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Seymour (Quart. J. Math. Oxford 25 (1974), 303-312) proved that a minimal non 
2-colorable hypergraph on n vertices has at least n edges. A related fact is that a 
minimal unsatistiable CNF formula in n variables has at least n + 1 clauses (an 
unpublished result of M. Tarsi.) The link between the two results is shown; both are 
given infinite versions and proved using transversal theory (Seymour’s original 
proof used linear algebra). For the proof of the tirst fact we give a strengthening of 
Konig’s duality theorem, both in the finite and infinite cases. The structure of 
minimal unsatisfiable CNF formulas in n variables containing precisely n + I 
clauses is characterised, and this characterization is given a geometric inter- 
pretation. @? 1986 Academic Press. Inc. 

I. PRELIMINARIES 

A bipartite graph r= ( U, K) with bipartition U = X u Y will be denoted 
by r= (X, Y. K). If Fs K, aE U and AS U we write F(a) = 
(uEU: {a,u)EF), F( a is the single element of F(a) if IF(a) I = 1 and ) 
F[A] = iJ{F(a): a E A). A matching in r is a subset F of F such that 
IF(u)/ d 1 for every UE U. If F is a matching, A=F[X] E WE Y and 
B = F[ Y] E 2 c X, we say that F is a matching from A into Z and that it is 
a matching from B into W. If A G U and F[ U] = A for some matching F 
then A is said to be matchable. 

If A E X then a l-transversal of A is a subset T of K such that T[ Y] = A, 
(T(a) I = 2 for every a E A, and 1 T[C] 1 > 1 Cl + 1 for every non-empty 
subset C of A. (T can be viewed as a function from A into [Y]‘, the set of 

196 
0097-3165/86 $3.00 
Copyright 0 1986 by Academic Press, Inc. 

All rights of reproduction m any form reser&d. 



HYPERGRAPHS AND UNSATISFIABLEFORMULAS 197 

subsets of Y of size 2, whose image is a forest, i.e., a circuitless graph.) 
Lovasz characterized those bipartite graphs in which one side has a 
l-transversal, as follows: 

THEOREM L [4]. The side X in a finite bipartite graph f = (X, Y, K) has 
a l-transversal if and only if for every non-empty subset C of X there holds: 
lK[C-Jl > ICI + 1. 

It is easily seen (directly, or using Theorem L and Hall’s theorem) that if 
a subset A of X has a l-transversal then it is matchable. 

A subset C of X is called critical if it is matchable, but for every matching 
F from C into Y there holds F[C] = K[C]. 

In [2] an extension of Theorem L was given for infinite bipartite graphs, 
and from it there was derived: 

THEOREM AK [2, Corollary lb]. The side X in a bipartite graph 
Z= (X, Y, K) has a l-transversal if and only if 

(a) X is matchable and 

(b) X contains no nonempty critical set, 

A cover in a graph G = (I’, E) is a set of vertices such that every edge is 
incident with at least one of them. 

A hypergraph H = (V, E) is said to be 2-colorable if there exists a 2- 
coloring of V such that every edge contains vertices of both colors. It is 
minimal non-2-colorable if it is non-Zcolorable but deleting any edge from 
E results in a 2-colorable hypergraph. With any hypergraph H = (V, E) we 
associate a bipartite graph rH = (E, P’, K), where {e, v} E K iff v E e. 

A formula F in the variables x, is said to be in conjunctive normal form 
(CNF) if F=A{ c,: FEZ}, where ci=V{x,: BEAM} v V{Xp: ~?EB~} for 
each i E I. The ci)s are the clauses. A i n Bi # 0 is possible. F is satisfiable if 
there is an assignment of truth values so that all the clauses ci have value 1. 
The variables xII, c( E Ai are said to appear positively in c;, and xB, fl E Bi 
appear negatively in ci. The variables of both types are said to appear in ci. 
We denote the set of variables of F by V, and its set of clauses { ci: i E I} by 
CE.. We associate with F a bipartite graph I-,= (C,, V,, K,), where 
{c, x} E K, if x appears in c. 

A CNF formula F is said to be minimal unsatisfiable if it is unsatisfiable, 
but /\C’ is satisfiable for every proper subset C’ of C,. It is said to be 
strongly minimal unsatisfiable if it is minimal unsatisfiable and for any 
clause c E C, and variable x not appearing in c, adding x or (adding X) to c 
makes F satisfiable. 
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II. A STRONG VERSION OF K~NIG'S THEOREM 

Konig’s theorem states that in any finite bipartite graph the minimal car- 
dinality of a cover equals the maximal cardinality of a matching. This is 
easily seen to be equivalent to a version which was proved in [I] to hold 
also for infinite graphs: 

THEOREM K. In any bipartite graph r= (X, Y, K) there exists a cover 
C = A u B, where A c X and B E Y, such that A is matchable into Y\B and 
B is matchable into X\A. 

So it turns out that if we give up the symmetry between X and Y the 
theorem can be strengthened to 

THEOREM 1. In any bipartite graph r= (X, Y, K) there exists a cover 
C = A LJ B, where A G X, BE Y, such that B has a matching into XjA and A 
has a l-transversal into YjB. 

ProojI For every subset Z of Y define D,(Z)= D(Z) = 
{x E X: K(x) c Z}. Let @) be the set of subsets Z of Y having a matching 
into D(Z). Suppose that (Zi, i < K), is an ascending continuous chain of 
sets in @, and let Mj be the matching of Zj into D(Zi). Then, for each i, 
there holds Mi+ ,[Zi+ ,\Z,] n M,[Z,] = 0. Hence Z= MO u UicK Mi+ I r 
(Z;, ,\Zi) is a matching, which matches Uic K Z, into D( U ic li Z,), and 
thus Ui<, Zie 0. By Zorn’s lemma it follows that @ has a maximal 
element B. 

It suffices to show that there exists a l-transversal from A = X”@(B) into 
Y\B, since A u B is, by the definition of D(B), a cover. Suppose that no 
such l-transversal exists. Let r’ = (A, Y\B, K’) be the subgraph of r span- 
ned by A u ( YjB). It suffices to show that in r’ there is a nonempty subset 
Z of Y\B which is matchable into D,(Z). For, then Bu Z is matchable 
in r into D,(B) u D,-(Z) = D,(B u Z), contradicting the maximality of 
Bin @ 

For completeness, let us discuss separately the case that r’ is finite 
(although this case is covered also by the argument in the general case.) 
Since A does not have a l-transversal in r’, by Theorem L there exists a 
nonempty subset C of A such that lel[C] I< 1 Cl. Take such a C with 
minimal cardinality. Then, clearly, IR’[ C] 1 = 1 Cl, and IR’[S] I > I S( for 
every non-empty subset S of C. By Hall’s theorem it follows that C has a 
matching Z into Y\B. Since 1 B’[ C] I = I Cl there holds K’[ C] = Z[ C], hence 
C E Dr(Z[C]), and thus taking Z = Z[C] proves the required assertion. 

Consider now the general case, i.e., when r is possibly infinite. By 
Theorem AK either A is not matchable or it contains a nonempty critical 
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set C. In the first case the existence of the set Z with the required properties 
is given by Theorem K. In the second case Z = K[ C] satisfies the required 
conditions. 

III. MINIMAL NON-~-COLORABLE HYPERGRAPHS AND 
MINIMAL UNSATISFIABLE CNF FORMULAS 

Seymour [6] proved that if a hypergraph H = (V, E) is minimal non-2- 
colorable and I/= lJE then (El > 1 VI. His proof used linear algebra. We 
present here an infinite version of this theorem, as well as a new proof. 

THEOREM 2. Let H = (V, E) be a hypergraph such that V= UE. Zf it is 
minimal non-Zcolorable then there exists a matching in rH from V into E. 

ProoJ Apply Theorem 1 to ZH and let A E E and B c V be as in the 
theorem. It suffices to show that B= V. Suppose it is not the case. Since 
A u B is a cover and IJE = V, there must hold A # 0. The set A of edges 
has a l-transversal in V\B, and as remarked above this l-transversal can 
be viewed as a forest. Since a forest is 2-colorable, it follows that the ver- 
tices of v\B can be 2-colored so that no edge in A is monochromatic. Since 
A\B is a cover all edges in E\A are contained in B, and by the minimality 
of H and the fact that VB $ V it follows that the elements of B can be 2- 
colored so that no edge in E\A is monochromatic. Thus H is 2-colorable, a 
contradiction. 

The following is an extension of the theorem to the infinite case: 

THEOREM 3. Let F be a (possibly infinite) CNF formula. 

(a) Zf there exists a matching in rF from C, into V, then F is 
satisfiable. 

(b) Zf F is minimal unsatisfiable then there exists a matching from V, 
into C,. 

Proof. (a) Suppose that there exists a matching Z from CF into V,. 
Then one can assign a truth value to each variable Z(c) so as to make c 
true. Since Z(c,)#Z(c,) for c1 fc,, this can be done for each clause c 
independently and then F is satisfied. 

(b) Apply Theorem K to ZF, and let A s C, and B s V, as there. 
The proof will be complete if we show that B= V,. Suppose that B# V,. 
Let G = A(C,\A). Since A v B is a cover, V, = B # V, and thus G # F, i.e., 
A # 0. By the minimality of F there exists an assignment of truth values to 
the variables in B which satisfies G. Let Z be a matching of A into V,\B. 
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For each c E A assign a truth value to Z(c) which makes c true. This satisfies 
the entire formula F. 

A result closely related to Seymour’s is due to Tarsi. He proved [7] that 
if F is a finite minimal unsatisfiable CNF formula then JC,I 3 1 V,I + 1. 
Clearly, the above theorem implies Tarsi’s result. 

This result can, in fact, be derived from Seymour’s theorem, in the 
following way. Let H = (I’, E) be a hypergraph defined as follows. Let 
V= {x: XE V,} u {X: XE VF} u {f}, where f is a new symbol. For each 
clause c in C, let e(c) be the set containingf and every variable appearing 
in c, taken with its sign (thus, for example, if c = x, v X, then 
e(c)={f,x,,x,}). Define E={~(~):~EC~}U{{X,X}:XEV~}. Then Fis 
satisfiable if and only if H is 2-colorable. To see this, assume that H is 2- 
colorable, and let V be properly colored red and blue. Suppose, for exam- 
ple, that f is colored red. Since {x, X} E E, precisely one of x, X is colored 
blue for each XE V,. Assign x a true value if x is colored blue, and false 
otherwise. Then, since each clause contains a blue vertex, each clause is 
satisfied. In the other direction, if there is a truth assignment satisfying F, 
coloring each vertex x blue if it is true and red if false, and coloring X in the 
opposite color, properly colors H, It is also easy to see that if F is minimal 
unsatisfiable then H is minimal non 2-colorable. Therefore, by Seymour’s 
result, /El = IC,( + I V,( 3 I VJ = 2 ) V,I + 1, hence IC,j > 1 V,j + 1. (The 
above transformation is taken from [4].) 

We also give a linear algebraic proof, analogous to Seymour’s proof. 
Let M be the matrix indexed by VFx CF, where mxr = 1, - 1 or 0 

according to whether xi appears positively, negatively, or not at all in c. 
Part (b) will clearly follow if we prove that the rows of M are linearly 
independent. Suppose that they are dependent, and let C,, ,,F cr,M, be a 
nontrivial zero linear combination of the rows M, of A4. Let 
I, = {x: ~1, > 0), I, = {x: a, < 0) and I, = (x: ~1, = O}. By the minimality of 
F the formula G A D,(Z,) is satisfiable, so choose truth values for the 
variables in I, so as to satisfy it. Put x = true for every x E Z, and x = false 
for x E Z2. If c +! D,(Z,) then at least one term in the sum C am,,. is positive, 
since this sum is zero, and not all of its terms are zero. But by the definition 
of mxr this means that the above assignment satisfies F, a contradiction. 

IV. THE STRUCTURE OF STRONGLY MINIMAL UNSATISFIABLE CNF 
FORMULAS F WITH IV',1 + 1 CLAUSES 

We have seen that a minimal unsatisfiable CNF formula with n variables 
has at least n + 1 clauses. It is natural to ask what possible structure such a 
formula may have if it has exactly n + 1 clauses. In this section we solve a 
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special case of this problem by giving a complete description of such for- 
mulas which are “strongly minimal.” We show that, if F is a strongly 
minimal formula with n variables and n + 1 clauses, then there is a variable 
x which appears in each clause of F so that we may write F= F, A F,, 
where x appears positively in each clause of F, and negatively in each 
clause of F,. We show further that the formula F: (i = 1,2) obtained by 
deleting x from Fi, is of the same kind (or is empty) and so has a variable 
common to all its clauses. Continuing we see that the formula F has the 
structure of a tree on n nodes whose leaves are formulas of the form y A j. 
Conversely, every formula that can be obtained in this manner is strongly 
minimal and has n + 1 clauses. 

Let us introduce the following notation: if x E V/F we write C,, C.:, C, , 
and CO, for the sets of clauses which contain x, contain x positively, contain 
x negatively, and which do not contain x at all. We write 0: for the set of 
clauses obtained from clauses in C: by deleting x from them. A similar 
definition holds for 0.;. Note that here we allow empty clauses. Let 
Fz = /J(D: u C”,) and F.; = /j(D, u C”,). Also write V,+ = V,; and 
v, = v - F, . 

THEOREM 4. Let F be a strongly minimal unsatisfiable finite CNF for- 
mula such that IC,] = ) V,) + 1. Then there exists a variable x such that 

(a) x appears in all clauses of F, 

(b) V: n V, = 0, and 

(~1 F.: and F.; are strongly minimal unsatisfiable and 
Ic.:l=lv,+l+l, IC,l=lV.;l+l. 

Proof. The formula Fz is unsatisfiable for any z E VF, since otherwise 
adding z = false to the assignment of truth values which satisfies it would 
satisfy F. It is also minimal unsatisfiable. For, suppose that deleting a 
clause c from it results in an unsatisfiable formula. If c E 0: then deleting 
c v z from F yields an unsatisfiable formula, contradicting the minimality 
of F. If c E Ci then replacing c by c v Z in F gives an unsatisfiable formula, 
contradicting the strong minimality of F. Similarly F; is minimal 
unsatisfiable. 

Define a relation < on VF by: y < x if C.” c C,t or C,, E C; . Clearly < is 
transitive. It is also anti-reflexive, since x < x means that either x appears 
only positively in F or it appears only negatively. But then by the 
minimality of F, the formula CO, is satisfiable, and then setting x = true if 
C’; = 0 (x = false if C: = 0) shows that F is satisfiable. Thus < is a par- 
tial order. Let z be a minimal element in this order. Suppose 
x E v,\{z}\v’. Then C, E C; and we contradict the minimality 
of z. Thus V: = V,\ (z}, and similarly V; = V,\ (z}. By Theorem 2 it 
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follows that (C,c(=lC~l+lC,+I~IV,+I+l=IV,(, and similarly 
IC~I+IC;I~lV,(. Since (C,(=IC~J+IC,+I+(C,I=IV,I+l this 
implies that IC,’ I = (C; ) - 1 (we have already shown that C,+ = (zr or 
C; = 125 is impossible). 

Let c, be the single clause in which z appears positively and let c2 be the 
clause in which z appears negatively. Let d,, d2 be such that c, = d, v z, 
c2 = d2 v 5. We show that dl = d2. Suppose it is not the case. Then some 
variable y appears (say) positively in (say) d, and does not appears 
positively in c2. Replace d, in F by d2 v y (if y apears negatively in dz this 
is equivalent to deleting d2.) Since F is strongly minimal unsatisfiable there 
exists an assignment of truth values which satisfies the resulting formula. 
Clearly in this assignment y = true and z = true, or else F itself would be 
satisfiable. But then changing the value of z to “false” would satisfy all 
clauses in F, a contradiction. We have thus shown that Fz+ = Fz- 

We now show that Ft is strongly minimal unsatisfiable. Suppose that 
the formula H obtained by replacing some clause g in FT by g v u is not 
satisfiable. If g= d, then replacing c1 by c1 v u in F does not give a 
satisfiable formula: an assignment of truth values satisfying the resulting 
formula must have v = true, and then all clauses in H are satisfied. If g E Cg 
then replacing g by g v u in F does not give a satisfiable formulai for, if an 
assignment of truth values satisfies the resulting formula then, since both c, 
and c2 are satisfied, some variable other than z causes one of them to be 
satisfied, hence all clauses of Theorem 4 may be satisfied. 

Since the number of variables in Fz is one less than in Fit follows by an 
induction hypothesis that the theorem holds for F.+ (note that when 
) V,( = 1 the theorem holds trivially). Thus there exists a variable x 
appearing in all clauses of F;’ , and since F_+ = F; it appears in all clauses 
of F, which proves (a). As before, F,’ and F; are both minimal 
unsatisfiable, and hence I C,: ) = I C: ( 2 ) V,’ I + 1 and similarly I C; I 3 
) V,- ) + 1. Writing 

I VA+ 1 = ICFI = IC,’ I+ IC, 13 IV,+ ( + 1 + IC, I+ 1 

~(I~,+l+Iv,-I-Iv,+nv,-1)+2=lV,I+l 

we deduce that equalities hold throughout, and thus V’; n V; = 0, 
proving (b). Also, IC,’ I = I V,’ I + 1 and (C; ) = I F’; ( + 1, proving (c). 

Part (c) means that F,’ and F; satisfy the same conditions as F, and 
hence the theorem can be applied to each of them, and recursively we 
descend until we reach formulas with one variable, which are of the form 
y A jj. The theorem gives a prescription how to construct formulas fulfilling 
its conditions: take a variable x, split the rest of the variables into two 
disjoint sets, those variables appearing with x and those appearing with X, 
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in each set choose one “splitting” variable, and so on. A corollary of this 
observation is: 

COROLLARY 4a. Zf F is as in Theorem 4 then for each pair of clauses 
there exists a variable appearing positively in one and negatively in the other. 

The results of this section have a geometric interpretation. Let F be an 
unsatisfiable CNF formula in n variables. Let K be the cube - 1 d xi d 1, 
i = l,..., n in R”. With every clause c of the form c = V{x, : c1 E A } v 
V{Xs: j? E B} we associate a box B, contained in K, defined as 

B, = {(x, ,..., x,)EK:x,>O for a~A,x~dO for /IEB}. 

Let A,= {B,:cEC~}. The “cell” ((x1 ,..., x,)EK:(-l)k’~i>O, i=l,..., n 
and ki= 0 or ki = 1 for each i} is contained in B,. if and only if the 
assignment xi = true if ki = 1, xi = false if ki = 0 does not satisfy c. Thus F is 
unsatisfiable if and only A, forms a cover of K. Minimal unsatisfiability of 
F corresponds to A, being a minimal cover (i.e., no box can be deleted 
from it while keeping it a cover). Strong minimality of F means that 
whenever a box in A, is halved by a hyperplane xi= 0 and one half is 
deleted A, ceases to be a cover. Finally, V,= {x, ,..., x, > means that every 
hyperplane x, = 0 has a box supported by it. Theorem 4(a) says then that a 
cover A of K by n + 1 boxes satisfying the above conditions has a hyper- 
plane supporting all boxes. Corollary 4a says that such a cover is, in fact, a 
decomposition (i.e., no two boxes overlap). Parts (b) and (c) of Theorem 4 
can be used to construct effectively all such covers, inductively. 

We believe, but are unable to prove, that Theorem 4 holds also for 
infinite formulas. The condition 1 C, 1 = ( V,I + 1 should be replaced by 
“there exists a matching from V, into C, in rF, covering all elements of C, 
but one.” Part (c) of the theorem should be changed in a similar manner. 

Another problem related to Theorem 4 is that of characterizing the finite 
minimal non-Zcolorable hypergraphs H = ( V, E) for which 1 VI = 1 El. Here 
too, in order to hope for a reasonable answer we have to assume strong 
minimality, which means that adding any new vertex to any edge makes H 
2-colorable. But even in this case there are quite complicated examples. For 
example, the Fano plane has the above properties. Woodall describes in 
[6] a family of such hypergraphs. 

Note added in proof: In his Ph.D. thesis Kassem [3] investigated questions closely related 
to the subject of this chapter. He considered decompositions of the cube in R” denoted here by 
K into cells, which satisfy a condition he named “being neighborly.” This means that the inter- 
section of every two cells has dimension n - 1. He obtained several characterizations for such 
decompositions. 
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