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Abstract

In many areas of science and mathematics we are interested in modeling large systems
that are defined through pairwise interactions. The most natural object to model such
interactions is a graph, which is just a collection of pairs. A permutation is equivalent
to a perfect matching in a bipartite graph, so it also encodes information about pairs.
Even such ubiquitous objects as matrices fall into this framework, because a matrix is a
mapping from pairs of indices to some set.

However, in many cases the interesting interactions involve more than two entities,
and there is still not enough theoretical machinery to deal with this difficulty. High
dimensional combinatorics involves the development of combinatorial objects relevant to
multi-way interactions, which we call high dimensional objects.

Often there are several different ways to generalize a classical object such as a per-
fect matching or a permutation to higher dimensions. Usually, these different higher
dimensional objects correspond to different answers to the questions: What is a perfect
matching? What is a permutation?

For example, a matching in a graph is a set of disjoint edges. This definition points to
one generalization of matchings - a d-matching can be defined to be a set of disjoint edges
in a (d+ 1)-uniform hypergraph. However, a matching is also a collection of 2-sets (that
is, sets of size 2) where every 1-set is contained in at most one 2-set. This point of view
leads the definition of what are known as designs. We can also view perfect matchings in
bipartite graphs as permutation matrices, or one to one mappings, and these definitions
also lead to a different types of high dimensional matchings.

We are interested in finding generalizations that are useful and natural, and studying
their basic combinatorial properties in light of what is known about their lower dimen-
sional counterparts. We ask questions like:

• What are the best high dimensional analogs for a permutation (or a perfect match-
ing, or a coloring of a graph, etc.)?

• Given such an analog, how many such objects of a given size exist?

• Is there an efficient algorithm to construct such an object?

• What are the properties of a typical object?

In addition to the introduction, this thesis contains the following chapters.
Chapter 2: An upper bound on the number of high-dimensional permuta-

tions: This paper introduces the notion of a high dimensional permutation as a gen-



eralization of a permutation matrix. These objects are also equivalent to Latin squares,
cubes and hypercubes, which are important and well studied objects in their own right.

We define a high dimensional Permanent function on arrays of arbitrary dimension,
and prove an upper bound on the permanent of 0-1 arrays. Our upper bound is a
generalization of Brègman’s upper bound on the Permanent. Using this bound we prove
an upper bound on the number of order n d dimensional permutations.

Our proof uses the entropy method, a type of probabilistic method that has proven
very useful for enumeration problems in combinatorics.

Chapter 3: An upper bound on the number of Steiner triple systems:
This paper considers Steiner triple systems, which are a basic type of combinatorial
design. Steiner triple systems have a long history, and have been extensively studied. In
particular, in 1974 Richard Wilson proved asymptotic upper and lower bounds on their
number [12]. He conjectured that in fact the number of order n Steiner triple systems

is equal to
(
(1 + o(1)) n

e2

)n2/6
. We proved that this is an upper bound, resolving half of

Wilson’s conjecture.
Chapter 4: On the vertices of the d-dimensional Birkhoff polytope: This

paper introduces the notion of d-stochastic arrays as a high dimensional analog of dou-
bly stochastic matrices. An important basic fact about doubly stochastic matrices is
Birkhoff’s theorem, which states that every doubly stochastic matrix is a convex combi-
nation of permutation matrices. In geometric terms, this means that the vertices of the
polytope of doubly stochastic matrices are precisely the permutation matrices.

We ask whether the same thing happens in higher dimensions. It turns out that
the answer is no. As we show, even for tristochastic arrays the number of vertices is
asymptotically much larger than the number of 2-permutations.
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Chapter 1

Introduction

1.1 Classical objects

1.1.1 Permutations

A permutation of order n is an ordering of the numbers 1, ..., n. Permutations are ubiq-
uitous objects that appear in many different contexts and have many different interpre-
tations.

The set of order-n permutations is denoted by Sn. A permutation σ ∈ Sn can be
represented by a vector of length n over {1, ..., n} whose entries are all different. Alter-
natively, σ can be represented by a permutation matrix.

A permutation matrix is an n × n 0-1 matrix with a single 1 in each row and and
a single 1 in each column. Given a permutation σ = (σ(1), ..., σ(n)), the corresponding
permutation matrix A is given by A(i, σ(i)) = 1 for i ∈ {1, ..., n} and A = 0 elsewhere.

5
3
1
2
4

↔


0 0 0 0 1
0 0 1 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0


It is also possible to view an order-n permutation as a perfect matching in a bipartite

graph with n vertices on each side. Given a permutation σ, the corresponding perfect
matching on G = 〈U ∪ V,E〉 is given by M = {{uj, vσ(j)}}nj=1.

The number of order n permutations is n!, which by Stirling’s approximation is equal
to
(
(1 + o(1))n

e

)n
. It is very easy to sample an order-n permutation at random, and the

properties of random permutations have been extensively studied and are well under-
stood.

1.1.2 Regular Graphs

A graph is defined by set of vertices V and a set of edges E ⊆
(
V
2

)
. The degree of a

vertex v ∈ V is the number of edges that contain it. A graph is d-regular if all of the



vertices have the same degree, which means that every vertex is contained in exactly d
edges.

One basic fact about regular graphs is that there exists a d-regular graph on n vertices
iff n > d and d · n is even. This is a necessary condition because the number of edges
in a graph is equal to half of the sum of the degrees. In a regular graph the sum of the
degrees is d ·n, so this number must be even. It is less immediate, but also easy, to show
that there exists a d-regular graph on n vertices whenever n > d and d · n is even.

However, sampling an n vertex d-regular graph at random is a difficult problem which
remains an active topic of research. For small values of d, this problem was solved in the
80’s in [2], [1] via the configuration model.

The study of random regular graphs started to take a central position in combinatorics
and computer science when it became clear that such graphs were expanders with high
probability. These are graphs that have properties that make them very useful for many
practical and theoretical applications. For more on this, see [8].

The enumeration of regular graphs is also of great interest. There is no known closed
formula for the number of d-regular graphs on n vertices. It is, however, possible to
develop asymptotic formulas for this number [4].

1.1.3 The Permanent

Let A be an n× n matrix. The permanent of A is defined by

Per(A) =
∑
σ∈Sn

n∏
i=1

A(i, σ(i)).

Unlike its cousin the determinant, calculating the permanent of a matrix is a very
difficult computational problem. In fact, it is known to be #P -complete, which implies
that the existence of a polynomial time algorithm to compute the permanent of an n×n
matrix would imply that P = NP .

Permanents are connected to perfect matchings in bipartite graphs. If A is a 0-1 ma-
trix, its permanent is the number of permutation matrices whose 1-entries are contained
by A’s support. Let G = 〈U ∪ V,E〉 be a bipartite graph with |U | = |V | = n. We define
G’s adjacency matrix to be a 0-1 n × n matrix with A(i, j) = 1 iff {ui, vj} ∈ E. This
is a one to one correspondence between 0-1 n × n matrices and bipartite graphs with
n vertices on each side. A perfect matching in G corresponds to a permutation matrix
contained by A, so Per(A) is the number of perfect matchings in G. The problem of
computing the permanent restricted to 0-1 matrices remains #P -complete, however.

Since the permanent is so difficult to compute exactly, much attention has focused on
the problems of bounding and approximating the permanent of a matrix. Minc conjec-
tured an upper bound for the permanent, which was proved by Brègman in 1973 [2], and
in the 1920’s van der Waerden conjectured a lower bound, which was proved by Falikman
[6] and Egorichev [5] in 1981. These two bounds have been of great importance to us in
our research.
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1.1.4 Doubly Stochastic Matrices

A doubly stochastic matrix is a nonnegative n × n matrix whose rows and columns all
sum to one. The following is an example of an order-3 permutation matrix.0 0.4 0.6

0 0.6 0.4
1 0 0


Van der Waerden’s conjecture (= The Falikman-Egorychev theorem) is a lower bound
on the permanent of doubly stochastic matrices.

The following theorem is an important fact about doubly stochastic matrices that
connects them to permutations.

Theorem 1.1.1 (Birkhoff-von Neumann). Every doubly stochastic matrix is a convex
combination of permutation matrices.

It is possible to state this result in geometric terms. The set of order-n doubly
stochastic matrices is a polytope in Rn2

. Birkhoff’s theorem means that the vertices of
this polytope are precisely the permutation matrices.

1.2 The Search for the Right Generalization

1.2.1 High Dimensional Permutations

There are several natural ways to generalize permutations to high dimensions. The
generalization that we define here stems from the representation of permutations as
permutation matrices.

As mentioned, a permutation matrix is an n× n 0-1 matrix with a single 1 in every
row and column. We define a d-permutation to be an n× ...× n︸ ︷︷ ︸

d+1

0-1 array with a single

1 in each line. Here a line is the set of entries we get by fixing all but one of the indices
and allowing the last index to vary over {1, ..., n}. Thus, an order-n d permutation has
(d+ 1)nd lines.

A Latin square is an n × n matrix over {1, ..., n} such that the entries in every row
and column are all different. Latin squares are well known since ancient times, and they
have been extensively studied.

Just as permutation matrices are equivalent permutations, 2-permutations are equiv-
alent to Latin squares. In general, d-permutations are equivalent to d-dimensional Latin
hypercubes. These are n× ...× n︸ ︷︷ ︸

d

arrays over {1, ..., n} such that the entries in every line

are all different.
High dimensional permutations are considered in chapter 2. Our main result is an

upper bound on their number. Namely, we prove that for any constant d, the number of

order-n d-permutations is at most
(
(1 + o(1)) n

ed
)
)nd

. We conjecture that this is indeed the
correct asymptotic formula, and note that, if true, this would constitute a generalization
of Stirling’s approximation.
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Figure 1.1: An order 7 Steiner triple system. Every line represents a triple.

Our proof proceeds by first establishing an upper bound on a high dimensional analog
of the permanent. This bound is an analog of Brègman’s theorem. It turns out that the
natural analog of the van der Waerden conjecture is false for higher dimensions.

1.2.2 High Dimensional Perfect Matchings

A perfect matching is a collection M of pairs (or edges) from a set V such that every
vertex in V appears in exactly one pair e ∈ E.

A Steiner Triple System (STS) is a collection X of triples from a set S such that
every pair of objects in S appears in exactly one triple x ∈ X.

Steiner triple systems have an interesting history. They first appeared as a math
puzzle in a magazine in 1844. We are interested in them because they are a higher
dimensional analog of a perfect matching.

A perfect matching of a graph G is a subset of its edges such that every vertex
is contained in a unique edge. As mentioned, a perfect matching in a bipartite graph
corresponds to a permutation matrix.

There is another way in which Steiner triple systems can be viewed as higher dimen-
sional perfect matchings. For a (not necessarily bipartite) graph, a perfect matching
corresponds to A symmetric permutation matrix with zeros on the main diagonal. Given
a perfect matching on n vertices, we construct such a permutation matrix A by setting
A(i, j) = 1 iff {vi, vj} is an edge in the matching. A is symmetric because a perfect
matching is a symmetric object. If vi is matched to vj then vj is matched to vi.

It is interesting to note that Steiner triple systems are equivalent to symmetric 2-
permutations. That is, if X is a Steiner triple system, we define a corresponding 2-
permutation A by A(i, j, k) = 1 iff {i, j, k} ∈ X, A(i, i, i) = 1 for every i and A = 0
elsewhere. It is easy to see that A is indeed a 2-permutation. Moreover, A is symmetric
in the sense that it is invariant to a permutation on the indices: A(i, j, k) = A(j, k, i) = ...

Let STS(n) denote the number of Steiner triple systems of order n. We would like
to find an asymptotic formula for STS(n).

In 1974, Richard Wilson proved that( n

e233/2

)n2

6 ≤ STS(n) ≤
( n

e1/2

)n2

6
.
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Wilson conjectured that, in fact,

STS(n) =
(

(1 + o(1))
n

e2

)n2

6
.

We proved that STS(n) ≤
(
(1 + o(1)) n

e2
)
)n2/6

, resolving half of Wilson’s conjecture.
This result is presented in chapter 3.

1.2.3 High Dimensional Regularity

The natural high dimensional analog of a graph is a d-uniform hypergraph, which is a
pair H = 〈V,E〉 such that E ⊆

(
V
d

)
.

For every 1 ≤ l ≤ d− 1, we can extend the notion of regularity to d-regular graphs in
the following way. We say that H is regular if every l-element subset of V is contained
in exactly k d-element subsets in E. Note that when l = 1 and d = 2 we get the usual
notion of regularity in graphs.

Just as a perfect matching is a 1-regular graph, we can think of Steiner triple systems
as 1-regular 3-uniform hypergraphs (with l = 2). Part of our interest in Steiner triple
systems stems from the fact that understanding them seems to be the first step on the
way to understanding this notion of high dimensional regularity.

1.2.4 d-Stochastic Arrays

We define a d-stochastic array to be a n× ...× n︸ ︷︷ ︸
d+1

nonnegative array such that every line

sums to one. Note that a 1-stochastic array is a doubly stochastic matrix.
In the spirit of Birkhoff’s theorem, it is natural to wonder whether the convex hull of

the set of order n d-permutations is equivalent to the set of d-stochastic arrays. Birkhoff’s
theorem tells us that for d = 1 the answer is yes.

It turns out that in higher dimensions the answer is no. Indeed, as we show in chapter
4, even for d = 2 the number of vertices of the polytope of order-n 2-stochastic arrays is
asymptotically much greater than the number of order-n 2-permutations.

1.3 The Entropy Method

Claude Shannon founded the field of information theory with a landmark paper that
was published in 1948 [9]. Shannon’s main motivation was to prove fundamental bounds
on data processing tasks such as communication and compression. Since then, informa-
tion theory has found applications in many diverse areas in mathematics, physics and
computer science.

The central concept in information theory is information entropy, which measures the
amount of uncertainty inherent in a random process. The entropy of a discrete random
variable X is

H(X) =
∑
x

Pr(X = x) log2

(
1

Pr(X = x)

)
.

5



If a random variable can take n possible values, then its entropy is at most log2 n,
and the entropy of a random variable that is uniformly distributed over n possible values
is equal to log2 n. In general, the number of bits needed on average to encode X’s value
(given that we know X’s distribution) is H(X).

Recently, combinatorists have started to make use of information entropy for enumer-
ation problems. For a survey of recent works that use these methods, see [7]. The basic
idea is as follows.

We want to count the number of objects in a set S. Instead of addressing the problem
directly, we use the many tools that have been developed to approximate the entropy of
random variables.

• We define a random variable X that is uniformly distributed on S. In other words,
we sample a member of the set S uniformly at random.

• Use information theoretic methods to bound H(X). This, of course, is the crucial
step.

• Since H(X) = log(|S|), this yields bounds on the number of objects in S.

This method was a central tool in our works on the asymptotic enumeration of high
dimensional permutations and Steiner triple systems.

6
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Chapter 2

High Dimensional Permutations

This chapter includes the following publication.
N. Linial and Z. Luria, An upper bound on the number of high-dimensional per-

mutations, Combinatorica, to appear.



An upper bound on the number of high-dimensional
permutations

Nathan Linial∗ Zur Luria†

Abstract

What is the higher-dimensional analog of a permutation? If we think of a per-
mutation as given by a permutation matrix, then the following definition suggests
itself: A d-dimensional permutation of order n is an n×n× . . . n = [n]d+1 array of
zeros and ones in which every line contains a unique 1 entry. A line here is a set
of entries of the form {(x1, . . . , xi−1, y, xi+1, . . . , xd+1)|n ≥ y ≥ 1} for some index
d + 1 ≥ i ≥ 1 and some choice of xj ∈ [n] for all j 6= i. It is easy to observe that
a one-dimensional permutation is simply a permutation matrix and that a two-
dimensional permutation is synonymous with an order-n Latin square. We seek
an estimate for the number of d-dimensional permutations. Our main result is the
following upper bound on their number(

(1 + o(1))
n

ed

)nd

.

We tend to believe that this is actually the correct number, but the problem of prov-
ing the complementary lower bound remains open. Our main tool is an adaptation
of Brègman’s [2] proof of the Minc conjecture on permanents. More concretely, our
approach is very close in spirit to Schrijver’s [11] and Radhakrishnan’s [10] proofs
of Brègman’s theorem.

2.1 Introduction

The permanent of an n× n matrix A = (aij) is defined by

Per(A) =
∑
σ∈Sn

n∏
i=1

ai,σi

∗Department of Computer Science, Hebrew University, Jerusalem 91904, Israel. e-mail:
nati@cs.huji.ac.il . Supported by ISF and BSF grants.

†Department of Computer Science, Hebrew University, Jerusalem 91904, Israel. e-mail:
zluria@cs.huji.ac.il .
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Permanents have attracted a lot of attention [9]. They play an important role in combi-
natorics. Thus if A is a 0-1 matrix, then Per(A) counts perfect matchings in the bipartite
graph whose adjacency matrix is A. They are also of great interest from the computa-
tional perspective. It is #P -hard to calculate the permanent of a given 0-1 matrix [12],
and following a long line of research, an approximation scheme was found [6] for the
permanents of nonnegative matrices. Bounds on permanents have also been studied at
great depth. Van der Waerden conjectured that Per(A) ≥ n!

nn for every n × n doubly
stochastic matrix A, and this was established more than fifty years later by Falikman
and by Egorychev [5, 4]. More recently, Gurvitz [5] discovered a new conceptual proof
for this conjecture (see [8] for a very readable presentation). What is more relevant for
us here are upper bounds on permanents. These are the subject of Minc’s conjecture
which was proved by Brègman.

Theorem 2.1.1. If A is an n× n 0-1 matrix with ri ones in the i-th row, then

Per(A) ≤
n∏
i=1

(ri!)
1/ri .

In the next section we review Radhakrishnan’s proof, which uses the entropy method.
Our plan is to imitate this proof for a d-dimensional analogue of the permanent. To this
end we need the notion of d-dimensional permutations.

Definition 2.1.2. 1. Let A be an [n]d array. A line of A is vector of the form

(A(i1, ..., ij−1, t, ij+1, ..., id))
n
t=1,

where 1 ≤ j ≤ d and i1, ..., ij−1, ij+1, ..., id ∈ [n].

2. A d-dimensional permutation (or d-permutation) of order n is an [n]d+1 array P
of zeros and ones such that every line of P contains a single one and n− 1 zeros.
Denote the set of all d-dimensional permutations of order n by Sd,n.

For example, a two dimensional array is a matrix. It has two kinds of lines, usually
called rows and columns. Thus a 1-permutation is an n × n 0-1 matrix with a single
one in each row and a single one in each column, namely a permutation matrix. A 2-
permutation is identical to a Latin square and S2,n is the same as the set Ln, of order-n
Latin squares. We now explain the correspondence between the two sets. If X is a 2-
permutation of order n, then we associate with it a Latin square L, where L(i, j) as the
(unique) index of a 1 entry in the line A(i, j, ∗). For more on the subject of Latin squares,
see [10]. The same definition yields a one-to-one correspondence between 3-dimensional
permutations and Latin cubes. In general, d-dimensional permutations are synonymous
with d-dimensional Latin hypercubes. For more on d-dimensional Latin hypercubes, see
[14]. To summarize, the following is an equivalent definition of a d-permutation. It is an
[n]d array with entries from [n] in which every line contains each i ∈ [n] exactly once.
We interchange freely between these two definitions according to context.

10



Our main concern here is to estimate |Sd,n|, the number of d-permutations of order
n. By Stirling’s formula

|S1,n| = n! =
(

(1 + o(1))
n

e

)n
.

As we saw, |S2,n| is the number of order n Latin squares. The best known estimate [10]
is

|S2,n| = |Ln| =
(

(1 + o(1))
n

e2

)n2

.

This relation is proved using bounds on permanents. Brégman’s theorem for the upper
bound, and the Falikman-Egorychev theorem for the lower bound.

This suggests

Conjecture 2.1.3.

|Sd,n| =
(

(1 + o(1))
n

ed

)nd

.

In this paper we prove the upper bound

Theorem 2.1.4.

|Sd,n| ≤
(

(1 + o(1))
n

ed

)nd

.

As mentioned, our method of proof is an adaptation of [10]. We first need

Definition 2.1.5. 1. An [n]d+1 0-1 array M1 is said to support an array M2 if

M2(i1, ..., id+1) = 1⇒M1(i1, ..., id+1) = 1.

2. The d-permanent of a [n]d+1 0-1 array A is

Perd(A) = The number of d-permutations supported by A.

Note that in the one-dimensional case, this is indeed the usual definition of Per(A).
It is not hard to see that for d = 1 the following theorem coincides with Brègman’s
theorem.

Theorem 2.1.6. Define the function f : N≥0 × N −→ R recursively by:

• f(0, r) = log(r), where the logarithm is in base e.

• f(d, r) = 1
r

∑r
k=1 f(d− 1, k).

Let A be an [n]d+1 0-1 array with ri1,...id ones in the line A(i1, ..., id, ∗). Then

Perd(A) ≤
∏
i1,...,id

ef(d,ri1,...id ).

11



We will derive below fairly tight bounds on the function f that appears in theo-
rem 2.1.6. It is then an easy matter to prove theorem 2.1.4 by applying theorem 2.1.6 to
the all-ones array.

What about proving a matching lower bound on Sd,n (and thus proving conjec-
ture 2.1.3)? In order to follow the footsteps of [10], we would need a lower bound
on Perd(A), namely, a higher-dimensional analog of the van der Waerden conjecture.
The entries of a multi-stochastic array are nonnegative reals and the sum of entries along
every line is 1. This is the higher-dimensional counterpart of a doubly-stochastic matrix.
It should be clear how to extend the notion of Perd(A) to real-valued arrays. In this
approach we would need a lower bound on Perd(A) that holds for every multi-stochastic
array A. However, this attempt (or at least its most simplistic version) is bound to
fail. An easy consequence of Hall’s theorem says that a 0-1 matrix in which every line
or column contains the same (positive) number of 1-entries, has a positive permanent.
(We still do not know exactly how small such a permanent can be, see [8] for more on
this). However, the higher dimensional analog of this is simply incorrect. There ex-
ist multi-stochastic arrays whose d-permanent vanishes, as can easily be deduced e.g.,
from [7].

We can, however, derive a lower bound of |Sd,n| ≥ exp(Ω(nd)) for even n. Consider
the following construction: Let n be an even integer, and let P be a d-permutation of

order
[
n
2

]d
. It is easy to see that such a P exists. Simply set

P (i1, ..., id) = (i1 + ...+ id) mod
n

2
.

Now we construct a d-permutation Q of order [n]d by replacing each element of P with
a [2]d block. If P (i1, ..., id) = j, then the corresponding block contains the values j and
j + n

2
. It is easy to see that there are exactly two ways to arrange these values in each

block, and that Q is indeed a d-permutation of order [n]d. There are
(
n
2

)d
blocks, and so

the number of possible Q’s is 2(n
2 )

d

. For a constant d this is exp(Ω(nd)).
In section 2 we present Radhakrishnan’s proof of the Brègman bound. In section 3

we prove theorem 2.1.6. In section 4 we use this bound to prove theorem 2.1.4.

2.2 Radhakrishnan’s proof of Brègman’s theorem

2.2.1 Entropy - Some basics

We review the basic material concerning entropy that is used here and refer the reader
to [5] for further information on the topic.

Definition 2.2.1. The entropy of a discrete random variable X is given by

H(X) =
∑
x

Pr(X = x) log

(
1

Pr(X = x)

)
.

For random variables X and Y , the conditional entropy of X given Y is

H(X|Y ) = E[H(X|Y = y)] =
∑
y

Pr(Y = y)H(X|Y = y).

12



In this paper we will always consider the base e entropy of X which simply means
that the logarithm is in base e.

Theorem 2.2.2. 1. If X is a discrete random variable, then

H(X) ≤ log |range(X)|,

with equality iff X has a uniform distribution.

2. If X1, ..., Xn is a sequence of random variables, then

H(X1, ..., Xn) =
n∑
i=1

H(Xi|X1, ..., Xi−1).

3. The inequality
H(X|Y ) ≤ H(X|f(Y ))

holds for every two discrete random variables X and Y and every real function f(·).

The following is a general approach using entropy that is useful for a variety of
approximate counting problems. Suppose that we need to estimate the cardinality of
some set S. If X is a random variable which takes values in S under the uniform
distribution on S, then H(X) = log(|S|). So, a good estimate on H(X) yields bounds
on |S|.

This approach is the main idea of both Radhakrishnan’s proof and our work.

2.2.2 Radhakrishnan’s proof

Let A be an n×n 0-1 matrix with ri ones in the i-th row. Our aim is to prove the upper
bound

Per(A) ≤
n∏
i=1

(ri!)
1
ri .

LetM be the set of permutation matrices supported by A, and let X be a uniformly
sampled random element of M. Our plan is to evaluate H(X) using the chain rule and
estimate |M| using the fact (theorem 2.2.2) that H(X) = log(|M|).

Let Xi be the unique index j such that X(i, j) = 1. We consider a process where we
scan the rows of X in sequence and estimate H(X) = H(X1, ..., Xn) using the chain rule
in the corresponding order. To carry out this plan, we need to bound the contribution
of the term involving Xi conditioned on the previously observed rows. That is, we write

H(X) =
n∑
i=1

H(Xi|X1, ..., Xi−1).

Let Ri be the set of indices of the 1-entries in A’s i-th row. That is,

Ri = {j : A(i, j) = 1}.

13



Let
Zi = {j ∈ Ri : Xi′ = j for some i′ < i}.

Note that Xi ∈ Ri, because X is supported by A. In addition, given that we have already
exposed the values Xi′ for i′ < i, it is impossible for Xi to take any value j ∈ Zi, or else
the column X(∗, j) contains more than a single 1-entry. Therefore, given the variables
that precede it, Xi must take a value in Ri r Zi. The cardinality Ni = |Ri r Zi| is a
function of X1, ..., Xi−1 and so by theorem 2.2.2,

H(X) =
n∑
i=1

H(Xi|X1, ..., Xi−1)

=
n∑
i=1

∑
x1,...,xi−1

Pr(X1 = x1, ..., Xi−1 = xi−1)H(Xi|X1 = x1, ..., Xi−1 = xi−1)

≤
n∑
i=1

∑
x1,...,xi−1

Pr(X1 = x1, ..., Xi−1 = xi−1) log(Ni)

=
n∑
i=1

EX1,...,Xi−1
[log(Ni)] =

n∑
i=1

EX [log(Ni)].

It is not clear how we should proceed from here, for how can we bound log(Ni) for a
general matrix? Moreover, different orderings of the rows will give different bounds. We
use this fact to our advantage and consider the expectation of this bound over all possible
orderings. Associated with a permutation σ ∈ Sn is an ordering of the rows where Xj

is revealed before Xi if σ(j) < σ(i). We redefine Zi and Ni to take the ordering σ into
account. Let

Zi(σ) = {j ∈ Ri : Xi′ = j for some σ(i′) < σ(i)}.

Ni(σ) = |Ri r Zi(σ)|.

Then Ni(σ) is the number of available values for Xi, given all the variables Xj for j
such that σ(j) < σ(i). As before, using the chain rule we obtain the inequality

H(X) =
n∑
i=1

H(Xi|Xj : σ(j) < σ(i)) ≤
n∑
i=1

EX [log(Ni(σ))].

The inequality remains true if we take the expected value of both sides when σ is a
random permutation sampled from the uniform distribution on Sn.

H(X) ≤
n∑
i=1

Eσ [EX [log(Ni(σ))]] =
n∑
i=1

EX [Eσ [log(Ni(σ))]].

Thus, the bound we get on H(X) depends on the distribution of the random variable
Ni(σ). The final observation that we need is that the distribution of Ni(σ) is very simple
and that it does not depend on X. Consequently we can eliminate the step of taking
expectation with respect to the choice of X. Let us fix a specific X.
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Let Wi denote the set of ri − 1 row indices j 6= i for which Xj ∈ Ri. Note that Ni

is equal to ri minus the number of indices in Wi that precede i in the random ordering
σ. Since σ was chosen uniformly, this number is distributed uniformly in {0, ..., ri − 1}.
Thus, Ni is uniform on the set {1, ..., ri}. Therefore

Eσ [log(Ni(σ))] =

ri∑
k=1

1

ri
log(k) =

1

ri
log(ri!).

Hence

H(X) ≤
n∑
i=1

EX
[

1

ri
log(ri!)

]
=

n∑
i=1

1

ri
log(ri!)

which implies the Brègman bound.

2.3 The d-dimensional case

2.3.1 An informal discussion

The core of the above-described proof of the Brègman bound can be viewed as follows.
Let us pick first a 1-permutation X that is contained in the matrix A and consider the
set Ri of the ri 1-entries in A’s i-th row. There are exactly ri indices j for which Xj ∈ Ri.
The random ordering of the rows determines which of these will precede the i-th row (or
will cast its shadow on the i-th row). The random number ui of rows that cast a shadow
on the i-th row is uniformly distributed in the range {0, . . . , ri − 1}. The contribution
of this row to the upper bound on H(X) is Eσ[logNi], where Ni = ri − ui is the number
of 1-entries in the i-th row that are still unshaded. The expectation of logNi is exactly
1
ri

∑ri
j=1 log j = 1

ri
log(ri!).

How should we modify this argument to deal with d-dimensional permutations? We
fix a d-permutation X that is contained in A and consider a random ordering of all lines
of the form A(i1, ..., id, ∗). Given such an ordering, we use the chain rule to derive an
upper bound on H(X). Each ordering yields a different bound. However, as in the one
dimensional case, the key insight is that averaging over all possible orderings (in a class
that we later define) gives us a simple bound on H(X).

The overall structure of the argument remains the same. We consider a concrete line
A(i1, ..., id, ∗). Its contribution to the estimate of the entropy is logN where N is the
number of 1-entries that remain unshaded at the time (according to the chosen ordering)
at which we compute the corresponding term in the chain rule for the entropy. However,
now shade can fall from d different directions. The contribution of the line to the entropy
will be the expected logarithm of the number of ones that remain unshaded after each of
the d dimensions has cast its shade on it.

The lines are ordered by a random lexicographic ordering. At the coarsest level lines
are ordered according to their first coordinate i1. This ordering is chosen uniformly from
Sn. To understand how many 1’s remain unshaded in a given line, we first consider
the shade along the first coordinate. If it initially has r 1-entries, then the number of
unshaded 1-entries after this stage is uniformly distributed on [r]. We then recurse with
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the remaining 1-entries and proceed on the subcube of codimension 1 that is defined by
the value of the first coordinate. It is not hard to see how the recursive expression for
f(d, r) reflects this calculation.

2.3.2 In detail

Let A be a [n]d+1-dimensional array of zeros and ones, and X is a random d-permutation
sampled uniformly from the set of d-permutations contained in A. Then H(X) =
log(Perd(A)) by theorem 2.2.2 and again we seek an upper bound on H(X).

We think of X as an [n]d array each line of which contains each member of [n] exactly
once. The proof does its accounting using lines of the form A(i1, ..., id, ∗), i.e., lines in
which the (d + 1)-st coordinate varies. Such a line is specified by i = (i1, ..., id). The
random variable Xi is defined to be the value of X(i1, ..., id). We think of the variables
Xi as being revealed to us one by one. Thus, Xi1,...,id must belong to

Ri = Ri1,...,id = {j : A(i1, ..., id, j) = 1}

the set of 1-entries in this line.
In the proof we scan these lines in a particular randomly chosen order. Let us ignore

this issue for a moment and consider some fixed ordering of these lines. Initially, the
number of 1-entries in this line is ri. As we proceed, some of these 1’s become unavailable
to Xi, since choosing them would result in a conflict with the choice made in some
previously revealed line. We say that these 1’s are in the shade of previously considered
lines. This shade can come from any of the d possible directions. Thus we denote by
Zi ⊆ Ri the set of the indices of the 1-entries in Ri that are unavailable to Xi given the
values of the preceding variables. We can express Zi = ∪dk=1Z

k
i where entries in Zk

i are
shaded from direction k. Namely, a member j of Ri belongs to Zk

i if there is an already
scanned line indexed by i’ with Xi’ = j and where i and i’ coincide on all coordinates
except the k-th. Thus, given the values of the previously considered variables, there are
at most

Ni = |Ri r Zi|

values that are available to Xi.
We next turn to the random ordering of the lines. Now, however, we do not select a

completely random ordering, but opt for a random lexicographic ordering. Namely, we se-
lect d random permutations σ1, ..., σd ∈ Sn. The line A(i1, ..., id, ∗) precedes A(i′1, ..., i

′
d, ∗)

if there is a k ∈ [n] such that σk(ik) < σk(i
′
k) and ij = i′j for all j < k. Thus a choice of

the orderings σk induces a total order on the lines A(i1, ..., id, ∗). Denote this order by
≺. That is, we write i ≺ j if i comes before j. We write i ≺k j if i ≺ j and i and j differ
only in the k-th coordinate.

We think of Xi as being revealed to us according to this order.
We turn to the definition of Ri, Z

k
i and Ni. Their definitions are affected by the

chosen ordering of the lines. In addition, for reasons to be made clear later, we generalize
the definition of Ni. It is defined as the number of values available to Xi (given the
preceding lines) from a given index set W ⊆ Ri. In the discussion below, we fix X, a
d-permutation that is contained in A.
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Definition 2.3.1. The index set of the 1-entries in the line A(i1, ..., id, ∗) is denoted by

Ri = Ri1,...,id = {j : A(i1, ..., id, j) = 1},

and its cardinality is ri = |Ri|.

Let W ⊆ Ri with i = (i1, ..., id), and suppose that Xi ∈ W . For a given ordering ≺,
let

Zk
i (X,≺) = {j ∈ Ri : Xi’ = j for some i’ ≺k i}.

Ni(W,X,≺) = |W r ∪dk=1Z
k
i (X,≺)|.

Thus, Ni is a function of W ⊆ Ri, X and the ordering ≺. Each variable Xi specifies a 1
entry of the line A(i1, ..., id, ∗). The entry thus specified must conform to the values taken
by the preceding variables. Namely, no line of X can contain more than a single 1 entry.
We consider the number of values that the variable Xi can take, given the values that
precede it. Fix an index tuple i = (i1, ..., id). The variable Xi must specify an index id+1

with A(i1, ..., id+1) = 1, i.e., an element of Ri. Consider some element j ∈ Ri. If Xi’ = j,
for some i’ ≺k i and k ≤ d then clearly Xi 6= j, or else the line X(i1, ..., ik−1, ∗, ik+1, ..., id)
contains more than a single j-entry. In other words, Xi cannot specify an element of
Zk

i (X,≺) and is restricted to the set Ri r ∪dk=1Z
k
i (X,≺). Therefore, there are at most

Ni(Ri, X,≺) possible values that Xi can take given the variables that precede it in the
order ≺.

For a given order ≺, we can use the chain rule to derive

H(X) =
∑
i

H(Xi|Xj : j ≺ i).

By theorem 2.2.2,

H(Xi|Xj : j ≺ i) = EXj:j≺i [H(Xi|Xj = xj : j ≺ i)]

≤ EXj:j≺i [log(Ni(Ri, X,≺))] = EX [log(Ni(Ri, X,≺))] .

The last equality holds because Ni depends only on the lines of X that precede Xi,
and so taking the expectation over the rest of X doesn’t change anything.

As in the one dimensional case, the next step is to take the expectation of both sides
of the above inequality over ≺.

H(X) ≤
∑
i

E≺ [EX [log(Ni(Ri, X,≺))]]

=
∑
i

EX [E≺ [log(Ni(Ri, X,≺))]].

The key to unraveling this expression is the insight that the random variable Ni has a
simple distribution (as a function of ≺), and moreover, that this distribution does not
depend on X.

Recall that in the one dimensional case, we obtained the distribution of Ni as follows.
Initially, the number of ones in the i-th row was ri. Then the rows preceding the i-th row
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were revealed, and some of the ones in the i-th row became unavailable to X, because
some other row had placed a one in their column. We defined Ni = |Ri r Zi(σ)|. The
size of Zi(σ) was shown to be uniformly distributed over {0, ..., ri − 1}, and thus the
distribution of Ni was shown to be uniform over {1, ..., ri}.

A similar argument works in the d dimensional case, but the distribution of Ni is no
longer uniform. Recall that the function f is defined recursively by

f(0, r) = log(r)

f(d, r) =
1

r

r∑
k=1

f(d− 1, k).

Claim 2.3.2. Let X be a d-permutation, i = (i1, ..., id) and let W ⊆ Ri be an index set
such that Xi ∈ W . Then E≺ [log(Ni(W,X,≺))] depends only on d and r = |W |, and

E≺ [log(Ni(W,X,≺))] = f(d, r).

Proof. The proof proceeds by induction on d.
First, note that if |W | = r and d = 0, then Ni(W,X,≺) = |W | = r by definition, and

therefore
E≺ [log(Ni(W,X,≺))] = log(r) = f(0, r).

In order to proceed with the induction step, we must describe Ni(W,X,≺) in terms of
parameters of dimension d−1 instead of d. To this end we need the following definitions:

• X ′ = X(i1, ∗, ..., ∗). Note that X ′ is a (d− 1)-dimensional permutation.

• W ′ = W r Z1
i (X,≺). Note that |W ′| actually depends only on σ1, the ordering of

the first coordinate.

• Let i’ = (i′1, ..., i
′
d−1) = (i2, ..., id).

• Given an ordering ≺, let ≺′ be the ordering on the index tuples (i′1, ..., i
′
d−1) defined

by the orderings σ2, σ3, ..., σd.

Note that for every X,W , i and ≺ we have Ni(W,X,≺) = Ni’(W
′, X ′,≺′). This

equality follows directly from the definition of N . Now,

E≺ [log(Ni(W,X,≺))] = Eσ1 [E≺′ [log(Ni(W,X,≺))]]

= Eσ1 [E≺′ [log(Ni’(W
′, X ′,≺′))]] = Eσ1 [f(d− 1, |W ′|)]

The last step follows from the induction hypothesis. Consequently,

E≺ [log(Ni(W,X,≺))] =
∑
k

Pr(|W ′| = k)f(d− 1, k).

The only remaining question is to determine the distribution of |W ′| as a function of
σ1. Note, however, that we have already answered this question in the one dimensional
proof, namely, |W ′| is uniformly distributed on {1, ..., r}. Indeed, W ′ = |W rZ1

i (X,≺)|,
and Z1

i (X,≺) is the set of indices s such that:
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• For some j ∈ W , X(s, i2, ..., id) = j (there are r − 1 such indices, one for each
j ∈ W ).

• The random ordering σ1 places s before i1.

In a random ordering, the position of i1 is uniformly distributed. Therefore |Z1
i (X,≺)|

is uniformly distributed on {0, ..., r − 1}, and Pr(|W ′| = k) = 1
r

for every 1 ≤ k ≤ r.
Putting this together, we have shown that

E≺ [log(Ni(W,X,≺))] =
1

r

r∑
k=1

f(d− 1, k) = f(d, r).

In conclusion, we have shown that

H(X) ≤
∑
i

EX [E≺ [log(Ni(Ri, X,≺))]]

=
∑
i

EX [f(d, ri)] =
∑
i

f(d, ri),

where ri = ri1,...,id is the number of ones in the vector A(i1, ..., id, ∗). Therefore,

Perd(A) ≤
∏
i

ef(d,ri).

2.4 The number of d-permutations – An upper bound

As mentioned, the upper bound on the number of d-dimensional permutations is derived
by applying theorem 2.1.6 to the all-ones array J . The main technical step is a derivation
of an upper bound on the function f(d, r).

Theorem 2.4.1. For every d there exist constants cd and rd such that for all r ≥ rd,

f(d, r) ≤ log(r)− d+ cd
logd(r)

r
.

One possible choice that we adopt here is rd = ed for every d, c1 = 5, c2 = 8, and

cd = d3(1.1)d

d!
for d ≥ 3.

Proof. A straightforward induction on d yields the weaker bound f(d, r) ≤ log(r) for
all d, r. For d = 0 there is equality and the general case follows since f(d, r) =
1
r

∑r
k=1 f(d− 1, k) ≤ 1

r

∑r
k=1 log(k) ≤ log(r). This simple bound serves us to deal with

the range of small r’s (below rd−1). We turn to the main part of the proof.

f(d, r) =
1

r

r∑
k=1

f(d− 1, k) =
1

r

rd−1∑
k=1

f(d− 1, k) +
r∑

k=rd−1+1

f(d− 1, k)
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≤ 1

r

rd−1 log(rd−1) +
r∑

k=rd−1

log(k)− (d− 1) + cd−1
logd−1(k)

k


≤ 1

r

[
rd−1 log(rd−1) + rd−1(d− 1) +

r∑
k=1

log(k)− (d− 1) + cd−1
logd−1(k)

k

]

≤ ξ

r
+

1

r
log(r!)− (d− 1) +

cd−1
r

r∑
k=1

logd−1(k)

k

where ξ = rd−1 log(rd−1) + rd−1(d − 1) = 2(d − 1)ed−1. It is easily verified that for
r ≥ rd ≥ 3 there holds log(r!) ≤ r log(r)− r + 2 log(r). We can proceed with

≤ ξ

r
+ log(r) +

2 log(r)

r
− d+

cd−1
r

r∑
k=1

logd−1(k)

k
.

We now bound the sum
∑r

k=1
logd−1(k)

k
by means of the integral

∫ r
1

logd−1(x)dx
x

= logd(r)
d

.

Note that the integrand is unimodal and its maximal value is γ =
(
d−1
e

)d−1
. Thus,

cd−1
r

r∑
k=1

logd−1(k)

k
≤ cd−1

r

(
logd(r)

d
+ γ

)
.

Putting this together, we have the inequality

f(d, r) ≤ log(r)− d+
2 log(r) + ξ + cd−1

(
γ + logd(r)

d

)
r

.

Therefore it is sufficient to choose cd such that for every r ≥ ed

2 log(r) + ξ + cd−1

(
γ +

logd(r)

d

)
≤ cd logd(r)

i.e.,
2

logd−1(r)
+

ξ

logd(r)
+ cd−1

(
γ

logd(r)
+

1

d

)
≤ cd.

The left hand side of the above inequality is clearly a decreasing function of r. Therefore
it is sufficient to verify the inequality for r = ed. Plugging this and the values of the
constants ξ and γ into the left hand side of the above inequality, we get

2

dd−1
+

2(d− 1)ed−1

dd
+ cd−1

(
(d− 1)d−1

ed−1dd
+

1

d

)
≤
(

1 +
1

ed−1

)
cd−1
d

+ d

(
2

dd
+
(e
d

)d)
.

Thus, we may take

cd =

(
1 +

1

ed−1

)
cd−1
d

+ d

(
2

dd
+
(e
d

)d)
.
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Calculating cd using this recursion and the fact that c0 = 0, we get that c1 = 2 + e ≤ 5,

c2 ≤ 8, and cd ≤ d3(1.1)d

d!
for 3 ≤ d ≤ 10. Proceeding by induction,

cd =

(
1 +

1

ed−1

)
(d− 1)3(1.1)d−1

d!
+ d

(
2

dd
+
(e
d

)d)

≤ (1.1)d(d− 1)3

d!
+ 2d

(e
d

)d
≤ (1.1)d(d− 1)3 + 2d2

d!
≤ (1.1)dd3

d!
.

In the inequality before the last one, we used the fact that for d ≥ 10 ,
(
e
d

)d ≤ d
d!

.

For the [n]d+1 all ones array J , ri1,...,id = n for every tuple (i1, ..., id), and so for large
enough n we have the bound

Perd(J) ≤
∏
i1,...,id

ef(d,n) =
(
ef(d,n)

)nd

≤
(

exp

[
log(n)− d+ cd

logd(n)

n

])nd

.

For a constant d, letting n go to infinity, cd
logd(n)
n

= o(1) and therefore the number of
d-permutations is at most (

(1 + o(1))
n

ed

)nd

.
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An upper bound on the number of Steiner triple
systems

Nathan Linial Zur Luria

Abstract

Richard Wilson conjectured in 1974 the following asymptotic formula for the
number of n-vertex Steiner triple systems:

STS(n) =
(
(1 + o(1)) n

e2

)n2

6 . Our main result is that

STS(n) ≤
(

(1 + o(1))
n

e2

)n2

6
.

The proof is based on the entropy method.
As a prelude to this proof we consider the number F (n) of 1-factorizations of

the complete graph on n vertices. Using the Kahn-Lovász theorem it can be shown
that

F (n) ≤
(

(1 + o(1))
n

e2

)n2

2
.

We show how to derive this bound using the entropy method. Both bounds are
conjectured to be sharp.

3.1 Introduction

A Steiner triple system on a vertex set V is a collection of triples T ⊆
(
V
3

)
such that each

pair of vertices is contained in exactly one triple from T . It is well known that a Steiner
triple system on n ≥ 1 vertices exists if and only if n ≡ 1 or 3 (mod 6). We denote the
number of Steiner triple systems on the vertex set [n] := {1, ..., n} by STS(n).

A 1-factorization of the complete graph on n vertices Kn is a partition of the edges
of Kn into n−1 perfect matchings, or in other words, a proper edge coloring of Kn using
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n−1 colors. Let F (n) denote the number of 1-factorizations of Kn. It is well known that
a 1-factorization of Kn exists if and only if n is even.

The main results of this paper are a new upper bound on STS(n) and a new proof
of a known upper bound on F (n).

It has been observed (e.g., [3]) that 1-factorizations and Steiner triple systems are
special types of Latin squares. We view a Latin square as an n × n × n array A with
0 − 1 entries in which each line has exactly one element that equals 1. To see that this
description of Latin squares is equivalent to the usual definition, we associate to the
array A a matrix L, that is defined via L(i, j) = k where k is the unique index for which
A(i, j, k) = 1. A 1-factorization is a Latin square A such that A(i, j, k) = 1⇔ A(j, i, k) =
1 and A(i, i, n) = 1 for all i. Thus, L is a symmetric matrix in which all diagonal terms
equal n. A Steiner triple system is a Latin square A where A(i, j, k) = 1 implies that
A(σ(i), σ(j), σ(k)) = 1 for every permutation σ ∈ S3 on i, j, k, and A(i, i, i) = 1 for all i.
This can also be expressed in terms of L, though it’s a bit more complicated to formulate.

These relations suggest that there might be deeper analogies to reveal among Latin
squares, STS’s and 1-factorizations. Indeed, we have recently proved an asymptotic upper
bound on the number of Latin hypercubes [9], and here we prove analogous statements
for STS(n) and F (n).

The best previously known estimates for the number of n-point Steiner triple systems
are due to Richard Wilson [12].

( n

e233/2

)n2

6 ≤ STS(n) ≤
( n

e1/2

)n2

6
.

Wilson also conjectured that, in fact, STS(n) =
(
(1 + o(1)) n

e2

)n2

6 . We show that this
is an upper bound on the number of Steiner triple systems.

Theorem 3.1.1.

STS(n) ≤
(

(1 + o(1))
n

e2

)n2

6
.

The Kahn-Lovász theorem shows that a graph with degree sequence r1, ..., rn has at

most
∏n

i=1 (ri!)
1

2ri perfect matchings. In particular a d-regular graph has at most (d!)
n
2d

perfect matchings. For a proof see Alon and Friedland [1]. These results are inspired by
Brégman’s proof [2] of Minc’s conjecture on the permanent. For a very recent proof of
this result that uses the entropy method, see [6].

This theorem easily yields an upper bound on F (n) as follows: Choose first a perfect
matching of Kn. The remaining edges constitute an n−2 regular graph in which we again
choose a perfect matching. We proceed to choose perfect matchings until we exhaust all
of E(Kn). The theorem implies that we have at most ((n− k)!)

n
2(n−k) choices for the k-th

step, so that F (n) ≤
∏n−1

d=1 (d!)
n
2d . An application of Stirling’s formula gives:

Theorem 3.1.2.

F (n) ≤
(

(1 + o(1))
n

e2

)n2

2
.
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One of the results of the present paper is a new proof of this bound.
It is an interesting question to seek lower bounds to complement these upper bounds.

We have already mentioned Wilson’s lower bound on STS(n). Cameron gave a lower
bound for F (n) in [4]. His argument yields

F (n) ≥
(

(1 + o(1))
n

4e2

)n2

2
.

For the sake of completeness we repeat his argument. It starts with the inequality F (n) ≥
L(n

2
)(F (n/2))2, where L(n) is the number of order-n Latin squares. This inequality

is shown as follows: Partition the vertex set [n] into two equal parts, and select an
arbitrary 1-factor on each. It is well-known and easy to prove that a 1-factorization of
Kr,r is equivalent to an order-r Latin square. It follows easily from the Van der Waerden

conjecture that L(n) ≥ ( (1+o(1))n
e2

)n
2

(see [10]). The derivation of Cameron’s lower bound
is a simple matter now. We note that this argument works when n is divisible by 4.
When n = 4r + 2 some additional care is required.

For the record, we complement Wilson’s conjecture with a conjecture on the number
of 1-factorizations:

Conjecture 3.1.3.

F (n) =
(

(1 + o(1))
n

e2

)n2

2
.

Our proofs are based on the entropy method, a useful tool for a variety of counting
problems. The basic idea is this: In order to estimate the size of a finite set F , we
introduce a random variable X that is uniformly distributed on the elements of F . Since
H(X) = log(|F|), bounds on H(X) readily translate into bounds on |F|. The bounds
we derive on H(X) are based on several elementary properties of the entropy function.
Namely, if a random variable takes values in a finite set S then its entropy does not exceed
log |S| with equality iff the distribution is uniform over S. Also, if X can be expressed as
X = (Y1, . . . , Yk), then H(X) =

∑
j H(Yj|Y1, . . . , Yj−1). The expression X = (Y1, . . . , Yk)

can be viewed as a way of gradually revealing the value of the random variable X. It is
a key ingredient of our proofs to randomly select the order in which the variables Yi are
revealed and average over the resulting identities H(X) =

∑
j H(Yj|Yi s.t. i precedes j).

Similar ideas can be found in the literature, but to the best of our knowledge this method
of proof is mostly due to Radhakrishnan [10]. We deviate somewhat from the standard
notation in that our logarithms are always natural, rather than binary. Formally, we
should use the notation He for the entropy function, but to simplify matters, we stick
to the standard notation H(X). We refer the reader to [5] for a thorough discussion of
entropy. For an example of the entropy method, see [10].

In section 2, we give an entropy proof of theorem 3.1.2. Using similar methods, in
section 3 we give an entropy proof of theorem 3.1.1.

3.2 An upper bound on 1-factorizations

Let n be an even integer, and let X be a random, uniformly chosen 1-factorization of
Kn. Define the random variable X{i,j} to be the color of the edge {i, j} in X. In order
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to analyze these random variables we first fix an ordering of the edges and we seek to
bound the number of colors which are available for the edge {i, j}, given the colors of
the preceding edges.

A color c is unavailable for X{i,j} if there is a previously seen variable of the form
X{i,k} or X{k,j} which is equal to c. Let N{i,j} denote the number of available colors. It
is really an upper bound on the number of values that X{i,j} can take given values for
previously seen variables. Note that N{i,j} depends both on X and on the ordering.

We first apply the chain rule for the entropy function.

log(F (n)) = H(X) =
∑
{i,j}

H(X{i,j}|X{k,l} : {k, l} precedes {i, j}) (3.1)

=
∑
{i,j}

EX [H(X{i,j}|X{k,l} = x{k,l} : {k, l} precedes {i, j})].

We now use the bound H(X) ≤ log(|Range(X)|) and conclude that

log(F (n)) ≤
∑
{i,j}

EX [log(N{i,j})].

This bound holds for any ordering of the edges. We choose a random ordering by
selecting a random mapping λ :

(
[n]
2

)
→ [0, 1]. Edges are scanned according to the order

of the real numbers λ({i, j}) starting from the largest values. Of course we may assume
that λ is 1 : 1. This description of the ordering turns out to simplify matters in the
discussion below.

We now take the expectation with respect to the random choice of the ordering, i.e.,
the choice of the mapping λ.

log(F (n)) ≤ Eλ[
∑
{i,j}

EX [log(N{i,j})]] =
∑
{i,j}

EX [Eλ[log(N{i,j})]].

We bound the expectation Eλ[log(N{i,j})] using Jensen’s inequality. If we do this right
away, the resulting upper bound is not optimal. Therefore, we first condition on the value
of λ({i, j}) and only then use Jensen’s inequality.

Eλ[log(N{i,j})] = Eλ({i,j})[Eλ[log(N{i,j})|λ({i, j})]] ≤

Eλ({i,j})[log(Eλ[N{i,j}|λ({i, j})])]
In order to evaluate this expression it is necessary to compute the expectation of

N{i,j} given λ({i, j}).

Lemma 3.2.1. Eλ[N{i,j}|λ({i, j})] = 1 + (n− 2)λ({i, j})2.

Proof. The true color of the edge {i, j} in X is obviously always available to X{i,j}. For
each remaining color c, there is an edge of the form {i, a} and an edge of the form {b, j}
that take the color c in X. If either of these edges λ-precedes {i, j} then c is unavailable.

The edge {i, j} precedes any edge of smaller λ value. Since these values are chosen
independently, the probability that c is available is λ({i, j})2, and the result follows from
the linearity of the expectation.
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Using lemma 3.2.1, we have

Eλ({i,j})[log(Eλ[N{i,j}|λ({i, j})])] =

∫ 1

0

log(1 + (n− 2)t2)dt

= log(n− 1)− 2 +
2 arctan(

√
n− 2)√

n− 2

= log(n)− 2 +O

(
1√
n

)
.

Consequently,

log(F (n)) ≤
∑
{i,j}

log(n)− 2 +O

(
1√
n

)

=

(
n

2

)(
log(n)− 2 +O

(
1√
n

))
which yields the bound

F (n) ≤
((

1 +O

(
1√
n

))
n

e2

)n2

2

.

3.3 An upper bound on the number of Steiner triple

systems

The ideas here are similar to those in section 2, but the details are different.
Let X be a uniformly chosen random Steiner triple system on n vertices. Define X{i,j}

to be the unique vertex k such that {i, j, k} is a triple in X.
As above, for a given order on the pairs we define a random variable N{i,j}.
Let X{i,j} = k, and let F{i,j} denote the event that {i, j} precedes both {j, k} and

{i, k}. If F{i,j} doesn’t occur, set N{i,j} := 1.
Let t ∈ [n] r {i, j, k} be a vertex. Since {i, j, t} /∈ X, there are vertices a and b such

that {i, a, t}, {j, b, t} ∈ X. We say that the vertex t is unavailable for X{i,j} if any of
the six pairs in these triples precede {i, j}. If F{i,j} does occur, define N{i,j} to be the
number of available vertices.

Now, If F{i,j} doesn’t occur, then X{i,j} is uniquely determined by the preceding
variables. Otherwise, the unavailable vertices are ruled out as possible values for X{i,j}.
If, for instance, {a, t} is revealed before {i, j}, then by the time that X{i,j} is revealed to
us we already know that {i, a, t} ∈ X, and therefore {i, j, t} /∈ X and X{i,j} 6= t.

Thus, N{i,j} is an upper bound on the number of vertices that are available for X{i,j},
given the values of the preceding variables.

For a given ordering of the pairs, as in Equation (3.1) we derive:

log(STS(n)) = H(X) ≤
∑
{i,j}

EX [log(N{i,j})].
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Figure 3.1: If either of the triangles {t, i, a} or {t, j, b} are revealed before X{i,j}, then t
is unavailable.

As before, we choose a random ordering by selecting a random mapping λ :
(
[n]
2

)
→

[0, 1]. Pairs are considered by decreasing order of their λ values. We take the expectation
over the choice of λ to obtain

log(STS(n)) ≤
∑
{i,j}

EX [Eλ[log(N{i,j})]].

Let us fix X and an edge {i, j} and turn to bound Eλ[log(N{i,j})]. The next step is
to condition over λ({i, j}).

Eλ[log(N{i,j})] = Eλ({i,j})[Eλ[log(N{i,j})|λ({i, j})]].

The event F{i,j} occurs iff λ({i, j}) > λ({i, k}) and λ({i, j}) > λ({k, j}) so that
Pr(F{i,j}|λ({i, j})) = λ({i, j})2. Therefore

Eλ[log(N{i,j})|λ({i, j})] = λ({i, j})2Eλ[log(N{i,j})|λ({i, j}), F{i,j}]

≤ λ({i, j})2 log(Eλ[N{i,j}|λ({i, j}), F{i,j}]), (3.2)

where the final inequality follows from Jensen’s inequality.

Lemma 3.3.1. Eλ[N{i,j}|λ({i, j}), F{i,j}] = 1 + (n− 3)λ({i, j})6.

Proof. The vertex k that participates in a triple with i, j is obviously always available
to X{i,j}. As mentioned, for each remaining vertex t, there are six pairs that {i, j} must
λ-precede for t to be available, and this occurs with probability λ({i, j})6. The result
follows from the linearity of the expectation.
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Using 3.2 and lemma 3.3.1, we have

Eλ({i,j})[log(Eλ[N{i,j}|λ({i, j})])] =

∫ 1

0

t2 log(1 + (n− 3)t6)dt

=
1

3

(
(log((n− 3)x6 + 1)− 2x3) +

2 arctan(
√
n− 3x3)√

n− 3

)∣∣∣∣1
0

=
1

3

(
(log(n− 2)− 2) +

2 arctan(
√
n− 3)√

n− 3

)

=
1

3

(
log(n)− 2 +O

(
1√
n

))
.

Consequently,

log(STS(n)) ≤
∑
{i,j}

1

3

(
log(n)− 2 +O

(
1√
n

))

=
n2

6

(
log(n)− 2 +O

(
1√
n

))
which yields the bound

STS(n) ≤
((

1 +O

(
1√
n

))
n

e2

)n2

6

.
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On the vertices of the d-dimensional Birkhoff polytope

Nathan Linial Zur Luria

Abstract

Let us denote by Ωn the Birkhoff polytope of n × n doubly-stochastic matri-
ces. As the Birkhoff-von Neumann theorem famously states, the vertex set of Ωn

coincides with the set of all n×n permutation matrices. Here we consider a higher-

dimensional analog of this basic fact. Let Ω
(2)
n be the polytope which consists of

all tristochastic arrays of order n. These are n × n × n arrays with nonnegative

entries in which every line sums to 1. What can be said about Ω
(2)
n ’s vertex set? It

is well-known that an order-n Latin square may be viewed as a tristochastic array
where every line contains n − 1 zeros and a single 1 entry. Indeed, every Latin

square of order n is a vertex of Ω
(2)
n , but as we show, such vertices constitute only

a vanishingly small subset of Ω
(2)
n ’s vertex set. More concretely, we show that the

number of vertices of Ω
(2)
n is at least (Ln)

3
2
−o(1), where Ln is the number of order-n

Latin squares.
We also briefly consider similar problems concerning the polytope of n× n× n

arrays where the entries in every coordinate hyperplane sum to 1, improving a result
from [8]. Several open questions are presented as well.

4.1 Introduction

Let Ωn ⊂ Rn2
be the Birkhoff polytope, namely the set of order-n doubly stochastic

matrices. The defining equations and inequalities of Ωn are
n∑
i=1

xi,j = 1 for all 1 ≤ j ≤ n,

n∑
j=1

xi,j = 1 for all 1 ≤ i ≤ n,

and
xi,j ≥ 0 for all 1 ≤ i, j ≤ n.

The vertex set of Ωn is determined by the Birkhoff-von Neumann theorem [1, 11].
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Theorem 4.1.1. The vertex set of Ωn coincides with the set of permutation matrices of
order n.

We consider here some higher-dimensional analogs of the polytope Ωn and ask about
their vertex sets in light of Theorem 4.1.1.

A line in an n × n × n array A is the set of entries obtained by fixing two indices
and letting the third vary from 1 to n. A line of the form A(·, j, k) is called a column, a
line of the form A(i, ·, k) is a row and a line of the form A(i, j, ·) is a shaft. A coordinate
hyperplane in A is the n × n matrix obtained by fixing one index and letting the other
two vary. Such a hyperplane of the form A(·, ·, k) is called a layer of A. We denote the
k-th layer of A by Ak. We denote the support of an array A by supp(A).

Let Ω
(2)
n be the polytope of all tristochastic arrays of order n. Namely, n × n × n

arrays with nonnegative entries in which every line sums to 1. Latin squares of order n
can be viewed as two-dimensional permutations and it is easily verified that every Latin
square of order n is a vertex of Ω

(2)
n . Does the natural analog of Theorem 4.1.1 hold true?

As we show (Theorem 4.1.5), this is far from the truth. Of the v = vn vertices of Ω
(2)
n

only fewer than v2/3+o(1) correspond to Latin squares.
In Section 4.3 we establish a similar phenomenon for a related polytope. Namely, now

we consider n× n× n arrays of nonnegative reals in which every coordinate hyperplane
sums to 1. It is shown in [8] that a natural, combinatorially defined set of vertices,

comprise no more than v
2
3
+o(1) of the v vertices of this polytope. We improve this bound

to v
1
2
+o(1).

The polytopes that we consider here have been studied in various contexts. For an
extensive coverage, see [12],[3]. These earlier studies were motivated mostly by interest
in optimization problems. The (original) Birkhoff polytope plays an important role in
assignment problems. Likewise, its higher dimensional analogs are of interest in the
study of transportation polytopes, multi-index assignment problems and other classical
optimization problems.

4.1.1 Background material

A Latin square L of order n is an n × n matrix with entries from [n] := {1, ..., n} such
that each symbol appears exactly once in every row and column. Equivalently, it is an
n × n × n array A of zeros and ones in which every line has exactly one 1 entry. The
correspondence between the two definitions is this: A(i, j, k) = 1 ⇔ L(i, j) = k. We
denote the number of order-n Latin squares by Ln.

The permanent of an n× n matrix A is defined as

Per(A) =
∑
σ∈Sn

n∏
i=1

ai,σ(i).

A lower bound on permanents of doubly stochastic matrices was conjectured by van
der Waerden and proved by Falikman and by Egorychev [5, 4].

Theorem 4.1.2. If A is an n× n doubly stochastic matrix, then

Per(A) ≥ n!

nn
.
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An upper bound on the permanent of zero/one matrices was conjectured by Minc and
proved by Brègman [2].

Theorem 4.1.3. Let A be an n × n matrix of zeros and ones with ri ones in the i-th
row. Then

Per(A) ≤
n∏
i=1

(ri!)
1/ri .

The following argument of van Lint and Wilson [10] utilizes these two bounds to
derive an estimate for Ln by constructing a Latin square A and bounding the number of
ways to do this. Consider the n× n× n zero-one array representation of a Latin square
layer by layer. Each layer is a permutation matrix, so that there are n! choices for the
first layer. Having already specified k− 1 layers, the number of choices for the k-th layer
can be expressed as the permanent of B, a zero/one matrix where bij = 1 iff aijt = 0 for
all k > t. Using the above upper and lower bounds on per(B) it follows that

Theorem 4.1.4.

Ln =
(

(1 + o(1))
n

e2

)n2

.

4.1.2 A higher dimensional Birkhoff polytope

Definitions

Let Ω
(d)
n be the set of [n]d+1 nonnegative arrays such that the sum of each line is 1. Thus,

Ω
(1)
n = Ωn, the set of order-n doubly stochastic matrices. Likewise, we call a member of

Ω
(d)
n a (d + 1)-stochastic array. Maintaining the analogy, we let S

(d)
n be the set of [n]d+1

arrays of zeros and ones with a single one in each line. In other words, S
(d)
n consists of

all (d + 1)-stochastic arrays all of whose entries are zero or one. Thus, S
(1)
n is the set of

order n permutation matrices and S
(2)
n coincides with the set of order-n Latin squares.

Members of S
(d)
n are called d-permutations.

In the literature, the set of all nonnegative d-dimensional arrays with line sums equal
to 1, which we denote by Ω

(d−1)
n , is called the d-index planar assignment polytope. In

Section 4.3 we consider the polytope of all nonnegative d-dimensional arrays with hy-
perplane sums equal to 1, and denote it by Σ

(d−1)
n . In the literature this polytope is

called the d-index axial assignment polytope. These polytopes are instances of multi-way
transportation polytopes. See [9] for a survey of what is known about these more general
objects.

We turn to investigate the vertex set of Ω
(d)
n . It is easily verified that every member

of S
(d)
n is a vertex of Ω

(d)
n . However, as we show here Ω

(d)
n can have numerous additional

vertices.
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4.1.3 A motivating example

It is instructive to consider the smallest such example. Namely, the following array A is
a vertex of Ω

(2)
3 .

A1 =

 1 0 0
0 1

2
1
2

0 1
2

1
2

A2 =

 0 1
2

1
2

1
2

1
2

0
1
2

0 1
2

A3 =

 0 1
2

1
2

1
2

0 1
2

1
2

1
2

0


To see that A is indeed a vertex, assume to the contrary that A = αB+ (1−α)C for

some 0 < α < 1 and B 6= C in Ω
(2)
3 . If A(i, j, k) is 0 or 1, then necessarily A(i, j, k) =

B(i, j, k). So wherever A(i, j, k) 6= B(i, j, k), there holds A(i, j, k) = 1
2
.

Consider the graph G = G(A) whose vertices are the 1
2

entries of A, where two
vertices are adjacent iff they are on the same line. Since A is tristochastic, it follows that
B(i, j, k)+B(i′, j′, k′) = 1 for every two neighbors (i, j, k) and (i′, j′, k′) in G. Specifically,
if B(i, j, k) = 1

2
+ ε, then B(i′, j′, k′) = 1

2
− ε. Consequently, the connected component of

G which contains the vertices (i, j, k) and (i′, j′, k′) is bipartite. The color of a vertex is
determined according to whether the B entry is 1

2
± ε. However, it is easy to verify that

G is connected and not bipartite, which proves our claim.

4.1.4 A scheme for constructing vertices

The above example suggests a construction for vertices of Ω
(2)
n . Let A be an order-n

tristochastic array whose support consists of exactly two 1
2

entries in each line. The
graph G = G(A) defined as above is 3-regular and has 2n2 vertices. As we now show, A

is a vertex of Ω
(2)
n iff no connected component of G is bipartite.

Indeed, suppose that G has a bipartite connected component with parts P and Q. Let
∆ be the [n]3 array with ±1 entries at the elements of P,Q respectively and 0 everywhere
else. Note that every line of ∆ sums to zero. To see that A is not a vertex, note that
A = X+Y

2
, where X, Y = A± 1

2
∆ are clearly tristochastic.

Conversely, suppose that A = αB + (1 − α)C with 1 > α > 0 and B 6= C in Ω
(2)
n is

not a vertex. The same consideration that worked for the above example shows that the
relevant component of G is bipartite.

This discussion suggests that we construct A so that no connected component of G(A)
is bipartite. This shouldn’t be too hard, since G is 3-regular. Indeed, we suspect (but
we still cannot show) that with high probability a randomly chosen tristochastic array
with two 1

2
’s in each line is a vertex. This idea still yields the following lower bound on

the number of vertices of Ω
(2)
n .

Theorem 4.1.5. The polytope Ω
(2)
n has at least L

3
2
−o(1)

n vertices.
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4.2 Proof of theorem 4.1.5

4.2.1 The construction

Let I = (i1, i2, . . . , in) and J = (j1, j2, . . . , jn) be two permutations of [n]. We let

H(I, J) := {(i1, j1), (i2, j1), (i2, j2), (i3, j2), . . . , (in, jn), (i1, jn)},

and call such a collection of index pairs an H-cycle. If the elements of an H-cycle are
interpreted as the indices of entries in an n×n matrix, there are exactly two such entries
in every row and column. Note that H(I, J) = H(I ′, J ′) where I ′ = (i2, i3, . . . , in, i1)
and J ′ = (j2, j3, . . . , jn, j1). Likewise, if we “reverse” the order of the iν and the jν by
replacing I with I ′ = (i1, in, in−1, ..., i2) and J with J ′ = (jn, nn−1, ...j1), H(I, J) remains
unchanged. Consequently, the number of H-cycles is 1

2
n!(n− 1)!.

Definition 4.2.1. Let n be an even integer. An order n double Latin square is an n× n
matrix with entries from {1, ..., n

2
} where each symbol appears exactly twice in each row

and column.

We say that a double Latin square X is Hamiltonian if the indices of the k-entries of
X constitute an H-cycle for every k ∈ {1, ..., n

2
}. (This explains the choice of the term

H-cycle).
Let A be a t × t matrix and let σ ∈ St be a permutation. We denote by σ(A) the

matrix obtained from A by applying σ to its rows. We need the following result from [7]:

Proposition 4.2.2. Let A,B be two order n
2

Latin squares and let σ ∈ Sn
2

be a cyclic
permutation. Then the block matrix

X =

(
A B

σ(A) B

)
.

is an order n Hamiltonian double Latin square.

It follows that the number of Hamiltonian order-n double Latin squares is at least

(n
2
− 1)! · L2

n
2

= ((1 + o(1)) n
2e2

)
n2

2 .

We want to construct a tristochastic array A with exactly two 1
2
’s in each line, in such

a way that G(A) is non-bipartite and connected (and therefore A is a vertex).
The idea is to use a Hamiltonian double Latin square X to define the top n

2
layers

of A. We use the fact that X is Hamiltonian to complete A in such a way that G(A) is
connected, and then “plant” an odd cycle in G(A) to ensure that G(A) isn’t bipartite.

Given a Hamiltonian double Latin square X, we use it as the “topographical map” of
the top n

2
layers of A. Namely, A(i, j, k) = 1

2
⇔ X(i, j) = k. Let us observe the subgraph

of G(A) spanned by the entries of A that reside in these top layers. Every positive entry
A(i, j, k) = 1

2
comes from X(i, j) = k, and X has exactly two k entries in each line.

Therefore this subgraph of G(A) is 2-regular. Moreover, since X is Hamiltonian, for
every 1 ≤ k ≤ n

2
the vertices of G(A) that correspond to supp(Ak) constitute a cycle of

length 2n. In other words, the subgraph of G(A) corresponding to the entries of the top
half of A is the disjoint union of n

2
cycles of length 2n.
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At this point, there are two 1
2

entries in every line that resides in one of the top n
2

layers of A, and a single 1
2

entry in every shaft.
We turn to define the next layer, An

2
+1. Our purpose is to choose the 1

2
entries in this

layer so as to form a single cycle of length 2n. The vertices of this subgraph should also be
connected to each of the cycles in the top n

2
layers. Clearly, if we manage to accomplish

this task, then the part of G(A) that is already revealed is connected. Furthermore, note
that every shaft contains a positive entry in the top half of A. Therefore, G(A) will
remain connected regardless of our choices in the lower layers of A.

In order to achieve our goals concerningAn
2
+1, we want to find n

2
index pairs (i1, j1), ..., (in

2
, jn

2
)

such that X(il, jl) = l for all 1 ≤ l ≤ n
2

and no two of them share a row or a column. We
find such pairs successively as follows: Suppose that, for some k < n

2
, we already have k

pairs (i1, j1), ..., (ik, jk) with X(i1, j1) = 1, ..., X(ik, jk) = k and no two pairs share a row
or column. We claim that there is an additional pair (ik+1, jk+1) that does not share a
row or column with any of the above index pairs, and X(ik+1, jk+1) = k + 1. Since X is
a double Latin square, every row and column of X has exactly two elements that equal
k + 1. Therefore at most 4k of these entries share a row or column with a previous pair.
But 2n > 4k, so that such an index pair (ik+1, jk+1) must exist.

We choose n
2

more pairs of indices (in
2
+1, jn

2
+1), ..., (in, jn) in such a way that no two

pairs of (i1, j1), ..., (in, jn) share a row or a column.
It is possible to rename, if necessary, the set of chosen pairs {(iα, jα)|α = 1, . . . , n}

as {(ν, τν)|ν = 1, . . . , n} for some permutation τ ∈ Sn. Let P be the permutation matrix
of τ . We next select a permutation σ ∈ Sn whose permutation matrix P ′ is such that
P +P ′ consists of a single cycle. (We note that given τ , there are exactly (n−1)! possible
choices for σ). We achieve our aim by setting An

2
+1 := 1

2
(P + P ′).

The purpose of our choices for An
2
+2 is to introduce an odd cycle into G(A). This

odd cycle must use elements from the top half of A. Additionally, the indices of the 1
2

entries in An
2
+2 must avoid all index pairs used in An

2
+1, so as not to create a shaft with

three 1
2

entries.
To this end, we seek two vertices x = (x1, x2, k) and y = (y1, y2, k) with x1 6= y1 and

x2 6= y2 that are connected by a path of odd length in the part of G(A) constructed so far.
The construction of An

2
+2 will yield a length four path between x and y, ensuring that

G(A) is not bipartite. This path will have the form x, x′, w, y′, y where x′ = (x1, x2,
n
2

+
2), y′ = (y1, y2,

n
2

+ 2) and w is either (x1, y2,
n
2

+ 2) or (y1, x2,
n
2

+ 2).
A simple counting argument shows the feasibility of this construction. Two vertices

from the same layer can serve as x and y if their distance in that layer is odd and ≥ 3.
There are Ω(n2) such pairs in every layer with a total of Ω(n3) such candidate pairs. On
the other hand, as we show below, only O(n2) such pairs are ruled out, so at least for
large n a good choice of such x, y must exist.

The reason that an entry cannot play the role of x is that its shaft meets supp(An
2
+1).

There are O(n) vertices in x’s layer which might serve as y, and supp(An
2
+1) has cardi-

nality 2n, so only O(n2) pairs x, y get ruled out for this reason. It remains to see how the
pair x = (x1, x2, k) and y = (y1, y2, k) can be disqualified when both x’s and y’s shaft do
not meet supp(An

2
+1). This can happen only if both (x1, y2,

n
2

+ 2) and (y1, x2,
n
2

+ 2) are

unavailable to us, namely A(x1, y2,
n
2

+ 1) = A(y1, x2,
n
2

+ 1) = 1
2
. There are only O(n2)
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such instances, one per each pair of vertices in the 2n-cycle residing in An
2
+1.

By doing these computations carefully, one shows that already for n ≥ 10 there must
exist a good pair for the above argument.

Next we need to complete supp(An
2
+2). We are currently committed to three elements

and 2n− 3 more 1
2

entries need to be chosen, so that altogether there are exactly two in
each row and column. The locations that must not be chosen are those in the “shadow”
of supp(An

2
+1). It is easily seen that we need the following simple graph-theoretic claim.

Proposition 4.2.3. Let G = (L,R,E) be a (n − 2)-regular bipartite graph with |R| =
|L| = n ≥ 6 and let M be a path of length 3 in G. Then there is a 2-factor in G which
contains the three edges of M .

Proof. Let M = x1, x2, x3, x4. A bipartite graph with sides of size k and degrees
≥ k/2 has a perfect matching. Let Φ be a perfect matching in G \ {x1, x2, x3, x4}.
Next let Ψ be a perfect matching in G \ {x2, x3} \ Φ. The desired 2-factor is Φ ∪ Ψ ∪
{(x1, x2), (x2, x3), (x3, x4)}.

To recap, the graph G(A) is connected, it contains an odd cycle, and these properties
are retained regardless of how the remaining n

2
− 2 layers are completed.

The remaining layers are constructed as follows. Let K be an n × n matrix where
K(i, j) = 1 or 0 according to whether the shaft A(i, j, ·) has one or two 1

2
entries. Each

row and column of K has n− 4 one-entries. In other words, K is the adjacency matrix
of an (n − 4)-regular bipartite graph which, therefore, has a 2-factor. This process can
be completed layer by layer. This is just an existential argument and we next turn to
estimate the number of ways in which our construction can be realized.

To this end we will multiply the number of ways to construct the top half and the

appropriate number for the bottom half. As stated above, there are L
1
2
+o(1)

n ways to
construct the top half. The estimate for the bottom n

2
− 2 layers is a slight variation on

van Lint and Wilson’s [10] approximate enumeration of Latin squares. By the van der
Waerden bound [5, 4], a k-regular (n, n) bipartite graph H has at least

(
(1 + o(1)k

e

)n
perfect matchings. By the same argument, there are at least

(
(1 + o(1)k−1

e

)n
ways to

complete a perfect matching in H to a 2-factor. The product of these two numbers is
an overcount, since every cycle in the 2-factor can be split in two ways between the first
and second 1-factors. Consequently, H has at least(

(1 + o(1))
k(k − 1)

e2
√

2

)n
2-factors.

We think of K as the adjacency matrix of such an H, and each layer is just a 2-factor
supported by K. With each choice, the edges of the chosen 2-factor are removed from
H, which goes from being d-regular to (d − 2)-regular. This yields the following lower
bound on the number of choices:∏

2≤k≤n−4, k is even

(
(1 + o(1))

k(k − 1)

e2
√

2

)n
=
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(n− 4)!n ·
(

1 + o(1)

e2
√

2

)n(n−4)/2
=

(
(1 + o(1))

n

2
1
4 e2

)n2

= L1−o(1)
n .

The product of the bound for the top half and the bound for the bottom half yields

a total of L
3
2
−o(1)

n .

4.3 A variation on the theme

Here is another natural extension of the notion of doubly stochastic matrices. Namely,
let Σ

(d)
n be the set of all [n]d+1 arrays of nonnegative reals such that the entries in each

coordinate hyperplane sum to one. The collection of such arrays clearly constitutes a
convex polytope. Our goal is to investigate the vertex set of this polytope.

The vertices of Σ
(d)
n have been studied before ([8], [6]). It is a well known fact that these

polytopes have some noninteger vertices. V. M. Kravtsov [8] has considered the problem
of enumerating the vertices, and gave a lower bound of (n!)3+o(1). Our construction
improves this result and yields a lower bound of (n!)4+o(1).

The arithmetic properties of vertices of Σ
(d)
n have also been studied. Kravtsov wrote

a series of papers discussing constructions of vertices, and in particular showed that
the denominator of the fractional elements of a vertex can grow exponentially with n.
Gromova [6] gave a characterization of the sets of numbers that can appear as entries in
a vertex.

Let us define T
(d)
n as the collection of all [n]d+1 arrays of zeros and ones with a single

one in each coordinate hyperplane. It is clear that T
(d)
n is included in the vertex set of

Σ
(d)
n . There is a natural bijection between tuples (σ1, ..., σd) ∈ Sdn and members A ∈ T (d)

n

which is given by A(i, σ1(i), ..., σd(i)) = 1 for all 1 ≤ i ≤ n. In particular |T (d)
n | = (n!)d.

As it happens, noninteger vertices are easy to construct. Here is the smallest example:

A1 =

[
1
2

0
0 1

2

]
, A2 =

[
0 1

2
1
2

0

]
Clearly A ∈ Σ

(2)
2 . We now consider the graph Ḡ(A) with vertex set supp(A) with

an edge between every two vertices that lie in the same coordinate hyperplane. As
in Section 4.1.2, we show that A is a vertex by observing that Ḡ(A) has no bipartite
connected component. In the present case, Ḡ = K4.

Our general construction is similar in nature to this example. We first construct an
n×n matrix M with entries from [n] in which every row and column contains exactly two
nonzero entries and where each integer in [n] appears exactly twice in M . We view M as
a way to encode A as follows: M(i, j) = k for some k 6= 0 says that A(i, j, k) = 1/2 and
A(i, j, k′) = 0 for all k′ 6= k. Also M(i, j) = 0 means that A(i, j, l) = 0 for all l. It is not
hard to verify that if the graph Ḡ corresponding to M is connected and non-bipartite,
then A is a vertex of Σ

(2)
n .

We now turn to construct many such matrices M and thus generate many vertices
for Σ

(2)
n which are not in T

(2)
n . Let

H = {(i1, j1), (i2, j1), (i2, j2), . . . , (in, jn), (i1, jn)}
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be an H-cycle and let

M(i1, j1) = M(i2, j2) = 1 and M(i2, j1) = 2.

The remaining entries of the H-cycle M(iα, jα) and M(iα+1, jα) are filled arbitrarily with
the elements of the multiset {2, 3, 3, 4, 4, . . . , n, n}. Note that the resulting graph Ḡ is
connected, due to the fact that the first two indices of the 1

2
elements of A form an

H-cycle, and non-bipartite, since it contains the triangle {(i1, j1, 1), (i2, j2, 1), (i2, j1, 2)}.
There are 1

2
n!(n − 1)! choices for H and and (2n−3)!

2n−2 ways to map the multiset to the

nonzero entries of M . Altogether, this construction yields more than (n!)4 =
(
T

(2)
n

)2
vertices of Σ

(2)
n .

4.4 Conjectures and some experimental results

This paper raises many open questions. Here are several of them:

• Get a better estimate for the number of vertices of Ω
(2)
n .

• The analogous question for Ω
(d)
n with d > 2 seems completely open at this writing.

• The polytope Ω
(2)
n is defined by requiring that one-dimensional subsets of the array

sum to one. In the definition of Σ
(2)
n this is required of two-dimensional subsets.

For larger d there are a whole range of possible polytopes to consider, depending
on which sets of entries sum to 1.

If we knew the support size of vertices in Ω
(d)
n , we could make progress on these

questions. By standard linear programming arguments, every vertex of Ω
(d)
n has at least

aff-dim(Ω
(d)
n ) zero coordinates. Since aff-dim(Ω

(d)
n ) = (n−1)d+1, every vertex has support

size at most nd+1 − (n− 1)d+1 ≤ (d+ 1) · nd.
It follows that Ω

(d)
n has at most

(
nd+1

(d+1)nd

)
≤
(
ne
d+1

)(d+1)nd

vertices. In particular, Ω
(2)
n

has fewer than n3n2
vertices. If we knew, say, that a typical vertex of Ω

(2)
n has support

size ≤ αn2 vertices, we could conclude that it has at most n(1+o(1))αn2
vertices.

We have conducted some numerical experiments to get a sense of the numbers. Using
linear programming tools, it is possible to find the vertex that maximizes a randomly
chosen linear objective function. Needless to say, this distribution on the vertices is by
no means uniform. We nevertheless hope that our experiments do tell us something
meaningful about the properties of typical vertices. We selected the coordinates in the
objective function independently from normal distribution. The average value of α in
these experiments seems to increase slowly with n. We don’t know whether the typical
support size of a vertex converges to 3n2 or to αn2 for some α < 3.
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Chapter 5

Discussion and Open Questions

The research presented in this thesis is part of a large scale effort in the combinatorics
world to understand the properties of high dimensional objects. In many cases these
objects exhibit properties that are richer and more complicated than those of their lower
dimensional counterparts. Here are some examples of this from our research.

• For d = 2 van der Waerden’s theorem gives us a simple way to construct 2-
permutations (or Latin squares) and also to obtain a lower bound on their number.
However, the natural extension of van der Waerden’s conjecture does not hold true
for higher dimensions. There are d-stochastic arrays whose d-dimensional perma-
nent is zero.

• There are simple algorithms for constructing perfect matchings and sampling them
at random. However, for higher dimensions it seems that these problems are ex-
tremely difficult.

• As Birkhoff’s theorem states, the vertices of the polytope of doubly stochastic
matrices are the permutation matrices. As we have shown, the vertices of the
polytope of tristochastic arrays are much more varied. We do not yet have a good
description for them, and we only have weak upper and lower bounds on their
number.

There are many basic tantalizing questions about high dimensional objects that we
do not know the answer to. For one thing, we would very much like to find matching
lower bounds for high dimensional permutations and Steiner systems. One approach that
seems promising is to find a lower bound on the d-Permanent. We know that the natural
analog of van der Waerden’s conjecture fails in higher dimensions, but perhaps there is
a bound with a different flavor that could be of use.

A Steiner system with parameters (n, t, k) is an n element set S together with a
collection X of k-element subsets of S with the property that each t-element subset of S
is contained in a unique set x ∈ X. Using our methods, we can prove an upper bound
on the number of order n Steiner systems with k = t + 1. However, finding a lower
bound on Steiner systems in general seemed until recently to be all but impossible, since
the question of the existence of Steiner systems for t ≥ 6 had been open for almost 200



years. This was one of the central open problems in combinatorics, until Peter Keevash
solved it earlier this year [2], showing that there exist infinitely many Steiner systems for
any parameters t, k such that 1 ≤ t < k. It is our hope that using his methods it may
be possible to get better lower bounds on high dimensional permutations and Steiner
systems.

Another problem that we would like to make progress on is understanding random
high dimensional objects. Is there an efficient algorithm to sample a high dimensional
permutation uniformly at random? Matthews and Jacobson proposed a Random walk
over the set of order-n Latin squares and showed that it is connected [1]. If this random
walk could be shown to be rapidly mixing, it would yield an efficient algorithm for
sampling Latin squares uniformly at random. This walk can easily be adapted to Steiner
triple systems, but it is not known whether this yields a connected Markov chain.

Random regular graphs have proved immensely important both for theoretical and
practical applications. What are the properties of random regular hypergraphs? For
example, it is well known that a random regular graph is with high probability a good
expander. Recently, much work has been done on generalizing the concept of expansion
in graphs to higher dimensions (see for example [3]). Is it true that a random regular
hypergraph is with high probability a good high dimensional expander? This seems to
be a good topic for further research.
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