside a fixed T i all of the  events Z ( J ) , Y  ( J )  where J is a class are 
mutua l ly  independent .  Using these remarks  we get: 

Pr(~P1)  < ~ <__ n ~ ~..q < 2n < o(1). 
i=1  k~p k?>p 

The  same calculat ion shows tha t  Pr (~P2)  = o(1). The  probabi l i ty  t ha t  a fixed 

class is bo th  a zero class and a y class is at  most  therefore the probabi l i ty  

(~)2 4(logn)2e 
t ha t  a fixed index i is except ional  is at  most  q < 4~2 < For different 

- -  7 - -  f t  " 

indices i the events t ha t  T i are except ional  are independent  therefore Chernoff ' s  
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inequality implies that  the probabili ty that  the number  of such indices is more than 
p (more than twice their expected number) is o(1). 

Let E be the set of all sequences y, S 1, S~, . . . ,  S n, where y is an input to F and 
for each i = 1 , . . . , n ,  S i is a set of classes in T ~ so that:  (i) y satisfies condition (P1), 
(ii) all S i have cardinality < p (this corresponds to (P2)), (iii) for no more than p 
indices i does T i have a y-class which belongs to S i (for P3). 

For each ~E E let U~ ~- "for each i =  1 , . . . ,n  the set of zero-classes of T i is s i ."  
The events U, Ua, ~r E E clearly parti t ion our probabili ty space 9.  More- 

over, F (0 )  is fixed on each U~ and therefore our task reduces to showing that  
P r ( F ( y ) = l )  = �89 +o(1 )  on each Ua. The only randomization left unspecified is 
that  of gi i = 1 , . . . ,n  subject to the conditions given in Ua. Since each condition 
"the set of zero-classes of T ~ is S i'' restricts only the choice of gi the events q)i - 
"y has a strike in T i'' for i =  1 , . . . ,n  are independent within each U~. We turn to 
estimate the probabili ty of ~i: 

Condition Ua implies that  gi must be identically zero on J iff J E  S i. That  is, 
gi is already determined on each J E S i. On T i classes, not in S i there are 2 b -  1 
possibilities (all choices but  for the all zero function) for gi among which to select 
with uniform distribution. 

If i is exceptional, a property which y and the set S i already determine, then 
clearly P r  (Oi) = 1. 

If i is not exceptional then no J E S i is a strike for y. Therefore ~i  may hold 
only if some T * class J ~ S i, is a strike for y. The probabili ty of this event is 

( i )~ -{s~' 
1 -  1 -  5~-S- f . Since IS i] _<fl, for all nonexceptional i we have 

- > P r ( q ~ i )  > 1 -  1 - 1 - 1 2b 1 -- -- 2 b 1 

Using the independence of the events Oi and the fact that  the number of 
exceptional numbers i is at most p we have 

(( (( 1 -  1 2 b -  1 >_ P r  (~i g2i) > 1 -  1 2 b - 1  " 

As we noted earlier, our choice of n implies ( 1 - - 2 - b ) n / b =  1-1~-2-(1+o(1)), 

therefore 

P r  (?i ~ i )  = -~ + O - -  

as claimed. | 

We complete the proof, supplying functions with similar bounds on influences, 
whose expectation equals 1/2. To simplify mat ters  we speak of functions with 2n, 
rather  than n variables. The first n bits are called x and the last ones y. Consider a 

function F,  as above, defined on x, whose expectation equals l l k 6 = l + o  ( ~ )  
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n and where any coalition of size C lo -~  has influence O (c). We need another function 

F ~ defined on y with the following properties: The expectation of F ~ is I - p ,  where 
# =  o(1) and (~ = o (It) and also, that  all coalitions of size CloWn have influence O (c). 

(We prove the existence of such an F f at the end of the proof.) We also need a 
function h on 2n variables, whose only relevant property is its expectation as we 
soon explain. Our function gr (x,y) is defined as follows: 

(5, y) = F' (v) r v (v) h (x, 

and its expectation, 

E(q~) = ( 1 -  p) (~ + 5) + #E (hlF' (y) = O) . 

This number ranges between ( l - p ) ( 1  +5)  and ( l - p ) ( 1  +5)  + p, depending on 

the choice of h. This interval includes our desired value of 1 iff # >_ I+--J]N" Since 

this condition is assumed to hold, there is a choice of h for which E ( ~ ) =  1 
To estimate influences on ~,  note that  a coalition Q which consists of subsets 

Qt,Q2 of x,y, respectively, can have influence at most p+IF(Q1)+IF,(Q2) .  
Therefore, if _ n ] Q ] -  c~o--~- ~, then I~  ( Q ) = O ( c )  as claimed. 

We show that  there exists a function F ~ with the necessary properties. Let P 
be a subset of [n] and define 

F p ( X l ' ' ' " g g n )  = i V i (Xk =g/(]r 
ieP lr kc~* 

Using the same argument as earlier we get that  if Q is any coalition we get 

-lrp (Q) _< ~ ~rF~ (Q).  

i c P  

If [QI < en then according to Proposition 5.1 IF~ (Q)< 1/n for all 1 < i < n  and 

therefore IFp (Q) <_ ]Pl/n. So if we define F ~ = Fp  for any P with ]P1 = o(n) then 
F / meets the requirements concerning I F, (Q). 

We give a lower bound on E(Fp). E(Fp) = E ( 1 - m a x i ~ p ( 1 - F i ) )  >_ 
E ( 1 - E i e p ( 1 - F i ) )  = 1 - E E ( 1 - F  i) > 1-c '[P[/n where c' is an absolute 
constant. 

We give an upper bound on E (Fp) only for certain subsets P.  Let P1 . . . .  , Pk 
be a parti t ion of In] into subsets of size roughly n/k, (say ~ _< IPsI -< ~) .  1/4 <_ 

Therefore there is a P '  = Pjo with E (Fp,) < 1 - 4-~" So if we pick k so that  

is sufficiently small with respect to �88 and -~ = o(1) then all of the requirements are 
met: with F l = Fp,. | 
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