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Abstract

This thesis contains most of the fruits of my PhD mathematical research. Two main lines of
research show up throughout the five manuscripts composing this thesis: free groups and expansion
of random graphs. The two are closely related via the notion of word maps.

In my perspective, the most valuable contributions of my research so far have been in two fields
of study: measure-theoretic characterization of words, and expansion of random graphs. In the
former, I have studied the measure induced on finite groups by words. Namely, fix some word w in
Fk, the free group on k generators x1, . . . , xk. This word induces a measure on every finite group
via the word map w : Gk → G (here Gk is the Cartesian product of G) and a push forward of the
uniform measure on Gk. (Put differently, for each 1 ≤ i ≤ k, substitute xi with an independent,
uniformly distributed random element of G and evaluate the product defined by w to obtain a
random element in G.) It is an easy observation that primitive words, namely words belonging to
some basis of Fk, induce the uniform measure on every finite group G. Several mathematicians
have conjectured that this property actually characterizes primitive elements, i.e. that a word which
induces the uniform measure on every finite group is primitive. In Chapter 1 I prove the conjecture
for F2, and in Chapter 2 we prove the conjecture in full.

The second field of study, that of expansion of random graphs, culminated in the work presented
in Chapter 3. Here, I use, inter alia, the results from the first two chapters and present a new
approach to showing that random graphs are nearly optimal expanders. This new approach applies
to both regular and irregular random graphs. This work proves a slightly weakened version of the
generalized second eigenvalue conjecture by Alon and Friedman. In the most general setting of this
conjecture, it is the best result to date.

Using my new understanding of primitive words, I also studied what a common primitive word
looks like. In Chapter 4 we describe the structure of generic primitive words. This also solves a
question about the growth of the set of primitive elements, which was open for more than a decade.

Finally, as a side to our work in Chapter 2, we studied a natural conjecture of Miasnikov,
Ventura and Weil about algebraic extensions in free groups. We managed to refute it, and this is
the main result of Chapter 5.

All five manuscripts composing this thesis were published (at least in electronic format). Here
are the bibliographical details:

• Chapter 1: Doron Puder, Primitive words, free factors and measure preservation, Israel
Journal of Mathematics, 201 (1), 2014, pp 25-73. DOI: 10.1007/s11856-013-0055-2

• Chapter 2: Doron Puder and Ori Parzanchevski, Measure preserving words are primitive,
Journal of the American Mathematical Society, 28 (1), 2015, pp 63-97. DOI: 10.1090/S0894-
0347-2014-00796-7

• Chapter 3: Doron Puder, Expansion of random graphs: new proofs, new results, Inventiones
Mathematicae, in press. DOI: 10.1007/s00222-014-0560-x

• Chapter 4: Doron Puder and Conan Wu, Growth of primitive elements in free groups, Jour-
nal of the London Mathematical Society, 90 (1), 2014, pp 89-104. DOI: 10.1112/jlms/jdu009
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• Chapter 5: Ori Parzanchevski and Doron Puder, Stallings graphs, algebraic extensions and
primitives in F2, Mathematical Proceedings of the Cambridge Philosophical Society, 157 (1),
2014, pp 1-11. DOI: 10.1017/S0305004114000097



A Letter of Contribution

This thesis consists of five different manuscripts:

(1) “Primitive words, free factors and measure preservation” was published in the Israel Journal
of Mathematics in 2014. I am the only author of this work.

(2) “Measure preserving words are primitive” is to be published in the Journal of the American
Mathematical Society in 2015. This work is mainly mine, and is the culmination of a long
research project (one of the milestones of which is the first manuscript in this thesis). However,
at the final stages I did get some small help from a (then) fellow PhD student in the Hebrew
University, Ori Parzanchevski. After giving it some consideration, Ori and I decided to
publish it as a joint paper. We also decided to balance this in some ways: we put my name
first (although non-alphabetical order in authors names is not common in Mathematics), all
talks on the paper were given by me, etc.

(3) “Expansion of random graphs: new proofs, new results” was accepted for publication in In-
ventiones Mathematicae and already appeared online. I am the only author of this work.

(4) “Growth of primitive elements in free groups” was published in the Journal of the London
Mathematical Society in 2014. This work is joint with Conan Wu, a (then) Phd student
from Princeton University who visited the Hebrew University for one semester. We both
contributed to this work roughly equally.

(5) “Stallings graphs, algebraic extensions and primitives in F2” was published in Mathematical
Proceedings of the Cambridge Philosophical Society in 2014. This is joint work with Ori
Parzanchevski (again, a then fellow PhD student). We consider our contributions to this
work as roughly equal.
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Prologue

Most of my PhD research was devoted to one line of research involving several major questions.
These questions belong to the fields of free groups and of expansion of random graphs. My thesis
contains five manuscripts describing the main achievements of this study. Chapters 2 and 3 are
the culmination of this research, the other chapters describing either partial and supportive results
(Chapter 1), or related results that do not belong to the core of the research (Chapters 4 and 5).

The seeds of this main line of research can be traced in my M.Sc. thesis. Together with my
advisor, Nati Linial, we studied expansion properties of random graph coverings. We realized that
this question can be approached via a question regarding fixed points in random permutations
whose distribution is induced by some fixed formal word (see details below). The fruits of this
research appear in [LP10]. In the beginning of my PhD studies, I came to realize the right algebraic
interpretation of the fixed-points question. Although the original goal was the study of expansion
of random graphs, it turned out that the means, i.e. the study of the distribution of random
permutations according to fixed formal words, is of no lesser importance. Let me now give a
detailed mathematical description of the questions and results.

Contents
0.1 Primitive words and measure preservation . . . . . . . . . . . . . . . . 6
0.2 Expansion of Random Graphs . . . . . . . . . . . . . . . . . . . . . . . . 9
0.3 The growth of primitivity-rank categories . . . . . . . . . . . . . . . . . 11

0.1 Primitive words and measure preservation
Let Fk be the free group on k generators, and let w ∈ Fk. Associated with w and any group G is
the word map w : Gk → G, where Gk is the Cartesian product of G. The word map is defined by
substitutions, e.g. the word map associated with w = x1x2x

−1
1 ∈ F2 is w (g1, g2) = g1g2g

−1
1 . Via

this word map and the push forward of the uniform (Haar) measure on Gk, w induces a measure
on every finite (compact) group G. If the push-forward of the uniform/Haar measure on Gk via the
word map w yields again the uniform/Haar measure on G, we say that w is measure preserving.

Primitive words, namely, words belonging to some basis (free generating set) of Fk, play a
special role here. It is an easy observation that if w is primitive, it induces the uniform measure on
every finite or compact group, namely

Observation (Observation 2.1.2). A primitive word is measure preserving.

But are there any other words with this property? Several mathematicians, most notably from
Jerusalem, came independently to the conjecture that the answer is negative, namely, that a word
which induces the uniform measure on every finite group is necessarily primitive. From private
conversations we know that this has occurred to Tsachik Gelander, Michael Larsen, Alex Lubotzky
and Aner Shalev. It also occurred to Nati Linial and myself during our joint research [LP10], and
to Alon Amit and Uzi Vishne [AV11]. Each among these researchers was led to the conjecture
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by a different motivation: the dynamics of Aut (Fk), profinite topology and decidability problems,
expansion in random graphs, and word maps in finite simple groups.

In the beginning of my PhD I realized that I may have a road-map to cope with this challenging
question. In order to prove the conjecture, one needs to find, for every non-primitive word w ∈ Fk,
a finite or compact group where w does not induce the uniform (Haar) measure. I suspected that
this can be resolved using the symmetric groups Sn, namely that every non-primitive word w ∈ Fk
induces non-uniform distribution on Sn for some n.

Moreover, I suspected it was enough to consider the expected number of fixed points in a random
permutation σ distributed according to w. Let us denote by Gw a random element in the group
G whose distribution is induced by w. Figure 0.1.1 describes the following circle of implications:
A uniformly random permutation in Sn has exactly one fixed point on average. Clearly, then, if w
is measure preserving, then the expected number of fixed points in (Sn)w is one. It seemed to me
that the converse also holds. Namely, if w is non-primitive, then E [FixedPoints ((Sn)w)] 6= 1 for
some n.

w is primitive

Observation 2.1.2

��
Gw is uniform in G ∀ finite G

��
(Sn)w is uniform in Sn ∀n

��
E
∣∣FixedPoints

(
(Sn)w)

)∣∣ = 1 ∀n

Conjectured in [Pud14]; Proved in [PP15]

��

Figure 0.1.1: The relation between primitivity and the expected number of fixed points in random
permutations.

In fact, the conjectural picture I described in [Pud14] (Chapter 1) is more elaborated. It says
that the expected number of fixed points of (Sn)w is related to an algebraic property of w, which
I called its primitivity rank. If w is primitive in Fk, then it is also primitive in every subgroup
H ≤ Fk containing it (Claim 1.2.5; For example, the single-letter word x1 belongs to some basis of
the subgroup H whenever x1 ∈ H). However, if w is not primitive in Fk, it may be either primitive
or non-primitive in a given subgroup containing it. For example, every w 6= 1 is primitive in the
subgroup 〈w〉. But what is the ‘smallest’ or ‘simplest’ subgroup manifesting the non-primitivity of
w? Concretely,

Definition (Definition 1.1.7). The primitivity rank of w ∈ Fk, denoted π(w), is

π(w) = min

{
rk(J)

∣∣∣ w ∈ J ≤ Fk s.t.

w is not primitive in J .

}
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If no such J exists, π(w) =∞. A subgroup J for which the minimum is obtained is called w-critical.

(For examples and more details see the discussion following Definition 1.1.7.) Indeed, I noticed
there was a close relation between this algebraic feature of w and the expected number of fixed
points in (Sn)w. The following statement was conjectured and partially proved in [Pud14], and
later fully proved in [PP15]:

Theorem (Conjecture 1.1.7, Theorem 2.1.8). The average number of fixed points in (Sn)w is

1 +
|Crit (w)|
nπ(w)−1

+O

(
1

nπ(w)

)
,

where Crit (w) is the set of w-critical subgroups.

In [Pud14] this statement was shown to hold for words in F2. The techniques there are specialized
for this case and could not be generalized to free groups of higher rank. New machinery was later
developed in [PP15] to show the general case. This machinery included Möbius analysis on posets
of subgroups of Fk, geometric interpretation of the function describing the expected number of fixed
points and its Möbius derivations, understanding the role of algebraic extensions in free groups and
using the combinatorics of Stirling numbers (see [PP15], here in Chapter 2). The following table
summarizes the new categorization of the elements in a free group implied by the primitivity rank
and Theorem 2.1.8:

π (w) Description of w E [#FixedPoints ((Sn)w)]

0 w = 1 n

1 w is a power 1 + |Crit (w) |+O
(

1
n

)
2 E.g. [x1, x2] , x 2

1 x
2
2 1 + |Crit(w)|

n +O
(

1
n2

)
3 1 + |Crit(w)|

n2 +O
(

1
n3

)
...

...
k E.g. x 2

1 . . . x
2
k 1 + |Crit(w)|

nk−1 +O
(

1
nk

)
∞ w is primitive 1

Table 1: Primitivity rank and the average number of fixed points.

In particular, if w ∈ Fk is not primitive, then π (w) <∞. Hence, for large enough n, the expected
number of fixed points in (Sn)w is more than one, and so (Sn)w is not uniformly distributed. This
proves that the main conjecture is true:

Theorem (Theorem 2.1.1). Measure preserving words are primitive.

An important step in proving these statements was to generalize them to subgroups of Fk: is
it true that a subgroup H ≤ Fk, freely generated by h1, . . . , hr, is a free factor of Fk if and only if
the tuple of maps (h1, . . . , hr) : Gk → Gr induces uniform measure on Gr for every finite group G?
In [Pud14] I established this conjecture for subgroups of rank ≥ k − 1, which in particular yields
the original conjecture for F2, and in [PP15] this generalized conjecture was proven in full. This is
shown using results on the expected number of fixed points induced not only by single words but,
more generally, by subgroups (see the full statement of Theorem 2.1.8 and the discussion preceding
it).

Note that these results provide a new criterion (and a straightforward algorithm) to detect
primitive words in Fk. Moreover, we show (Proposition 2.1.6), that a word w of length ` > 0
is primitive if and only if E [#FixedPoints ((Sn)w)] = 1 for n ≤ `, which yields a more effective
criterion. Detecting primitives is a non-trivial task. The first algorithm was given by Whitehead
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[Whi36a] (see Section 4.2), and it is still the most efficient algorithm to identify primitive words,
complexity-wise. However, an important ingredient in our proof of the above results is a new
algorithm to this goal of identifying primitives. This algorithm, based on Stallings graphs, is
interesting for its own sake, and is one of the main results of [Pud14] (Theorem 1.1.1 here).

In working on this project we made a considerable effort to understand the combinatorics of
Stallings graphs. This has led us to find new, self-contained proofs for classic theorems regarding
primitives and bases of F2, and also to construct a counterexample for a conjecture of Alexei
Miasnikov, Enric Ventura and Pascal Weil, which concerns algebraic extensions in free groups
[MVW07]. This is the content of [PP14] (Chapter 5).

0.2 Expansion of Random Graphs
As mentioned, my original interest in the expected number of fixed points in (Sn)w arose from the
study of expansion of random graphs. Let Γ be a d-regular graph on n vertices, and let

d = λ1 ≥ λ2 ≥ . . . ≥ λn ≥ −d

be the spectrum of its adjacency matrix. We denote by λ = λ (Γ) the largest absolute value of a
non-trivial eigenvalue, namely λ = max (λ2,−λn). It is well known that the smaller λ is, the better
expander Γ is (in many aspects: its Cheeger constant, its pseudo-randomness properties expressed
by the expander mixing lemma, the mixing time of a random walk, etc.). But λ cannot be too
small: by the Alon-Boppana bound, it is at least 2

√
d− 1− on (1) [Nil91]. For this reason, graphs

for which λ ≤ 2
√
d− 1 are considered optimal expanders. They are named Ramanujan graphs.

On the other extreme, λ can be as large as d (e.g. for bipartite graphs, where λn = −d). However,
in [Alo86], Alon conjectured that a random d-regular graph Γ should be almost Ramanujan, in the
following sense: for every ε > 0, λ < 2

√
d− 1 + ε asymptotically almost surely (a.a.s.) as n→∞.

Friedman famously presented a proof of this conjecture [Fri08].
The hidden reason for the number 2

√
d− 1 in Alon’s conjecture and Alon-Boppana Theorem

is the following: All finite d-regular graphs are covered by the d-regular (infinite) tree Td. The
number 2

√
d− 1 is nothing but the spectral radius of the adjacency operator on `2 (V (Td)). It is

therefore natural to measure the spectrum of any graph against the spectral radius of its covering
tree. Several authors call graphs whose non-trivial spectrum is bounded by this value Ramanujan,
thus generalizing the regular case. Many of the results and questions regarding the spectrum of
d-regular graphs extend to this general case. For example, an analogue of Alon-Boppana’s Theorem
is given in [Gre95].

Ideally, one would like to extend Alon’s conjecture on almost-Ramanujan graphs to every infinite
tree T with finite quotients, and show that most of its quotients are nearly Ramanujan. However,
as shown in [LN98], there exist trees T with some minimal quotient Ω which is not Ramanujan.
All other finite quotients of T are then coverings of Ω, and inherit the “bad” eigenvalues of this
quotient. Such examples invalidate the obvious analogue of Alon’s conjecture.

But what if we ignore this few, fixed, “bad” eigenvalues originated in the minimal quotient Ω and
focus only on the remaining, “new” eigenvalues of each larger quotient? In this sense, a generalized
version of Alon’s conjecture is indeed plausible. Friedman [Fri03] put it as follows: Fix an arbitrary
finite base graph Ω, and consider the spectrum of Γ, a random n-sheeted covering of Ω. Let λ be
the largest absolute value of a non-trivial (namely, new) eigenvalue of Γ. Friedman conjectured that
for every ε > 0 a.a.s. λ < ρ (Ω)+ε, where ρ (Ω) is the spectral radius of the universal covering (tree)
of Ω. (For d even, the d-regular case falls into this framework: all d-regular graphs are coverings of
the bouquet with d

2 loops.)

In the same paper, Friedman also showed that λ ≤ O
(
ρ (Ω)

1/2
pf (Ω)

1/2
)
a.a.s., where pf (Ω)

is the Perron-Frobenius eigenvalue of Ω (and the analogue of d in the regular case). During my



CONTENTS 10

M.Sc. studies, together with my supervisor, Nati Linial, we improved this result and proved an
upper bound of 3ρ (Ω)

2/3
pf (Ω)

1/3 [LP10].
The seeds of this work grew later to much stronger results that appear in [Pud15a] (Chapter 3).

In this work, I rely, among other things, on the abovementioned quantitative results from [PP15]
(Theorem 2.1.8), and prove a slightly weakened version of Friedman’s generalized conjecture:

Theorem (Theorem 3.1.4). Let Ω be an arbitrary finite connected graph, and let Γ be a random
n-sheeted covering of Ω. Then for every ε > 0,

λ (Γ) <
√

3 · ρ (Ω) + ε

asymptotically almost surely.

This proves the conjecture up to a (small) multiplicative constant, and is the best known result
in the irregular case.

In the special case where Ω is d-regular (but not necessarily a bouquet of d2 loops), there were
a few more attempts to attack the problem. Lubetzky, Sudakov and Vu showed in [LSV11] that
a.a.s. λ ≤ C ·ρ (Ω) · log ρ (Ω) (with an unspecified constant C), and later Addario-Berry and Griffith
showed that a.a.s. λ < 265,000 · ρ (Ω) [ABG10] (here, of course, ρ (Ω) = 2

√
d− 1). These bounds

are substantially improved in [Pud15a], where I obtain a nearly optimal bound and show:

Theorem (Theorem 3.1.5). Let Ω be a finite connected d-regular graph (d ≥ 3) and let Γ be a
random n-sheeted covering of Ω. Then

λ (Γ) < ρ (Ω) + 0.84 = 2
√
d− 1 + 0.84

asymptotically almost surely.

For example, when Ω is • ... • (a 2-vertex graph with d edges between them), my result
shows that a random d-regular bipartite graph is a.a.s. nearly Ramanujan in the sense that all its
eigenvalues except for ±d fall inside

[
−2
√
d− 1− 0.84, 2

√
d− 1 + 0.84

]
. (For a table summarizing

these results with comparison to former ones see the table on Page 84.)
In particular, my work provides a new proof to a slightly weakened version of Alon’s original

conjecture (Friedman’s Theorem): in a random d-regular graph, the second largest absolute value
of an eigenvalue is a.a.s. at most 2

√
d− 1 + 1. It is important to stress that the proof in [Pud15a] is

very different from Friedman’s 100-page long proof of the more accurate bound, and to my judgment
it is significantly simpler. The new proof is composed of five well-defined steps, whose outline is
explained in Section 3.2. This might be meaningful for many questions that remain open even for
the d-regular case (see the Epilogue beginning on page 152). Of course, our approach also has the
advantage of applying to a more general model of random graphs (the generalized conjecture).

To complete the picture let me also briefly explain the connection between expansion of random
graphs and the study of fixed points of random permutations. I demonstrate this connection via
the permutation model for random d-regular graphs with d even, but as shown in Chapter 3, this
connection extends to the more general model of random n-sheeted coverings of a fixed based graph.

Indeed, fix d ≥ 4 even, and let Γ be a d-regular random graph on n vertices in the permutation
model. Namely, the vertices of Γ are labeled 1, . . . , n. choose d

2 uniformly random permutations
σ1, . . . , σd/2 ∈ Sn and connect the vertex i with the vertex σj (i) with a directed edge labeled by
the symbol xj , for every 1 ≤ i ≤ n and 1 ≤ j ≤ d

2 (loops and multiple edges are allowed). Ignoring
the orientation of the edges, this yields a d-regular graph.

The spectrum of Γ may be analyzed by counting closed paths. More concretely, denote by
CPt (Γ) the set of closed paths of edge-length t in Γ. If Spec (AΓ) denotes the multiset of eigenvalues
of AΓ, the adjacency matrix of Γ, then for every t ∈ N,∑

µ∈Spec(AΓ)

µ t = tr
(
A t

Γ

)
= |CPt (Γ)| .
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For each p ∈ CPt (Γ) one can trace the labels of the edges it traverses. If it goes through an edge
corresponding to the permutation σj in the right orientation use the label xj , and if the orientation
is reversed, use the label x−1

j . This yields a formal word, not necessarily reduced, in
(
X ∪X−1

)t
where X =

{
x1, . . . , xd/2

}
. This word can also be thought of as an element of F (X) ∼= Fd/2. Now,

instead of directly counting closed paths in Γ, one can go over all words w ∈
(
X ∪X−1

)t and
count how many closed paths in CPt (Γ) correspond to this w. It is easy to see that for each word
w ∈ Fd/2, the expected number of closed paths corresponding to w is exactly the expected number
of fixed points in (Sn)w (see Section 3.2 for details).

0.3 The growth of primitivity-rank categories
The proof of the main results about expansion of random graphs in [Pud15a] (Chapter 3), required
understanding the size of the set of all words of a given primitivity rank. Namely, for every
m ∈ {0, 1, . . . , k}, one needs to obtain the exponential growth rate of the number of words of length
N in Fk whose primitivity rank is m. This is done in Sections 3.4 and 3.8, and is based on analysis
of Stallings graphs.

The remaining case which is not required for the results in [Pud15a], is the case of infinite
primitivity rank, namely, the case of Primitive words. In fact, this case has attracted attention
for several decades and is the content of a well known open question attributed to M. Wicks,
which appeared formally in a list of open questions in Combinatorial and Geometric group theory
[BMS02a, Problem F17].

It was previously known that in F2 the exponential growth rate of the primitive is
√

3, but the
exact value was not known for k ≥ 3. In [PW14] (Chapter 4) we answer this question completely.
Let Pk,N denote the set of primitive words of length N in Fk.

Theorem (Theorem 4.1.1). For all k ≥ 3,

lim
N→∞

N

√
|Pk,N | = 2k − 3.

Moreover, there are positive constants ck and Ck such that

ck ·N · (2k − 3)
N ≤ |Pk,N | ≤ Ck ·N · (2k − 3)

N
.

In fact, we showed what a generic primitive word looks like. We established the somewhat
surprising fact that generic primitive words are words that are ‘obviously’ primitive, i.e. contain
one of the letters exactly once. More accurately, up to conjugation, a random primitive word
of length N contains one of the letters exactly once asymptotically almost surely (as N → ∞).
Here we used completely different techniques than those used for other primitive ranks in [Pud15a].
Alongside the results from [PP15], our main tool was a meticulous analysis of Whitehead’s algorithm
to identify primitive words [Whi36a].
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Abstract
Let Fk be the free group on k generators. A word w ∈ Fk is called primitive if it belongs to some
basis of Fk. We investigate two criteria for primitivity, and consider more generally, subgroups of
Fk which are free factors.

The first criterion is graph-theoretic and uses Stallings core graphs: given subgroups of finite
rank H ≤ J ≤ Fk we present a simple procedure to determine whether H is a free factor of J . This
yields, in particular, a procedure to determine whether a given element in Fk is primitive.

Again let w ∈ Fk and consider the word map w : G× . . .×G→ G (from the direct product of
k copies of G to G), where G is an arbitrary finite group. We call w measure preserving if given
uniform measure on G× . . .×G, w induces uniform measure on G (for every finite G). This is the
second criterion we investigate: it is not hard to see that primitivity implies measure preservation
and it was conjectured that the two properties are equivalent. Our combinatorial approach to
primitivity allows us to make progress on this problem and in particular prove the conjecture for
k = 2.

It was asked whether the primitive elements of Fk form a closed set in the profinite topology of
free groups. Our results provide a positive answer for F2.
Keywords: word maps, primitive elements of free groups, primitivity rank
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1.1 Introduction
An element w of a free group J is called primitive if it belongs to some basis (free generating set)
of J . When J is given with a basis X, this is equivalent to the existence of an automorphism of J
which sends w to a given element of X.

The notion of primitivity has a natural extension to subgroups in the form of free factors. Let
H be a subgroup of the free group J (in particular, H is free as well). We say that H is a free factor
of J and denote H ∗

≤ J , if there is another subgroup H ′ ≤ J such that H ∗H ′ = J . Equivalently,
H
∗
≤ J if every basis of H can be extended to a basis of J . (This in turn is easily seen to be

equivalent to the condition that some basis of H extends to a basis of J).
Let Fk be the free group on k generators with a fixed basis X = {x1, . . . , xk}. We study finitely

generated subgroups of Fk (denoted H ≤fg Fk) and relations among them using core graphs, also
known as Stallings’ graphs (See [Sta83]. Actually our definition is a bit different than Stalling’s,
see below). Associated with every subgroup H ≤ Fk is a directed, pointed, edge-labeled graph
denoted ΓX(H). Edges are labeled by the elements of the given basis X = {x1, . . . , xk} of Fk. A
full definition appears in Section 1.2, but we illustrate the concept in Figure 1.1.1. It shows the
core-graph of the subgroup of F2 generated by x1x2x

−1
1 x −1

2 and x2x
2

1 .

Figure 1.1.1: The core graph ΓX (H) where H =〈
x1x
−1
2 x1, x

−2
1 x2

〉
≤ F2.

⊗ 1 // •

• 1 //

2

OO

•

1

__

2

OO

Core graphs are a key tool in the research of free groups, and are both used for proving new
results and for introducing simple proofs to known results (see, for instance, [KM02, MVW07], for
a survey of many such results and for further references).

A central new ingredient of our work is a new perspective on core graphs. There is a naturally
defined notion of quotient on such graphs (see Section 1.3). In particular, we introduce in Section
1.3 the notion of immediate quotients. This in turn yields a directed graph whose vertices are all
core graphs of finitely generated subgroups of Fk (w.r.t. the fixed basis X). A directed edge in
this graph stands for the relation of an immediate quotient. This is a directed acyclic graph (DAG)
i.e., it contains no directed cycles. As always, reachability in a DAG induces a distance function
between vertices. Namely ρX(x, y) is the shortest length of a directed path from x to y. We mention
that the transitive closure of the immediate quotient relation is the relation “being a quotient of”
which is a partial order (a lattice, in fact) on all core graphs of f.g. subgroups of Fk. The following
theorem gives a simple criterion for free factorness in terms of this distance:
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Theorem 1.1.1. Let H,J ≤fg Fk, and assume ΓX(J) is a quotient of ΓX(H). Then H
∗
≤ J if

and only if
ρX(H,J) = rk(J)− rk(H)

We note that ρX(·, ·) can be explicitly computed, and this theorem thus yields automatically an
algorithm to determine, for two given H,J ≤fg Fk whether H is a free factor of J . In particular,
it can serve to detect primitive words (see Appendix 1.A). More generally, for any f.g. free groups
H ≤ J , this theorem can serve to detect the minimal number of complementary generators needed
to obtain J from H (Corollary 1.3.6).

In fact, the core graph of every H ≤fg Fk has finitely many quotients (or reachable vertices).
This set is also known in the literature as the fringe of H (see, e.g. [MVW07]). For example, Figure
1.3.1 shows the fringe of the subgroup H = 〈[x1, x2]〉. The difference in ranks between H and F2

is 1. However, the distance between the corresponding core graphs in the fringe is 2. This proves
that H is not a free factor of F2, or equivalently that [x1, x2] is not primitive. We elaborate more
in Appendix 1.A.1.

Remark 1.1.2. We stress that there are other graph-theoretic algorithms to detect free factors and
primitive words, including simplifications of the seminal Whitehead algorithm (the algorithm first
appeared in [Whi36a, Whi36b], for its graph-theoretic simplifications see [Ger84, Sta99]). Our
approach, however, is very different and does not rely on Whitehead automorphisms. We elaborate
more on this in Appendix 1.A.

Theorem 1.1.1 is also used for the other concept we study here, that of measure preservation of
word maps. Associated with every w ∈ Fk is a word map. We view w as a word in the letters of the
basis X. For every group G, this mapping which we also denote by w maps G×G× · · · ×G︸ ︷︷ ︸

k

−→ G

as follows: It maps the k-tuple (g1, . . . , gk) to the element w(g1, . . . , gk) ∈ G, where w(g1, . . . , gk)
is the element obtained by replacing x1, . . . , xk with g1, . . . , gk (respectively) in the expression for
w, and then evaluating this expression as a group element in G.

During the last years there has been a great interest in word maps in groups, and extensive
research was conducted (see, for instance, [Sha09], [LS09]; for a recent book on the topic see
[Seg09]). Our focus here is on the property of measure preservation: We say that the word w
preserves measure with respect to a finite group G if when k-tuples of elements from G are sampled
uniformly, the image of the word map w induces the uniform distribution on G. (In other words,
all fibers of the word map have the same size). We say that w is measure preserving if it preserves
measure with respect to every finite group G.

This concept was investigated in several recent works. See for example [LS08] and [GS09], where
certain word maps are shown to be almost measure preserving, in the sense that the distribution
induced by w on finite simple groups G tends to uniform, say, in L1 distance, when |G| → ∞.

Measure preservation can be equivalently defined as follows: fix some finite group G, and select
a homomorphism αG ∈ Hom(Fk, G) uniformly at random. A homomorphism from a free group is
uniquely determined by choosing the images of the elements of a basis, so that every homomorphism
is chosen with probability 1/|G|k. We then say that w ∈ Fk is measure preserving if for every finite
group G and a random homomorphism αG as above, αG(w) is uniformly distributed over G.

We note that there is a stronger condition of measure preservation on a word w that is discussed
in the literature. In this stronger condition we consider the image of w over the broader class of
compact groups G w.r.t. their Haar measure. Our results make use only of the weaker condition
that involves only finite groups.

Measure preservation can also be defined for f.g. subgroups.

Definition 1.1.3. For H ≤fg Fk we say that H is measure preserving if and only if for any finite
group G and αG ∈ Hom(Fk, G) a randomly chosen homomorphism as before, αG|H is uniformly
distributed in Hom(H,G).
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In particular, 1 6= w ∈ Fk is measure preserving if and only if 〈w〉 is measure preserving.

It is easily seen that primitivity or free factorness yield measure preservation. The reason is
that as mentioned, a homomorphism in Hom(Fk, G) is completely determined by the images of the
elements of a basis of Fk, which can be chosen completely arbitrarily and independently.

Several authors have conjectured that the converse is also true:

Conjecture 1.1.4. For every w ∈ Fk,

w is primitive ⇐⇒ w is measure preserving

More generally, for H ≤fg Fk,

H
∗
≤ Fk ⇐⇒ H is measure preserving

From private conversations we know that this has occurred to the following mathematicians
and discussed among themselves: T. Gelander, A. Shalev, M. Larsen and A. Lubotzky. The ques-
tion was mentioned several times in the Einstein Institute Algebra Seminar. This conjecture was
independently raised in [LP10]†.

Here we prove a partial result:

Theorem 1.1.5. Let H ≤fg Fk have rank ≥ k − 1. Then,

H
∗
≤ Fk ⇐⇒ H is measure preserving

In particular, for every w ∈ F2:

w is primitive ⇐⇒ w is measure preserving

The proof of this result relies, inter alia, on Theorem 1.1.1. Note that a set of k − 1 elements
w1, . . . , wk−1 ∈ Fk can be extended to a basis if and only if it is a free set that generates a free
factor. Thus, the result for subgroups can also be stated for finite subsets as follows: Let r ≥ k− 1.
A set {w1, . . . , wr} ⊂ Fk can be extended to a basis if and only if for every finite group G and
random homomorphism αG as above, the r-tuple (αG(w1), . . . , αG(wr)) is uniformly distributed in
Gr, the direct product of r copies of G.

There is an interesting connection between this circle of ideas and the study of profinite groups.
For example, an immediate corollary of Theorem 1.1.5 is that

Corollary 1.1.6. The set of primitive elements in F2 is closed in the profinite topology.

We discuss this corollary and other related results in Section 1.7.

In order to prove Conjecture 1.1.4, one needs to find for every non-primitive word w ∈ Fk, some
witness finite group G with respect to which w is not measure preserving. Our witnesses are always
the symmetric groups Sn.

It is conceivable that our method of proof for Theorem 1.1.5 is powerful enough to establish
Conjecture 1.1.4. We define two categorizations of elements (and of f.g. subgroups) of free groups
π(·) and φ(·). They map every free word and free subgroup into {0, 1, 2, 3, . . .} ∪ {∞}. We believe
these two maps are in fact identical. This, if true, yields the general conjecture. Presently we can
show that they are equivalent under certain conditions, and this yields our partial result.
†It is interesting to note that there is an easy abelian parallel to Conjecture 1.1.4: A word w ∈ Fk is primitive,

i.e. belongs to a basis, in Zk ∼= Fk/F
′
k if and only if for any group G the associated word map is surjective. See

[Seg09], Lemma 3.1.1.
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The first categorization is called the primitivity rank. It is a simple fact that if w ∈ Fk is
primitive, then it is also primitive in every subgroup of Fk containing it (see Claim 1.2.5). However,
if w is not primitive in Fk, it may be either primitive or non-primitive in subgroups containing it.
But what is the smallest rank of a subgroup in which we can realize w is not primitive? Informally,
how far does one have to search in order to establish that w is not primitive in Fk? Concretely:

Definition 1.1.7. The primitivity rank of w ∈ Fk, denoted π(w), is

π(w) = min

{
rk(J)

∣∣∣ w ∈ J ≤ Fk s.t.

w is not primitive in J .

}

If no such J exists, π(w) =∞. A subgroup J for which the minimum is obtained is called w-critical.

This extends naturally to subgroups. Namely,

Definition 1.1.8. For H ≤fg Fk, the primitivity rank of H is

π(H) = min

{
rk(J)

∣∣∣ H ≤ J ≤ Fk s.t.

H is not a free factor of J .

}

Again, if no such J exists, π(H) =∞. A subgroup J for which the minimum is obtained is called
H-critical.

For instance, π(w) = 1 if and only if w is a proper power of another word (i.e. w = vd for
some v ∈ Fk and d ≥ 2). In Section 1.4 we show (Corollary 1.4.2) that in Fk the primitivity rank
takes values only in {0, 1, 2, . . . , k} ∪ {∞} (the only word w with π(w) = 0 is w = 1). Lemma
1.4.1 shows, moreover, that π(w) = ∞ (π(H) = ∞, resp.) if and only if w is primitive (H ∗

≤ Fk).
Finally Lemma 1.6.8 yields that π can take on every value in {0, . . . , k}. For example, if Fk is given
with some basis X = {x1, . . . , xk} then for every 1 ≤ d ≤ k, π(x 2

1 . . . x
2
d ) = d. It is interesting

to mention that π(H) also generalizes the notion of compressed subgroups, as appears, e.g., in
[MVW07]: a subgroup H ≤fg Fk is compressed if and only if π(H) ≥ rk(H).

The second categorization of sets of formal words has its roots in [Nic94] and more explicitly
in [LP10]. It concerns homomorphisms from Fk to the symmetric groups Sn, and more concretely
the probability that 1 is a fixed point of the permutation w(σ1, . . . , σk) for some w ∈ Fk when
σ1, . . . , σk ∈ Sn are chosen randomly with uniform distribution. More generally, for a subgroup
H ≤fg Fk we study the probability that 1 is a common fixed point of (the permutations corre-
sponding to) all elements in H. We ask how much this probability deviates from the corresponding
probability in the case of measure preserving subgroups, i.e. from 1

nrk(H) . (We continue the pre-
sentation for subgroups only. This clearly generalizes the case of a word: for every word w 6= 1
consider the subgroup 〈w〉.)

Formally, for H ≤fg Fk we define the following function whose domain is all integers n ≥ 1
where αn ∈ Hom(Fk, Sn) is a random homomorphism with uniform distribution:

ΦH(n) = Prob
[
∀w ∈ H αn(w)(1) = 1

]
− 1

nrk(H)
(1.1.1)

Clearly, if H is measure preserving, then ΦH vanishes for every n ≥ 1.
Nica [Nic94] showed that for a fixed word w 6= 1 and large enough n, it is possible to express

Φw(n) (=Φ〈w〉(n)) as a rational function in n. We show below that this is easily extended to apply
to ΦH(n) for arbitrary H ≤fg Fk. Nica’s clever observation was used in [LP10] to introduce a new
categorization of free words, denoted φ(·), which, like π(·), associates a non-negative integer or ∞
to every formal word (note that in [LP10] the notion of primitive words has a different meaning
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than in the current paper). This categorization can also be extended to arbitrary finitely generated
subgroups of Fk. More specifically, it is shown in Section 1.5 that for every H ≤fg Fk and n large
enough (say, at least the number of vertices in the core graph of H), we have

ΦH(n) =

∞∑
i=0

ai(H)
1

ni
(1.1.2)

where the coefficients ai(H) are integers depending only on H. We define φ(H) as follows:

φ(H) :=

{
the smallest integer iwith ai(H) 6= 0 if ΦH(n) 6≡ 0
∞ if ΦH(n) ≡ 0

(1.1.3)

Thus, φ(H) measures to what extent the probability that 1 is a common fixed point of H
differs from 1

nrk(H) , the corresponding probability if H were measure preserving. The higher φ(H)

is, the closer the probability is asymptotically to 1
nrk(H) . If H is a measure preserving subgroup,

then φ(H) =∞.

As it turns out there is a strong connection between π(H) and φ(H). Already Nica’s result
can be interpreted in the language of φ(·) to say that φ(w) = 1 if and only if w is a power, that
is if and only if π(w) = 1. But the connection goes deeper. In proving this, we calculate these
functions using the core graph of H and its quotients. It turns out that both π(H) and φ(H) can
be computed explicitly via the subgraph of the DAG induced by all descendants of ΓX(H).

In the calculation of φ(H) we use the core graph ΓX(H) and its quotients to partition the event
that 1 is a common fixed point of αn(w) of each w ∈ H (see Section 1.5).

Fortunately, the same core graph and quotients can also be used to find the primitivity rank
π(H), as shown in Section 1.4. Lemma 1.4.3 shows that all H-critical subgroups (see Definition
1.1.8) are always represented in the fringe (set of quotients) of H. Theorem 1.1.1 then shows
directly how to calculate π(H) using the fringe.

We show that under certain conditions, the two categorizations π(·) and φ(·) indeed coincide.

Proposition 1.1.9. Let H ≤fg Fk. Then for every i ≤ rk(H) + 1,

(1) π(H) = i ⇐⇒ φ(H) = i

(2) Moreover, if π(H) = φ(H) = i then ai(H) equals the number of H-critical subgroups of Fk.

The second part of this proposition is in fact a generalization of a result of Nica. For a single
element w ∈ Fk which is a proper power, namely π(w) = φ(w) = 1, let w = ud with d maximal
(so u is not a proper power). Let M denote the number of divisors of d. It is not hard to see that
the number of w-critical subgroups of Fk equals M − 1: these subgroups are exactly 〈um〉 for every
1 ≤ m < d such that m|d. This shows that the average number of fixed points in the permutation
αn(w) goes to M as n→∞. This corresponds to Corollary 1.3 in [Nic94] (for the case L = 1)†.

The connection between π(·) and φ(·) goes beyond the cases stated in Proposition 1.1.9. To
start off, if π(H) =∞, then H ∗

≤ Fk and therefore H is measure preserving, and thus φ(H) =∞.
In addition, Lemma 1.6.8 states that both π(·) and φ(·) are additive with respect to concatenation
of words on disjoint letter sets. Namely, if the words w1, w2 ∈ Fk have no letters in common then
π(w1w2) = π(w1) + π(w2) and φ(w1w2) = φ(w1) + φ(w2). Moreover, if the disjoint w1 and w2

satisfy both parts of Proposition 1.1.9 then so does their concatenation w1w2.
In view of this discussion, the following conjecture suggests itself quite naturally:
†Nica’s result was more general in a different manner: it involved the distribution of the number of L-cycles in

the random permutation αn(w), for any fixed L. He showed that as n→∞, the limit distribution depends only on
d, where w = ud as above.
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Conjecture 1.1.10.

(1) For every H ≤fg Fk
π(H) = φ(H)

(2) Moreover, aφ(H)(H) equals the number of H-critical subgroups of Fk.

Specifically, for a single word w, Proposition 1.1.9 states that for i = 0, 1, 2, π(w) = i⇔ φ(w) = i.
As mentioned, the possible values of π(H) are {0, 1, 2, . . . , k} ∪ {∞}, and π(H) =∞ if and only if
H
∗
≤ Fk. We also have π(H) = ∞ ⇒ φ(H) = ∞ (a free factor subgroup is measure preserving).

Thus, when rk(H) ≥ k−1, the value of π(H) uniquely determines φ(H) and the two values coincide.
In other words, when rk(H) ≥ k − 1

π(H) = φ(H).

This shows, in turn, that when H is measure preserving, we have π(H) = φ(H) = ∞, and so
H is a free factor. This yields Theorem 1.1.5. The same argument shows that Conjecture 1.1.4
follows from part (1) of Conjecture 1.1.10 and suggests, in particular, a general strategy towards
proving Conjecture 1.1.4.

As an aside, the second parts of Proposition 1.1.9 and Conjecture 1.1.10 say something
interesting on the average number of fixed points in the random permutation αn(w). We conjecture
that for every w and for large enough n, this average is at least 1. In other words, among the
family of distributions of Sn induced by free words, a random uniformly chosen permutation has
the least average number of fixed points. This point is further elaborated in Section 1.8.

At this point we should clarify the relation of these results and some of what we did in
[LP10]. There we introduced β(·) - yet another categorization of formal words. Just like φ(·)
and π(·) it maps every formal word to a non-negative integer or ∞. As it turns out, π(·)
and β(·) coincide. This follows from Theorem 1.1.1 and from Section 1.4. The definition
of π(·) is simpler and more elegant than the original definition of β(·). As shown in [LP10]
for i = 0, 1, φ(w) = i ⇐⇒ β(w) = i. A partial proof was given there as well for the case
i = 2. In Section 1.6 we complete the argument for i = 2 and generalize it to prove Proposition 1.1.9.

The paper is arranged as follows. In section 1.2 we introduce the notions of core graphs, their
morphisms and their quotients. In Section 1.3 we introduce our new perspective on core graphs,
including the notion of immediate quotients and the mentioned DAG, and then prove Theorem
1.1.1. In Section 1.4 we analyze the primitivity rank of any H ≤fg Fk and show how it can
be computed from the quotients of ΓX(H) in the DAG of finite rank subgroups of Fk. Section
1.5 is devoted to proving that φ(H) is well defined and can be indeed computed from the same
descendants of ΓX(H). In Section 1.6 we establish the results connecting φ(·) and π(·), culminating
in the proof of Theorem 1.1.5. The concluding sections are devoted to two different consequences
of the main results: the characterization of elements of Fk which are primitive in its profinite
completion (Section 1.7) and the possible values of the average number of fixed points in the image
of a word map on Sn (Section 1.8). The discussion in the three appendices is not necessary for
the main results of this paper, but it does, in our view, complete the picture. In particular, we
illustrate in Appendix 1.A the algorithm to detect free factor subgroups.

1.2 Core Graphs and their Quotients
All groups that appear here are subgroups of Fk, the free group with a given basisX = {x1, . . . , xk}.
Some of the relations we consider depend on the choice of the basis. We first describe core-graphs,
which play a crucial role in this paper.
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1.2.1 Core Graphs
Associated with every subgroup H ≤ Fk is a directed, pointed, edge-labeled graph. This graph is
called the core-graph associated with H and is denoted by ΓX(H). We recall the notion of ΓX(H)
the Schreier (right) coset graph of H with respect to the basis X. This is a directed, pointed and
edge-labeled graph. Its vertex set is the set of all right cosets of H in Fk, where the basepoint
corresponds to the trivial coset H. For every coset Hw and every letter xi there is a directed i-edge
(short for xi-edge) going from the vertex Hw to the vertex Hwxi.

The core graph ΓX(H) is obtained from ΓX(H) by omitting all the vertices and edges of ΓX(H)
which are never traced by a reduced (i.e., non-backtracking) path that starts and ends at the
basepoint. Stated informally, we omit all (infinite) “hanging trees” from ΓX(H). To illustrate,
Figure 1.2.1 shows the graphs ΓX(H) and ΓX(H) for H = 〈x1x2x

−3
1 , x 2

1 x2x
−2
1 〉 ≤ F2.

⊗
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Figure 1.2.1: ΓX (H) and ΓX (H) for H = 〈x1x2x
−3
1 , x 2

1 x2x
−2
1 〉 ≤ F2. The Schreier coset graph

ΓX (H) is the infinite graph on the left (the dotted lines represent infinite 4-regular trees). The
basepoint “⊗” corresponds to the trivial coset H, the vertex below it corresponds to the coset Hx1,
the one further down corresponds to Hx 2

1 = Hx1x2x
−1
1 , etc. The core graph ΓX (H) is the finite

graph on the right, which is obtained from ΓX (H) by omitting all vertices and edges that are not
traced by reduced closed paths around the basepoint.

Note that the graph ΓX(H) is 2k-regular: Every vertex has exactly one outgoing j-edge and
one incoming j-edge for every 1 ≤ j ≤ k. Every vertex of ΓX(H) has at most one outgoing j-edge,
and at most one incoming j-edge for every 1 ≤ j ≤ k.

It is an easy observation that

π1(ΓX(H)) = π1(ΓX(H))
canonically∼= H

where the canonical isomorphism is given by associating words in Fk to paths in the coset graph
and in the core graph: We traverse the path by following the labels of outgoing edges. For instance,
the path (from left to right)

• • • • • • • •2 // 2 // 1 // 2oo 3 // 2 // 1oo

corresponds to the word x 2
2 x1x

−1
2 x3x2x

−1
1 . (See also [MVW07], where this fact appears in a slightly

different language).
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Core graphs were introduced by Stallings [Sta83]. Our definition is slightly different, in that we
allow the basepoint to have degree one.

In fact, a “tail” in ΓX(H), i.e., a path to the basepoint can be eliminated by replacing H by an
appropriate conjugate. However, we find it unnecessary and less elegant for our needs.

We now list some properties of core graph, most of which are proved in at least one of [Sta83,
KM02, MVW07]. The remaining ones are easy observations.

Claim 1.2.1. Let H be a subgroup of Fk with an associated core graph Γ = ΓX(H). The Euler
Characteristic of a graph, denoted χ(·) is the number of vertices minus the number of edges. Finally,
rk(H) denotes the rank of the group H.

(1) rk(H) <∞⇔ Γ is finite

(2) rk(H) = 1− χ(Γ)

(3) Let Λ be a finite, pointed, directed graph with edges labeled by {x1, . . . , xk}. Then Λ is a core
graph (corresponding to some J ≤ Fk) if and only if Λ satisfies the following three properties:

(a) Λ is connected
(b) With the possible exception of the basepoint, every vertex has degree at least 2.
(c) For every 1 ≤ j ≤ k, no two j-edges share the same origin nor the same terminus.

(4) There is a one-to-one correspondence between subgroups of Fk and core graphs.

(5) There is a one-to-one correspondence between subgroups of Fk of finite rank and finite core
graphs.

In Appendix 1.C we present a well known algorithm, based on Stallings foldings, to obtain the core
graph of every H ≤fg FK given some finite generating set for H.

1.2.2 Morphisms of Core Graphs
In our framework, a morphism between two core-graphs Γ1 and Γ2 is a map that sends vertices to
vertices and edges to edges, and preserves the structure of the graphs. Namely, it preserves the
incidence relations, sends the basepoint to the basepoint, and preserves the directions and labels of
the edges.

As in Claim 1.2.1, the proofs of the following properties are either easy variations on proofs in
[Sta83, KM02, MVW07] or just easy observations:

Claim 1.2.2. Let H1, H2 ≤ Fk be subgroups, and Γ1,Γ2 be the corresponding core graphs. Then

(1) A morphism η : Γ1 → Γ2 exists ⇔ H1 ≤ H2,
and in this case, η∗ : π1(Γ1)→ π1(Γ2) is injective.

(2) If a morphism exists, it is unique.

(3) Every morphism in an immersion (locally injective at the vertices).

1.2.3 Quotients of Core Graphs
With core-graph morphisms at hand, we can define the following rather natural relation between
core-graphs.

Definition 1.2.3. Let Γ1,Γ2 be core graphs and H1, H2 ≤ Fk the corresponding subgroups. We
say that Γ1 covers Γ2 or that Γ2 is a quotient of Γ1 if there is a surjective morphism η : Γ1 � Γ2.
We also say in this case that H1 covers H2, and denote Γ1 � Γ2 or H1 ≤�

X H2.
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By “surjective” we mean surjective on both the vertices and the edges. Note that we use the
term “covers” even though this is not a covering map in general (the morphism from Γ1 to Γ2 is
always locally injective at the vertices, but not necessarily locally bijective).

For instance, H = 〈x1x2x
−3
1 , x 2

1 x2x
−2
1 〉 ≤ Fk covers the group

J = 〈x2, x
2

1 , x1x2x1〉, the corresponding core graphs of which are the leftmost and rightmost graphs
in Figure 1.2.2. As another example, every core graph Γ that contains edges of all labels covers the
wedge graph ∆k.

We already know (Claim 1.2.2) that if H1 ≤�
X H2 then, in particular, H1 ≤ H2. However, the

converse is incorrect. For example, the group
K = 〈x1x2x

−3
1 , x 2

1 x2x
−2
1 , x2〉 contains H = 〈x1x2x

−3
1 , x 2

1 x2x
−2
1 〉 (we simply added x2 as a third

generator), yet K is not a quotient of H: the morphism η : ΓX(H)→ ΓX(K) does not contain the
2-loop at the basepoint of ΓX(K) in its image.

Note also that the relation H1 ≤�
X H2 depends on the given generating set X of Fk. For example,

if H = 〈x1x2〉 then H ≤�
X 〈x1, x2〉 = F2. However, x1x2 is primitive and could be taken as part

of the original basis of F2. In that case, the core graph of H would consist of a single vertex and
single loop and would have no quotients except for itself.

It is also interesting to note that every quotient of the core-graph Γ corresponds to some partition
of V (Γ) (the partition determined by the fibers of the morphism). We can simply draw a new graph
with a vertex for each block in the partition, and a j-edge from block b1 to block b2 whenever there is
some j-edge (v1, v2) in Γ1 with v1 ∈ b1, v2 ∈ b2. However, not every partition of V (Γ) corresponds
to a quotient core-graph: In the resulting graph two distinct j-edges may have the same origin
or the same terminus. Note that even if a partition P of V (Γ) yields a quotient which is not a
core-graph, this can be remedied. We can activate the folding process exemplified in Appendix 1.C
and obtain a core graph. The resulting partition P ′ of V (Γ) is the finest partition which yields a
quotient core-graph and which is still coarser than P . We illustrate this in Figure 1.2.2.
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Figure 1.2.2: The left graph is the core graph ΓX(H) ofH =
〈
x1x2x

−3
1 , x 2

1 x2x
−2
1

〉
≤ F2. Its vertices

are denoted v1, . . . , v4. The graph in the middle is the quotient corresponding to the partition
P = {{v1, v4}, {v2}, {v3}}. This is not a core graph as there are two different 1-edges originating at
{v1, v4}. In order to obtain a core quotient-graph, we use the folding process illustrated in Appendix
1.C. The resulting core graph is on the right, corresponding to the partition P ′ = {{v1, v4}, {v2, v3}}.

Lemma 1.2.4. Every finite core-graph has a finite number of quotients.
Equivalently, every H ≤fg Fk covers a finite number of other subgroups.

Proof. The number of quotients of Γ is bounded from above by the number of partitions of V (Γ).

Following the notations in [MVW07], we call the set of X-quotients of H the X-fringe of H and
denote X(H). Namely,

X(H) := {ΓX(J) | H ≤�
X J} (1.2.1)
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Lemma 1.2.4 states in this terminology that for every H ≤fg Fk (and every basis X), |X(H)| <∞.
Before describing our new perspective on core graphs, we remind some useful facts about free

factors in free groups:

Claim 1.2.5. Let H,J,K ≤ Fk. Then,

(1) Free factorness is transitive: If H ∗
≤ J

∗
≤ K then H ∗

≤ K.

(2) If η : ΓX(H) ↪→ ΓX(J) is an embedding then H ∗
≤ J .

(3) If H ∗
≤ J then H is a free factor in any subgroup H ≤M ≤ J in between.

Proof. The first and second claims are immediate. We give a “graph-theoretic” proof for the third
one. Assume that H ∗

≤ J , and let Y be a basis of J extending some basis of H. In particular,
ΓY (H) and ΓY (J) are both bouquets, consisting of a single vertex and rk(H) (resp. rk(J)) loops.
Now, for every H ≤ M ≤ J , consider the morphism η : ΓY (H) → ΓY (M). It is easy to see that a
core-graph-morphism of a bouquet must be an embedding. Thus, by the second claim, H ∗

≤M .

1.3 Immediate Quotients and the DAG of Core Graphs
The quotient relation yields a partial order on the set of core graphs. But we are interested in a
special case which we call immediate quotients. This relation allows us to build the aforementioned
DAG (directed acyclic graph) of all (core graphs corresponding to) finite rank subgroups of Fk.

Let Γ be a core graph, and let P be a partition of V (Γ). Let ∆ be the quotient core graph
we obtain from P by the folding process described in Figures 1.C.1 and 1.2.2. We say that ∆
is generated from Γ by P . We are interested in the case where P identifies only a single pair of
vertices:

Definition 1.3.1. Let Γ be a core graph and let P be a partition of V (Γ) in which all parts consist
of a single vertex with a single exceptional part that contains two vertices. Let ∆ be the core graph
generated by P . We then say that ∆ is an immediate quotient of Γ.

Alternatively we say that ∆ is generated by merging a single pair of vertices of Γ. For instance,
the rightmost core graph in Figure 1.2.2 is an immediate quotient of the leftmost core graph.

The relation of immediate quotients has an interesting interpretation for the associated free
groups. Let H,J ≤ Fk be free groups and Γ = ΓX(H),∆ = ΓX(J) their core graph, and assume ∆
is an immediate quotient of Γ obtained by identifying the vertices u, v ∈ V (Γ). Now let pu, pv ∈ Fk
be words corresponding to some paths in Γ from the basepoint to u and v respectively. It is not
hard to see that identifying u and v has the same effect as adding the word w = pup

−1
v to H and

considering the generated group. Namely, J = 〈H,w〉.

⊗

Γ
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Based on the relation of immediate quotients we consider the DAG Dk. The set of vertices
of this graph consists of all finite core graphs with edges labeled by 1, . . . , k, and its directed
edges connect every core graph to its immediate quotients. Every fixed ordered basis of Fk X =
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{x1, . . . , xk}, determines a one-to-one correspondence between the vertices of this graph and all
finite rank subgroups of Fk.

As before, we fix an ordered basis X. For any H ≤fg Fk, the subgraph of Dk of the descendants
of ΓX(H) consists of all quotients of ΓX(H), that is of all elements of the X-fringe X(H). By
Lemma 1.2.4, this subgraph is finite. In Figure 1.3.1 we draw the subgraph of Dk consisting of
all quotients of ΓX(H) when H = 〈x1x2x

−1
1 x−1

2 〉. The edges of this subgraph (i.e. immediate
quotients) are denoted by the broken arrows in the figure.

Figure 1.3.1: The subgraph of Dk induced by X(H), that is, all quotients of the core graph Γ =
ΓX (H), for H = 〈x1x2x

−1
1 x−1

2 〉. The dashed arrows denote immediate quotients, i.e. quotients
generated by merging a single pair of vertices. Γ has exactly seven quotients: itself, four immediate
quotients, and two quotients at distance 2.

This yields the aforementioned distance function between a finite core graph and a quotient of
it:

Definition 1.3.2. Let H1, H2 ≤fg Fk be finite rank subgroups such that H1 ≤�
X H2, and let

Γ1 = ΓX(H1),Γ2 = ΓX(H2) be the corresponding core graphs. We define the distance between H1

and H2, denoted ρX(H1, H2) or ρ(Γ1,Γ2), to be the shortest length of a directed path from Γ1 to
Γ2 in Dk.

In other words, ρX(H1, H2) is the length of the shortest series of immediate quotients that yields
Γ2 from Γ1. Equivalently, it is the minimal number of pairs of vertices that need to be identified in
Γ1 in order to obtain Γ2 (via the folding process). For example, if Γ2 is an immediate quotient of Γ1

then ρX(H1, H2) = ρ(Γ1,Γ2) = 1. For H = 〈x1x2x
−1
1 x−1

2 〉, ΓX(H) has four quotients at distance 1
and two at distance 2 (see Figure 1.3.1).

As aforementioned, by merging a single pair of vertices of ΓX(H) (and then folding) we obtain
the core graph of a subgroup J obtained from H by adding some single generator. Thus, by taking
an immediate quotient, the rank of the associated subgroup increases at most by 1 (in fact, it may
also stay unchanged or even decrease). This implies that whenever H ≤�

X J :
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rk(J)− rk(H) ≤ ρ(H,J) (1.3.1)

It is not hard to bound the distance from above as well:

Lemma 1.3.3. Let H,J ≤fg Fk such that H ≤�
X J . Then

rk(J)− rk(H) ≤ ρX(H,J) ≤ rk(J)

We postpone the proof of the upper bound to Appendix 1.B. (In fact, this upper bound in not
needed for the main results of this paper. We give it anyway in order to have the full picture in
mind.) Theorem 1.1.1 then states that in the same setting, the lower bound is attained iff H is a free
factor of J . In fact one can visualize these results in the following way. Consider a two dimensional
table which contains all the elements of the fringe X(H) (each quotient of ΓX(H) contained in
some, not necessarily distinct, cell). The rows correspond to the rank and are indexed 0, 1, 2, 3, ....
The columns correspond to the distance from H and are also indexed 0, 1, 2, 3, . . .. We then put
every quotient of H in the suitable cell in the table. Let r = rk(H) denote the rank of H. Lemma
1.3.3 then says that the (finitely many) elements of X(H) are spread across r + 1 diagonals in the
table: the main one and the r diagonals below it. Theorem 1.1.1 implies that within X(H), H is a
free factor of exactly those J-s found in the lowest of these r + 1 diagonals. (In fact, Lemma 1.4.3
shows that π(H) can also be read from this table: it equals the rank of the upmost occupied cell
in this table outside the free-factor-diagonal.)

1.3.1 Proof of Theorem 1.1.1
The main result of this section states that if H ≤fg J ≤fg Fk and H ≤�

X J , then

ρX(H,J) = rk(J)− rk(H) ⇐⇒ H
∗
≤ J. (1.3.2)

In fact, one of the implications is trivial. As mentioned above, merging two vertices in ΓX(H)
is equivalent to adding some generator to H. If we manage to obtain ΓX(J) from ΓX(H) by
rk(J)− rk(H) merging steps, this means we can obtain J from H by adding rk(J)− rk(H) extra
generators to H, hence clearly H ∗

≤ J (recall that by hopfianity of the free group, every generating
set of size rk (J) is a basis of J , see e.g. [Bog08, Chapter 2.29]). Thus,

ρX(H,J) = rk(J)− rk(H) =⇒ H
∗
≤ J (1.3.3)

The other implication is not trivial. Assume that H ∗
≤ J . Our goal is to obtain rk(J)− rk(H)

complementary generators of J from H, so that each of them can be realized by merging a pair of
vertices in ΓX(H).

To this goal we introduce the notion of a “handle number ” associated with a subgroup M and
a word w ∈ Fk. (It also depends on the fixed basis X of Fk). This number is defined as follows.
Let Γ = ΓX(M). Denote by pw the longest prefix of w that corresponds to some path from the
basepoint of Γ (we trace the letters of w along Γ until we get stuck). Likewise, denote by sw the
longest suffix of w that ends at the basepoint (here we trace w−1 from the basepoint until we get
stuck). If |pw| + |sw| < |w|, then w = pwmwsw as a reduced expression for some 1 6= mw ∈ Fk.
The handle number of (M,w) is then

hX (M,w) = h (Γ, w) =

{
|mw| |pw|+ |sw| < |w|
0 otherwise

.

Claim 1.3.4. Assume that w /∈M and let N = 〈M,w〉. Then

(1) hX (M,w) > 0 if and only if ΓX (M) is a (proper) subgraph of ΓX (N), and
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(2) hX (M,w) = 0 if and only if ΓX (N) is an immediate quotient of ΓX (M).

Proof. Assume first that hX (M,w) > 0. In the notations of the previous paragraph, let v(pw), v(sw)
be the end point of the path corresponding to pw and the starting point of the path corresponding
to sw. We can then add a “handle” to Γ in the form of a path corresponding to mw which starts at
v(pw) and ends at v(sw). (If v(pw) = v(sw) this handle looks like a balloon, possibly with a string.)

⊗
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The resulting graph is a core-graph (the edge conditions at v(pw) and v(sw) hold, by the max-
imality of pw and sw), and it corresponds to N . So we actually obtained ΓX (N). It follows that
ΓX (M) is a proper subgraph of ΓX (N). On the other hand, if hX (M,w) = 0, i.e. if |pw|+|sw| ≥ |w|,
we can find a pair of vertices in Γ whose merging adds w to H as a complementary generator for J .
(We may take v(pw) together with the vertex on the path of sw at distance |pw|+ |sw| − |w| from
v(sw).)

The last claim shows, in particular, that if N is obtained from M by adding a single comple-
mentary generator, then either ΓX (N) is an immediate quotient or it contains ΓX (M) as a proper
subgraph. This already proves Theorem 1.1.1 for the case rk (J) − rk (H) = 1: if H ≤�

X J , we are
clearly in the second case of Claim 1.3.4, i.e. J is an immediate quotient of H.

We proceed by defining handle numbers for a subgroup M ≤fg Fk and an ordered set of words
w1, . . . , wt ∈ Fk. Let N = 〈M,w1, . . . , wt〉 and ∆ = ΓX (N). Let in addition Ni = 〈M,w1, . . . , wi〉
and Γi = ΓX(Ni). We obtain a series of subgroups

M = N0 ≤ N1 ≤ . . . ≤ Nt = N,

and a series of graphs Γ = Γ0,Γ1, . . . ,Γt = ∆. We denote by hX (M,w1, . . . , wt) the t-tuple of the
following handle numbers:

hX (M,w1, . . . , wt)
def
= (h (Γ0, w1) , h (Γ1, w2) , . . . , hX (Γt−1, wt)) .

Let us focus now on the case where t is the cardinality of the smallest set S ⊆ Fk such that
N = 〈M,S〉. The following lemma characterizes t-tuples of words for which the t-tuple of handle-
numbers is lexicographically minimal. It is the crux of the proof of Theorem 1.1.1.

Lemma 1.3.5. In the above notations, let (w1, . . . , wt) be an ordered set of complementary gener-
ators such that the tuple of handle numbers hX (M,w1, . . . , wt) is lexicographically minimal. Then
the zeros in hX (M,w1, . . . , wt) form a prefix of the tuple.

Namely, there is no zero handle-number that follows a positive handle-number.

Proof. It is enough to prove the claim for pairs of words (i.e. for t = 2), the general case following
immediately. Assume then that N = 〈M,w1, w2〉, that 2 is the minimal number of complementary
generators of N given M , and that hX (M,w1, w2) is lexicographically minimal. In the above
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notation, assume to the contrary that h(Γ0, w1) > 0 and h(Γ1, w2) = 0. Let m1 = mw1
denote the

handle of w1 in Γ0. Thus Γ1 was obtained from Γ0 by adding a handle (or a balloon) representing
m1. The word w2 can be expressed as w2 = ps so that there is a path corresponding to p in Γ1,
emanating from the basepoint and ending at some vertex u, and there is a path s to the basepoint
from a vertex v. (Clearly, u 6= v for otherwise w2 ∈ N1 contradicting the minimality of t = 2.) Thus
Γ2 is attained from Γ1 by identifying the vertices u and v. By possibly multiplying w2 from the
left by a suitable element of N1, we can assume that p does not traverse the handle m1 “more than
necessary”. Namely, if u does not lie on m1, then p avoids m1, and if it does lie on m1, then only
the final segment of p traverses m1 till u. The same holds for s and v (with right multiplication).

The argument splits into three possible cases.

• If both u, v belong already to Γ0, then h(Γ0, w2) = 0. In this case we can switch between w2

and w1 to lexicographically reduce the sequence of handle numbers, contrary to our assump-
tion.

• Consider next the case where, say, v ∈ V (Γ0) but u ∈ V (Γ1) \ V (Γ0), i.e, u resides on
the handle m1. Then, the handle needed in order to add w2 to Γ0 is strictly shorter than
h(Γ0, w1) = |m1|. Again, by switching w2 with w1 the sequence of handle numbers goes down
lexicographically - a contradiction.

⊗
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• In the final case that should be considered both u and v are on the handle m1. I.e. u, v ∈
V (Γ1)\V (Γ0). Assume w.l.o.g. that when tracing the path of m1, u precedes v. As before we
can premultiply and postmultiply w2 by suitable elements of N1 to guarantee the following:
The path p, from the basepoint of Γ1 to u, goes through Γ0 and then traverses a prefix of m1

until reaching u, and the path s from v to the basepoint traces a suffix of m1 and then goes
only through Γ0. Again h(Γ0, w2) < h(Γ0, w1), so that switching w2 with w1 lexicographically
reduces the sequence of handle numbers. (A similar argument works in the casem1 constitutes
a balloon.)
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Theorem 1.1.1 follows easily from this lemma. Indeed, assume thatH ∗
≤ J and thatH ≤�

X J . Let
t = rk (J)−rk (H) denote the difference in ranks, so that t is the smallest number of complementary
generators needed to obtain J given H. Let (w1, . . . , wt) be an ordered set of complementary
generators so that hX (H,w1, . . . , wt) is lexicographically minimal. Similarly to the notations above,
let Ji = 〈H,w1, . . . , wi〉 and Γi = ΓX (Ji).

By the lemma, there is some 0 ≤ q ≤ t so that h (Γ0, w1) = . . . = h (Γq−1, wq) = 0 whereas
h(Γq, wq+1), . . . , h (Γt−1, wt) are all positive. By Claim 1.3.4 it follows that Γi is an immediate
quotient of Γi−1 for 1 ≤ i ≤ q, and therefore Jq ∈ X (H) and ρX (H,Jq) = q. (This in fact shows
that ρX(H,Jq) ≤ rk(Jq)− rk(H), and the equality follows from Lemma 1.3.3).

Using Claim 1.3.4 again, we see that Γi is a proper subgraph of Γi+1 for q ≤ i ≤ t− 1. So that
Γq is a subgraph of Γt = ΓX (J). But then the image of the graph morphism η : ΓX (H)→ ΓX (J)
is clearly the subgraph Γq. If q < t this is a proper subgraph, which contradicts the assumption
H ≤�

X J . Hence q = t and ρX (H,J) = t, as required. Together with (1.3.3) this completes the
proof of Theorem 1.1.1.

In fact, the same argument yields a more general result:

Corollary 1.3.6. Let H ≤ J ≤ Fk be f.g. groups, and let t be the minimal number of complementary
generators needed to obtain J from H. Then t is computable as follows. Let η : ΓX (H)→ ΓX (J)
be the unique core-graph morphism, and let M be the intermediate subgroup corresponding to the
image η (ΓX (H)). Then,

t = ρX (H,M) + rk (J)− rk (M) .

Proof. In the notation of the last part of the proof of Theorem 1.1.1, we see that M = Jq
∗
≤ J , and

so ρX (H,M) + rk (J)− rk (M) = ρX (H,Jq) + (t− q) = t.

Remark 1.3.7. Note that in the crucial arguments of the proof of Theorem 1.1.1 we did not use
the fact that the groups where of finite rank. Indeed, this result can be carefully generalized to
subgroups of Fk of infinite rank.

Remark 1.3.8. Another way to interpret Theorem 1.1.1 is by saying that if H ∗
≤ J and H ≤�

X J
with t = rk (J)− rk (H), then there exists some set {w′1, . . . , w′t} of complementary generators such
that each wi can be realized by merging a pair of vertices in ΓX (H). To see this, let w1, . . . , wt
be as in the proof above, so wi can be realized by merging a pair of vertices u and v in Γi−1.
Let ηi−1 : ΓX (H) → Γi−1 be the surjective morphism, and pick any vertices in the fibers u′ ∈
η−1 (u) , v′ ∈ η−1 (v). Let w′i be some word corresponding to the merging of u′ and v′ in ΓX (H).
It is not hard to see that for each i, 〈H,w1, . . . , wi〉 = 〈H,w′1, . . . , w′i〉.

1.4 More on the Primitivity Rank
Recall Definitions 1.1.7 and 1.1.8 where we defined π(w), the primitivity rank of a word w ∈ Fk,
and π(H), the primitivity rank of H ≤fg Fk. In this subsection we prove some characteristics of
this categorization of formal words, and show it actually depends only on the quotients of the core
graph ΓX(H) (or ΓX(〈w〉)). The claims are stated for subgroups, and can be easily interpreted for
elements with the usual correspondence between the element w 6= 1 and the subgroup it generates
〈w〉. We begin by characterizing the possible values of π(H).

Lemma 1.4.1. Let H ≤fg Fk. Then

H
∗
≤ Fk ⇔ π(H) =∞.

Proof. Recall that π(H) is defined by the smallest rank of subgroups of Fk where H is contained
but not as a free factor. If H is not a free factor of Fk, then Fk itself is one such subgroup so that
π(H) ≤ k <∞. If H ∗

≤ Fk, Claim 1.2.5 shows it is a free factor in every other subgroup containing
it. Thus, in this case π(H) =∞.
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Corollary 1.4.2. For every H ≤fg Fk

π(H) ∈ {0, 1, . . . , k} ∪ {∞}

In the definition of the primitivity rank of a subgroup H, we consider all subgroups of Fk
containing H but not as a free factor. It turns out it is enough to consider only subgroups of Fk
that are covered by H, that is, groups whose associated core graphs are in the X-fringe X(H).

Lemma 1.4.3. For every H ≤fg Fk

π(H) = min

{
rk(J)

∣∣∣ H ≤�
X J and

H is not a free factor of J

}
(1.4.1)

Moreover, all H-critical subgroups of Fk are covered by H.

Proof. Recall that H-critical subgroups of Fk are the subgroups of smallest rank in which H is not
a free factor (so in particular their rank is exactly π(H)). It is enough to show that every H-critical
subgroup has its associated core graph in the fringe X(H).

Consider an H-critical subgroup J ≤ Fk. This J contains H but not as a free factor. By
Claim 1.2.2 there exists a morphism η : ΓX(H) → ΓX(J). If η is surjective then H ≤�

X J and
ΓX(J) ∈ X(H). Otherwise, consider J ′, the group corresponding to the core graph η(ΓX(H)).

This graph, ΓX(J ′), is a strict subgraph of ΓX(J), and so J ′
∗
� J (see Claim 1.2.5). In particular

H ≤�
X J
′ and rk(J ′) < rk(J). It is impossible that H ∗

≤ J ′, because by transitivity this would yield
that H ∗

≤ J . Thus, J ′ is a subgroup in which H is a not free factor, and of smaller rank than J .
This contradicts the fact that J is H-critical.

We note that in the terminology of [KM02, MVW07], H-critical subgroups are merely a special
kind of “algebraic extensions” of H. (An algebraic extension of H is a group J such that for every
M with H ≤ M � J , M is not a free factor of J .) Specifically, H-critical subgroups are algebraic
extensions of H of minimal rank, excluding H itself. Our proof actually shows the more general fact
that all algebraic extensions of H can be found in the fringe (this fact appears in [KM02, MVW07]).

At this stage we can describe exactly how the primitivity rank of a subgroup H ≤fg Fk can
be computed. In fact, all algebraic extensions and critical subgroups of H can be immediately
identified:

Corollary 1.4.4. Consider the induced subgraph of Dk consisting of all core graphs in X(H). Then,

• The algebraic extensions of H are precisely the core graphs which are not an immediate
quotient of any other core graph of smaller rank.

• The H-critical subgroups are the algebraic extensions of smallest rank, excluding H itself,
and π (H) is their rank.

Proof. The second statement follows from the discussion above and from definition 1.1.8. The first
statement holds trivially for H itself. If J is a proper algebraic extension of H, then by the proof
of Lemma 1.4.3, J ∈ X (H). If ΓX (J) is an immediate quotient of some ΓX (M) of smaller rank,
where M ∈ X (H), then H ≤M � J and by (the easier implication of) Theorem 1.1.1 we conclude
M
∗
≤ J , a contradiction.
On the other hand, if J ∈ X (H) is not an algebraic extension of H, then there is some in-

termediate subgroup L such that H ≤ L
∗
� J . We can assume L ∈ X (H) for otherwise it can

be replaced with L′ corresponding to the image of the morphism η : ΓX (H) → ΓX (L) (whence

L′ ∈ X (H) and H ≤ L′
∗
≤ L

∗
� J). From (the harder implication of) Theorem 1.1.1 it follows

that ρX (L, J) = rk (J)− rk (L). The prior-to-last element in a shortest path in Dk from ΓX (L) to
ΓX (J) is then a proper free factor of J at distance 1 that belongs to X (H).
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As an example, consider H = 〈x1x2x
−1
1 x−1

2 〉. The full lattice of groups in X(H) is given in Figure
1.3.1. There is one group of rank 1 (H itself), 5 of rank 2 and one of rank 3. The only group in the
lattice where H in not a free factor is the group 〈x1x2〉 = F2, of rank 2, so π(H) = 2. (And the set
of algebraic extensions of H is precisely {H,F2}.)

1.5 The Calculation of φ
The proof of Proposition 1.1.9, as well as the reasoning that underlies Conjecture 1.1.10, are based
on the fact that both φ(H) and π(H) can be calculated by analyzing X(H), the set of quotients of
ΓX(H). In the previous section it was shown how π(H) is determined from X(H). In this section
we show how φ(H) can be calculated by a simple analysis of the very same set. The origins of the
algorithm we present here can be traced to [Nic94] with further development in [LP10]. We present
it here from a more general perspective.

Let the group G act on a set Y and let y0 ∈ Y be a fixed element. Consider a random homo-
morphism αG ∈ Hom(Fk, G). The core graphs in X(H) can be used to calculate the probability
that αG(H) ⊂ Gy0 (where Gy0 is the stabilizer of the element y0). The quotients of the core
graph ΓX(H) correspond to all the different “coincidence patterns” of the paths of y0 through the
action of the images of all w ∈ H, thereby describing disjoint events whose union is the event that
αG(H) ⊂ Gy0

.
The idea is that in order to determine whether αG(w) stabilizes y0 for some w ∈ Fk, we do not

need to know all the values αG(xi) over xi ∈ X (the given basis of Fk). Rather, we only need to
know how αG(xi) acts on certain elements in Y , those in the path of y0 through αG(w). Namely,
if w = xε1j1 . . . x

ε|w|
j|w|

, ji ∈ {1, . . . , k}, εi ∈ {±1}, we need to uncover the elements y1, . . . , y|w| in the
following diagram:

y0 y1 y2 . . . y|w|−1 y|w|
αG

(
x
ε1
j1

)
//

αG

(
x
ε2
j2

)
//

αG

(
x
ε3
j3

)
//
αG

(
x
ε|w|−1
j|w|−1

)
//

αG

(
x
ε|w|
j|w|

)
//

That is, the image of xε1j1 acts on y0, and we denote the resulting element by y1 ∈ Y . The image
of y1 under the action of αG

(
xε2j2
)
is denoted by y2, etc. Then, y0 is a fixed point of αG(w) iff

y|w| = y0.
There are normally many possible series of elements y1, . . . , y|w|−1 ∈ Y that can constitute the

path of y0 through αG(w) such that y0 is a fixed point. We divide these different series to a finite
number of categories based on the coincidence pattern of this series. Namely, two realizations of this
series, y1, . . . , y|w|−1, and y′1, . . . , y′|w|−1 are in the same category iff for every i, j ∈ {0, . . . , |w| − 1},
yi = yj ⇔ y′i = y′j (note that the elements of the series are also compared to y0). In other words,
every coincidence pattern corresponds to some partition of {0, 1, . . . , |w| − 1}.

However, because the elements αG(xj) ∈ G act as permutations on Y , not every partition yields
a realizable coincidence pattern: if, for example, xε2j2 = x−ε7j7

, and y1 = y7, we must also have
y2 = y6. This condition should sound familiar. Indeed, for each coincidence pattern we can draw a
pointed, directed, edge-labeled graph describing it. The vertices of this graph correspond to blocks
in the partition of {0, 1, . . . , |w| − 1}, the basepoint corresponding to the block containing 0. Then,
for each i ∈ {1, . . . , |w|} there is a ji-edge, directed according to εi, between the block of i − 1 to
the block of i. The constraints that coincidence patterns must satisfy then becomes the very same
ones we had encountered in our discussion of core graphs. Namely, no two j-edges share the same
origin or the same terminus.

Thus, the different realizable coincidence patterns of the series y0, y1, . . . , y|w|−1 are exactly
those described by core graphs that are quotients of ΓX(〈w〉). For instance, there are exactly seven
realizable coincidence patterns that correspond to the event in which y0 is a fixed point of αG(w)
when w = [x1, x2]. The seven core graphs in Figure 1.3.1 correspond to these seven coincidence
patterns.
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Finally, the same phenomenon generalizes to any H ≤fg Fk. Instead of uncovering the path
of y0 through the image of a single word, we uncover the paths trough all words in H. The union
of these paths in which y0 is stabilized by all elements of H is depicted exactly by the core graph
ΓX(H). The realizable coincidence patterns correspond then to the quotients of ΓX(H), namely to
X(H). To summarize:

Prob
[
αG(H) ⊂ Gy0

]
=

∑
Γ∈X(H)

Prob
[Γ describes the coincidence pattern
of y0 through the action of αG(H)

]
(1.5.1)

The advantage of the symmetric group Sn with its action on {1, . . . , n} is that the probabilities
in the r.h.s. of (1.5.1) are very easy to formulate. Let αn = αSn ∈ Hom(Fk, Sn) be a uniformly
distributed random homomorphism, and let Γ ∈ X(H) be one of the quotients of ΓX(H). Denote
by PΓ(n) the probability that αn(H) ⊂ (Sn)1 and that the coincidence pattern of the paths of 1
through the elements αG(H) are described by Γ. Then we can give an exact expression for PΓ(n)
in terms of vΓ, eΓ and ejΓ, the number of vertices, edges and j-edges in Γ:

There are (n−1)(n−2) . . . (n−vΓ+1) possible assignments of different elements from {2, 3, . . . , n}
to the vertices of Γ (excluding the basepoint which always corresponds to the element 1). Then, for
a given assignment, there are exactly ejΓ constraints on the permutation αn(xj). So the probability
that the permutation αn(xj) agrees with the given assignment is

(n− ejΓ)!

n!
=

1

n(n− 1) . . . (n− ejΓ + 1)

(for n ≥ ejΓ). Thus

PΓ(n) =
(n− 1)(n− 2) . . . (n− vΓ + 1)∏k
j=1 n(n− 1) . . . (n− ejΓ + 1)

Recall the definition of ΦH(n) in (1.1.1). Since for every j and every Γ ∈ X(H) we have
ejΓ ≤ ejΓX(H) we can summarize and say that for every n ≥ maxj e

j
ΓX(H) (in particular for every

n ≥ vΓX(H)), we have:

ΦH(n) = Prob [∀w ∈ H αn(w)(1) = 1]− 1

nrk(H)

= Prob [αn(H) ⊂ (Sn)1]− 1

nrk(H)

= − 1

nrk(H)
+

∑
Γ∈X(H)

(n− 1)(n− 2) . . . (n− vΓ + 1)∏k
j=1 n(n− 1) . . . (n− ejΓ + 1)

= − 1

nrk(H)
+

∑
Γ∈X(H)

1

neΓ−vΓ+1

(1− 1
n )(1− 2

n ) . . . (1− vΓ−1
n )∏k

j=1 (1− 1
n ) . . . (1− ejΓ−1

n )
(1.5.2)

For instance, for H = 〈[x1, x2]〉 there are seven summands in the r.h.s. of (1.5.2), corresponding
to the seven core graphs in Figure 1.3.1. If we go over these core graphs from top to bottom and
left to right, we obtain that for every n ≥ 2:

Φ〈[x1,x2]〉(n) = − 1

n
+

(n− 1)(n− 2)(n− 3)

n(n− 1) · n(n− 1)
+

+
n− 1

n(n− 1) · n
+

n− 1

n · n(n− 1)
+

(n− 1)(n− 2)

n(n− 1) · n(n− 1)
+

+
(n− 1)(n− 2)

n(n− 1) · n(n− 1)
+

n− 1

n(n− 1) · n(n− 1)
+

1

n · n

= − 1

n
+

1

n− 1
=

1

n(n− 1)
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Recall the definition of the second categorization of sets of free words, φ(H), in (1.1.3). Indeed,
we can rewrite (1.5.2) as a power series in 1

n , and obtain that (for large enough n)

ΦH(n) =

∞∑
i=0

ai(H)

ni

where the coefficients ai(H) depend only on H. We need not consider negative values of i because
the leading term of every summand in (1.5.2) is 1

neΓ−vΓ+1 , and eΓ − vΓ + 1 is non-negative for
connected graphs. In fact, this number also equals the rank of the free subgroup corresponding to
Γ.

The value of φ(H) equals the smallest i for which ai(H) does not vanish. For instance, for
H = 〈[x1, x2]〉 we have

Φ〈[x1,x2]〉(n) =
1

n(n− 1)
=

∞∑
i=2

1

ni

so that a0(H) = a1(H) = 0 and ai(H) = 1 for i ≥ 2. Hence φ(H) = 2.
In fact, we can write a power series for each Γ ∈ X(H) separately, and obtain:

PΓ(n) =
1

neΓ−vΓ+1

(1− 1
n )(1− 2

n ) . . . (1− vΓ−1
n )∏k

j=1 (1− 1
n ) . . . (1− ejΓ−1

n )

=
1

neΓ−vΓ+1

(
1−

(
vΓ

2

)
−
∑k
j=1

(
ejΓ
2

)
n

+O
( 1

n2

))
(1.5.3)

This shows that if Γ = ΓX(J) (J ≤fg Fk), then PΓ(n) never affects ai(H)-s with i < rk(J).
It is also easy to see that all the coefficients of the power series expressing PΓ(n) are integers. We
summarize:

Claim 1.5.1. For every H ≤fg Fk, all the coefficients ai(H) are integers.
Moreover, ai(H) is completely determined by core graphs in X(H) corresponding to groups of rank
≤ i.

1.6 Relations between π(·) and φ(·)
We now have all the background needed for the proof of Proposition 1.1.9 and consequently of
Theorem 1.1.5. We need to show that for every H ≤fg Fk and every i ≤ rk(H) + 1, we have

π(H) = i⇐⇒ φ(H) = i.

The proof is divided into three steps. First we deal with the case i < rk(H), then with i = rk(H).
The last case i = rk(H) + 1 is by far the hardest.

Lemma 1.6.1. Let H ≤fg Fk and i < rk(H). Then

(1) π(H) = i⇔ φ(H) = i

(2) If π(H) = φ(H) = i then ai(H) equals the number of H-critical subgroups of Fk.

Proof. Let m denote the smallest rank of a group J ≤ Fk such that H ≤�
X J (so m ≤ rk (H)). The

first part of the result is derived from the observation that both π(H) = i and φ(H) = i iff m = i.
Let us note first that π(H) = i ⇔ m = i. This follows from Lemma 1.4.3 and the fact that H
cannot be a free factor in a subgroup of smaller rank.

We next observe that φ(H) = i⇔ m = i: If m < rk(H) then by (1.5.2) and (1.5.3), m is indeed
the smallest index for which am(H) does not vanish (this does not work for m = rk(H) because
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of the term
(
− 1

nrk(H)

)
in the definition of ΦH(n)). Conversely, if m = rk(H) then obviously

φ(H) ≥ rk(H).
For the second part of the lemma, recall that H is not a free factor in any subgroup of smaller

rank containing it. Thus, by (1.5.3) and Lemma 1.4.3, both ai(H) and the number of subgroups of
rank i containing H equal the number of subgroups of rank i in X(H).

The case i = rk(H) is slightly different, but almost as easy.

Lemma 1.6.2. Let H ≤fg Fk. Then,

(1) π(H) = rk(H)⇔ φ(H) = rk(H)

(2) If π(H) = φ(H) = rk(H) then ark(H)(H) equals the number of H-critical subgroups of Fk.

Proof. From Lemma 1.6.1 we infer that π(H) ≥ rk(H) ⇔ φ(H) ≥ rk(H). So we assume that
indeed π(H), φ(H) ≥ rk(H), or, equivalently, that there are no subgroups covered by H of rank
smaller than rk(H).

We show that both sides of part (1) are equivalent to the existence of a quotient (corresponding
to a subgroup) of rank rk(H) in X(H) other than ΓX(H) itself. Indeed, this is true for π(H)
because the only free product of H of rank rk(H) is H itself.

As for φ(H), this is true because when φ(H) ≥ rk(H) it is easily verified that the value of
ark(H)(H) equals the number of quotient in X(H) of rank rk(H) minus 1 (this minus 1 comes from
the term

(
− 1

nrk(H)

)
). We think of this term as offsetting the contribution of ΓX(H) to ark(H)(H),

so ark(H)(H) equals the number of other quotients in X(H) of rank rk(H).
The second part of the lemma is true because all H-critical subgroups are covered by H (Lemma

1.4.3).

1.6.1 The Case i = rk(H) + 1

The most interesting (and the hardest) case of Theorem 1.1.5 is when rk(H) = k − 1. In the
previous analysis this corresponds to i = rk(H) + 1.

Lemma 1.6.3. Let H ≤fg Fk. Then,

(1) π(H) = rk(H) + 1⇔ φ(H) = rk(H) + 1

(2) If π(H) = φ(H) = rk(H) + 1 then ark(H)+1(H) equals the number of H-critical subgroups of
Fk.

Denote by Γ̂ = ΓX(H) the associated core graph. By Lemmas 1.6.1 and 1.6.2, we can assume
that π(H), φ(H) ≥ rk(H) + 1. In particular, we can thus assume that H is not contained in any
subgroup of rank smaller than rk(H) + 1 other than H itself.

The coefficient ark(H)+1(H) in the expression of ΦH(n) is the sum of two expressions:

• The contribution of Γ̂ which equals −
((
vΓ̂
2

)
−
∑k
j=1

(ej
Γ̂
2

))
• A contribution of 1 from each core graph of rank rk(H) + 1 in X(H)

Thus, our goal is to show that the contribution of Γ̂ is exactly offset by the contribution of the core
graphs of rank rk(H) + 1 in X(H) in which H is a free factor. This would then yield immediately
both parts of Lemma 1.6.3. But the number of subgroups of rank rk(H) + 1 (in X(H)) in which H
is a free factor equals exactly the number of immediate quotients of Γ̂: Theorem 1.1.1 shows that
only immediate quotients of Γ̂ are subgroups of rank rk(H) + 1 in which H is a free factor. On the
other hand, (1.3.1) and the assumption that H in not contained in any other subgroup of equal or
smaller rank yield that every immediate quotient of Γ̂ is of rank rk(H) + 1 (and H is a free factor
in it).

Thus, Lemma 1.6.3 follows from the following lemma.
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Lemma 1.6.4. Assume π(H), φ(H) > rk(H). Then Γ̂ = ΓX(H) has exactly(
vΓ̂

2

)
−

k∑
j=1

(
ej

Γ̂

2

)
immediate quotients.

The intuition behind Lemma 1.6.4 is this: Every immediate quotient of Γ̂ is generated by
identifying some pair of vertices of Γ̂, and there are exactly

(
vΓ̂
2

)
such pairs. But for every pair of

equally-labeled edges of Γ̂, the pair of origins generates the same immediate quotient as the pair of
termini. This intuition needs, however, some justification that we now provide.

To this end we use the graph Υ, a concept introduced in [LP10]†. This graph represents the
pairs of vertices of Γ̂ and the equivalence relations between them induced by equally-labeled edges.
There are

(
vΓ̂
2

)
vertices in Υ, one for each unordered pair of vertices of Γ̂. The number of di-

rected edges in Υ is
∑k
j=1

(ej
Γ̂
2

)
, one for each pair of equally-labeled edges in Γ̂. The edge corre-

sponding to the pair {ε1, ε2} of j-edges is a j-edge connecting the vertex {origin(ε1), origin(ε2)}
to {terminus(ε1), terminus(ε2)}. For example, when S consists of the commutator word, Υ has(

4
2

)
= 6 vertices and

(
2
2

)
+
(

2
2

)
= 2 edges. We illustrate a slightly more interesting case in Figure

1.6.1.

⊗
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Figure 1.6.1: The graph Υ (on the right) corresponding to Γ̂ = ΓX(H) (on the left) for H =
〈x2

1x2x1x2x
−1

1 x2〉. (The vertices of Γ̂ are denoted here by v0, . . . , v6.)

We denote the set of connected components of Υ by Comp(Υ). The proof of Lemma 1.6.4
will follow from two facts that we show next. Namely, Υ has exactly

(
vΓ̂
2

)
−
∑k
j=1

(ej
Γ̂
2

)
connected

components. Also, there is a one-to-one correspondence between Comp(Υ) and the set of immediate
quotients of Γ̂.

Claim 1.6.5. If π(H), φ(H) > rk(H), then

∣∣Comp(Υ)
∣∣ =

(
vΓ̂

2

)
−

k∑
j=1

(
ej

Γ̂

2

)

Proof. Since Υ has
(
vΓ̂
2

)
vertices and

∑k
j=1

(ej
Γ̂
2

)
edges, it is enough to show that it is a forest, i.e.,

it contains no cycles.
Let C ∈ Comp(Υ) be some component of Υ. Clearly, every vertex in C (which corresponds

to a pair of vertices in Γ̂) generates the same immediate quotient. Denote this quotient by ∆(C),

†This is a variation of the classical construction of pull-back of graphs (in this case the pull-back of the graph Γ̂
with itself).
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and the corresponding subgroup by J . In particular, rk(J) = rk(H) + 1 (recall that under the
claim’s assumptions, H is not contained in any other subgroup of smaller or equal rank).Assume to
the contrary that C contains a cycle. Edges in Υ are directed and labeled, so there is an element
u ∈ Fk which corresponds to this cycle started, say, at the vertex {x, y}.

•
{x, y}

. . .......................
..
..
..
...
..
..
. .
77

u

Where do we get as we walk in the core graph Γ̂ starting at x (resp. y) and following the path
corresponding to u? One possibility is that the walk from x returns back to x and likewise for y.
Alternatively this u-walk can take us from x to y and from y to x. We consider only the former
possibility. The latter case would be handled by considering the walk corresponding to u2. Let
px, py ∈ Fk be words corresponding to some paths from the basepoint of Γ̂ to x, y respectively. In
particular, pxup−1

x , pyup
−1
y ∈ H.

⊗

Γ̂

_acegjmpt{���
�# * 3<D I N Q T W Y [ ] _ a c e g j m p t z����

#+3<CJNQTWY[]

•
x

•y

u
}}

u
}}

�� ��

px

77 77
py

Merging x and y is equivalent to adding the generator pxp−1
y to H, so that J = 〈H, pxp−1

y 〉.
Since rk(J) = rk(H) + 1, we have that J = H ∗ 〈pxp−1

y 〉. Consider the elements h1 = pxup
−1
x ∈ H

and h2 = pyup
−1
y ∈ H. The following equality holds:

h1 = pxup
−1
x = (pxp

−1
y )pyup

−1
y (pxp

−1
y )−1 = (pxp

−1
y )h2(pxp

−1
y )−1

This is a contradiction, since we obtained two different expressions for h1 in the free product
J = H ∗ 〈pxp−1

y 〉.

Remark 1.6.6. Let H ≤ Fk and x, y ∈ V (ΓX (H)). In the proof of the last claim it was shown that
if there is some 1 6= u ∈ Fk which is readable as a closed path at both x and y, then the subgroup
we obtain by merging them is not a free extension of H. We stress that the converse is not true. For
example, consider H = 〈a, bab〉 ≤ F ({a, b}). Then Γ{a,b} (H) has three vertices, no pair of which
share a common closed path (in other words, the corresponding graph Υ has no cycles). However,
Γ{a,b} (H) has exactly two immediate quotients, none of which is a free extension.

Next we exhibit a one-to-one correspondence between Comp(Υ) and the immediate quotients
of Γ̂. It is very suggestive to try and restore C from ∆(C) by simply signaling out the pairs of
vertices that are identified in ∆(C). But this is too naive. There may be pairs of vertices not in
C that are identified in ∆(C). For instance, consider C, the rightmost component of Υ in Figure
1.6.1. In ∆(C) we merge v1 and v3 but also v3 and v5. Thus v1 and v5 are merged and likewise all
pairs in the component of {v1, v5}.

However, simple group-theoretic arguments do yield this sought-after result:
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Claim 1.6.7. If π(H), φ(H) > rk(H), then there is a one-to-one correspondence between Comp(Υ)
and the set of immediate quotients of Γ̂ = ΓX(H).

Proof. Maintaining the above notation, we need to show that the mapping from C ∈ Comp(Υ) to
∆(C), the immediate quotient generated by any of the pairs in C, is one to one.

Denote by J the subgroup corresponding to the immediate quotient ∆(C). Let {x, y} be some
vertex in C, and px, py ∈ Fk words corresponding to some paths from the basepoint of Γ̂ to x, y,
respectively. Let also q = pxp

−1
y ∈ Fk. As we saw above,

J = 〈H, q〉

and clearly q /∈ H.
We claim that any other complementary generator of J over H is in same (H,H)-double-coset of

q or of q−1 in J . Namely, if J = 〈H, q′〉 then q′ ∈ HqH∪Hq−1H. To see this, let Y be some basis of
H and think of J as the free group over the basis Y ∪{q} (this is true because rk(J) = rk(H) + 1).
Now think of q′ as a word in the elements of this basis. Multiplying from the right or left by
elements of Y does not affect the (H,H)-double-coset, so assume w.l.o.g. that q′ begins and ends
with either q or q−1. But then the set Y ∪{q′} is Nielsen-reduced with respect to the basis Y ∪{q}
(see, for instance, the definition in Chapter 1 of [LS70]). As consequence, Y ∪ {q′} equals Y ∪ {q}
up to taking inverses (Proposition 2.8 therein). Thus q′ = q or q′ = q−1.

So let {a, b} be another pair of vertices generating ∆(C). We show that it belongs to C. Let
pa, pb be words in Fk corresponding to paths in Γ̂ from the basepoint to a, b respectively. We have
〈H, pap−1

b 〉 = J , so pap−1
b ∈ HqH ∪Hq−1H. W.l.o.g. it is in HqH (otherwise switch a and b). So

assume pap−1
b = h1qh2 with h1, h2 ∈ H. But h−1

1 pa is also a path from the basepoint of Γ̂ to a,
and likewise h2pb a path to b. Choosing if needed these paths instead of pa, pb we can assume that

pap
−1
b = q = pxp

−1
y .

Thus,
p−1
a px = p−1

b py.

This shows that there is a path in Γ̂ from a to x corresponding to a path from b to y. This shows
precisely that the pair {a, b} is in the same component of Υ as {x, y}, namely, in C.

This completes the proof of Lemma 1.6.3. This Lemma, together with Lemmas 1.6.2 and 1.6.1,
yields Proposition 1.1.9 and thus Theorem 1.1.5.

1.6.2 Further Relations between π(·) and φ(·)
Let us take another look now at Conjecture 1.1.10. It posits that the results described in Proposition
1.1.9 hold for all values of π(·) and φ(·). To understand what this means, suppose that H is a free
factor in all the quotients in X(H) of ranks up to i − 1. What can be said about rank-i quotients
in which H is a free factor? The conjecture states that their number exactly offsets the sum of
two terms: The contribution to ai(H) of the quotients of smaller rank and of the term −1

nrk(H) when
i = rk(H). For instance, π(H) = 3 for H = 〈x 2

1 x
2

2 x
2

3 〉. In particular, H is a free factor of all
quotients in X(H) of rank ≤ 2. There is a single H-critical subgroup (F3 itself), and additional 13
quotients of rank 3 in which H is a free factor. The contribution of quotients of rank ≤ 2 to a3(H)
is indeed exactly (−13).

Interestingly enough, this is indeed the case for every free factor H ∗
≤ Fk. In this case, since

free factors are measure preserving, we get that φ(H) = ∞, so ai(H) = 0 for every i, and the
statement of the previous paragraph holds. For the general case the conjecture states that as long
as we consider low-rank quotients and “imprimitivity has not been revealed yet”, the situation does
not differ from what is seen in the primitive case.
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We finish this section by stating another result connecting π(·) and φ(·). It shows an elegant
property of both of them that lends further support to our belief in Conjecture 1.1.10.

Two words w1, w2 ∈ Fk are called disjoint (with respect to a given basis) if they share no
common letters.

Lemma 1.6.8. Let w1, w2 ∈ Fk be disjoint. Then

π(w1w2) = π(w1) + π(w2)

φ(w1w2) = φ(w1) + φ(w2)

Moreover, aφ(w1w2)(w1w2) = aφ(w1)(w1) · aφ(w2)(w2), and if part 2 of Conjecture 1.1.10 holds for
H = 〈w1〉 and for H = 〈w2〉, then it also holds for H = 〈w1w2〉.

This lemma is essentially outside the scope of the present paper, so we only sketch its proof. Let
αn ∈ Hom(Fk, Sn) be a random homomorphism chosen with uniform distribution. As w1 and w2

are disjoint, the random permutations αn(w1) and αn(w2) are independent. The claims about the
additivity of φ(·) and the multiplicativity of aφ(·)(·) are easy to derive by calculating the probability
that 1 is a fixed point of w1w2. The key fact in this calculation is the aforementioned independence
of αn(w1) and αn(w2).

The other claims in the lemma follow from an analysis of H-critical subgroups. By considering
properties of the associated core graphs it is not hard to show that J ≤ Fk is 〈w1w2〉-critical iff it
is the free product of a 〈w1〉-critical subgroup and a 〈w2〉-critical subgroup.

1.7 Primitive Words and the Profinite Completion
Most of the standard facts below about profinite groups and particularly free profinite groups can
be found with proofs in [Wil98] (in particular Section 5.1).

A profinite group is a topological group G with any of the following equivalent properties:

• G is the inverse limit of an inverse system of finite groups.

• G is compact, Hausdorff and totally disconnected.

• G is isomorphic (as a topological group) to a closed subgroup of a Cartesian product of finite
groups.

• G is compact and
⋂

(N |N /O G) = 1

The free profinite group on a finite set X is a profinite group F together with a map j : X → F
with the following universal property: whenever ξ : X → G is a map to a profinite group G, there
is a unique (continuous) homomorphism ξ̄ : F → G such that ξ = ξ̄j. Such F exists for every X
and is unique up to a (continuous) isomorphism. We call j(X) a basis of F . It turns out that every
two bases of F have the same size which is called the rank of F . The free profinite group of rank
k is denoted by F̂k. An element w ∈ F̂kk is primitive if it belongs to some basis.

It is a standard fact that F̂kk is the profinite completion of Fk and Fk is naturally embedded
in F̂kk. Moreover, every basis of Fk is then also a basis for F̂kk, so a primitive word w ∈ Fk is also
primitive as an element of F̂kk. It is conjectured that the converse also holds:

Conjecture 1.7.1. A word w ∈ Fk is primitive in F̂kk iff it is primitive in Fk.

This conjecture, if true, immediately implies the following one:

Conjecture 1.7.2. The set of primitive elements in Fk form a closed set in the profinite topology.
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Conjecture 1.1.4 implies these last two conjectures (it is in fact equivalent to Conjecture 1.7.1,
see below): we define measure preserving elements in F̂kk as before. Namely, an element w ∈ F̂kk
is measure preserving if for any finite group G and a uniformly distributed random (continuous)
homomorphism α̂G ∈ Hom(F̂kk, G), the image α̂G(w) is uniformly distributed in G. Clearly, an
element of Fk is measure preserving w.r.t Fk iff this holds w.r.t. F̂kk.

As in the abstract case, a primitive element of F̂kk is measure preserving. Conjecture 1.1.4
would therefore imply that if w ∈ Fk is primitive in F̂kk, then w is also primitive w.r.t. Fk. In
particular, Theorem 1.1.5 yields:

Corollary 1.7.3. Let S ⊂ Fk be a finite subset of cardinality |S| ≥ k − 1. Then,

S can be extended to a basis in F̂kk ⇐⇒ S can be extended to a basis in Fk

In particular, for every w ∈ F2:

w is primitive in F̂k2 ⇐⇒ w is primitive in F2

This corollary yields, in turn, Corollary 1.1.6, which states the special case of Conjecture 1.7.2
for F2.

As shown by Chen Meiri (unpublished), Conjectures 1.7.1 and 1.1.4 are equivalent. With his
kind permission we explain this result in this section. Meiri showed that in F̂kk primitivity and
measure preservation are equivalent (Proposition 1.7.4 below). Thus, w ∈ Fk is primitive as an
element of F̂kk iff it is measure preserving.

Proposition 1.7.4. [C. Meiri, unpublished] Let w belong to F̂kk. Then

w is primitive ⇐⇒ w is measure preserving

Proof. The (⇒) implication is trivial as in the abstract case: for every finite group G and every
basis x1, . . . , xk of F̂kk there is a bijection

Hom(F̂kk, G)
∼=→ Gk

αG 7→ (αG(x1), . . . , αG(xk))

For the other direction, for every w ∈ F̂kk, finite group G and g ∈ G define

Hw(G, g) =
{
αG ∈ Hom(F̂kk, G) | αG(w) = g

}
Ew(G, g) =

{
αG ∈ Epi(F̂kk, G) | αG(w) = g

}
Now assume w ∈ F̂kk is measure preserving, and let x ∈ F̂kk be any primitive element. For every
finite group G we have |Hw(G, g)| = |G|k−1 = |Hx(G, g)|. The same equality holds for the set of
epimorphisms, namely |Ew(G, g)| = |Ex(G, g)|. We will show this by induction on |G|.

If |G| = 1 the claim is trivial. The inductive step goes as follows: if g ∈ G, then

|Ew(G, g)| = |Hw(G, g)| −
∑

g∈H�G

|Ew(H, g)| =

= |Hx(G, g)| −
∑

g∈H�G

|Ex(H, g)| = |Ex(G, g)|

Now choose a basis x1, . . . , xk of F̂kk. For every N /O F̂kk, |Ex1
(F̂kk/N,wN)| =

|Ew(F̂kk/N,wN)| ≥ 1. If α ∈ Ex1
(F̂kk/N,wN) then wN = α(x1), α(x2), . . . , α(xk) generate

F̂kk/N . A standard compactness argument shows that there are elements w2, . . . , wk ∈ F̂kk such
that {wN,w2N, . . . , wkN} generate F̂kk/N for every N /O F̂kk. But then {w,w2, . . . , wk} generate
F̂kk as well. Whenever k elements generate F̂kk, they generate it freely. Thus {w,w2, . . . , wk} is a
basis and w is primitive.
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1.8 The Average Number of Fixed Points in αn(w)

As before, let αn ∈ Hom(Fk, Sn) be a uniformly distributed random homomorphism. In (1.1.1) we
defined the function Φ〈w〉(n) = Φw(n) for every w ∈ Fk. It considers the probability that αn(w)

fixes the element 1 and quantifies its deviation from 1
n . The choice of the element 1 is arbitrary,

of course, and we get the same probability for every element in 1, . . . , n. Thus nΦw(n) + 1 is the
average number of fixed points of the random permutation αn(w).

Corollary 1.4.2 states that in F2 there are exactly four possible primitivity ranks of words. This
translates through Proposition 1.1.9 to four possibilities for the average number of fixed points in
the permutation αn(w), as summarized by Table 1.1:

π(w)/φ(w) Description Prob[αn(w)(1) = 1] Avg # of f.p. of αn(w)

0 w = 1 1 n

1 w is a power 1
n + a1(w)

n +
∑∞
i=2

ai(w)
ni 1 + a1(w) +O

(
1
n

)
2 1

n + a2(w)
n2 +

∑∞
i=3

ai(w)
ni 1 + a2(w)

n +O
(

1
n2

)
∞ w is primitive 1

n 1

Table 1.1: The possibilities for the average number of fixed points of the permutation αn(w) for
some w ∈ F2.

Recall that all coefficients ai(w) are integers (Claim 1.5.1). Moreover, in these cases aφ(w)(w)
counts the 〈w〉-critical subgroups of F2, so in particular aφ(w)(w) > 0. We thus obtain

Corollary 1.8.1. For every word w ∈ F2 and every large enough n, the average number of fixed
points of αn(w) is at least 1.

This leads to the following conjecture, which is a consequence of Conjecture 1.1.10:

Conjecture 1.8.2. For every word w ∈ Fk and every large enough n, the average number of fixed
points of αn(w) is at least 1.

Proposition 1.1.9 says something about free words in general. If φ(w) ≤ 2 for some w ∈ Fk,
then the first non-vanishing coefficient aφ(w)(w) is positive. Thus,

Corollary 1.8.3. For every word w ∈ Fk the average number of fixed points in αn(w) is at least
1−O

(
1
n2

)
.

It is suggestive to ask whether Conjecture 1.8.2 holds for all n. Namely, is it true that for every
w ∈ Fk and every n, the average number of fixed points in αn(w) is at least 1? By results of Abért
([Abe06]), this statement turns out to be incorrect.

A Note Added in Proof
Remark 1.8.4. After this paper was completed, we learned about the algorithm of Silva and Weil
to detect free-factor subgroups in the free group [SW08]. In essence, their algorithm relies on the
same phenomenon that we independently noticed here. However, our reasoning is very different, and
offers several substantial advantages over the presentation in [SW08]. A more elaborate discussion
of the differences between the two approaches appears in Appendix 1.A.

Remark 1.8.5. In subsequent joint work with O. Parzanchevski [PP15], we manage to prove Con-
jecture 1.1.4 in full. That proof relies on Theorem 1.1.1 and follows the general strategy laid out
in the current paper. In particular, we establish Conjectures 1.1.10, 1.7.1, 1.7.2 and 1.8.2.
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Appendices

1.A An Algorithm to Detect Free Factors
One of the interesting usages of Theorem 1.1.1 is an algorithm to detect free factor subgroups and
consequently, also to detect primitive words in Fk. The algorithm receives as input H and J , two
finitely generated subgroups of Fk, and determines whether H ∗

≤ J . The subgroups H and J are
given to us by specifying a generating set, where members of the generating sets are words in the
elements of the fixed basis X. (Note that the algorithm in particular decides as well whether H ≤ J ,
but this is neither hard nor new).

We should mention that ours is not the first algorithm, nor the first graph-theoretic one, for this
problem (see Chapter I.2 in [LS70]). We already mentioned (Remark 1.8.4) [SW08], who noticed
the basic phenomenon underlying our algorithm, albeit in a very different language. See Remark
1.A.2 below for an explanation of the differences. A well-known algorithm due to Whitehead
solves a much more general problem. Namely, for given 2r words w1, . . . , wr, u1, . . . , ur ∈ Fk,
it determines whether there is an automorphism α ∈ Aut(Fk) such that α(wi) = ui for each i
([Whi36a],[Whi36b]. For a good survey see Chapter I.4 at [LS70]. A nice presentation of the
restriction of Whitehead’s algorithm to our problem appears in [Sta99]). Quite recently, Roig,
Ventura and Weil introduced a more clever version of the Whitehead algorithm for the case of
detecting primitive words and free factor subgroups [RVW07]. Their version of the algorithm has
polynomial time in both the length of the given word w (or the total length of generators of a given
subgroup H) and in k, the rank of the ambient group Fk. To the best of our knowledge, their
algorithm is currently the best one for this problem, complexity-wise. The algorithm we present
is, at least naively, exponential, as we show below (Remark 1.A.1).

So assume we are given two subgroups of finite rank of Fk, H and J , by means of finite
generating sets SH , SJ . Each element of SH , SJ is assumed to be a word in the letters X ∪ X−1

(recall that X = {x1, . . . , xk} is the given basis of Fk). To find out whether H ∗
≤ J , follow the

following steps.

Step 1: Construct Core Graphs and Morphism
First, construct the core graphs Γ = ΓX(H) and ∆ = ΓX(J) by the process described in Appendix
1.C. Then, seek a morphism η : Γ → ∆. This is a simple process that can be done inductively
as follows: η must map the basepoint of Γ to the basepoint of ∆. Now, as long as η is not fully
defined, there is some j-edge e = (u, v) in E(Γ) for which the image is not known yet, but the
image of one of the end points, say η(u), is known (recall that Γ is connected). There is at most
one possible value that η(e) can take, since the star of η(u) contains at most one outgoing j-edge.
If there is no such edge, we get stuck. Likewise, η(v) must equal the terminus of η(e), and if η(v)
was already determined in an inconsistent way, we get a contradiction. If in this process we never
get stuck and never reach a contradiction, then η is defined. If this process cannot be carried out,
then there is no morphism from Γ to ∆, and hence H is not a subgroup of J (see Claim 1.2.2).

Step 2: Reduce to Two Groups with H ≤�
X J
′
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After constructing the morphism η : Γ→ ∆, we obtain a new graph from ∆ by omitting all edges
and all vertices not in the image of η. Namely,

∆′ := η(Γ)

It is easy to see that ∆′ is a core-graph, and we denote by J ′ the subgroup corresponding to ∆′.
Obviously, ∆′ is a quotient of Γ, so H ≤�

X J
′. Moreover, it follows from Claim 1.2.5 that

H
∗
≤ J ⇐⇒ H

∗
≤ J ′.

Step 3: Use ρX(H,J ′) to determine whether H ∗
≤ J ′

Now calculate ρX(H,J ′) (this is clearly doable because the subgraph of Dk consisting of quotients
of Γ is finite). Thanks to Theorem 1.1.1, ρX(H,J ′) determines whether or not H ∗

≤ J ′, and
consequently, whether or not H ∗

≤ J .

Remark 1.A.1. The complexity of this algorithm is roughly O(v2t), where v is the number of vertices
in ΓX(H) and t is the difference in ranks: t = rk(J)− rk(H). Naively, we need to go over roughly
all possible sets of t pairs of vertices of ΓX(H) and try to merge them (see Remark 1.3.7). The
number of possibilities is at most

((v2)
t

)
, which shows the claimed bound. (In fact, we can restrict

to pairs where both vertices are in the same fiber of the morphism η : ΓX(H)→ ΓX(J).)

1.A.1 Examples
We illustrate the different phases of the algorithm by two concrete examples. Consider first the
groups H = 〈x1x2x

−1
1 x −1

2 , x2x
2

1 〉 and J = 〈x 3
1 , x

3
2 , x1x

−1
2 , x1x2x1〉, both in F2. The core graphs

of these groups are:

⊗ •

••

1 //

2

��1 //

2

��

1

__

⊗ • •1 $$ 1 $$
2

::
2

::

1

��

2

]]

In this case, a morphism η from Γ = ΓX(H) to ∆ = ΓX(J) can be constructed. All the vertices
of Γ are in the image of η, and only one edge, the long 2-edge at the bottom, is not in η(E(Γ)).
Thus ∆′ is:

⊗ • •1 $$ 1 $$
2

::
2

::

1

��

and J ′ is the corresponding subgroup J ′ = 〈x 3
1 , x1x

−1
2 , x1x2x1〉.

Finally, rk(H) = 1 − χ(Γ) = 2 and rk(J ′) = 1 − χ(∆′) = 3, and so the difference is
rk(J ′) − rk(H) = 1. It can be easily verified that ∆′ is indeed an immediate quotient of
Γ: simply merge the upper-right vertex of Γ with the bottom-left one to obtain ∆′. Thus
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ρX(H,J ′) = 1 = rk(J ′)− rk(H), and so H ∗
≤ J ′ hence H ∗

≤ J .

As a second example, consider the commutator word w = x1x2x
−1
1 x−1

2 . We want to determine
whether it is primitive in F3. We take H = 〈w〉 and the core graphs are then

⊗ •

••

1 //

2

��1 //

2

��

⊗
1

;;
2

cc

3

��

Once again, a morphism η from Γ = ΓX(H) to ∆ = ΓX(F3) can be constructed, and there is
a single edge in ∆, the 3-edge, outside the image of η. Thus ∆′ is the quotient of Γ which is the
bottom graph in Figure 1.3.1, and J ′ is simply F2.

Finally, rk(H) = 1 − χ(Γ) = 1 and rk(F2) = 2, and so the difference is rk(F2) − rk(H) = 1.
But as we infer from Figure 1.3.1, ρX(H,F2) = 2. Thus ρX(H,F2) > rk(F2)− rk(H) and H is not
a free factor of F2. As consequence, w is not primitive in F3. (This example generalizes as follows:
if w is a free word containing exactly l different letters, then w is primitive iff we can obtain a
wedge-of-loops graph from ΓX(〈w〉) by merging l − 1 pairs of vertices.)
Remark 1.A.2. At this point we would like to elaborate on the differences between the algorithm
presented here and the one introduced in [SW08]. Silva and Weil’s presentation considers automata
and their languages. We consider the X-fringe X(H) and introduce the DAG Dk and the distance
function from Definition 1.3.2. Steps 1 and 2 of our algorithm, which reduce the problem in its very
beginning to the case where H ≤�

X J , have no parallel in [SW08]. Rather, they show that if H ∗
≤ J ,

then by some sequence of “i-steps” (their parallel of our immediate quotients) onH, of length at most
rk(J)− rk(H), one can obtain a core graph which is embedded in ΓX(J) (we make the observation
that this embedded core graph can be computed in advance). Besides shedding more light on this
underlying phenomenon, our more graph-theoretic approach has another substantial advantage: by
considering Dk, turning the fringe X(H) into a directed graph and stating the algorithm in the
language of Theorem 1.1.1, we obtain a straight-forward algorithm to identify H-critical subgroups
and to compute π(H). Moreover, we obtain a straight-forward algorithm to identify all “algebraic
extensions” of H (Corollary 1.4.4). In particular, our algorithm to identify algebraic extensions
substantially improves the one suggested in [KM02], Theorem 11.3 (and see also remark 11.4 about
its efficiency).

1.B The Proof of Lemma 1.3.3
To complete the picture, we prove the upper bound for ρX(H,J) stated in Lemma 1.3.3. We need
to show that if H,J ≤fg Fk such that H ≤�

X J , then

ρX(H,J) ≤ rk(J)

Proof. We show that ∆ = ΓX(J) can be obtained from Γ = ΓX(H) by merging at most rk(J) pairs
of vertices. To see this, denote by m the number of edges in Γ, and choose some order on these
edges, e1, . . . , em so that for every i, there is a path from the basepoint of Γ to ei traversing only
edges among e1, . . . , ei−1. (So e1 must be incident with the basepoint, e2 must be incident either
with the basepoint or with the other end of e1, etc.)

We now expose ∆ step by step, each time adding the images of the next edge of Γ and of its
end points. Formally, denote by η the (surjective) morphism from Γ to ∆, let Γi be the subgraph
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of Γ that is the union of the basepoint of Γ together with e1, . . . , ei and their endpoints, and let
∆i = η(Γi). We thus have two series of subgraphs

Γ0 ⊆ Γ1 ⊆ . . . ⊆ Γm = Γ

and
∆0 ⊆ ∆1 ⊆ . . . ⊆ ∆m = ∆

with ∆0 = Γ0 being graphs with a single vertex and no edges.
Assume that ei = (u, v), and w.l.o.g. that u ∈ V (Γi−1). We then distinguish between three

options. A forced step is when η(ei) already belongs to ∆i−1 and then ∆i = ∆i−1. A free step
takes place when neither η(ei) nor η(v) belong to ∆i−1, in which case π1(∆i) = π1(∆i−1). The
third option is that of a coincidence. This means that η(ei) does not belong to ∆i−1 but η(v)
does. In this case, ∆i is obtained from ∆i−1 by connecting two vertices by a new edge, and π1(∆i)
has rank larger by 1 from the rank of π1(∆i−1). Since the fundamental group of ∆0 has rank 0,
this shows there are exactly rk(J) coincidences along this process.

Assume the coincidences occurred in steps j1, . . . , jrk(J). If eji = (u, v), we let ṽ ∈ η−1(η(v)) ∩
V (Γi−1), and take {v, ṽ} to be a pair of vertices of Γ that we merge. (It is possible that v = w.)
Let wi ∈ Fk be be a word corresponding to this merge in Γ. It is easy to see by induction that ∆ji

corresponds to the subgroup 〈H,w1, . . . , wi〉. In particular, ∆ corresponds to
〈
H,w1, . . . , wrk(J)

〉
.

We are done because all these words correspond to pairs of vertices in Γ (and see Remark 1.3.7).

1.C The Folding Algorithm to Construct Core Graphs
Finally, we present a well known algorithm to construct the core graph of a given subgroup H ≤fg
Fk. The input to this process is any finite set of words {h1, . . . , hr} in the letters {x1, . . . , xk} that
generate H.

Figure 1.C.1: Generating the core graph ΓX(H) of H = 〈x1x2x
−3
1 , x 2

1 x2x
−2
1 〉 ≤ F2 from the given

generating set. We start with the upper left graph which contains a distinct loop at the basepoint
for each (reduced) element of the generating set. Then, gradually and at arbitrary order, we merge
pairs of equally-labeled edges which share the same origin or the same terminus. One of the possible
orders of merging pairs is shown in this figure, and at each phase we mark by triple arrows the pair
of edges being merged. The graph in the bottom right is ΓX(H), as it has no equally-labeled edges
sharing the same origin or the same terminus.
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Every element hi of the generating set corresponds to some path with directed edges labeled by
the xi’s (we assume the element is given in reduced form). Merge these r paths to a single graph
by identifying all their 2r end-points to a single vertex which is denoted as basepoint. Then, as
long as there are two j-labeled edges with the same terminus (resp. origin) for some j, merge the
two edges and their origins (resp. termini). Such a step is often referred to as a Stallings folding. It
is a fairly easy observation that the resulting graph is indeed ΓX(H) and that the order of folding
has no significance. To illustrate, we draw in Figure 1.C.1 the folding process by which we obtain
the core graph ΓX(H) of H = 〈x1x2x

−3
1 , x 2

1 x2x
−2
1 〉 ≤ F2 from the given generating set.
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Abstract
We establish new characterizations of primitive elements and free factors in free groups, which are
based on the distributions they induce on finite groups. For every finite group G, a word w in the
free group on k generators induces a word map from Gk to G. We say that w is measure preserving
with respect to G if given uniform distribution on Gk, the image of this word map distributes
uniformly on G. It is easy to see that primitive words (words which belong to some basis of the free
group) are measure preserving w.r.t. all finite groups, and several authors have conjectured that the
two properties are, in fact, equivalent. Here we prove this conjecture. The main ingredients of the
proof include random coverings of Stallings graphs, algebraic extensions of free groups, and Möbius
inversions. Our methods yield the stronger result that a subgroup of Fk is measure preserving if
and only if it is a free factor.

As an interesting corollary of this result we resolve a question on the profinite topology of free
groups and show that the primitive elements of Fk form a closed set in this topology.
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2.1 Introduction
This paper establishes a new characterization of primitive elements in free groups, which is based
on the distributions they induce on finite groups. Let Fk be the free group on k generators X =
{x1, . . . , xk}, and let w =

∏r
j=1 x

εj
ij

(εj = ±1) be a word in Fk. For every group G, w induces a
word map from the Cartesian product Gk to G, by substitutions:

w : (g1, . . . , gk) 7→
r∏
j=1

gεjij .

The word w is called measure preserving with respect to a finite group G if all the fibers of this map
are of equal size. Namely, every element in G is obtained by substitutions in w the same number
of times. We say that w is measure preserving if it is measure preserving w.r.t. every finite group.
The last years have seen a great interest in word maps in groups, and the distributions they induce.
We refer the reader, for instance, to [Sha09, LS09, AV11, PS13], and to the recent book [Seg09]
and survey [Sha13]. Several authors have also studied words which are asymptotically measure
preserving on finite simple groups, see e.g. [LS08, GS09, BK13].

The word w is called primitive if it belongs to some basis (free generating set) of Fk. It is a simple
observation (see 2.1.2 below) that primitive words are measure preserving, and several authors have
conjectured that the converse is also true. Namely, that measure preservation implies primitivity†.
From private conversations we know that this has occurred to the following mathematicians and
discussed among themselves: N. Avni, T. Gelander, M. Larsen, A. Lubotzky and A. Shalev. The
question was independently raised in [LP10] and also in [AV11], alongside a generalization of it (see
Section 2.8).

In [Pud14] the first author proved the conjecture for F2. Here we prove it in full:

Theorem 2.1.1. A measure preserving word is primitive.

A key ingredient of the proof is the extension of the problem from single words to (finitely
generated) subgroups of Fk. The concept of primitive words extends naturally to the notion of free
factors: Let H be a subgroup of the free group J (in particular, H is free as well). We say that H
is a free factor of J , and denote this by H ∗

≤ J , if there is a subgroup H ′ ≤ J such that H ∗H ′ = J .
Equivalently, H ∗

≤ J if and only if some basis of H can be extended to a basis of J . (This in turn
is easily seen to be equivalent to the condition that every basis of H extends to a basis of J .)

In order to generalize the notion of measure preservation to subgroups, we need to change a
little our perspective of word maps. One can think of the word map w as the evaluation map from
Hom (Fk, G) to G, i.e., w (α) = α (w) for α ∈ Hom (Fk, G). The identification of Hom (Fk, G) with
Gk depends on the chosen basis, and is due to the fact that a homomorphism from a free group
is uniquely determined by choosing the images of the elements of a basis, and these images can be
chosen arbitrarily.

In this perspective, w is measure preserving w.r.t. G if the element αG (w) is uniformly dis-
tributed over G, where αG ∈ Hom (Fk, G) is a homomorphism chosen uniformly at random. If w
is primitive then it belongs to some basis, and identifying Hom (Fk, G) and Gk according to this
basis gives
†It is interesting to note that there is an easy abelian parallel to this conjecture. A word w ∈ Fk belongs to a

basis of Zk ∼= Fk/F
′
k if and only if for any group G the associated word map is surjective. See [Seg09], Lemma 3.1.1.
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Observation 2.1.2. A primitive word is measure preserving.

We can now extend the notion of measure preservation from words to finitely generated sub-
groups (we write H ≤fg Fk when H is a finitely generated subgroups of Fk):

Definition 2.1.3. Let H ≤fg Fk. We say that H is measure preserving if for every finite group
G and αG ∈ Hom (Fk, G) a random homomorphism chosen with uniform distribution, αG

∣∣
H

is
uniformly distributed in Hom (H,G).

This can be reformulated in terms of distributions of subgroups: Observe the distribution of
the random subgroup αG (H) ≤ G, where αG ∈ Hom (Fk, G) distributes uniformly. Then H is
measure preserving if the distribution of αG (H) is the same as that of the image of a uniformly
chosen homomorphism from Frk(H) to G (where rk (H) denotes the rank of H).

As for single words, it is immediate that a free factor is measure preserving, and again it is
natural to conjecture that the converse also holds. Since 1 6= w ∈ Fk is measure preserving iff
〈w〉 is measure preserving, this is an extension of the conjecture regarding words. In [Pud14] the
first author proved the extended conjecture for subgroups of Fk of rank ≥ k − 1 (thus proving the
conjecture for F2), but the techniques used in that paper are specialized for the proven cases. In
this paper we introduce completely new techniques, which yield the extended conjecture in full:

Theorem 2.1.4. A measure preserving subgroup is a free factor.

In Section 2.8 we explain how this circle of ideas is related to the study of profinite groups
and decidability questions. In fact, part of the original motivation for this study comes from this
relation. In particular we have the following corollary (see also Corollary 2.8.1):

Corollary 2.1.5. The set P of primitive elements in Fk is closed in the profinite topology.

In plain terms, this amounts to the assertion that every non-primitive word in Fk is contained
in a primitive-free coset of a finite index subgroup.

In order to prove Theorem 2.1.4, one needs to exhibit, for each non-primitive word w ∈ Fk,
some “witness” finite group with respect to which w is not measure preserving. Our witnesses are
always the symmetric groups Sn. In fact, it is enough to restrict one’s attention to the average
number of fixed points in the random permutation αSn (w) (which we also denote by αn (w)). We
summarize this in the following stronger version of Theorems 2.1.1 and 2.1.4:

Theorem (2.1.4’). Let w ∈ Fk, and for every finite group G, let αG ∈ Hom (Fk, G) denote a
random homomorphism chosen with uniform distribution. Then the following are equivalent:

(1) w is primitive.

(2) w is measure preserving: for every finite group G the random element αG (w) has uniform
distribution.

(3) For every n ∈ N the random permutation αn (w) = αSn (w) has uniform distribution.

(4) For every n ∈ N, the expected number of fixed points in the random permutation αn (w) =
αSn (w) is 1:

E [#fix (αn(w))] = 1

(5) For infinitely many n ∈ N,
E [#fix (αn(w))] ≤ 1

The analogue properties for f.g. subgroups are equivalent as well. For example, the parallel of
property (4) for H ≤fg Fk is that for every n, the image αn (H) ⊆ Sn stabilizes on average exactly
n1−rk(H) elements of {1, . . . , n}.
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We already explained above the implication (1) ⇒ (2), and (2) ⇒ (3) ⇒ (4) ⇒ (5) is evident
(recall that a uniformly distributed random permutation has exactly one fixed point on average).
The only nontrivial, somewhat surprising part, is the implication (5)⇒ (1) which is proven in this
paper. It turns out that an effective bound can also be obtained:

Proposition 2.1.6. A word w of length ` > 0 is primitive iff E [#fix (αn(w))] = 1 for n ≤ `.

An analogue result holds for subgroups (see Corollary 2.6.6).

A key role in our proof is played by the notion of primitivity rank, an invariant classifying words
and f.g. subgroups of Fk, which was first introduced in [Pud14]: A primitive word w ∈ Fk is also
primitive in every subgroup containing it (Claim 2.3.9(3)). However, if w is not primitive in Fk, it
may be either primitive or non-primitive in subgroups of Fk containing it. But what is the smallest
rank of a subgroup giving evidence to the imprimitivity of w? Informally, how far does one have to
search in order to establish that w is not primitive? Concretely:

Definition 2.1.7. The primitivity rank of w ∈ Fk, denoted π (w), is

π(w) = min

{
rk (J)

∣∣∣∣∣ w ∈ J ≤ Fk s.t.

w is not primitive in J

}
.

If no such J exists, i.e. if w is primitive, then π (w) =∞.
More generally, for H ≤fg Fk, the primitivity rank of H is

π (H) = min

{
rk (J)

∣∣∣∣∣ H ≤ J ≤ Fk s.t.

H is not a free factor of J

}
.

Again, if no such J exists, then π (H) = ∞. We call a subgroup J for which the minimum is
obtained H-critical, and denote the set of H-critical subgroups by Crit (H). The set of w-critical
subgroups of a word w is defined analogously.

Note that for w 6= 1, π (w) = π (〈w〉). Let us give a few examples: π (w) = 0 iff w = 1; π (w) =∞
iff w is primitive, and π (H) =∞ iff H is a free factor; π (w) = 1 if and only if w is a proper power,
namely w = vd for some v ∈ Fk and d ≥ 2, and then Crit (w) = {〈vm〉 : m | d, 1 ≤ m < d}
(assuming that v itself is not a power). By [Pud14, Lemma 6.8], π

(
x 2

1 . . . x
2
r

)
= r for every

1 ≤ r ≤ k. We thus have that π takes all values in {0, 1, 2, . . . , k} ∪ {∞}, and Claim 2.3.9(3) shows
that these are all the values it obtains. The primitivity rank of a word or a subgroup is computable
- this is shown in Section 2.4. The distribution of the primitivity rank is discussed in [Pud15a].

In this paper we sometimes find it more convenient to deal with reduced ranks of subgroups:
r̃k (H)

def
= rk (H)−1. We therefore define analogously the reduced primitivity rank, π̃ (·) def

= π (·)−1.

As mentioned above, our main result follows from an analysis of the average number of com-
mon fixed points of αn (H) (where αn denotes a uniformly distributed random homomorphism in
Hom (Fk, Sn)). In other words, we count the number of elements in {1, . . . , n} stabilized by the
images under αn of all elements of H. Theorem 2.1.4’ follows from the main result of this analysis:

Theorem 2.1.8. The average number of common fixed points of αn (H) is

1

nr̃k(H)
+
|Crit (H)|
nπ̃(H)

+O

(
1

nπ̃(H)+1

)
.

In particular, for a word w

E [#fix (αn (w))] = 1 +
|Crit (w)|
nπ̃(w)

+O

(
1

nπ̃(w)+1

)
.
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π (w) Description of w E [#fix (αn (w))]

0 w = 1 n

1 w is a power 1 + |Crit (w) |+O
(

1
n

)
2 E.g. [x1, x2] , x 2

1 x
2
2 1 + |Crit(w)|

n +O
(

1
n2

)
3 1 + |Crit(w)|

n2 +O
(

1
n3

)
...

...
k E.g. x 2

1 . . . x
2
k 1 + |Crit(w)|

nk−1 +O
(

1
nk

)
∞ w is primitive 1

Table 2.1: Primitivity Rank and Average Number of Fixed Points.

We remark that Crit (H) is always finite (see Section 2.4). Table 2.1 summarizes the connection
implied by Theorem 2.1.8 between the primitivity rank of w and the average number of fixed points
in the random permutation αn (w).

Theorem 2.1.8 implies the following general corollary regarding the family of distributions of Sn
induced by word maps:

Corollary 2.1.9. For a non-primitive w ∈ Fk the average number of fixed points in αn (w) is
strictly greater than 1, for large enough n.

Corollary 2.1.9 is in fact the missing piece (5) ⇒ (1) in Theorem 2.1.4’. In addition, it follows
from this corollary that for every w ∈ Fk and large enough n, the average number of fixed points
in αn (w) is at least one†. In other words, primitive words generically induce a distribution of Sn
with the fewest fixed points on average.

The results stated above validate completely the conjectural picture described in [Pud14]. The-
orem 2.1.8 and its consequences, Corollaries 2.8.1, 2.1.5 and 2.1.9, are stated there as conjectures
(Conjectures 1.10, 7.1, 7.2 and 8.2).

The analysis of the average number of fixed points in αn (w) has its roots in [Nic94]. Nica
notices that by studying the various quotients of a labeled cycle-graph (corresponding to w), one
can compute a rational expression which gives this average for every large enough n. When w = vd

with d maximal (so v is not a power), he shows that the limit distribution of the number of fixed
points in αn (w) (as n → ∞) is δ (d) + O

(
1
n

)
, where δ (d) is the number of divisors of d ([Nic94],

Corollary 1.3)‡. Nica’s result follows from Theorem 2.1.8: if w 6= 1 is a proper power and w = vd

with d ≥ 2 maximal, then |Crit (w) | = δ (d)− 1, and if it is not a power then π̃ (w) ≥ 1.

The results of this paper have interesting implications in the study of expansion in random
graphs: In [Pud15a], the first author presents a new approach to showing that random graphs are
nearly optimal expanders. A crucial ingredient in the proof is Theorem 2.1.8. More particularly,
it was conjectured by Alon [Alo86] that the spectral gap of a random d-regular graph is a.a.s.
arbitrarily close to d − 2

√
d− 1, and this conjecture was generalized by Friedman [Fri03] to non-

regular graphs. In [Fri08], Alon’s conjecture is proved by highly sophisticated arguments, which
are not applicable for the generalized conjecture (as far as is known). The results in [Pud15a] give
a simple proof which nearly recovers Friedman’s results regarding Alon’s conjecture, and can be
applied also for the generalized conjecture, giving the best results as of now regarding non-regular
graphs.
†It is suggestive to ask whether this holds for all n. Namely, is it true that for every w ∈ Fk and every n, the

average number of fixed points in αn (w) is at least 1? By results of Abért ([Abe06]), this statement turns out to be
false.
‡Nica’s result is in fact more general: the same statement holds not only for fixed points but for cycles of length

L for every fixed L.
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2.2 Overview of the proof
The proof of our main theorem involves several structures of posets (partially ordered sets) on
subfg (Fk), the set of finitely generated subgroups of Fk. This set has, of course, a natural structure
of a poset given by the relation of inclusion. However, there are other interesting partial orders
defined on it: the relation of algebraic extensions, and the family of relations defined by covers. We
introduce some notation: If � is some partial order on subfg (Fk), and H,J ≤fg Fk, we define the
closed interval

[H,J ]� = {L ∈ subfg (Fk) |H � L � J}

and similarly the open interval (H,J)� = {L |H � L � J}, the half-bounded interval [H,∞)� =
{L |H � L}, and so on (see also the glossary).

Algebraic Extensions This notion goes back to [Tak51], and was further studied in [KM02,
MVW07].

Definition 2.2.1. We say that J is an algebraic extension of H, denoted H ≤alg J , if H ≤ J and
H is not contained in any proper free factor of J .

The terminology comes from similarities (that go only to some extent) between this notion and
that of algebraic extensions of fields (in this line of thought, J is a transcendental extension of H
whenH ∗

≤ J). We devote Section 2.4 to study this relation. It is clearly reflexive and antisymmetric,
but it is also transitive (Claim 2.4.1). In addition, it is very sparse: it turns out that [H,∞)alg, the
set of algebraic extensions of H, is finite for every H ≤fg Fk, so in particular (subfg (Fk) ,≤alg)
is locally finite†. It is a simple observation that H-critical subgroups are in particular algebraic
extensions of H, i.e. Crit (H) ⊆ [H,∞)alg. In fact, they are the proper algebraic extensions of
minimal rank.

X-cover For every basis X = {x1, . . . , xk} of Fk there is a partial order denoted ≤�
X , which is

based on the notion of quotients, or surjective morphisms, of core graphs. Introduced in [Sta83],
core graphs provide a geometric approach to the study of free groups (for an extensive survey see
[KM02], and also [MVW07] and the references therein). Given the basis X, Stallings associates
with every H ≤ Fk a directed and pointed graph denoted ΓX (H), whose edges are labeled by the
elements of X. A full definition appears in Section 2.3, but we illustrate the concept in Figure 2.2.1.
It shows the core graph of the subgroup of F2 generated by x1x

−1
2 x1 and x−2

1 x2, with X = {x1, x2}.

Figure 2.2.1: The core graph ΓX (H)
where X = {x1, x2} and H =〈
x1x
−1
2 x1, x

−2
1 x2

〉
≤ F2.

⊗
x1 // •

•
x1 //

x2

OO

•

x1

__

x2

OO

The order ≤�
X is defined as follows: for H,J ≤ Fk one has H ≤�

X J iff the associated core graph
ΓX (J) is a quotient (as a pointed labeled graph) of the core graph ΓX (H) (see Definition 2.3.3).
When H ≤fg Fk, ΓX (H) is finite (Claim 2.3.1(1)), and thus has only finitely many quotients. As it
turns out that different groups correspond to different core graphs, this implies that (subfg (Fk) ,≤�

X )
is locally finite too. We stress that we have here an infinite family of partial orders, one for every
choice of basis for Fk. Although the dependency on the basis makes these orders somewhat less
universal, they turn out to be the most useful for our purposes.
†A locally finite poset is one in which every closed interval [a, b] = {x : a ≤ x ≤ b} is finite.
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The various relations between subgroups of Fk are the following:

J ∈ Crit (H) ⇒ H ≤alg J ⇒ H ≤�
X J ⇒ H ≤ J

for any H,J ≤ Fk and any basis X (see Sections 2.3 and 2.4).

Recall that the main theorems of this paper follow from Theorem 2.1.8, which estimates the
expected number of common fixed points of αn (H), where H ≤fg Fk and αn is a random homo-
morphism in Hom (Fk, Sn). This result is achieved by studying a broader question: For every pair
of H,J ≤fg Fk such that H ≤ J , we define for n ∈ N

ΦH,J (n) = The expected number of common fixed points of αJ,n (H), (2.2.1)

where αJ,n ∈ Hom (J, Sn) is a random homomorphism (chosen with uniform distribution). In this
perspective, Nica finds limn→∞ Φ〈w〉,Fk (n), and shows that it separates powers and non-powers.
Theorem 2.1.8 shows that the first two terms in the expansion of Φ〈w〉,Fk (n) yield w’s primitivity
rank, which in particular distinguishes powers (π (w) = 1) and primitives (π (w) = ∞). Further-
more, the same holds for subgroups using ΦH,Fk (n).

Φ

LX RX

CX

As remarked, in order to understand ΦH,Fk we turn to analyze
the totality of functions ΦH,J , for various H ≤ J ≤ Fk. We apply
the machinery of Möbius inversions to the incidence algebra arising
from the locally finite poset (subfg (Fk) ,≤�

X ). The local finiteness
of the order ≤�

X allows us to “derive” the function Φ and obtain its
“right derivation” RX , its “left derivation” LX , and its “two sided
derivation” CX (see Section 2.5). For instance, ΦH,J can be pre-
sented as finite sums of RX :

ΦH,J =
∑

M∈[H,J]�
X

RXH,M

(here [H,J ]�
X

is an abbreviation for [H,J ]≤�
X

, i.e. [H,J ]�
X

= {M |H ≤�
X M ≤�

X J}).
The proof of Theorem 2.1.8 is then based on a series of lemmas and propositions characterizing

Φ and its three derivations:

• (Proposition 2.5.1) The right derivation RX is supported on algebraic extensions, i.e. if H ≤�
X

M but M is not an algebraic extension of H then RXH,M ≡ 0.

• (The discussion in Section 2.6) The random homomorphism αJ,n ∈ Hom (J, Sn) can be en-
coded as a random covering-space Γ̂ of the core graph ΓX (J), and ΦH,J (n) can then be
interpreted as the expected number of lifts of ΓX (H) into Γ̂.

• (Lemmas 2.6.3 and 2.6.4) The left derivation LX is the expected number of injective lifts of
the core graph ΓX (H) into the random covering Γ̂ of the core graph ΓX (J), and a rational
expression can be computed for LXH,J .

• (Proposition 2.7.1 and Section 2.7.1) An analysis involving Stirling numbers of the rational
expressions for LX yields a combinatorial meaning for the two-sided derivation CX . Using
the classification of primitivity rank we then obtain a first-order estimate for the size of CXH,J .

• (Proposition 2.7.2) From CX we return to RX (by “left-integration”), obtaining that whenever
H ≤alg M we have

RXH,M =
1

nr̃k(M)
+O

(
1

nr̃k(M)+1

)
and by right integration of RX , we obtain the order of magnitude of Φ, which was our goal.
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The paper is arranged as follows: in Section 2.3 the notion of core graphs is explained in details, as
well as the partial order ≤�

X and some of the results from [Pud14] which are used here. In Section
2.4 we survey the main properties of algebraic extensions of free groups. Section 2.5 is devoted to
recalling Möbius derivations on locally-finite posets and introducing the different derivations of Φ.
In Section 2.6 we discuss the connection of the problem to random coverings of graphs and analyze
the left derivation LX . The proof of Theorem 2.1.8 is completed in Section 2.7 via the analysis of
the two-sided derivation CX and the consequence of the latter on the right derivation RX . Finally,
corollaries of our results to the field of profinite groups, and to decidability questions in group
theory, are discussed in Section 2.8. We finish with a list of open problems naturally arising from
this paper. For the reader’s convenience, there is also a glossary of notions and notations at the
end of this manuscript.

2.3 Core graphs and the partial order of covers
Fix a basis X = {x1, . . . , xk} of Fk. Associated with every subgroup H ≤ Fk is a directed, pointed
graph whose edges are labeled by X. This graph is called the (Stallings) core-graph associated with
H and is denoted by ΓX (H). We recall the notion of the Schreier (right) coset graph of H with
respect to the basis X, denoted by ΓX (H). This is a directed, pointed and edge-labeled graph.
Its vertex set is the set of all right cosets of H in Fk, where the basepoint corresponds to the
trivial coset H. For every coset Hw and every basis-element xj there is a directed j-edge (short for
xj-edge) going from the vertex Hw to the vertex Hwxj .†

The core graph ΓX (H) is obtained from ΓX (H) by omitting all the vertices and edges of
ΓX (H) which are not traced by any reduced (i.e., non-backtracking) path that starts and ends at
the basepoint. Stated informally, we trim all “hanging trees” from ΓX (H). Formally, ΓX (H) is
the induced subgraph of ΓX (H) whose vertices are all cosets Hw (with w reduced), such that for
some word w′ the concatenation ww′ is reduced, and w · w′ ∈ H. To illustrate, Figure 2.3.1 shows
the graphs ΓX (H) and ΓX (H) for H = 〈x1x2x

−3
1 , x 2

1 x2x
−2
1 〉 ≤ F2. Note that the graph ΓX (H)

is 2k-regular: every vertex has exactly one outgoing j-edge and one incoming j-edge, for every
1 ≤ j ≤ k. Every vertex of ΓX (H) has at most one outgoing j-edge and at most one incoming
j-edge, for every 1 ≤ j ≤ k.

If Γ is a directed pointed graph labeled by some set X, paths in Γ correspond to words in F (X)
(the free group generated by X). For instance, the path (from left to right)

• x2 // • x2 // • x1 // • •x2oo x3 // • •x1oo

corresponds to the word x 2
2 x1x

−1
2 x3x

−1
1 . The set of all words obtained from closed paths around

the basepoint in Γ is a subgroup of F (X) which we call the labeled fundamental group of Γ, and
denote by πX1 (Γ). Note that πX1 (Γ) need not be isomorphic to π1 (Γ), the standard fundamental
group of Γ viewed as a topological space: for example, take Γ = ⊗x1

##
x1

{{
.

However, it is not hard to show that when Γ is a core graph, then πX1 (Γ) is isomorphic to π1 (Γ)
(e.g. [MVW07]). In this case the labeling gives a canonical identification of π1 (Γ) as a subgroup of
F (X). It is an easy observation that

πX1
(
ΓX (H)

)
= πX1 (ΓX (H)) = H (2.3.1)

This gives a one-to-one correspondence between subgroups of F (X) = Fk and core graphs labeled

†Alternatively, ΓX (H) is the quotient H\T , where T is the Cayley graph of Fk with respect to the basis X, and
Fk (and thus also H) acts on this graph from the left. Moreover, this is the covering-space of ΓX (Fk) = ΓX (Fk),
the bouquet of k loops, corresponding to H, via the correspondence between pointed covering spaces of a space Y
and subgroups of its fundamental group π1 (Y ).
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Figure 2.3.1: ΓX (H) and ΓX (H) for H = 〈x1x2x
−3
1 , x 2

1 x2x
−2
1 〉 ≤ F2. The Schreier coset graph

ΓX (H) is the infinite graph on the left (the dotted lines represent infinite 4-regular trees). The
basepoint “⊗” corresponds to the trivial coset H, the vertex below it corresponds to the coset Hx1,
the one further down corresponds to Hx 2

1 = Hx1x2x
−1
1 , etc. The core graph ΓX (H) is the finite

graph on the right, which is obtained from ΓX (H) by omitting all vertices and edges that are not
traced by reduced closed paths around the basepoint.

by X. Namely, πX1 and ΓX are the inverses of each other in a bijection (Galois correspondence){
Subgroups

of F (X)

} ΓX−−→←−−
πX1

{
Core graphs

labeled byX

}
(2.3.2)

Core graphs were introduced by Stallings [Sta83]. Our definition is slightly different, and closer to
the one in [KM02, MVW07] in that we allow the basepoint to be of degree one, and in that our
graphs are directed and edge-labeled. We remark that it is possible to study core graphs from a
purely combinatorial point of view, as labeled pointed connected graphs satisfying

(1) No two equally labeled edges originate or terminate at the same vertex.

(2) Every vertex and edge are traced by some non-backtracking closed path around the basepoint.

Starting with this definition, every choice of an ordered basis for Fk then gives a correspondence
between these graphs and subgroups of Fk.

In this paper we are mainly interested in finite core graphs, and we now list some basic properties
of these (proofs can be found in [Sta83, KM02, MVW07]).

Claim 2.3.1. Let H be a subgroup of Fk with an associated core graph Γ = ΓX (H). The Euler
Characteristic of a graph, denoted χ (·), is the number of vertices minus the number of edges.

(1) rk (H) <∞⇐⇒ Γ is finite.

(2) r̃k (H) = −χ (Γ).

(3) The correspondence (2.3.2) restricts to a correspondence between subfg (Fk) and finite core
graphs.
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Given a finite set of words {h1, . . . , hm} ⊆ F (X) that generate a subgroup H, the core graph
ΓX (H) can be algorithmically constructed as follows. Every hi corresponds to some path with
directed edges labeled by the xj ’s (we assume the elements are given in reduced forms, otherwise
we might need to prune leaves at the end of the algorithm). Merge these m paths to a single graph
(bouquet) by identifying all their 2m end-points to a single vertex, which is marked as the basepoint.
The labeled fundamental group of this graph is clearly H. Then, as long as there are two j-labeled
edges with the same terminus (resp. origin) for some j, merge the two edges and their origins (resp.
termini). Such a step is often referred to as Stallings folding. It is fairly easy to see that each folding
step does not change the labeled fundamental group of the graph, that the resulting graph is indeed
ΓX (H), and that the order of folding has no significance. To illustrate, we draw in Figure 2.3.2 a
folding process by which we obtain the core graph ΓX (H) of H = 〈x1x2x

−3
1 , x 2

1 x2x
−2
1 〉 ≤ F2 from

the given generating set.

Figure 2.3.2: Constructing the core graph ΓX (H) of H = 〈x1x2x
−3
1 , x 2

1 x2x
−2
1 〉 ≤ F2 from the

given generating set. We start with the upper left graph which contains a distinct loop at the
basepoint for each (reduced) element of the generating set. Then, at an arbitrary order, we merge
pairs of equally-labeled edges which share the same origin or the same terminus (here we mark by
triple arrows the pair of edges being merged next). The graph at the bottom right is ΓX (H), as it
has no equally-labeled edges sharing the same origin or terminus.

A morphism between two core-graphs is a map that sends vertices to vertices and edges to edges,
and preserves the structure of the core graphs. Namely, it preserves the incidence relations, sends
the basepoint to the basepoint, and preserves the directions and labels of the edges.

As in Claim 2.3.1, each of the following properties is either proven in (some of) [Sta83, KM02,
MVW07] or an easy observation:

Claim 2.3.2. Let H,J, L ≤ Fk be subgroups. Then

(1) A morphism ΓX (H)→ ΓX (J) exists if and only if H ≤ J .

(2) If a morphism ΓX (H)→ ΓX (J) exists, it is unique. We denote it by ηXH→J .

(3) Whenever H ≤ L ≤ J , ηXH→J = ηXL→J ◦ ηXH→L.†

(4) If ηXH→J is injective, then H ∗
≤ J .‡

†Points (1)-(3) can be formulated by saying that (2.3.2) is in fact an isomorphism of categories, given by the
functors πX

1 and ΓX .
‡But not vice-versa: for example, consider

〈
x1x 2

2

〉 ∗
≤ F2.
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(5) Every morphism is an immersion (locally injective at the vertices).

A special role is played by surjective morphisms of core graphs:

Definition 2.3.3. Let H ≤ J ≤ Fk. Whenever ηXH→J is surjective, we say that ΓX (H) covers
ΓX (J) or that ΓX (J) is a quotient of ΓX (H). We indicate this by ΓX (H) � ΓX (J). As for the
groups, we say that H X-covers J and denote this by H ≤�

X J .

By “surjective” we mean surjective on both vertices and edges. Note that we use the term
“covers” even though in general this is not a topological covering map (a morphism between core
graphs is always locally injective at the vertices, but it need not be locally bijective). In Section
2.6 we do study topological covering maps, and we reserve the term “coverings” for these.

For instance, H = 〈x1x2x
−3
1 , x 2

1 x2x
−2
1 〉 ≤ Fk X-covers the group J = 〈x2, x

2
1 , x1x2x1〉, the

corresponding core graphs of which are the leftmost and rightmost graphs in Figure 2.3.3. As
another example, a core graph Γ X-covers ΓX (Fk) (which is merely a wedge of k loops) if and only
if it contains edges of all k labels.

As implied by the notation, the relation H ≤�
X J indeed depends on the given basis X of Fk.

For example, if H = 〈x1x2〉 then H ≤�
X F2. However, for Y = {x1x2, x2}, H does not Y -cover F2,

as ΓY (H) consists of a single vertex and a single loop and has no quotients apart from itself.
It is easy to see that the relation “≤�

X ” indeed constitutes a partial ordering of the set of
subgroups of Fk. We make a few other useful observations:

Claim 2.3.4. Let H,J, L ≤ Fk be subgroups. Then

(1) Whenever H ≤ J there exists an intermediate subgroup M such that H ≤�
X M

∗
≤ J .

(2) If one adds the condition that ΓX (M) embeds in ΓX (J), then this M is unique.

(3) If H ≤�
X J and H ≤�

X L ≤ J , then L ≤�
X J .

(4) If H is finitely generated then it X-covers only a finite number of groups. In particular, the
poset (subfg (Fk) ,≤�

X ) is locally finite.

Proof. Point (1) follows from the factorization of the morphism ηXH→J to a surjection followed by
an embedding. Indeed, it is easy to see that the image of ηXH→J is a sub-graph of ΓX (J) which
is in itself a core graph. Namely, it contains no “hanging trees” (edges and vertices not traced
by reduced paths around the basepoint). Let M = πX1

(
im ηXH→J

)
be the subgroup corresponding

to this sub-core-graph. (1) now follows from points (1) and (4) in Claim 2.3.2. Point (2) follows
from the uniqueness of such factorization of a morphism. Point (3) follows from the fact that if
ηXH→J = ηXL→J ◦ ηXH→L is surjective then so is ηXL→J . Point (4) follows from the fact that ΓX (H) is
finite (Claim 2.3.1(1)) and thus has only finitely many quotients, and each quotient correspond to
a single group (by (2.3.2)).

In [MVW07], the set of X-quotients of H

[H,∞)�
X

= {J |H ≤�
X J} (2.3.3)

is called the X-fringe of H. Claim 2.3.4(4) states in this terminology that for every H ≤fg Fk

(and every basis X),
∣∣∣[H,∞)�

X

∣∣∣ < ∞. Note that [H,∞)�
X

always contains the supremum of its
elements, namely the group generated by the elements of X which label edges in ΓX (H) (which
is πX1

(
im ηXH→Fk

)
). (We remark that in the special case of H = 〈w〉 for some w ∈ Fk, the set

[〈w〉 ,∞)�
X
appears also in [Tur96] and, in a very different language, in the aforementioned [Nic94].)

It is easy to see that quotients of ΓX (H) are determined by the partition they induce of the
vertex set V (ΓX (H)). However, not every partition P of V (ΓX (H)) corresponds to a quotient
core-graph: in the resulting graph, which we denote by ΓX(H)/P , two distinct j-edges may have the
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same origin or the same terminus. Then again, when a partition P of V (ΓX (H)) yields a quotient
which is not a core-graph, we can perform Stallings foldings (as demonstrated in Figure 2.3.2) until
we obtain a core graph. Since Stallings foldings do not affect πX1 , the core graph we obtain in this
manner is ΓX (J), where J = πX1 (ΓX(H)/P). The resulting partition P̄ of V (ΓX (H)) (as the fibers
of ηXH→J) is the finest partition of V (ΓX (H)) which gives a quotient core-graph and which is still
coarser than P . We illustrate this in Figure 2.3.3.

⊗v1 • v2

• v3•v4

1 //

2

��1 //

1

��

2

ZZ

⊗
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1
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1
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1qq
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•
{v2,v3}

1
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1

ee
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2
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Figure 2.3.3: The left graph is the core graph ΓX (H) of H =
〈
x1x2x

−3
1 , x 2

1 x2x
−2
1

〉
≤ F2. Its

vertices are denoted by v1, . . . , v4. The graph in the middle is the quotient ΓX(H)/P corresponding
to the partition P = {{v1, v4} , {v2} , {v3}}. This is not a core graph as there are two 1-edges
originating at {v1, v4}. In order to obtain a core quotient-graph, we use the Stallings folding
process (illustrated in Figure 2.3.2). The resulting core graph, ΓX

(
πX1 (ΓX(H)/P)

)
, is shown on the

right and corresponds to the partition P̄ = {{v1, v4} , {v2, v3}}.

Thus, there is sense in examining the quotient of a core graph Γ “generated” by some partition
P of its vertex set, namely, ΓX

(
πX1 (Γ/P)

)
. The most interesting case is that of the “simplest”

partitions: those which identify only a single pair of vertices. Before looking at these, we introduce
a measure for the complexity of partitions: if P ⊆ 2X is a partition of some set X , let

‖P‖ def= |X | − |P | =
∑
B∈P

(|B| − 1) . (2.3.4)

Namely, ‖P‖ is the number of elements in the set minus the number of blocks in the partition. For
example, ‖P‖ = 1 iff P identifies only a single pair of elements. It is not hard to see that ‖P‖ is also
the minimal number of identifications one needs to make in X in order to obtain the equivalence
relation P .

Definition 2.3.5. Let Γ be a core graph and let P be a partition of V (Γ) with ‖P‖ = 1, i.e. having
a single non-trivial block, of size two. Let ∆ be the core graph generated from Γ by P . We then
say that ∆ is an immediate quotient of Γ.

Alternatively, we say that ∆ is generated by identifying a single pair of vertices of Γ. For
instance, the rightmost core graph in Figure 2.3.3 is an immediate quotient of the leftmost one.

The main reason that immediate quotients are interesting is their algebraic significance. Let
H,J ≤ Fk with Γ = ΓX (H) ,∆ = ΓX (J) their core graphs, and assume that ∆ is an immediate
quotient of Γ obtained by identifying the vertices u, v ∈ V (Γ). Now let wu, wv ∈ Fk be the words
corresponding to some paths pu, pv in Γ from the basepoint to u and v respectively (note that these
paths are not unique). It is not hard to see that identifying u and v has the same effect as adding
the word w = wuw

−1
v to H and considering the generated group. Namely, that J = 〈H,w〉.
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The relation of immediate quotients gives the set of finite core graphs (with edges labeled
by 1, . . . , k) the structure of a directed acyclic graph (DAG)†. This DAG was first introduced in
[Pud14], and is denoted by Dk. The set of vertices of Dk consists of the aforementioned core graphs,
and its directed edges connect every core graph to its immediate quotients. Every ordered basis
X = {x1, . . . , xk} of Fk determines a one-to-one correspondence between the vertices of this graph
and subfg (Fk).

In the case of finite core graphs, ∆ is a quotient of Γ if and only if ∆ is reachable from Γ in
Dk (that is, there is a directed path from Γ to ∆). In other words, if H ≤fg Fk then H ≤�

X J iff
ΓX (J) can be obtained from ΓX (H) by a finite sequence of immediate quotients. Thus, for any
H ≤fg Fk, the subgraph of Dk induced by the descendants of ΓX (H) consists of all quotients of
ΓX (H), i.e. of all (core graphs corresponding to) elements of [H,∞)�

X
. By Claim 2.3.4(4), this

subgraph is finite. In Figure 2.3.4 we draw the subgraph of Dk consisting of all quotients of ΓX (H)
when H = 〈x1x2x

−1
1 x−1

2 〉. The edges of this subgraph (i.e. immediate quotients) are denoted by
the dashed arrows in the figure.

It is now natural to define a distance function between a finite core graph and each of its
quotients:

Definition 2.3.6. Let H,J ≤fg Fk be subgroups such that H ≤�
X J , and let Γ = ΓX (H),

∆ = ΓX (J) be the corresponding core graphs. We define the X-distance between H and J ,
denoted ρX (H,J) or ρ (Γ,∆), to be the shortest length of a directed path from Γ to ∆ in Dk.

In other words, ρX (H,J) is the length of the shortest series of immediate quotients that yields
∆ from Γ. There is another useful equivalent definition for the X-distance. To see this, assume
that Γ′ is generated from Γ by the partition P of V (Γ) and let η : Γ � Γ′ be the morphism. For
every x, y ∈ V (Γ′), let x′ ∈ η−1 (x) , y′ ∈ η−1 (y) be arbitrary vertices in the fibers, and let P ′ be
the partition of V (Γ) obtained from P by identifying x′ and y′. It is easy to see that the core graph
generated from Γ′ by identifying x and y is the same as the one generated by P ′ from Γ. From
these considerations we obtain that

ρX (H,J) = min

{
‖P‖

∣∣∣∣ P is a partition of V (ΓX (H))

such that πX1 (ΓX(H)/P) = J

}
. (2.3.5)

For example, if ∆ is an immediate quotient of Γ then ρX (H,J) = ρ (Γ,∆) = 1. For H =
〈x1x2x

−1
1 x−1

2 〉, ΓX (H) has four quotients at distance 1 and two at distance 2 (see Figure 2.3.4).
As mentioned earlier, by merging a single pair of vertices of ΓX (H) (and then folding) we obtain

the core graph of a subgroup J obtained from H by adding some single generator (thought not
every element of Fk can be added in this manner). Thus, by taking an immediate quotient, the
rank of the associated subgroup increases at most by 1 (in fact, it may also stay unchanged or even
decrease). This implies that whenever H ≤�

X J , one has

rk (J)− rk (H) ≤ ρX (H,J) (2.3.6)

In [Pud14] (Lemma 3.3), the distance is bounded from above as well:
†that is, a directed graph with no directed cycles.
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Figure 2.3.4: The subgraph of Dk induced by [H,∞)�
X
, that is, all quotients of the core graph

Γ = ΓX (H), for H = 〈x1x2x
−1
1 x−1

2 〉. The dashed arrows denote immediate quotients, i.e. quotients
generated by merging a single pair of vertices. Γ has exactly seven quotients: itself, four immediate
quotients, and two quotients at distance 2.

Claim 2.3.7. Let H,J ≤fg Fk such that H ≤�
X J . Then

rk (J)− rk (H) ≤ ρX (H,J) ≤ rk (J)

We shall make use of the following theorem, which asserts that the lower bound is attained if
and only if H is a free factor of J :

Theorem 2.3.8 ([Pud14, Theorem 1.1]). Let H,J ≤fg Fk and assume further that H ≤�
X J . Then

H
∗
≤ J if and only if

ρX (H,J) = rk (J)− rk (H)

In fact, the implication which is needed for our proof is trivial: As mentioned above, merging
two vertices in ΓX (H) translates to adding some generator to H. If it is possible to obtain ΓX (J)
from ΓX (H) by rk (J) − rk (H) merging steps, this means we can obtain J from H by adding
rk (J)−rk (H) complementary generators to H, hence H ∗

≤ J .† The other implication is not trivial
and constitutes the essence of the proof of Theorem 1.1 in [Pud14]. The difficulty is that when
H
∗
≤�
X
J , it is not apriori obvious why it is possible to find rk (J)−rk (H) complementing generators

of J from H, so that each of them can be realized by merging a pair of vertices in ΓX (H).

We finish this section with a classical fact about free factors that will be useful in the next
section.

Claim 2.3.9. Let H, J and K be subgroups of Fk.

(1) If H ∗
≤ J and K ≤ J , then H ∩K ∗

≤ K.
†This relies on the well known fact that a set of size k which generates Fk is a basis.
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(2) If H,K ∗
≤ J then H ∩K ∗

≤ J .

(3) If H ∗
≤ J then H is a free factor of any intermediate group H ≤M ≤ J .

Proof. Let Y be a basis of J extending a basis Y0 of H. Then ΓY (J) and ΓY (H) are bouquets
of |Y |, |Y0| loops, respectively. It is easy to check that ΓY (H ∩K) is obtained from ΓY (K) as
follows: first, delete the edges labeled by Y \ Y0; then, keep only the connected component of the
basepoint; finally, trim all “hanging trees” (see the proof of Claim 2.3.4). Consequently, ΓY (H ∩K)
is embedded in ΓY (K). Claim 2.3.2(4) then gives (1), and (2) and (3) follow immediately.

In particular, the last claim shows that if H ∗
≤ Fk then π (H) = ∞ (see Definition 2.1.7).

On the other hand, if H is not a free factor of Fk, then obviously π (H) ≤ rk (Fk) = k. Thus
π (H) ∈ {0, 1, 2, . . . , k} ∪ {∞}.

2.4 Algebraic extensions and critical subgroups
We now return to the sparsest partial order we consider in this paper, that of algebraic extensions.
All claims in this section appear in [KM02, MVW07], except for Lemma 2.4.4. We shall occasionally
sketch some proofs in order to allow the reader to obtain better intuition and in order to exemplify
the strength of core graphs.

Recall (Definition 2.2.1) that J is an algebraic extension of H, denoted H ≤alg J , if H ≤ J and
H is not contained in any proper free factor of J . For example, consider H =

〈
x1x2x

−1
1 x−1

2

〉
≤ F2.

A proper free factor of F2 has rank at most 1, and H is not contained in any subgroup of rank 1
other than itself (as x1x2x

−1
1 x−1

2 is not a proper power). Finally, H itself is not a free factor of F2

(as can be inferred from Theorem 2.3.8 and Figure 2.3.4). Thus, H ≤alg F2. In fact, we shall see
that in this case [H,∞)alg = {H,F2}.

We first show that “≤alg” is a partial order:

Claim 2.4.1. The relation “≤alg” is transitive.

Proof. Assume that H ≤alg M ≤alg J. Let H ≤ L
∗
≤ J . By Claim 2.3.9(1), L ∩M ∗

≤ M . But
H ≤ L ∩M and H ≤alg M , so L ∩M = M , and thus M ≤ L. So now M ≤ L

∗
≤ J , and from

M ≤alg J we obtain that L = J .

Next, we show that “≤alg” is dominated by “≤�
X ” for every basis X of Fk. Namely, if H ≤alg J

then H ≤�
X J . This shows, in particular, that the poset (subfg (Fk) ,≤alg) is locally-finite.

Claim 2.4.2. If H ≤alg J then H ≤�
X J for every basis X of Fk.

Proof. By Claim 2.3.4, there is an intermediate subgroup M such that H ≤�
X M

∗
≤ J , and from

H ≤alg J it follows that M = J .

Remark 2.4.3. It is natural to conjecture that the converse also holds, namely that if H ≤�
X J for

every basis X of Fk then H ≤alg J . (In fact, this conjecture appears in [MVW07], Section 3.) This
is, however, false: it turns out that for H =

〈
x 2

1 x
2
2

〉
and J =

〈
x 2

1 x
2
2 , x1x2

〉
, H ≤�

X J for every basis
X of F2, but J is not an algebraic extension of H [PP14]. However, there are bases of F3 with
respect to which H does not cover J . Hence, it is still plausible that some weaker version of the
conjecture holds, e.g. that H ≤alg J if and only if for every embedding of J in a free group F , and
for every basis X of F , H ≤�

X J . It is also plausible that the original conjecture from [MVW07]
holds for Fk with k ≥ 3.
In a similar fashion, one can ask whether H ≤ J if and only if for some basis X of Fk, H ≤�

X J .
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Claim 2.4.2 completes the proof of the relations, mentioned in Section 2.2, between the different
partial orders we consider in this paper: inclusion, the family ≤�

X , and algebraic extensions. Recall
that H-critical subgroups are a special kind of algebraic extensions. Thus:

Crit (H) ⊆ [H,∞)alg ⊆ [H,∞)�
X
⊆ [H,∞)≤.

Theorem 2.3.8 and Claim 2.4.2 give the following criterion for algebraic extensions:

Lemma 2.4.4. Let H ≤fg Fk. The algebraic extensions of H are the elements of [H,∞)�
X

which
are not immediate quotients of any subgroup in [H,∞)�

X
of smaller rank.

Proof. Let J ∈ [H,∞)�
X
. If J is an immediate X-quotient of L ∈ [H,∞)�

X
with rk (L) < rk (J),

then by Theorem 2.3.8 H ≤ L
∗
� J , hence J is not an algebraic extension of H. On the other

hand, assume there exists some L such that H ≤ L
∗
� J . By Claim 2.3.4(1), there exists M

such that H ≤�
X M

∗
≤ L

∗
� J . By Claim 2.3.4(3), M

∗
��
X
J . From Theorem 2.3.8 it follows that

there is a chain of immediate quotients M = M0 ≤ M1 ≤ . . . ≤ Mr = J inside [H,∞)�
X

with
rk (Mi+1) = rk (Mi) + 1, and Mr−1 is the group we have looked for.

Since the subgraph of Dk induced by the vertices corresponding to [H,∞)�
X
, namely ΓX (H) and

its descendants, is finite and can be effectively computed, Lemma 2.4.4 yields a straight-forward
algorithm to find all algebraic extensions of a given H ≤fg Fk (this algorithm was first introduced
in [Pud14]). This, in particular, allows one to find all H-critical subgroups, and thus to compute the
primitivity rank π (H): the subgroups constituting Crit (H) are those in (H,∞)alg of minimal rank,
which is π (H). For instance, Figure 2.3.4 shows that for H =

〈
x1x2x

−1
1 x−1

2

〉
we have H = {H,F2}.

Thus, Crit (H) = {F2} and π (H) = 2 (so π̃ (H) = 1).

We conclude this section with yet another elegant result from [KM02, MVW07] that will be
used in the proof of Theorem 2.1.8. In the spirit of field extensions, it says that every extension of
subgroups of Fk has a unique factorization to an algebraic extension followed by a free extension
(compare this with Claim 2.3.4(1,2)):

Claim 2.4.5. Let H ≤ J be free groups. Then there is a unique subgroup L of J such that
H ≤alg L

∗
≤ J . Moreover, L is the intersection of all intermediate free factors of J and the union

of all intermediate algebraic extensions of H:

L =
⋂

M :H≤M
∗
≤J

M =
⋃

M :H≤algM≤J

M (2.4.1)

In particular, the intersection of all free factors is a free factor, and the union of all algebraic
extensions is an algebraic extension. Claim 2.4.5 is true in general, but we describe the proof only
of the slightly simpler case of finitely generated subgroups. We need only this case in this paper.

Proof. By Claim 2.3.9 and rank considerations, the intersection in the middle of (2.4.1) is by
itself a free factor of J . Denote it by L, so we have H ≤ L

∗
≤ J . Clearly, L is an algebraic

extension of H (otherwise it would contain a proper free factor). But we claim that L contains
every other intermediate algebraic extension of H. Indeed, let H ≤alg M ≤ J . By Claim 2.3.9(1),
H ≤M ∩ L ∗≤M , so M ∩ L = M , that is M ≤ L.

2.5 Möbius inversions
Let (P,≤) be a locally-finite poset and let A be a commutative ring with unity. Then there exists an
incidence algebra† of all functions from pairs {(x, y) ∈ P × P |x ≤ y} to A. In addition to point-wise
addition and scalar multiplication, it has an associative multiplication defined by convolution:
†The theory of incidence algebras of posets can be found in [Sta97].
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(f ∗ g)(x, y) =
∑

z∈[x,y]

f(x, z)g(z, y)

(where x ≤ y and [x, y] = {z |x ≤ z ≤ y}). The unit element is the diagonal

δ(x, y) =

{
1 x = y

0 x � y
.

Functions with invertible diagonal entries (i.e. f (x, x) ∈ A× for all x ∈ P ) are invertible w.r.t.
this multiplication. Most famously, the constant ζ function, which is defined by ζ (x, y) = 1 for
all x ≤ y, is invertible, and its inverse, µ, is called the Möbius function of P . This means that
ζ ∗ µ = µ ∗ ζ = δ, i.e., for every pair x ≤ y∑

z∈[x,y]

µ(z, y) = (ζ ∗ µ)(x, y) = δ(x, y) = (µ ∗ ζ)(x, y) =
∑

z∈[x,y]

µ(x, z).

Let f be some function in the incidence algebra. The function f ∗ ζ, which satisfies (f ∗ ζ) (y) =∑
z∈[x,y] f (z), is analogous to the right-accumulating function in calculus (for g : R→ R this is the

function G (y) =
´
z∈[x,y]

g (z) dz). Thus, multiplying a function on the right by µ can be thought of
as “right derivation”. Similarly, one thinks of multiplying from the left by ζ and µ as left integration
and left derivation, respectively.

Recall the function Φ (2.2.1), defined for every pair of free subgroupsH,J ≤fg Fk such thatH ≤
J : ΦH,J (n) is the expected number of common fixed points of αJ,n (H), where αJ,n ∈ Hom (J, Sn)
is a random homomorphism chosen with uniform distribution. We think of Φ as a function from
the set of such pairs (H,J) into the ring of functions N→ Q.

Let X be a basis of Fk. We write ΦX for the restriction of Φ to pairs (H,J) such that H ≤�
X J .

As “≤�
X ” defines a locally finite partial ordering of subfg (Fk), there exists a matching Möbius

function, µX =
(
ζX
)−1 (where ζXH,J = 1 for all H ≤�

X J). Our proof of Theorem 2.1.8 consists of a
detailed analysis of the left, right, and two-sided derivations of ΦX :

ΦX

LX
def
= µX ∗ ΦX RX

def
= ΦX ∗ µX

CX
def
= µX ∗ ΦX ∗ µX

By definition, we have for every f.g. H ≤�
X J :

ΦH,J =
∑

M∈[H,J]�
X

LXM,J =
∑

M,N :H≤�
XM≤�

XN≤�
XJ

CXM,N =
∑

N∈[H,J]�
X

RXH,N (2.5.1)

Note that (2.5.1) can serve as definitions for the three functions LX , CX , RX : for instance, LX =
µX ∗ ΦX is equivalent to ζX ∗ LX = ΦX , which is the leftmost equality above.

We begin the analysis of these functions by the following striking observation regarding RX .
Recall (Claim 2.4.2) that if H ≤alg J then H ≤�

X J for every basis X. It turns out that the function
RX is supported on algebraic extensions alone, and moreover, is independent of the basis X.

Proposition 2.5.1. Let H,J ≤fg Fk.



CHAPTER 2. MEASURE PRESERVING WORDS ARE PRIMITIVE 63

(1) If H ≤�
X J but J is not an algebraic extension of H, then RXH,J = 0.

(2) RXH,J = RYH,J for every basis Y of Fk, whenever both are defined.

Remark 2.5.2. The only property of Φ we use is that ΦH,L = ΦH,J whenever H ≤ L
∗
≤ J , which

is easy to see from the definition of Φ. Therefore, the proposition holds for the right derivation
of every function with this property. In particular, the proposition holds for every “statistical”
function, in which the value of (H,J) depends solely on the image of H via a uniformly distributed
random homomorphism from J to some group G.

Proof. We show both claims at once by induction on
∣∣∣[H,J ]�

X

∣∣∣, the size of the closed interval between

H and J . The induction basis is H = J . That H ≤alg H is immediate. By (2.5.1), RXH,H = ΦH,H
and so RXH,H is indeed independent of the basis X.

Assume now that
∣∣∣[H,J ]�

X

∣∣∣ = r and that both claims are proven for every pair bounding an
interval of size < r. By (2.5.1) and the first claim of the induction hypothesis,

RXH,J = ΦH,J −
∑

N∈[H,J)�
X

RXH,N = ΦH,J −
∑

N :H≤algN��
XJ

RXH,N (2.5.2)

By Claim 2.3.4(3), {N |H ≤alg N ��
X J} = {N |H ≤alg N � J}, and the latter is independent of

the basis X. Furthermore, by the induction hypothesis regarding the second claim, so are the terms
RXH,N in this summation. This settles the second point.

Finally, if J is not an algebraic extension of H then let L be some intermediate free factor of J ,

H ≤ L
∗
� J . As mentioned above, this yields that ΦH,J = ΦH,L. Therefore,

RXH,J = ΦH,J −
∑

N∈[H,J)�
X

RXH,N = ΦH,L −
∑

N∈[H,L]�
X

RXH,N

︸ ︷︷ ︸
0 by definition

−
∑

N∈[H,J)�
X
\[H,L]�

X

RXH,N

By Claim 2.4.5, all algebraic extensions of H inside the interval [H,J ]�
X
are contained in L. Hence,

every subgroup N ∈ [H,J)�
X
\ [H,L]�

X
is not an algebraic extension of H, and by the induction

hypothesis RXH,N vanishes. The desired result follows.

In view of Proposition 2.5.1 we can omit the superscript and write from now on RH,J instead
of RXH,J . Moreover, we can write the following “basis independent” equation for every pair of f.g.
subgroups H ≤ J :

ΦH,J =
∑

N :H≤algN≤J

RH,N . (2.5.3)

When H ≤�
X J this follows from the proof above. For general H ≤ J , there is some subgroup L

such that H ≤�
X L

∗
≤ J and every intermediate algebraic extension H ≤alg N ≤ J is contained in

L (see Claims 2.3.4 and 2.4.5). Therefore,

ΦH,J = ΦH,L =
∑

N :H≤algN≤L

RH,N =
∑

N :H≤algN≤J

RH,N .

It turns out that unlike the function R, the other two derivations of Φ, namely LX and CX , do
depend on the basis X. However, the latter two functions have combinatorial interpretations. In
the next section we show that ΦH,J and LXH,J can be described in terms of random coverings of the
core graph ΓX (J), and that explicit rational expressions in n can be computed to express these
two functions for given H,J (Lemmas 2.6.2 and 2.6.3 below). This, in turn, allows us to analyze
the combinatorial meaning and order of magnitude of CXM,N (Proposition 2.7.1).
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Finally, using the fact that R is the “left integral” of CX , that is R = ζX ∗ CX , we finish the
circle around the diagram of Φ’s derivations, and use this analysis of Φ, LX and CX to prove that
for every pair H ≤alg J , RH,J does not vanish and is, in fact, positive for large enough n. This
alone gives Theorem 2.1.4. The more informative 2.1.8 follows from an analysis of the order of
magnitude of RH,J in this case (Proposition 2.7.2).

2.6 Random coverings of core graphs

This section studies the graphs which cover a given core-graph in the topological sense, i.e. Γ̂
p
� Γ

with p locally bijective. We call these graphs (together with their projection maps) coverings of Γ.
The reader should not confuse this with our notion “covers” from Definition 2.3.3.

We focus on directed and edge-labeled coverings. This means we only consider Γ̂
p
� Γ such that

Γ̂ is directed and edge-labeled, and the projection p preserves orientations and labels. When Γ is a
core-graph we do not assume that Γ̂ is a core-graph as well. It may be disconnected, and it need
not be pointed. Nevertheless, it is not hard to see that when Γ and Γ̂ are finite, for every vertex
v in p−1 (⊗), the fiber over Γ’s basepoint, we do have a valid core-graph, which we denote by Γ̂v:
this is the connected component of v in Γ̂, with v serving as basepoint. Moreover, the restriction
of the projection map p to Γ̂v is a core-graph morphism.

The theory of core-graph coverings shares many similarities with the theory of topological cov-
ering spaces. The following claim lists some standard properties of covering spaces, formulated for
core-graphs.

Claim 2.6.1. Let Γ be a core-graph, Γ̂
p
� Γ a covering and v a vertex in the fiber p−1 (⊗).

(1) The group πX1 (Γ) acts on the fiber p−1 (⊗), and these actions give a correspondence between
coverings of Γ and πX1 (Γ)-sets.

(2) In this correspondence, coverings of Γ with fiber {1, . . . , n} correspond to actions of πX1 (Γ)
on {1, . . . , n}, i.e., to group homomorphisms πX1 (Γ)→ Sn.

(3) The group πX1
(

Γ̂v

)
is the stabilizer of v in the action of πX1 (Γ) on p−1 (⊗) (note that πX1

(
Γ̂v

)
and πX1 (Γ) are both subgroups of F (X)).

(4) A core-graph morphism ∆ → Γ can be lifted to a core-graph morphism ∆ → Γ̂v (i.e., the
diagram

Γ̂v

p
����

∆ //

??

Γ

can be completed) if and only if πX1 (∆) ⊆ πX1
(

Γ̂v

)
. By the previous point, this is equivalent

to saying that all elements of πX1 (∆) fix v.

We now turn our attention to random coverings. The vertex set of an n-sheeted covering
of a graph Γ = (V,E) can be assumed to be V × {1, . . . , n}, so that the fiber above v ∈ V is
{v}×{1, . . . , n}. For every edge e = (u, v) ∈ E, the fiber over e then constitutes a perfect matching
between {v}×{1, . . . , n} and {u}×{1, . . . , n}. This suggests a natural model for random n-coverings
of the graph Γ. Namely, for every e ∈ E choose uniformly a random perfect matching (which is just
a permutation in Sn). This model was introduced in [AL02], and is a generalization of a well-known
model for random regular graphs (see e.g. [BS87]).† Note that the model works equally well for
graphs with loops and with multiple edges.
†Occasionally these random coverings are referred to as random lifts of graphs. We shall reserve this term for its

usual meaning.
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In fact, there is some redundancy in this model, if we are interested only in isomorphism classes
of coverings (two coverings are isomorphic if there is an isomorphism between them that commutes
with the projection maps). It is possible to obtain the same distribution on (isomorphism classes
of) n-coverings of Γ with fewer random permutations: one may choose some spanning tree T of Γ,
associate the identity permutation with every edge in T , and pick random permutations only for
edges outside T .

We now fix some J ≤fg Fk, and consider random coverings of its core-graph, ΓX (J). We
denote by Γ̂X (J) a random n-covering of ΓX (J), according to one of the models described above.
If p : Γ̂X (J)→ ΓX (J) is the covering map, then Γ̂X (J) inherits the edge orientation and labeling
from ΓX (J) via p−1. For every i (1 ≤ i ≤ n), we write Γ̂X (J)i for the core-graph Γ̂X (J)(⊗,i) (the
component of (⊗, i) in Γ̂X (J) with basepoint (⊗, i)).

By Claim 2.6.1(2), each random n-covering of ΓX (J) encodes a homomorphism αJ,n ∈
Hom (J, Sn), via the action of J = πX1 (ΓX (J)) on the basepoint fiber. Explicitly, an element
w ∈ J is mapped to a permutation αJ,n (w) ∈ Sn as follows: w corresponds to a closed path pw
around the basepoint of ΓX (J). For every 1 ≤ i ≤ n, the lift of pw that starts at (⊗, i) ends at
(⊗, j) for some j, and αJ,n (w) (i) = j.

By the correspondence of actions of J on {1, . . . , n} and n-coverings of ΓX (J), αJ,n is a uniform
random homomorphism in Hom (J, Sn). This can also be verified using the “economical” model, as
follows: choose some basis Y =

{
y1, . . . , yrk(J)

}
for J via a choice of a spanning tree T of ΓX (J)

and of orientation of the remaining edges, and choose uniformly at random some σr ∈ Sn for every
basis element yr. Clearly, αJ,n (yr) = σr.

We can now use the coverings of ΓX (J) to obtain a geometric interpretation of ΦH,J , as follows:
let H ≤ J ≤fg Fk and 1 ≤ i ≤ n. By 2.6.1(4), the morphism ηXH→J : ΓX (H) → ΓX (J) lifts
to a core-graph morphism ΓX (H) → Γ̂X (J)i iff H = πX1 (ΓX (H)) fixes (⊗, i) via the action of
J on the fiber ⊗ × {1, . . . , n}. Since this action is given by αJ,n, this means that ηXH→J lifts to
Γ̂X (J)i exactly when αJ,n (H) fixes i. Recalling that ΦH,J (n) is the expected number of elements
in {1, . . . , n} fixed by αJ,n (H), we obtain an alternative definition for it:

Lemma 2.6.2. Let Γ̂X (J) be a random n-covering space of ΓX (J) in the aforementioned model
from [AL02]. Then,

ΦH,J (n) = The expected number of lifts of ηXH→J to Γ̂X (J).

Γ̂X (J)

p
����

ΓX (H)
ηXH→J

//

::

ΓX (J)

Note that this characterization of ΦH,J involves the basis X, although the original definition
(2.2.1) does not. One of the corollaries of this lemma is therefore that the average number of lifts
does not depend on the basis X.

Recall (Section 2.5) the definition of the function LX , which satisfies ΦH,J =
∑
M∈[H,J]�

X

LXM,J

for every H ≤�
X J . It turns out that this derivation of Φ also has a geometrical interpretation.

Assume that ηXH→J does lift to η̂i : ΓX (H)→ Γ̂X (J)i. By Claim 2.3.4, η̂i decomposes as a quotient
onto ΓX (M), where M = πX1 (im η̂i), followed by an embedding. Moreover, M lies in [H,J ]�

X
. On

the other hand, if there is some M ∈ [H,J ]�
X

such that ΓX (M) is embedded in Γ̂X (J)i then such



CHAPTER 2. MEASURE PRESERVING WORDS ARE PRIMITIVE 66

M is unique and η̂i lifts to the composition of ηXH→M with this embedding. Consequently,

ΦH,J (n) = Expected number of lifts of ηXH→J to Γ̂X (J)

=
∑

M∈[H,J]�
X

Expected number of injective lifts of ηXM→J to Γ̂X (J).

Taking the left derivations, we obtain:

Lemma 2.6.3. Let M ≤�
X J , and let Γ̂X (J) be a random n-covering space of ΓX (J) in the

aforementioned model from [AL02]. Then,

LXM,J (n) = The expected number of injective lifts of ηXM→J to Γ̂X (J).

Γ̂X (J)

p
����

ΓX (M)
ηXM→J

//
, �

::

ΓX (J)

Unlike the number of lifts in general, the number of injective lifts does depend on the basis
X. For instance, consider M = 〈x1x2〉 and J = 〈x1, x2〉 = F2. With the basis X = {x1, x2}, the
probability that ηXM→J lifts injectively to Γ̂X (J)i equals

n−1
n2 (Lemma 2.6.4 shows how to compute

this). However, with the basis Y = {x1x2, x2}, the corresponding probability is 1
n . We also remark

that Lemma 2.6.3 allows a natural extension of LX to pairs M,J such that M does not X-cover J .
Lemma 2.6.3 allows us to generalize the method used in [Nic94, LP10, Pud14] to compute the

expected number of fixed points in αn (w) (see the notations before Theorem 2.1.4’). We claim that
for n large enough, LXM,J (n) is a simple rational expression in n.

Lemma 2.6.4. LetM,J ≤fg Fk such thatM ≤�
X J , and let η = ηXM→J be the core-graph morphism.

For large enough n,

LXM,J (n) =

∏
v∈V (ΓX(J))

(n)|η−1(v)|∏
e∈E(ΓX(J))

(n)|η−1(e)|
, (2.6.1)

where (n)r is the falling factorial n (n− 1) . . . (n− r + 1), and “large enough n” is n ≥
max

e∈E(ΓX(J))

∣∣η−1 (e)
∣∣ (so that the denominator does not vanish).

Proof. Let v be a vertex in ΓX (J) and consider the fiber η−1 (v) in ΓX (M). For every injective lift
η̂ : ΓX (M) ↪→ Γ̂X (J), the fiber η−1 (v) is mapped injectively into the fiber p−1 (v). The number
of such injections is

(n)|η−1(v)| = n(n− 1) . . . (n− |η−1(v)|+ 1),

and therefore the number of injective lifts of η
∣∣
V (ΓX(M))

into V
(

Γ̂X (J)
)
is the numerator of (2.6.1).

We claim that any such injective lift has a positive probability of extending to a full lift of η:
all one needs is that the fiber above every edge of ΓX (J) satisfy some constraints. To get the
exact probability, we return to the more “wasteful” version of the model for a random n-covering of
ΓX (J), the model in which we choose a random permutation for every edge of the base graph. Let
η̂ : V (ΓX (M)) ↪→ V

(
Γ̂X (J)

)
be an injective lift of the vertices of ΓX (M) as above, and let e be

some edge of ΓX (J). If η̂ is to be extended to η−1 (e), the fiber above e in Γ̂X (J) must contain,
for every (u, v) ∈ η−1 (e), the edge (η̂ (u) , η̂ (v)) .
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Thus, the random permutation σ ∈ Sn which determines the perfect matching above e in Γ̂X (J),
must satisfy

∣∣η−1 (e)
∣∣ non-colliding constraints of the form σ (i) = j. Whenever n ≥

∣∣η−1 (e)
∣∣ (which

we assume), a uniformly random permutation in Sn satisfies such constraints with probability

1

(n)|η−1(e)|
.

This shows the validity of (2.6.1).

This immediately gives a formula for ΦH,J as a rational function:

Corollary 2.6.5. Let H,J ≤fg Fk such that H ≤�
X J . Then, for large enough n,

ΦH,J (n) =
∑

M∈[H,J]�
X

LXM,J (n) =
∑

M∈[H,J]�
X

∏
v∈V (ΓX(J))

(n)∣∣∣(ηXM→J)
−1

(v)
∣∣∣∏

e∈E(ΓX(J))

(n)∣∣∣(ηXM→J)
−1

(e)
∣∣∣ .

Since H X-covers every intermediate M ∈ [H,J ]�
X
, the largest fiber above every edge of ΓX (J)

is obtained in ΓX (H) itself. Thus, “large enough n” in this Corollary can be replaced by n ≥
max

e∈E(ΓX(J))

∣∣∣(ηXH→J)−1
(e)
∣∣∣.

In fact, Corollary 2.6.5 applies, with slight modifications, to every pair of f.g. subgroups H ≤ J :
Lemma 2.6.2 holds in this more general case, that is ΦH,J is equal to the expected number of
lifts of ΓX (H) to the random n-covering Γ̂X (J). The image of each lift (with the image of ⊗ as
basepoint) is a core graph which is a quotient of ΓX (H), and so corresponds to a subgroup M such
that H ≤�

X M ≤ J . In explaining the rational expression in Lemma 2.6.4 we did not need M to
cover J . Thus, for every H ≤ J , both finitely generated,

ΦH,J (n) =
∑

M :H≤�
XM≤J

∏
v∈V (ΓX(J))

(n)∣∣∣(ηXM→J)
−1

(v)
∣∣∣∏

e∈E(ΓX(J))

(n)∣∣∣(ηXM→J)
−1

(e)
∣∣∣ . (2.6.2)

Corollary 2.6.5 yields in particular a straight-forward algorithm to obtain a rational expression
in n for ΦH,J (n) (valid for large enough n). For example, consider H =

〈
x1x2x

−1
1 x−1

2

〉
and

F2 = 〈x1, x2〉. The interval [H,F2]�
X

consists of seven subgroups, as depicted in Figure 2.3.4.
Following the computation in Corollary 2.6.5, we get that for n ≥ 2 (we scan the quotients in
Figure 2.3.4 top-to-bottom and in each row left-to-right):

ΦH,F2
(n) =

(n)4

(n)2 (n)2

+
(n)2

(n)2 (n)1

+
(n)2

(n)1 (n)2

+
(n)3

(n)2 (n)2

+
(n)3

(n)2 (n)2

+
(n)2

(n)2 (n)2

+
(n)1

(n)1 (n)1

=
n

n− 1
= 1 +

1

n
+O

(
1

n2

)
This demonstrates Theorem 2.1.8 and Table 2.1 for H =

〈
x1x2x

−1
1 x−1

2

〉
(recall the discussion

following Lemma 2.4.4, where it is shown that π (H) = 2 and that Crit (H) = {F2}).
The explicit computation of Φ yields an effective version of Theorem 2.1.4’:

Corollary 2.6.6. Let H ≤fg Fk, and let ` denote the number of edges in ΓX (H). Then H ∗
≤ Fk

iff ΦH,Fk (n) = n− r̃kH for n ≤ `+ r̃kH. In particular, Proposition 2.1.6 follows.
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Proof. Assume that ΦH,Fk (n) = n− r̃kH holds for n ≤ `+ r̃kH, and denote

Φ′ (n) =
∑

M∈[H,∞)�
X

(n)|V (ΓX(M))|∏k
j=1 (n)|Ej(ΓX(M))|

, (2.6.3)

where Ej (Γ) are the j-edges in Γ. By Corollary 2.6.5, Φ′ (n) = ΦH,Fk (n) for n ≥ n0 =

maxj=1..k |Ej (ΓX (H))|, and in particular Φ′ (n) = n− r̃kH for n0 ≤ n ≤ ` + r̃kH. We proceed
to show that Φ′ (n) ≡ n− r̃kH , which implies ΦH,Fk (n) = n− r̃kH for n ≥ n0. The conclusion then
follows by Theorem 2.1.4’ (which is proved in the next section).

The number of j-edges in every quotient of ΓX (H) is at most Ej (ΓX (H)), so that Φ′ (n) g (n)

is a polynomial for g (n) =
∏k
j=1 (n)|Ej(ΓX(H))|. We would like to establish

Φ′ (n) g (n)nr̃k(H) ≡ g (n) , (2.6.4)

and we note that deg g = `, and deg Φ′ ≤ maxM∈[H,∞)�
X

− r̃k (M) ≤ 0 follows from Claim 2.3.1(2)

(assuming H 6= id). Therefore, the degrees of both sides of (2.6.4) are at most ` + r̃kH, and it
suffices to show they agree at `+ r̃kH + 1 = `+ rkH points. We already know that they agree for
n0 ≤ n ≤ ` + r̃kH. For 0 ≤ n < n0 it is clear that g (n) = 0. It turns out that the l.h.s. vanishes
as well for these values of n. Expanding the l.h.s. gives

nr̃kH ·
∑

M∈[H,∞)�
X

(n)|V (ΓX(M))|

k∏
j=1

(n− |Ej (ΓX (M))|)|Ej(ΓX(H))|−|Ej(ΓX(M))| , (2.6.5)

and each term in the sum vanishes for 0 ≤ n < n0: Choose 1 ≤ j ≤ k for which
|Ej (ΓX (H))| = n0. For each M ∈ [H,∞)�

X
either |Ej (ΓX (M))| ≤ n, in which case

(n− |Ej (ΓX (M))|)n0−|Ej(ΓX(M))| = 0, or |Ej (ΓX (M))| > n; as different j-edges must have differ-
ent origins, the latter implies that |V (ΓX (M))| > n, hence(n)|V (ΓX(M))| vanishes.

Remark 2.6.7. The discussion in this section suggests a generalization of our analysis to finite groups
G other than Sn. For any (finite) faithful G-set S, one can consider a random |S|-covering of ΓX (J).
The fiber above every edge is chosen according to the action on S of a (uniformly distributed)
random element of G. In this more general setting we also get a one-to-one correspondence between
Hom (Fk, G) and |S|-coverings. Although the computation of LX and of Φ might be more involved,
this suggests a way of analyzing words which are measure preserving w.r.t. G.

2.7 The proof of Theorem 2.1.8
The last major ingredient of the proof of our main result, Theorem 2.1.8, is an analysis of CX , the
double-sided derivation of Φ. Recall Definition 2.3.6 where the X-distance ρX (H,J) was defined
for every H,J ≤fg Fk with H ≤�

X J .

Proposition 2.7.1. Let M,N ≤fg Fk satisfy M ≤�
X N . Then

CXM,N (n) = O

(
1

nr̃k(M)+ρX(M,N)

)
Section 2.7.1 is dedicated to the proof of this proposition. Before getting there, we show how it

practically finishes the proof of our main result. We do this with the following final step:
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Proposition 2.7.2. Let H,N ≤fg Fk satisfy H ≤alg N . Then

RH,N (n) =
1

nr̃k(N)
+O

(
1

nr̃k(N)+1

)
Proof. Let X be some basis of Fk. Recall that R = ζX ∗ CX , i.e.

RH,N (n) =
∑

M∈[H,N ]�
X

CXM,N (n) .

For M = N we have CXN,N (n) = RN,N (n) = ΦN,N (n) = n− r̃k(N) (the last equality follows from
the fact that m independent uniform permutations fix a point with probability n−m). For any
other M , i.e. M ∈ [H,N)�

X
, the fact that N is an algebraic extension of H means that M is not a

free factor of N and therefore, by Theorem 2.3.8 (and (2.3.6)), ρX (M,N) ≥ r̃k (N) − r̃k (M) + 1.
Proposition 2.7.1 then shows that

CXM,N (n) ∈ O
(

1

nr̃k(M)+ρX(M,N)

)
⊆ O

(
1

nr̃k(N)+1

)
.

Hence,

RH,N (n) = CXN,N (n) +
∑

M∈[H,N)�
X

CXM,N (n) =
1

nr̃k(N)
+O

(
1

nr̃k(N)+1

)
.

The proof of Theorem 2.1.8 is now at hand. For every H,J ≤fg Fk with H ≤ J , by (2.5.3) and
Proposition 2.7.2,

ΦH,J (n) =
∑

N :H≤algN≤J

RH,N (n)

= RH,H (n) +
∑

N :H�algN≤J

RH,N (n)

=
1

nr̃k(H)
+

∑
N :H�algN≤J

1

nr̃k(N)
+O

(
1

nr̃k(N)+1

)
.

For J = Fk we can be more concrete. Recall that the H-critical groups, Crit (H), are the algebraic
extensions of H of minimal rank (other than H itself), and this minimal rank is π (H). Therefore,

ΦH,Fk (n) =
1

nr̃k(H)
+

∑
N∈(H,∞)alg

1

nr̃k(N)
+O

(
1

nr̃k(N)+1

)

=
1

nr̃k(H)
+
|Crit(H)|
nπ̃(H)

+O

(
1

nπ̃(H)+1

)
.

This establishes our main results: Theorem 2.1.8, Theorem 2.1.4 and all their corollaries.

2.7.1 The analysis of CX
M,N

In this subsection we look into CX , the double-sided derivation of Φ, and establish Proposition
2.7.1, which bounds the order of magnitude of CXM,N . Recall that by definition CX = LX ∗ µX ,
which is equivalent to

LXM,J =
∑

N∈[M,J]�
X

CXM,N (∀M ≤�
X J) (2.7.1)
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We derive a combinatorial meaning of CXM,N from this relation. To obtain this, we further analyze
the rational expression (2.6.1) for LXM,J and write it as a formal power series. Then, using a
combinatorial interpretation of the terms in this series, we attribute each term to someN ∈ [M,J ]�

X
,

and show that for every N ∈ [M,J ]�
X
, the sum of terms attributed to N is nothing but CXM,N .

Finally, we use this combinatorial interpretation of CXM,N to estimate its order of magnitude.

Rewriting LXM,J as a power series in n−1

Consider the numerator and denominator of (2.6.1): these are products of expressions of the type
(n)r. It is a classical fact that

(n)r =

r∑
j=1

(−1)r−j
[
r

j

]
nj

where
[
r
j

]
is the unsigned Stirling number of the first kind. That is,

[
r
j

]
is the number of permu-

tations in Sr with exactly j cycles (see, for instance, [vLW01], Chapter 13).
We introduce the notation [r]j

def
=
[

r
r−j

]
, which is better suited for our purposes. The cycles of

a permutation σ ∈ Sr constitute a partition Pσ of {1, . . . , r}. We define ‖σ‖ = ‖Pσ‖ (recall (2.3.4)),
and it is immediate that [r]j is the number of permutations σ ∈ Sr with ‖σ‖ = j. It is also easy
to see that ‖σ‖ is the minimal number of transpositions needed to be multiplied in order to obtain
σ. Therefore, [r]j is the number of permutations in Sr which can be expressed as a product of j
transpositions, but no less. In terms of this notation, we obtain

(n)r = nr
r−1∑
j=0

(−1)
j

[r]j n
−j .

The product of several expressions of this form, namely (n)r1 (n)r2 . . . (n)r` , can be written as a
polynomial in n whose coefficients have a similar combinatorial meaning, as follows. Let X be a
set, and ϕ : X → {1, . . . , `} some function with fibers of sizes

∣∣ϕ−1 (i)
∣∣ = ri (1 ≤ i ≤ `). We denote

by
Sym ϕ (X) = {σ ∈ Sym (X) |ϕ ◦ σ = ϕ}

the set of permutations σ ∈ Sym (X) subordinate to the partition of X induced by the fibers of ϕ,
i.e., such that ϕ (σ (x)) = ϕ (x) for all x ∈ X. We define

[X]
ϕ
j = |{σ ∈ Sym ϕ (X) : ‖σ‖ = j}| ,

the number of ϕ-subordinate permutations with ‖σ‖ = j. Put differently, [X]
ϕ
j counts the permu-

tations counted in
[
|X|

]
j
which satisfy, in addition, that every cycle consists of a subset of some

fiber of ϕ. With this new notation, one can write:

(n)r1 (n)r2 . . . (n)r` =

l∏
i=1

(
nri

ri−1∑
m=0

(−1)
m

[ri]m n
−m

)
= n|X|

|X|∑
j=0

(−1)
j

[X]
ϕ
j n
−j

Turning back to (2.6.1), we let VM and EM denote the sets of vertices and edges, respectively,
of ΓX (M). We denote by η the morphism ηXM→J , and use it implicitly also for its restrictions to
VM and EM , which should cause no confusion. We obtain

LXM,J (n) =

n|VM |
|VM |∑
j=0

(−1)
j

[VM ]
η
j n
−j

n|EM |
|EM |∑
j=0

(−1)
j

[EM ]
η
j n
−j

,
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which by Claim 2.3.1(2) equals

LXM,J (n) = n− r̃k(M)

|VM |∑
j=0

(−1)
j

[VM ]
η
j n
−j

|EM |∑
j=0

(−1)
j

[EM ]
η
j n
−j

. (2.7.2)

Consider the denominator of (2.7.2) as a power series Q
(
n−1

)
. Its free coefficient is [EM ]

η
0 = 1.

This makes it relatively easy to get a formula for its inverse 1/Q
(
n−1

)
as a power series. In general,

if Q (x) = 1 +
∑∞
i=1 aix

i, then

1

Q(x)
=

1

1−
∑∞
i=1(−ai)xi

=

∞∑
t=0

( ∞∑
i=1

(−ai)xi
)t

=

=

∞∑
t=0

∑
j1,j2,...,jt≥1

(−1)taj1 · . . . · ajtx
∑t
i=1 ji .

In the denominator of (2.7.2) we have ai = (−1)
i
[EM ]

η
i , and the resulting expression needs to be

multiplied with the numerator
∑|VM |
j=0 (−1)

j
[VM ]

η
j n
−j . In total, we obtain

LXM,J (n) =
∞∑
t=0

∑
j0≥0

j1,...,jt≥1

(−1)
t+
∑t
i=0 ji [VM ]

η
j0
· [EM ]

η
j1
· . . . · [EM ]

η
jt
n− r̃k(M)−

∑t
i=0 ji . (2.7.3)

The combinatorial meaning and order of magnitude of CXM,N

The expression (2.7.3) is a bit complicated, but it presents LXM,J (n) as a sum (with coefficients
±n−s) of terms with a combinatorial interpretation: the term [VM ]

η
j0
· [EM ]

η
j1
· . . . · [EM ]

η
jt

counts
(t+ 1)-tuples of η-subordinate permutations. The crux of the matter is that this interpretation
allows us to attribute each tuple to a specific subgroup N ∈ [M,J ]�

X
. This is done as follows.

Let (σ0, σ1, . . . , σt) be a (t+ 1)-tuple of permutations such that σ0 ∈ Sym η (VM ) and
σ1, . . . , σt ∈ Sym η (EM ) \ {id} (we exclude id ∈ Sym (EM ), which is the only permutation counted
in [EM ]

η
0). Consider the graph Γ = ΓX(M)/〈σ0,...,σt〉, which is the quotient of ΓX (M) by all iden-

tifications of pairs of the form v, σ0 (v) (v ∈ VM ) and e, σi (e) (e ∈ EM , 1 ≤ i ≤ t)†. Since Γ
is obtained from ΓX (M) by identification of elements with the same η-image, η induces a well
defined morphism Γ → ΓX (J). Thus, every closed path in Γ projects to a path in ΓX (J), giving
πX1 (Γ) ≤ πX1 (ΓX (J)) = J . We denote N = Nσ0,σ1,...,σt = πX1 (Γ). As usual (see Figures 2.3.2,
2.3.3), we can perform Stallings foldings on Γ until we obtain the core graph corresponding to N ,
ΓX (N). Obviously we have M ≤�

X N , and by Claim 2.3.4(3) also N ≤�
X J . Thus, we always have

N = Nσ0,σ1,...,σt ∈ [M,J ]�
X
. To summarize the situation:

ΓX (M) // //

ηXM→N

22 22Γ = ΓX(M)/〈σ0,...,σ1〉
folding // // ΓX (N)

ηXN→J // // ΓX (J) (2.7.4)

†For the definition of the quotient of a graph by identifications of vertices see the discussion preceding Figure
2.3.3. Although we did not deal with merging of edges before, this is very similar to merging vertices. Identifying a
pair of edges means identifying the pair of origins, the pair of termini and the pair of edges. In terms of the generated
core graph (see Section 2.3), identifying a pair of edges is equivalent to identifying the pair of origins and\or the pair
of termini.
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Our next move is to rearrange (2.7.3) according to the intermediate subgroups N ∈ [M,J ]�
X

which correspond to the tuples counted in it. For any N ∈ [M,J ]�
X

we denote by T XM,N,J the set of
tuples (σ0, σ1, . . . , σt) such that Nσ0,σ1,...,σt = N , i.e.

T XM,N,J =

(σ0, σ1, . . . , σt)

∣∣∣∣∣∣∣
t ∈ N, σ0 ∈ Sym η (VM )

σ1, . . . , σt ∈ Sym η (EM ) \ {id}
πX1 (ΓX(M)/〈σ0,σ1,...,σt〉) = N

 .

The terms in (2.7.3) which correspond to a fixed N ∈ [M,J ]�
X

thus sum to

C̃XM,J (N) =
∑

(σ0,σ1,...,σt)∈T XM,N,J

(−1)
t+

t∑
i=0
‖σi‖

n
r̃k(M)+

t∑
i=0
‖σi‖

, (2.7.5)

and (2.7.3) becomes
LXM,J =

∑
N∈[M,J]�

X

C̃XM,J (N) (2.7.6)

The equation (2.7.6) looks much like (2.7.1), with C̃XM,J (N) playing the role of CXM,N . In order
to establish equality between the latter two, we must show that C̃XM,J (N) does not depend on J .
Fortunately, this is not hard: it turns out that

C̃XM,J (N) = C̃XM,N (N)
(
∀N ∈ [M,J ]�

X

)
, (2.7.7)

and the r.h.s. is, of course, independent of J . This equality follows from T XM,N,J = T XM,N,N , which we
now justify. The only appearance J makes in the definition of T XM,N,J is inside η = ηXM→J , which is
to be σi-invariant (for 0 ≤ i ≤ n), i.e., σi must satisfy ηXM→J ◦ σi = ηXM→J . If (σ0, . . . , σt) ∈ T XM,N,J

then ηXM→N ◦ σi = ηXM→N follows from the fact that ΓX (N) is a quotient of ΓX(M)/〈σi〉. On the
other hand, if (σ0, . . . , σt) ∈ T XM,N,N then we have ηXM→N ◦ σi = ηXM→N , hence also (see (2.7.4))

ηXM→J ◦ σi = ηXN→J ◦ ηXM→N ◦ σi = ηXN→J ◦ ηXM→N = ηXM→J .

Writing C̃XM,N
def
= C̃XM,N (N), we have by (2.7.1), (2.7.6), and (2.7.7)

CX ∗ ζX = LX = C̃X ∗ ζX

which shows that CX = C̃X , as desired.
We approach the endgame. Let (σ0, σ1, . . . , σt) ∈ T XM,N,J = T XM,N,N , and consider the partition

P of V (ΓX (H)), obtained by identifying v and v′ whenever σ0 (v) = v′, or σi (e) = e′ for some
1 ≤ i ≤ t and edges e, e′ whose origins are v and v′, respectively. Since P can clearly be obtained
by
∑t
i=0 ‖σi‖ identifications, we have ‖P‖ ≤

∑t
i=0 ‖σi‖ (a strong inequality can take place - for

example, one can have σ1 = σ2). Since (σ0, σ1, . . . , σt) ∈ T XM,N,J we have πX1 (ΓX(H)/P) = N , and
thus by (2.3.5) we obtain

ρX (H,J) ≤ ‖P‖ ≤
t∑
i=0

‖σi‖ .

From (2.7.5) (recall that C̃XM,J (N) = C̃XM,N = CXM,N ) we now have

CXM,N (n) = O

(
1

nr̃k(M)+ρX(M,N)

)
,

and Proposition 2.7.1 is proven.
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2.8 Primitive words in the profinite topology
Theorem 2.1.4 has some interesting implications to the study of profinite groups. In fact, some of
the original interest in the conjecture that is proven in this paper stems from these implications.

Let F̂k denote the profinite completion of the free group Fk. A basis of F̂k is a set S ⊂ F̂k
such that every map from S to a profinite group G admits a unique extension to a continuous
homomorphism F̂k → G. It is a standard fact that Fk is embedded in F̂k, and that every basis of
Fk is also a basis of F̂k (see for example [Wil98]). An element of F̂k is called primitive if it belongs
to a basis of F̂k.

It is natural to ask whether an element of Fk, which is primitive in F̂k, is already primitive in Fk.
In fact, this was conjectured by Gelander and by Lubotzky, independently. Theorem 2.1.4 yields a
positive answer, as follows. An element w ∈ F̂k is said to be measure preserving if for any finite
group G, and a uniformly distributed random (continuous) homomorphism α̂G ∈ Homcont

(
F̂k, G

)
,

the image α̂G (w) is uniformly distributed in G. By the natural correspondence Homcont

(
F̂k, G

)
∼=

Hom (Fk, G), an element of Fk is measure preserving w.r.t. Fk iff it is so w.r.t. F̂k. As in Fk, a
primitive element of F̂k is easily seen to be measure preserving. Theorem 2.1.4 therefore implies
that if w ∈ Fk is primitive in F̂k, then it is also primitive in Fk. In other words:

Corollary 2.8.1. Let P denote the set of primitive elements of Fk, and let P̂ denote the set of
primitive elements of F̂k. Then

P = P̂ ∩ Fk.

As P̂ is a closed set in F̂k, this immediately implies Corollary 2.1.5, which states that P is
closed in the profinite topology. In fact, there is also a direct proof to Corollary 2.1.5 from Theorem
2.1.8: one has to find, for every non-primitive word w ∈ Fk, some H ≤f.i. Fk such that the coset
wH contains no primitives. By Theorem 2.1.8 there exists n so that w does not induce uniform
distribution on Sn. For this n, let

H =
⋂

α:Fk→Sn

kerα

and then wH is a primitive-free coset (as all words in the same coset of H induce the exact same
measure on Sn).

This circle of ideas has a natural generalization. Observe the following five equivalence relations
on the elements of Fk:

• w1
A∼ w2 if w1 and w2 belong to the same AutFk-orbit.

• w1
B∼ w2 if w1 and w2 belong to the same AutFk-orbit (where AutFk is the closure of AutFk

in Aut F̂k).

• w1
C∼ w2 if w1 and w2 belong to the same Aut F̂k-orbit.

• w1
C′∼ w2 if w1 and w2 have the same “statistical” properties, namely if they induce the same

distribution on any finite group.

• w1
C′′∼ w2 if the evaluation maps evw1 , evw2 : Epi (Fk, G)→ G have the same images for every

finite group G.

It is not hard to see that (A)⇒ (B)⇒ (C)⇒ (C ′)⇒ (C ′′) (namely, that if w1
A∼ w2 then w1

B∼ w2,
and so on). The only nontrivial implication is (C ′) ⇒ (C ′′), which can be shown by induction on
the size of G. In an unpublished manuscript, C. Meiri gave a one-page proof that (C), (C ′) and
(C ′′) in fact coincide (in fact, these three coincide for all elements of F̂k).
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From this perspective, our main result shows that in the case that w1 is primitive, all five
relations coincide, and it is natural to conjecture that they in fact coincide for all elements in Fk

†.
Showing that (A)⇐ (B) would imply that AutFk-orbits in Fk are closed in the profinite topology,
and the stronger statement (A)⇐ (C) would imply that words which lie in different AutFk-orbits
can be told apart using statistical methods.

The analysis which is carried out in this paper does not suffice for the general case. For example,
consider the words w1 = x1x2x1x

−1
2 and w2 = x1x2x

−1
1 x−1

2 . They belong to different AutF2-orbits,
as w2 ∈ F′2 but w1 /∈ F′2, but induce the same distribution on Sn for every n: their images under
a random homomorphism are a product of a random permutation (σ) and a random element in
its conjugacy class (τστ−1 for w1, and τσ−1τ−1 for w2). However, while Sn do not distinguish
between these two words, other groups do (in fact these words induce the same distribution on G
precisely when every element in G is conjugate to its inverse, see [PS13] for a discussion of this).

These questions also play a role in the theory of decidability in infinite groups. A natural
extension of the word-problem and the conjugacy-problem, is the following automorphism-problem:
given a group G generated by S, and two words w1, w2 ∈ F (S), can it be decided whether w1

and w2 belong to the same AutG-orbit in G? Whitehead’s algorithm [Whi36a, Whi36b] gives a
concrete solution when G = Fk. Showing that (A) ⇐ (B) would provide an alternative decision
procedure for Fk.

More generally, and in a similar fashion to the conjugacy problem, it can be shown that if

(1) G is finitely presented

(2) AutG is finitely generated

(3) AutG-orbits are closed in the profinite topology

then the automorphism-problem in G is decidable. For the free group (1) and (2) are known, and
(3) is exactly the conjectured coincidence (A)⇔ (B).

2.9 Open questions
We mention some open problems that naturally arise from the discussion in this paper.

• Section 2.8 shows how the questions about primitive elements can be extended to all AutFk-
orbits in Fk (is it true that (A)⇔ (B), and even the stronger equivalence (A)⇔ (C)?). More
generally, can statistical properties tell apart two subgroups H1, H2 ≤fg Fk which belong to
distinct AutFk-orbits? This would be a further generalization of Theorem 2.1.4.

• It is also interesting to consider words which are measure preserving w.r.t. other types of
groups. For instance, does Theorem 2.1.4 still hold if we replace “finite groups” by “compact
Lie groups”, and study Haar-measure preserving words? Is there a single compact Lie group
which suffices? Within finite groups, we showed that measure preservation w.r.t. Sn implies
primitivity. Is it still true if we replace Sn by some other infinite family of finite groups (e.g.
PSLn (q), or solvable groups)?

• Is it true that
[H,∞)≤ =

⋃
X is a

basis of Fk

[H,∞)�
X

and under which assumptions does the following hold

[H,∞)alg =
⋂
X is a

basis of Fk

[H,∞)�
X

†In [AV11], for example, the authors indeed ask whether (C′)⇒ (A).



CHAPTER 2. MEASURE PRESERVING WORDS ARE PRIMITIVE 75

(see Remark 2.4.3)?

• The distribution induced by w on a finite group G is a class function, and so is a linear
combination of the characters of G (for more on this point of view e.g. [AV11, PS13]). In
particular, Φ〈w〉,Fk (n)− 1 is the coefficient of the standard character of Sn. The first nonzero
term of Φ〈w〉,Fk − 1 encodes the primitivity rank and number of critical subgroups of w.
Can the next terms be given an algebraic interpretation, and can they be estimated? (Such
an estimation may contribute further to the study of expansion in graphs, which started in
[Pud15a].) What about the coefficients of other characters of Sn or of any other (family of)
groups?
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Glossary

Reference Remarks
H ≤fg Fk finitely generated
H
∗
≤ J free factor

H ≤alg J algebraic extension Definition 2.2.1

H ≤�
X J H X-covers J Definition 2.3.3 H

X
� J in [Pud14]

subfg (Fk)
the set of finitely generated

subgroups of Fk
[H,J ]� {L |H � L � J} � is either one of ≤, ∗≤,≤alg

or �
X

(standing for ≤�
X )[H,J)� {L |H � L � J}

[H,∞)� {L |H � L}

[H,∞)�
X

the X-quotients of H
OX (H), or X-frigne in

[MVW07]
[H,∞)alg algebraic extensions of H AE (H) in [MVW07]
π (H) primitivity rank of H Definition 2.1.7

π̃ (H) = π (H)− 1

Crit (H) H-critical groups
ΓX (H) X-labeled core graph of H
ρX (H,J) X-distance Definition 2.3.6 H ≤�

X J

ηXH→J
the morphism

ΓX (H)→ ΓX (J)
Claim 2.3.2 H ≤ J

αJ,n
a uniformly chosen random

homomorphism in Hom (J, Sn)
J ≤fg Fk

ΦH,J (n)
the expected number of
common fixed points of

αJ,n (H)
(2.2.1) H ≤ J



BIBLIOGRAPHY 76

References
[Abe06] M. Abert. On the probability of satisfying a word in a group. Journal of Group Theory,

9:685–694, 2006.

[AL02] A. Amit and N. Linial. Random graph coverings I: General theory and graph connec-
tivity. Combinatorica, 22(1):1–18, 2002.

[Alo86] N. Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986.

[AV11] A. Amit and U. Vishne. Characters and solutions to equations in finite groups. Journal
of Algebra and Its Applications, 10(4):675–686, 2011.

[BK13] T. Bandman and B. Kunyavskii. Criteria for equidistribution of solutions of word
equations on SL(2). Journal of Algebra, 382:282–302, 2013.

[BS87] A. Broder and E. Shamir. On the second eigenvalue of random regular graphs. In
Foundations of Computer Science, 1987., 28th Annual Symposium on, pages 286–294.
IEEE, 1987.

[Fri03] J. Friedman. Relative expanders or weakly relatively ramanujan graphs. Duke Mathe-
matical Journal, 118(1):19–35, 2003.

[Fri08] J. Friedman. A proof of Alon’s second eigenvalue conjecture and related problems,
volume 195 of Memoirs of the AMS. AMS, september 2008.

[GAP13] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.6.5, 2013.

[GS09] S. Garion and A. Shalev. Commutator maps, measure preservation, and T-systems.
Trans. Amer. Math. Soc., 361(9):4631–4651, 2009.

[KM02] I. Kapovich and A. Myasnikov. Stallings foldings and subgroups of free groups. Journal
of Algebra, 248(2):608–668, 2002.

[LP10] N. Linial and D. Puder. Words maps and spectra of random graph lifts. Random
Structures and Algorithms, 37(1):100–135, 2010.

[LS08] M. Larsen and A. Shalev. Characters of symmetric groups: sharp bounds and applica-
tions. Inventiones mathematicae, 174(3):645–687, 2008.

[LS09] M. Larsen and A. Shalev. Words maps and Waring type problems. J. Amer. Math.
Soc., 22(2):437–466, 2009.

[MVW07] A. Miasnikov, E. Ventura, and P. Weil. Algebraic extensions in free groups. In G.N.
Arzhantseva, L. Bartholdi, J. Burillo, and E. Ventura, editors, Geometric group theory,
pages 225–253. Trends Math., Birkhauser, 2007.

[Nic94] A. Nica. On the number of cycles of given length of a free word in several random
permutations. Random Structures and Algorithms, 5(5):703–730, 1994.

[PP14] O. Parzanchevski and D. Puder. Stallings graphs, algebraic extensions and primi-
tive elements in F2. Mathematical Proceedings of the Cambridge Philosophical Society,
157(1):1–11, 2014.

[PS13] O. Parzanchevski and G. Schul. On the Fourier expansion of word maps. Bull. London
Math. Soc., 2013. doi:10.1112/blms/bdt068.

[Pud14] D. Puder. Primitive words, free factors and measure preservation. Israel Journal of
Mathematics, 201(1):25–73, 2014.



BIBLIOGRAPHY 77

[Pud15a] D. Puder. Expansion of random graphs: New proofs, new results. Inventiones Mathe-
maticae, 2015. to appear. arXiv:1212.5216.

[Seg09] D. Segal. Words: notes on verbal width in Groups. London Mathematical Society,
Lecture note Series 361, Cambridge University Press, Cambridge, 2009.

[Sha09] A. Shalev. Words maps, conjugacy classes, and a non-commutative Waring-type theo-
rem. Annals of Math., 170:1383–1416, 2009.

[Sha13] A. Shalev. Some results and problems in the theory of word maps. In L. Lovász,
I. Ruzsa, V.T. Sós, and D. Palvolgyi, editors, Erdős Centennial (Bolyai Society Math-
ematical Studies). Springer, 2013.

[Sie12] C. Sievers. Free Group Algorithms – a GAP package, Version 1.2.0, 2012.

[Sta83] J.R. Stallings. Topology of finite graphs. Inventiones mathematicae, 71(3):551–565,
1983.

[Sta97] R.P. Stanley. Enumerative Combinatorics, volume 1 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge, 1997.

[Tak51] M. Takahasi. Note on chain conditions in free groups. Osaka Math. J, 3(2):221–225,
1951.

[Tur96] E.C. Turner. Test words for automorphisms of free groups. Bulletin of the London
Mathematical Society, 28(3):255–263, 1996.

[vLW01] J.H. van Lint and R.M. Wilson. A course in combinatorics. Cambridge Univ Pr, 2001.

[Whi36a] J.H.C. Whitehead. On certain sets of elements in a free group. Proc. London Math.
Soc., 41:48–56, 1936.

[Whi36b] J.H.C. Whitehead. On equivalent sets of elements in a free group. Ann. of Math.,
37:768–800, 1936.

[Wil98] J.S. Wilson. Profinite Groups. Clarendon Press, Oxford, 1998.



Chapter 3

Expansion of Random Graphs: New
Proofs, New Results

Doron Puder†

Einstein Institute of Mathematics
Hebrew University, Jerusalem

doronpuder@gmail.com

Published in an electronic format: Inventiones Mathematicae, posted on 2014, DOI:
10.1007/s00222-014-0560-x

Abstract
We present a new approach to showing that random graphs are nearly optimal expanders. This
approach is based on recent deep results in combinatorial group theory. It applies to both regular
and irregular random graphs.

Let Γ be a random d-regular graph on n vertices, and let λ be the largest absolute value
of a non-trivial eigenvalue of its adjacency matrix. It was conjectured by Alon [Alo86] that a
random d-regular graph is “almost Ramanujan”, in the following sense: for every ε > 0, a.a.s. λ <
2
√
d− 1 + ε. Friedman famously presented a proof of this conjecture in [Fri08]. Here we suggest a

new, substantially simpler proof of a nearly-optimal result: we show that a random d-regular graph
satisfies λ < 2

√
d− 1 + 1 asymptotically almost surely.

A main advantage of our approach is that it is applicable to a generalized conjecture: A d-
regular graph on n vertices is an n-covering space of a bouquet of d/2 loops. More generally,
fixing an arbitrary base graph Ω, we study the spectrum of Γ, a random n-covering of Ω. Let λ
be the largest absolute value of a non-trivial eigenvalue of Γ. Extending Alon’s conjecture to this
more general model, Friedman [Fri03] conjectured that for every ε > 0, a.a.s. λ < ρ + ε, where ρ
is the spectral radius of the universal cover of Ω. When Ω is regular we get the same bound as
before: ρ + 1, and for an arbitrary Ω, we prove a nearly optimal upper bound of

√
3ρ. This is a

substantial improvement upon all known results (by Friedman, Linial-Puder, Lubetzky-Sudakov-Vu
†Supported by Adams Fellowship Program of the Israel Academy of Sciences and Humanities, and an Advanced

ERC Grant.
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and Addario-Berry-Griffiths).
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3.1 Introduction

Random d-regular graphs
Let Γ be a finite d-regular graph† on n vertices (d ≥ 3) and let AΓ be its adjacency matrix. The
spectrum of Γ is the spectrum of AΓ and consists of n real eigenvalues,

d = λ1 ≥ λ2 ≥ . . . ≥ λn ≥ −d.

The eigenvalue λ1 = d corresponds to constant functions and is considered the trivial eigenvalue of
Γ. Let λ (Γ) be the largest absolute value of a non-trivial eigenvalue of Γ, i.e. λ (Γ) = max {λ2,−λn}. λ (Γ)
This value measures the spectral expansion of the graph: the smaller λ (Γ) is, the better expander
Γ is (see Appendix 3.B for details).

The well-known Alon-Boppana bound states that λ (Γ) ≥ 2
√
d− 1− on (1) ([Nil91]), bounding

the spectral expansion of an infinite family of d-regular graphs. There is no equivalent deterministic
non-trivial upper bound: for example, if Γ is disconnected or bipartite then λ (Γ) = d. However,
Alon conjectured [Alo86, Conj. 5.1] that if Γ is a random d-regular graph, then λ (Γ) ≤ 2

√
d− 1 +

on (1) a.a.s. (asymptotically almost surely, i.e. with probability tending to 1 as n→∞) ‡.
Since then, a series of papers have dealt with this conjecture. One approach, due to Kahn and

Szemerédi, studies the Rayleigh quotient of the adjacency matrix AΓ and shows that it is likely
to be small on all points of an appropriate ε-net on the unit sphere. This approach yielded an
asymptotic bound of λ (Γ) < c

√
d for some unspecified constant c [FKS89]. In the recent work

[DJPP11, Thm. 26], it is shown that this bound can be taken to be 104. Other works, as well as
the current paper, are based on the idea of the trace method, which amounts to bounding λ (Γ) by
means of counting closed paths in Γ. These works include [BS87], in which Broder and Shamir show
that a.a.s. λ (Γ) ≤

√
2d3/4 +ε (∀ε > 0); [Fri91] where Friedman obtains λ (Γ) ≤ 2

√
d− 1+2 log d+ c

a.a.s.; and, most famously, Friedman’s 100-page-long proof of Alon’s conjecture [Fri08]. Friedman
shows that for every ε > 0, λ (Γ) ≤ 2

√
d− 1 + ε a.a.s.

In the current paper we prove a result which is slightly weaker than Friedman’s. However, the
proof we present is substantially shorter and simpler than the sophisticated proof in [Fri08]. Our
proof technique relies on recent deep results in combinatorial group theory [PP15]. We show the
following:
†Unless otherwise specified, a graph in this paper is undirected and may contain loops and multiple edges. A

graph without loops and without multiple edges is called here simple.
‡In fact, Alon’s original conjecture referred only to λ2 (Γ), the second largest eigenvalue.
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Theorem 3.1.1. Fix d ≥ 3 and let Γ be a random d-regular simple graph on n vertices chosen at
uniform distribution. Then

λ (Γ) < 2
√
d− 1 + 1

asymptotically almost surely†.

For d even, or d odd large enough, we obtain a better bound of 2
√
d− 1+0.84. The same result,

for d even, holds also for random d-regular graphs in the permutation model (see below). In fact,
we first prove the result stated in Theorem 3.1.1 for random graphs in this model (with d even).
The derivation of Theorem 3.1.1 for the uniform model and d even is then immediate by results
of Wormald [Wor99] and Greenhill et al. [GJKW02] showing the contiguity‡ of different models of
random regular graphs (see Appendix 3.A). Finally, we derive the case of odd d relying on the even
case and a contiguity argument in which we lose some in the constant and get 1 instead of 0.84
(Section 3.6.2).

The permutation model, which we denote by Pn,d, applies only to even values of d. In this Pn,d
model, a random d-regular graph Γ on the set of vertices [n] is obtained by choosing independently
and uniformly at random d

2 permutations σ1, . . . , σ d
2
in the symmetric group Sn, and introducing

an edge (v, σj (v)) for every v ∈ [n] and j ∈
{

1, . . . , d2
}
. Of course, Γ may be disconnected and can

have loops or multiple edges.
We stress that even after Alon’s conjecture is established, many open questions remain con-

cerning λ (Γ). In fact, very little is known about the distribution of λ (Γ). A major open question
is the following: what is the probability that a random d-regular graph is Ramanujan, i.e. that
λ (Γ) ≤ 2

√
d− 1? There are contradicting experimental pieces of evidence (in [MNS08] it is conjec-

tured that this probability tends to 27% as n grows; simulations in [HLW06, Section 7] suggest it may
be larger than 50%) . However, even the following, much weaker conjecture is not known: are there
infinitely many Ramanujan d-regular graphs for every d ≥ 3? The only positive results here are by
explicit constructions of Ramanujan graphs when d−1 is a prime power by [LPS88, Mar88, Mor94].
In a recent major breakthrough, Marcus, Spielman and Srivastava [MSS13] show the existence of
infinitely many d-regular bipartite-Ramanujan graphs for every d ≥ 3 (namely, these graphs have
two ‘trivial’ eigenvalues, d and −d, while all others are inside

[
−2
√
d− 1, 2

√
d− 1

]
). Still, the

original problem remains open. We hope our new approach may eventually contribute to answering
these open questions.

Random coverings of a fixed base graph
The hidden reason for the number 2

√
d− 1 in Alon’s conjecture and Alon-Boppana Theorem is

the following: All finite d-regular graphs are covered by the d-regular (infinite) tree T = Td. Let
AT : `2 (V (T ))→ `2 (V (T )) be the adjacency operator of the tree, defined by

(AT f) (u) =
∑
v∼u

f (v) .

Then AT is a self-adjoint operator and, as firstly proven by Kesten [Kes59], the spectrum of AT
is
[
−2
√
d− 1, 2

√
d− 1

]
. Namely, 2

√
d− 1 is the spectral radius§ of AT . In this respect, among

all possible (finite) quotients of the tree, Ramanujan graphs are “ideal”, having their non-trivial
spectrum as good as the “ideal object” T .

It is therefore natural to measure the spectrum of any graph Γ against the spectral radius
of its covering tree. Several authors call graphs whose non-trivial spectrum is bounded by this
†For small d’s a better bounds are attainable - see the table in Section 3.6.2.
‡Two models of random graphs are contiguous if the following holds: (i) for every (relevant) n they define

distributions on the same set of graphs on n vertices, and (ii) whenever a sequence of events has probability 1−on (1)
in one distribution, it has a probability of 1− on (1) in the other distribution as well.
§The spectral radius of an operator M is defined as sup {|λ| |λ ∈ SpecM}.



CHAPTER 3. EXPANSION OF RANDOM GRAPHS: NEW PROOFS, NEW RESULTS 81

value Ramanujan, generalizing the regular case. Many of the results and questions regarding the
spectrum of d-regular graphs extend to this general case. For example, an analogue of Alon-
Boppana’s Theorem is given in Proposition 3.1.2.

Ideally, one would like to extend Alon’s conjecture on nearly-Ramanujan graphs to every infinite
tree T with finite quotients, and show that most of its quotients are nearly Ramanujan. However, as
shown in [LN98], there exist trees T with some minimal finite quotient Ω which is not Ramanujan.
All other finite quotients of T are then coverings of Ω, and inherit the ‘bad’ eigenvalues of this
quotient (we elaborate a bit more in Appendix 3.A) . Such examples invalidate the obvious analogue
of Alon’s conjecture.

But what if we ignore this few, fixed, ‘bad’ eigenvalues originated in the minimal quotient Ω and
focus only on the remaining, ‘new’ eigenvalues of each larger quotient? In this sense, a generalized
version of Alon’s conjecture is indeed plausible. Instead of studying the spectrum of a random finite
quotient of T , one may consider the spectrum of a random finite covering of a fixed finite graph.
This is the content of the generalized Conjecture of Friedman appearing here as Conjecture 3.1.3.

σ1

e2

e1

σ4

σ5

σ3

σ2

e5

e4 e3

Ω 

Γ

Figure 3.1.1: A 5-covering of a base
graph using permutations.

In order to describe this conjecture precisely, let us
first describe the random model we consider. This is
a generalization of the permutation model for random
regular graphs, which generates families of graphs with
a common universal covering tree. A random graph
Γ in the permutation model Pn,d can be equivalently
thought of as a random n-sheeted covering space of the
bouquet with d

2 loops. In a similar fashion, fix a fi-
nite, connected base graph Ω, and let Γ be a random
n-covering space of Ω. More specifically, Γ is sampled
as follows: its set of vertices is V (Ω) × [n]. A permuta-
tion σe ∈ Sn is then chosen uniformly and independently
at random for every edge e = (u, v) of Ω, and for every
i ∈ [n] the edge ((u, i) , (v, σe (i))) is introduced in Γ†.
We denote this model by Cn,Ω (so that Cn,B d

2

= Pn,d, Cn,Ω
where B d

2
is the bouquet with d

2 loops). For example,
all bipartite d-regular graphs on 2n vertices cover the
graph • ... • with two vertices and d edges connecting
them. Various properties of random graphs in the Cn,Ω
model were thoroughly examined over the last decade
(e.g. [AL02, ALM02, Fri03, LR05, AL06, BL06, LP10]). From now on, by a “random n-covering of
Ω” we shall mean a random graph in the model Cn,Ω.

A word about the spectrum of a non-regular graph is due. In the case of d-regular graphs
we have considered the spectrum of the adjacency operator. In the general case, it is not apriori
clear which operator best describes in spectral terms the properties of the graph. In this paper we
consider two operators: the adjacency operator AΓ defined as above, and the Markov operator MΓ AΓ

MΓdefined by

(MΓf) (u) =
1

deg (u)

∑
v∼u

f (v) .

(A third possible operator is the Laplacian - see Appendix 3.B.) With a suitable inner product,
each of these operators is self-adjoint and therefore admits a real spectrum (see Appendix 3.B for
the relations of these spectra to expansion properties of Γ).

For a finite graph Ω on m vertices, the spectrum of the adjacency matrix AΩ is

pf (Ω) = λ1 ≥ . . . ≥ λm ≥ −pf (Ω) ,

†We stress that we consider undirected edges. Although one should first choose an arbitrary orientation for each
edge in order to construct the random covering, the orientation does not impact the resulting probability space.
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pf (Ω) being the Perron-Frobenius eigenvalue of AΓ. The spectrum of MΩ is pf (Ω)

1 = µ1 ≥ . . . ≥ µm ≥ −1,

the eigenvalue 1 corresponding to the constant function. Every finite covering Γ of Ω shares the same
Perron-Frobenius eigenvalue, and moreover, inherits the entire spectrum of Ω (with multiplicity):
Let π : Γ → Ω be the covering map, sending the vertex (v, i) to v and the edge ((u, i) , (v, j)) to
(u, v). Every eigenfunction f : V (Ω) → C of any operator on l2 (V (Ω)) as above, can be pulled
back to an eigenfunction of Γ, f ◦ π, with the same eigenvalue. Thus, every eigenvalue of Ω (with
multiplicity) is trivially an eigenvalue of Γ as well. We denote by λA (Γ) the largest absolute value λA (Γ)
of a new eigenvalue of AΓ, namely the largest one not inherited from Ω. Equivalently, this is the
largest absolute eigenvalue of an eigenfunction of Γ which sums to zero on every fiber of π. In a
similar fashion we define λM (Γ), the largest absolute value of a new eigenvalue of MΓ. Note that λM (Γ)
in the regular case (i.e. when Ω is d-regular), AΓ = d ·MΓ, and so λA (Γ) = d · λM (Γ). Moreover,
when Ω = B d

2
is the bouquet, λA (Γ) = λ (Γ).

As in the regular case, the largest non-trivial eigenvalue is closely related to the spectral radius
of T , the universal covering tree of Ω (which is also the universal covering of every covering Γ of Ω).
We denote by ρA (Ω) and ρM (Ω) the spectral radii of AT and MT , resp. (So when Ω is d-regular, ρA (Ω) , ρM (Ω)
ρA (Ω) = d · ρM (Ω) = 2

√
d− 1.) First, there are parallels of Alon-Boppana’s bound in this more

general scenario. The first part of the following proposition is due to Greenberg, while the second
one is due to Burger:

Proposition 3.1.2. Let Γ be an n-covering of Ω. Then

(1) λA (Γ) ≥ ρA (Ω)− on (1) [Gre95, Thm 2.11].

(2) λM (Γ) ≥ ρM (Ω)− on (1) [Bur87, GZ99, Prop. 6].

When Ω is d-regular (but not necessarily a bouquet), Greenberg’s result was first observed by
Serre [Ser90].

As in the d-regular case, the only deterministic upper bounds are trivial: λA (Γ) ≤ pf (Ω) and
λM (Γ) ≤ 1. But there are interesting probabilistic phenomena. The following conjecture is the
natural extension of Alon’s conjecture. The adjacency-operator version is due to Friedman [Fri03].
We extend it to the Markov operator M as well:

Conjecture 3.1.3 (Friedman, [Fri03]). Let Ω be a finite connected graph. If Γ is a random n-
covering of Ω, then for every ε > 0,

λA (Γ) < ρA (Ω) + ε

asymptotically almost surely, and likewise

λM (Γ) < ρM (Ω) + ε

asymptotically almost surely.

Since λA (Γ) and λM (Γ) provide an indication for the quality of expansion of Γ (see Appendix
3.B), Conjecture 3.1.3 asserts that if the base graph Ω is a good (nearly optimal) expander then
with high probability so is its random covering Γ.

In the same paper ([Fri03]), Friedman generalizes the method of Broder-Shamir mentioned above
and shows that λA (Γ) < pf (Ω)

1/2
ρA (Ω)

1/2
+ε a.a.s. An easy variation on his proof gives λM (Γ) <

ρM (Ω)
1/2

+ε a.a.s. In [LP10], Linial and the author improve this to λA (Γ) < 3pf (Ω)
1/3

ρA (Ω)
2/3

+ε

(and with the same technique one can show λM (Γ) < 3ρM (Ω)
2/3

+ ε). This is the best known
result for the general case prior to the current work.
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Several works studied the special case where the base-graph Ω is d-regular (recall that in this
case λA (Γ) = d · λM (Γ) and ρA (Ω) = 2

√
d− 1). Lubetzky, Sudakov and Vu [LSV11] find a

sophisticated improvement of the Kahn-Szemerédi approach and prove that a.a.s. λA (Γ) ≤ C ·
max (λ (Ω) , ρA (Ω)) · log ρA (Ω) for some unspecified constant C. An asymptotically better bound
of 430,656

√
d is given by Addario-Berry and Griffiths [ABG10], by further ameliorating the same

basic technique (note that this bound becomes meaningful only for d ≥ 430,6562).
The following theorems differ from Conjecture 3.1.3 only by a small additive or multiplicative

factor, and are nearly optimal by Proposition 3.1.2. They pose a substantial improvement upon all
former results, both in the special case of a d-regular base-graph Ω and, to a larger extent, in the
general case of any finite base-graph.

Theorem 3.1.4. Let Ω be an arbitrary finite connected graph, and let Γ be a random n-covering
of Ω. Then for every ε > 0,

λA (Γ) <
√

3 · ρA (Ω) + ε

asymptotically almost surely, and similarly

λM (Γ) <
√

3 · ρM (Ω) + ε

asymptotically almost surely.

For the special case where Ω is regular, we obtain the same bound as in the case of the bouquet
(Theorem 3.1.1 for d even):

Theorem 3.1.5. Let Ω be a finite connected d-regular graph (d ≥ 3) and let Γ be a random n-
covering of Ω. Then for every ε > 0,

λA (Γ) < ρA (Ω) + 0.84 = 2
√
d− 1 + 0.84

asymptotically almost surely.

We stress the following special case concerning random bipartite d-regular graphs. It follows
as all bipartite regular graphs cover the graph Ω consisting of two vertices and d edges connecting
them.

Corollary 3.1.6. Let Γ be a random bipartite d-regular graph on n vertices (d ≥ 3). Then

λA (Γ) < 2
√
d− 1 + 0.84

asymptotically almost surely (as n→∞)†.

This means that alongside the two trivial eigenvalues ±d, all other eigenvalues of the bipartite
graph Γ are a.a.s. within

[
−2
√
d− 1− 0.84, 2

√
d− 1 + 0.84

]
. The result applies also to random

simple bipartite regular graphs: see appendix 3.A.
To put Theorems 3.1.1, 3.1.4 and 3.1.5 in context, Table 3.1 summarizes the results mentioned

above for the different cases in question, with respect to the adjacency operator AΓ.
Finally, let us stress that alongside the different models for random d-regular graphs, random

coverings of a fixed, good expander, are probably the most natural other source for random, good
expanders (“good” expanders are sparse graphs with high quality of expansion). Other known
models for random graphs do not necessarily have this property. For example, the Erdös-Rényi
model G (n, p), fails to produce good expander graphs: when p is small (O

(
1
n

)
) the generic graph

is not an expander (due, e.g., to lack of connectivity), whereas for larger values of p, the average
degree grows unboundedly.
†Again, for small values of d a better bound is reachable - see Sections 3.6.2 and 3.6.3.



CHAPTER 3. EXPANSION OF RANDOM GRAPHS: NEW PROOFS, NEW RESULTS 84

The
base-graph Ω

Any graph d-regular
B d

2
= a bouquet of
d
2 loops

ρ = 2
√
d− 1 ρ = 2

√
d− 1

Deterministic
lower bound
for λA (Γ)

ρ− on (1)
[Gre95]

ρ− on (1)
[Ser90]

ρ− on (1)
(Alon-Boppana)

[Nil91]
Conjectured
probabilistic
upper bound

ρ+ ε [Fri03] ρ+ ε
[Alo86]

Probabilistic
upper bounds,

√
pf (Ω) ρ+ ε
[Fri03]

=⇒
√
dρ+ ε

√
dρ+ ε [BS87]

ordered by
asymptotic

3 ·pf (Ω)
1/3

ρ2/3 +ε
[LP10]

=⇒ 3 · d1/3ρ2/3 + ε

strength for
growing ρ

C ·max (λ (Ω) , ρ) log ρ
[LSV11]

265,000 · ρ
[ABG10]

6,200 · ρ
[FKS89, DJPP11]√

3 · ρ+ ε
(Thm 3.1.4)

ρ+ 2 log d+ c
[Fri91]

ρ+ 0.84
(Thm 3.1.5)

ρ+ 0.84
(Thm 3.1.1)
ρ+ ε [Fri08]

Table 3.1: Our results compared with former ones. As above, Ω is the connected base-graph and
ρ = ρA (Ω) is the spectral radius of its universal covering tree. The results are ordered by their
asymptotic strength.

3.2 Overview of the Proof
In this section we present the outline of the proof of Theorems 3.1.1, 3.1.4 and 3.1.5 (only the
spectrum of the adjacency operator is considered in this section). We assume the reader has some
familiarity with free groups, although we recall the basic definitions and classical relevant results
throughout the text. For a good exposition of free groups and combinatorial group theory we refer
the reader to [Bog08].

Step I: The trace method
Let Ω be a fixed base graph with k edges and Γ a random n-covering in the model Cn,Ω. In the
spirit of the trace method, the spectrum of Γ is analyzed by counting closed paths. More concretely,
denote by CPt (Γ) the set of closed paths of edge-length t in Γ. If Spec (AΓ) denotes the multiset CPt (Γ)

Spec (AΓ)of eigenvalues of AΓ, then for every t ∈ N,∑
µ∈Spec(AΓ)

µ t = tr
(
A t

Γ

)
= |CPt (Γ)| .

Orient each of the k edges of Ω arbitrarily, label them by x1, . . . , xk and let X = {x1, . . . , xk}. Let
σ1, . . . , σk ∈ Sn denote the random permutations by which Γ is defined: for each edge xj = (u, v)
of Ω and each i ∈ [n], Γ has an edge ((u, i) , (v, σj (i))). Note that every closed path in Γ projects
to a closed path in Ω. Thus, instead of counting directly closed paths in Γ, one can count, for every
closed path in Ω, the number of closed paths in Γ projecting onto it.
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Let w = xε1j1 . . . x
εt
jt
∈ CPt (Ω) ⊆

(
X ∪X−1

)t be a closed path in the base graph Ω, beginning
(and terminating) at some vertex v ∈ V (Ω). (Here εi = ±1 and x−1

j means the path traverses
the edge xj in the opposite orientation.) For every i ∈ [n] there is a unique lift of w to some path
in Γ, not necessarily closed, which begins at the vertex (v, i). This lifted path terminates at the
vertex (v, j), where j is obtained as follows: let w (σ1, . . . , σk) denote the permutation obtained
by composing σ1, . . . , σk according to w, namely, w (σ1, . . . , σk) = σε1j1 . . . σ

εt
jt
∈ Sn. Then j is the

image of i under this permutation: j = w (σ1, . . . , σk) (i) = σε1j1 . . . σ
εt
jt

(i)†. Thus, the i-th lift of w
is a closed path if and only if i is a fixed point of the permutation w (σ1, . . . , σk), and the number
of closed paths in Γ projecting onto w is equal to the number of fixed points of w (σ1, . . . , σk). We
denote this number by Fw,n = Fw,n (σ1, . . . , σk). Fw,n

Claim 3.2.1. For every even t ∈ N,

E
[
λA (Γ)

t
]
≤

∑
w∈CPt(Ω)

[E [Fw,n]− 1] . (3.2.1)

(The expectation on the l.h.s. is over Cn,Ω, which amounts to the i.i.d. uniform permutations
σ1, . . . , σk ∈ Sn. The expectation on the r.h.s. is over the same k-tuple of permutations.)

Proof. Since t is even,

λA (Γ)
t

=

(
max

µ∈Spec(AΓ)\Spec(AΩ)
|µ|
)t
≤

∑
µ∈Spec(AΓ)\Spec(AΩ)

µt =
∑

µ∈Spec(AΓ)

µt −
∑

µ∈Spec(AΩ)

µt =

= |CPt (Γ)| − |CPt (Ω)| =
∑

w∈CPt(Ω)

[Fw,n (σ1, . . . , σk)− 1] .

(Recall that we regard the spectrum of an operator as a multiset.) The claim is established by
taking expectations.

We shall assume henceforth that t is an even integer. Note that in the special case where Ω = B d
2

is a bouquet of d2 loops, Spec (AΩ) = {d}, and CPt (Ω) =
(
X ∪X−1

)t, i.e. it consists of all words

of length t in the letters X ∪X−1 (not necessarily reduced), so that
∣∣∣CPt (B d

2

)∣∣∣ = dt.

Step II: The expected number of fixed points in w (σ1, . . . , σk)

The next stage in the proof of the main results is an analysis of E [Fw,n]. This is where the results
from [PP15] come to bear. Let Fk = F (X) be the free group on k generators. Every word
w ∈ CPt (Ω) ⊆

(
X ∪X−1

)t corresponds to an element of Fk (by abuse of notation we let w denote
an element of

(
X ∪X−1

)t and of Fk = F (X) at the same time; it is important to stress that
reduction‡ of w does not affect the associated permutation w (σ1, . . . , σk).) The main theorem in
[PP15] estimates the expected number of fixed points of the permutation w (σ1, . . . , σk) ∈ Sn, where
σ1, . . . , σk ∈ Sn are random permutations chosen independently with uniform distribution. This
theorem shows that this expectation is related to an algebraic invariant of w called its primitivity
rank, which we now describe.

A word w ∈ Fk is primitive if it belongs to a basis§ of Fk. For a given w, one can also ask primitive, basis
†For convenience, we use in this paper the convention that permutations are composed from left to right.
‡By reduction of a word we mean the (repeated) deletion of subwords of the form xix

−1
i or x−1

i xi for some
xi ∈ X.
§A basis of a free group is a free generating set. Namely, this is a generating set such that every element of the

group can be expressed in a unique way as a reduced word in the elements of the set and their inverses. For Fk this
is equivalent to a generating set of size k [Bog08, Chap. 2.29].
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whether w is primitive as an element of different subgroups of Fk (which are free as well by a
classical theorem of Nielsen and Schreier [Bog08, Chap. 2.8]). If w is primitive in Fk, it is also
primitive in every subgroup J ≤ Fk (e.g. [Pud14, Claim 2.5]). However, if w is not primitive in
Fk, it is sometimes primitive and sometimes not so in subgroups containing it. Theoretically, one
can go over all subgroups of Fk containing w, ordered by their rank†, and look for the first time at
which w is not primitive. First introduced in [Pud14], the primitivity rank of w ∈ Fk captures this
notion:

Definition 3.2.2. The primitivity rank of w ∈ Fk, denoted π (w), is π (w)

π(w) = min

{
rk (J)

∣∣∣∣∣ w ∈ J ≤ Fk s.t.

w is not primitive in J

}
.

If no such J exists, i.e. if w is primitive in Fk, then π (w) =∞.
A subgroup J for which the minimum is obtained is called w-critical, and the set of w-critical

subgroups is denoted Crit (w). Crit (w)

For instance, π (w) = 1 if and only if w is a proper power (w = vd for some v ∈ Fk and
d ≥ 2). By Corollary 4.2 and Lemma 6.8 in [Pud14], the set of possible primitivity ranks in Fk is
{0, 1, 2, . . . , k} ∪ {∞} (the only word w with π (w) = 0 being w = 1). Moreover, π (w) =∞ iff w is
primitive. The same paper also describes an algorithm to compute π (w).

The following theorem estimates E [Fw,n], the expected number of fixed points of w (σ1, . . . , σk),
where σ1, . . . , σk ∈ Sn are chosen independently at random with uniform distribution:

Theorem 3.2.3. [PP15, Thm 1.7] For every w ∈ Fk, the expected number of fixed points in
w (σ1, . . . , σk) is

E [Fw,n] = 1 +
|Crit (w) |
nπ(w)−1

+O

(
1

nπ(w)

)
.

In particular, it is also shown that Crit (w) is always finite. The three leftmost columns in Table
3.2 summarize the connection implied by Theorem 3.2.3 between the primitivity rank of w and the
average number of fixed points in the random permutation w (σ1, . . . , σk).

With Theorem 3.2.3 at hand, we can use the primitivity rank to split the summation in (3.2.1).
We shall use the notation CPmt (Ω) = {w ∈ CPt (Ω) |π (w) = m} for the subsets we obtain by CPmt (Ω)
splitting CPt (Ω) according to primitivity ranks:

E
[
λA (Γ)

t
]
≤

∑
w∈CPt(Ω)

(E [Fw]− 1) =

=

k∑
m=0

∑
w∈CPmt (Ω)

(
|Crit (w)|
nm−1

+O

(
1

nm

))
(3.2.2)

(note that for primitive words, i.e. words with π (w) = ∞, the expected number of fixed points is
exactly 1, so their contribution to the summation vanishes.)

Step III: A uniform bound for E [Fw,n]

The error term O
(

1
nm

)
in (3.2.2) depends on w. For a given w ∈ CPt (Ω), this error term becomes

negligible as n → ∞. However, in order to bound the r.h.s. of (3.2.2), one needs a uniform bound
for all closed paths of length t with a given primitivity rank in Ω. Namely, for every m one needs to
control the O (·) term for all w ∈ CPmt (Ω) simultaneously. The third stage is therefore the following
proposition:
†The rank of a free group F, denoted rk (F), is the size of (every) basis of F.
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Proposition (Follows from Prop. 3.5.1 and Claim 3.5.2). Let t = t (n) and w ∈
(
X ∪X−1

)t. If
t2k+2 = o (n) then

E [Fw,n] ≤ 1 +
|Crit (w)|
nπ(w)−1

(1 + on (1)) ,

where the on (1) does not depend on w.

Hence, as long as we keep t2k+2 = o (n), we obtain:

E
[
λA (Γ)

t
]
≤ (1 + on (1))

k∑
m=0

1

nm−1

∑
w∈CPmt (Ω)

|Crit (w)| . (3.2.3)

Step IV: Counting words and critical subgroups
The fourth step of the proof consists of estimating the exponential growth rate (as t → ∞) of
the summation

∑
w∈CPmt (Ω) |Crit (w)| for every m ∈ {0, 1, . . . , k}. For m = 0, the only reduced

word with π (w) = 0 is w = 1, and its sole critical subgroup is the trivial subgroup {1}, so∑
w∈CP0

t (Ω) |Crit (w)| =
∣∣CP0

t (Ω)
∣∣. Moreover, words reducing to 1 are precisely the completely

back-tracking closed paths, i.e. the paths lifting to closed paths in the covering tree. It follows that
the exponential growth rate of

∣∣CP0
t (Ω)

∣∣ is exactly ρ = ρA (Ω), the spectral radius of the covering
tree (see Claim 3.4.12). For larger m we obtain the following upper bound:

Theorem (Theorem 3.4.11). Let Ω be a finite, connected graph with k ≥ 2 edges, and let m ∈
{1, . . . , k}. Then

lim sup
t→∞

 ∑
w∈CPmt (Ω)

|Crit (w)|

1/t

≤ (2m− 1) · ρ.

This upper bound is not tight in general. However, in the special case where Ω is d-regular, we
give better bounds:

Theorem (Follows from Corollaries 3.4.5 and 3.4.10 and Theorem 3.8.5). Let Ω be a finite, con-
nected d-regular graph (d ≥ 3) with k edges, and let m ∈ {0, 1, . . . , k}. Then

lim sup
t→∞

 ∑
w∈CPmt (Ω)

|Crit (w)|

1/t

≤

{
2
√

2k − 1 2m− 1 ≤
√

2k − 1

2m− 1 + 2k−1
2m−1 2m− 1 ≥

√
2k − 1

.

Moreover, for Ω = B d
2
the bouquet, there is equality:

lim sup
t→∞

 ∑
w∈CPmt

(
B d

2

) |Crit (w)|


1/t

=

{
2
√

2k − 1 2m− 1 ≤
√

2k − 1

2m− 1 + 2k−1
2m−1 2m− 1 ≥

√
2k − 1

.

Remark 3.2.4. In fact, in the case of the bouquet, the growth rates in the statement of the last
theorem remain the same if we assume every word has only a single critical subgroup. That is, the
r.h.s. gives also the growth rate of the number of words in

(
X ∪X−1

)t with primitivity rank m -
see Theorem 3.8.5.
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π (w)
Description of

w
E [Fw,n]

Growth rate
for the bouquet

B d
2

Bound on
growth rate
for general Ω

0 w = 1 n 2
√

2k − 1 ρ

1 a power ∼ 1 + |Crit (w) | 2
√

2k − 1 ρ

2
E.g.

[x1, x2] , x 2
1 x

2
2

∼ 1 + |Crit(w)|
n 2

√
2k − 1 3ρ

3 E.g. x 2
1 x

2
2 x

2
3 ∼ 1 + |Crit(w)|

n2 2
√

2k − 1 5ρ

...
...

... ...
...⌊√

2k−1+1
2

⌋
2
√

2k − 1⌈√
2k−1+1

2

⌉
2π (w)−1+ 2k−1

2π(w)−1

...
...

k − 1 ...
... 2k − 2 + 2

2k−3

k E.g. x 2
1 . . . x

2
k ∼ 1 + |Crit(w)|

nk−1 2k

∞ primitive 1 2k − 2 + 2
2k−3

Table 3.2: Primitivity rank, the average number of fixed points, the exponential growth rate of∑
w∈CPmt

(
B d

2

) |Crit (w)|, and bounds on the exponential growth rate of
∑
w∈CPmt (Ω) |Crit (w)|.

Table 3.2 summarizes the content of Theorems 3.2.3, 3.4.11 and 3.8.5†.
Whereas in the special case of the bouquet we count words in Fk of a given length and a given

primitivity rank, the case of a general graph concerns the equivalent question for words which in
addition belong to some fixed subgroups of Fk. (There is one such subgroup for each vertex v of Ω:
the one consisting of the words which correspond to closed paths at v.) The fact that the bounds in
Corollary 3.4.5 are better than those in Theorem 3.4.11 explains the gap between Theorems 3.1.1
and 3.1.5 which are tight up to a small additive constant, and Theorem 3.1.4 which is tight up to
a small multiplicative factor (assuming, of course, that Conjecture 3.1.3 is true).

Step V: Some analysis
The final step is fairly simple and technical: it consists of analyzing the upper bounds we obtain
from (3.2.3) together with Theorem 3.4.11 and Corollary 3.4.5. We seek the value of t (as a function
of n) which yields the best bounds.

The paper is arranged as follows. Section 3.3 provides some basic facts about the concepts
of core graphs and algebraic extensions which are used throughout this paper. In Section 3.4 we
bound the number of words and critical subgroups and establish the fourth step of the proof (first
for the special case of the bouquet, in Section 3.4.1, then for the intermediate case of an arbitrary
regular base graph in Section 3.4.2, and finally for the most general case in Section 3.4.3). The
third step of the proof, where the error term from Theorem 3.2.3 is dealt with, is carried out in
†The number 2k − 2 + 2

2k−3
in the last row of the table is the exponential growth rate of the set of primitives

in Fk, namely of
∣∣∣CP∞t (

B d
2

)∣∣∣. (Primitive words have no critical subgroups.) This result is not necessary for the

current work, and is established in a separate paper [PW14], using completely different techniques. We use it here
only to show that our bounds for

∑
w∈CPmt

(
B d

2

) |Crit (w)| are tight - see Section 3.8.
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Section 3.5, where we have to recall some more details from [PP15]. Section 3.6 completes the
proof of Theorems 3.1.1 and 3.1.5 and addresses the source of the gap between Theorem 3.1.1 and
Friedman’s result. In Section 3.7 we complete the proof of Theorem 3.1.4. We end with results on
the accurate exponential growth rate of words with a given primitivity rank in Fk (Section 3.8), and
then list a few open questions. The appendices provide some background on the relation between
different models of random d-regular graphs and between different models of random coverings
(Appendix 3.A), and on the theory of spectral expansion of non-regular graphs (Appendix 3.B).

3.3 Preliminaries: Core Graphs and Algebraic Extensions
This section describes some notions and ideas which are used throughout the current paper.

3.3.1 Algebraic extensions
Let H ≤ J be subgroups of Fk. We say that J is an algebraic extension of H and denote H ≤alg algebraic exten-

sionJ , if there is no intermediate subgroup H ≤ L � J which is a proper free factor† of J . The
H ≤alg Jname originated in [KM02], but the notion goes back at least to [Tak51], and was formulated

independently by several authors. It is central in the understanding of the lattice of subgroups
of F. For example, it can be shown that every extension H ≤ J of free groups admits a unique
intermediate subgroup H ≤alg M

∗
≤ J (where ∗≤ denotes a free factor). Moreover, if H ≤ F is a ∗

≤

finitely generated subgroup, it has only finitely many algebraic extensions in F. Thus, every group
containing H is a free extension of one of finitely many extensions of H, which is a well known
theorem of Takahasi [Tak51]. For more information we refer the interested reader to [KM02, PP15]
and especially to [MVW07].

The importance of algebraic extensions in the current paper stems from the following easy
observation:

Claim 3.3.1. [Pud14, Cor. 4.4] Every w-critical subgroup is an algebraic extension of 〈w〉 (the
subgroup generated by w).

More precisely, Crit (w) consists precisely of the algebraic extensions of 〈w〉 of minimal rank
besides 〈w〉 itself‡.

To see the claim, assume that H is a w-critical subgroup of Fk. Obviously, 〈w〉 � H. If H is not
an algebraic extension of 〈w〉, then there is a proper intermediate free factor 〈w〉 ≤ L �ff H. Since
w is not primitive in H, it is also not primitive in L (e.g. [Pud14, Claim 2.5]), but rk (L) < rk (M),
which is a contradiction. Below, we use properties of w-critical subgroups which are actually shared
by all proper algebraic extensions of 〈w〉.

3.3.2 Core graphs
Fix a basis X = {x1, . . . , xk} of Fk. Associated with every subgroup H ≤ Fk is a directed, pointed
graph whose edges are labeled by X. This graph is called the core-graph associated with H and is
denoted by ΓX (H). We illustrate the notion in Figure 3.3.1. ΓX (H)

To understand how ΓX (H) is constructed, recall first the notion of the Schreier (right) coset
graph of H with respect to the basis X, denoted by ΓX (H). This is a directed, pointed and edge- ΓX (H)
labeled graph. Its vertex set is the set of all right cosets of H in Fk, where the basepoint corresponds
†If H ≤ J are free groups then H is said to be a free factor of J if a (every) basis of H can be extended to a

basis of J .
‡Unless w = 1 in which case Crit (w) = {〈〉} = {〈w〉}.
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to the trivial coset H. For every coset Hw and every basis-element xj there is a directed j-edge
(short for xj-edge) going from the vertex Hw to the vertex Hwxj .†

The core graph ΓX (H) is obtained from ΓX (H) by omitting all the vertices and edges of
ΓX (H) which are not traced by any reduced (i.e., non-backtracking) path that starts and ends at
the basepoint. Stated informally, we trim all “hanging trees” from ΓX (H). To illustrate, Figure
3.3.1 shows the graphs ΓX (H) and ΓX (H) for H = 〈x1x2x

−3
1 , x 2

1 x2x
−2
1 〉 ≤ F2.

⊗

•

•

•

1

��

2

$$

1
::1

��

2

ZZ

• •

•

2 //
1

::

2

$$

+3

⊗

•

•

•

1

��

2

$$

1
::1

��

2

ZZ

Figure 3.3.1: ΓX (H) and ΓX (H) for H = 〈x1x2x
−3
1 , x 2

1 x2x
−2
1 〉 ≤ F2. The Schreier coset graph

ΓX (H) is the infinite graph on the left (the dotted lines represent infinite 4-regular trees). The
basepoint “⊗” corresponds to the trivial coset H, the vertex below it corresponds to the coset Hx1,
the one further down corresponds to Hx 2

1 = Hx1x2x
−1
1 , etc. The core graph ΓX (H) is the finite

graph on the right, which is obtained from ΓX (H) by omitting all vertices and edges that are not
traced by reduced closed paths around the basepoint.

If Γ is a directed pointed graph labeled by some set X, paths in Γ correspond to words in F (X)
(the free group generated by X). For instance, the path (from left to right)

• x2 // • x2 // • x1 // • •x2oo x3 // • x2 // • •x1oo

corresponds to the word x 2
2 x1x

−1
2 x3x2x

−1
1 . The set of all words obtained from closed paths around

the basepoint in Γ is a subgroup of F (X) which we call the labeled fundamental group of Γ, and
denote by πX1 (Γ). Note that πX1 (Γ) need not be isomorphic to π1 (Γ), the standard fundamental πX1 (Γ)

group of Γ viewed as a topological space - for example, take Γ = ⊗x1
##

x1
{{

.

However, it is not hard to show that when Γ is a core graph, then πX1 (Γ) is isomorphic to π1 (Γ)
(e.g. [KM02]). In this case the labeling gives a canonical identification of π1 (Γ) as a subgroup of
F (X). It is an easy observation that

πX1
(
ΓX (H)

)
= πX1 (ΓX (H)) = H (3.3.1)

This gives a one-to-one correspondence between subgroups of F (X) = Fk and core graphs labeled

†Alternatively, ΓX (H) is the quotient H\T , where T is the Cayley graph of Fk with respect to the basis X, and
Fk (and thus also H) acts on this graph from the left. Moreover, this is the covering-space of ΓX (Fk) = ΓX (Fk),
the bouquet of k loops, corresponding to H, via the correspondence between pointed covering spaces of a space Y
and subgroups of its fundamental group π1 (Y ).
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by X. Namely, πX1 and ΓX are the inverses of each other in a bijection (Galois correspondence){
Subgroups

of F (X)

} ΓX−−→←−−
πX1

{
Core graphs

labeled byX

}
. (3.3.2)

Core graphs were introduced by Stallings [Sta83]. Our definition is slightly different, and closer to
the one in [KM02, MVW07] in that we allow the basepoint to be of degree one, and in that our
graphs are directed and edge-labeled.

We now list some basic properties of core graphs which are used in the sequel of this paper
(proofs can be found in [Sta83, KM02, MVW07, Pud14]).

Claim 3.3.2. Let H be a subgroup of Fk with an associated core graph Γ = ΓX (H).

(1) rk (H) <∞⇐⇒ Γ is finite.

(2) rk (H) = |E (Γ)| − |V (Γ)|+ 1 (for f.g. subgroup H).

(3) The correspondence (3.3.2) restricts to a correspondence between finitely generated subgroups
of Fk and finite core graphs.

A morphism between two core-graphs is a map that sends vertices to vertices and edges to edges,
and preserves the structure of the core graphs. Namely, it preserves the incidence relations, sends
the basepoint to the basepoint, and preserves the directions and labels of the edges. As in Claim
3.3.2, each of the following properties is either proven in (some of) [Sta83, KM02, MVW07, Pud14]
or an easy observation:

Claim 3.3.3. Let H,J, L ≤ Fk be subgroups. Then

(1) A morphism ΓX (H)→ ΓX (J) exists if and only if H ≤ J .

(2) If a morphism ΓX (H)→ ΓX (J) exists, it is unique. We denote it by ηXH→J . ηXH→J

(3) Whenever H ≤ L ≤ J , ηXH→J = ηXL→J ◦ ηXH→L.†

(4) If ΓX (H) is a subgraph of ΓX (J), namely if ηXH→J is injective, then H ∗
≤ J .‡

(5) Every morphism in an immersion (locally injective at the vertices).

3.4 Counting Words and Critical Subgroups
In this section we bound the exponential growth rate (as t→∞) of∑

w∈CPmt (Ω)

|Crit (w)| .

For the special case of the bouquet with k = d
2 loops, where CPt

(
B d

2

)
=
(
X ∪X−1

)t, we find the
accurate exponential growth rate. The bound for a general graph Ω is given in terms of the spectral
radius ρ = ρA (Ω) of the universal covering tree of Ω.

We begin with a key lemma to be used in the proofs of all cases (a bouquet, a d-regular base
graph and an arbitrary base graph):
†Points (1)-(3) can be formulated by saying that (3.3.2) is in fact an isomorphism of categories, given by the

functors πX
1 and ΓX .

‡But not vice-versa: for example, consider
〈
x1x 2

2

〉 ∗
≤ F2.
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Lemma 3.4.1. Let w ∈ Fk and let N ≤f.g. Fk be a proper algebraic extension of 〈w〉. Then the
closed path in ΓX (N) corresponding to w traces every edge at least twice.

Proof. First, we claim that every edge is traced at least once (in fact, even more generally, if
H ≤alg N then ηXH→N is onto: see Definition 3.5.3 and e.g. [PP15, Claim 4.2]. We repeat the
simple argument here.) Otherwise, let J be the subgroup of N corresponding to the subgraph ∆
traced by w (so ∆ = im ηX〈w〉→N ), and J = πX1 (∆), see Section 3.3.2 and in particular Claim 3.3.3).
Then w ∈ J �ff N (Claim 3.3.3), contradicting the fact that N is an algebraic extension of 〈w〉.

Next, we distinguish between separating edges and non-separating edges in Γ = ΓX (N). If e
is a separating edge, namely if removing e separates Γ into two connected components, then it is
obvious that the path of w in Γ must traverse e an even number of times, and since this number is
≥ 1, it is in fact ≥ 2.

Finally, assume that e is not separating, and w traverses it exactly once, so that the path
corresponding to w in ΓX (N) is w1ew2 (with w1, w2 avoiding e; we think of e as oriented according
to the direction of w). Choose a spanning tree T of ΓX (N) which avoids e to obtain a basis for N
as follows. There are r = rk (N) excessive edges e = e1, e2, . . . , er outside the tree, and they should
be oriented arbitrarily. For each 1 ≤ i ≤ r let ui be the word corresponding to the path that goes
from ⊗ to the origin of ei via T , then traverses ei and returns to ⊗ via T . It is easy to see that
{u1, . . . , ur} is a basis of N . We claim that so is {w, u2, . . . , ur}, so that w is primitive in N and
therefore 〈w〉 ∗≤ N , a contradiction.

It is enough to show that u1 ∈ 〈w, u2, . . . , ur〉 (see footnote on Page 85). Let p1 be the path
through T from ⊗ to the origin of e, and p2 the path from the terminus of e back to ⊗. Then

u1 = p1ep2 = p1w
−1
1 w1ew2w

−1
2 p2 =

(
p1w

−1
1

)
w
(
w−1

2 p2

)
and we are done because p1w

−1
1 and w−1

2 p2 avoid e and thus belong to 〈u2, . . . , ur〉.

We will also use the following simple properties of the core graph of a subgroup of rank m. A
‘topological edge’ of a graph is an edge of the graph obtained after ignoring all vertices of degree 2,
except for (possibly) the basepoint ⊗.

Claim 3.4.2. Let Γ = ΓX (J) be the core graph of a subgroup J ≤ Fk of rank m. Then,

(1) After omitting the string to ⊗ if the basepoint is a leaf, all vertices of Γ are of degree at most
2m.

(2) Γ has at most 3m− 1 topological edges.

Proof. (1) After ignoring ⊗ and the string leading to ⊗ in case it is a leaf, all vertices of Γ are of
degree ≥ 2 . Thus all summands in the l.h.s. of∑

v∈V (Γ)

[deg (v)− 2] = 2 |E (Γ)| − 2 |V (Γ)| = 2m− 2

are non-negative. So the degree of every vertex is bounded by 2 + (2m− 2) = 2m. In fact, there is
a vertex of degree 2m if and only if Γ is topologically a bouquet of m loops (plus, possibly, a string
to ⊗).

(2) Consider Γ as a ‘topological graph’ as explained above. Let e and v denote the number of
topological edges and vertices. It is still true that e− v + 1 = m, but now there are no vertices of
degree ≤ 2 except for, possibly, the basepoint. Therefore, the sum of degrees, which equals 2e, is
at least 3 (v − 1) + 1. So

2e ≥ 3 (v − 1) + 1 = 3 (e−m) + 1

so e ≤ 3m− 1.
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3.4.1 The special case of the bouquet
For the special case where Ω = B d

2
is the bouquet of k = d

2 loops, our goal is to bound the
exponential growth rate of∑

w∈CPmt
(
B d

2

) |Crit (w)| =
∑

w∈(X∪X−1 )t:π(w)=m

|Crit (w)| .

In order to estimate this number we first estimate the exponential growth rate of the parallel
quantity for reduced words:

Proposition 3.4.3. Let k ≥ 2 and m ∈ {1, 2, . . . , k}. Then

lim sup
t→∞

 ∑
w∈Fk:

|w|=t&π(w)=m

|Crit (w)|


1/t

≤

{√
2k − 1 2m− 1 ≤

√
2k − 1

2m− 1 2m− 1 ≥
√

2k − 1
.

Put differently, the lim sup is bounded by max
{√

2k − 1, 2m− 1
}
(we present it in a lengthier

way to stress the threshold phenomenon). In fact, this is not only an upper bound but the actual
exponential growth rate - see Theorem 3.8.2.

Proof. Note that∑
w∈Fk:

|w|=t&π(w)=m

|Crit (w)| =
∑

J≤Fk: rk(J)=m

|{w ∈ Fk | |w| = t, J ∈ Crit (w)}|

≤
∑

J≤Fk: rk(J)=m

|{w ∈ Fk | |w| = t, 〈w〉 �alg J}| (3.4.1)

≤
∑

J≤Fk: rk(J)=m

∣∣∣∣∣
{
w ∈ J

∣∣∣∣∣ |w| = t, w traces each edge

of ΓX (J) at least twice

}∣∣∣∣∣ ,
where the first inequality stems from Claim 3.3.1 and the second from Lemma 3.4.1. We continue
to bound the latter sum. For each J ≤ Fk let νt (J) denote the corresponding summand:

νt (J) =

∣∣∣∣∣
{
w ∈ J

∣∣∣∣∣ |w| = t, w traces each edge

of ΓX (J) at least twice

}∣∣∣∣∣ .
We classify all J ’s of rank m by the number of edges in ΓX (J). Consider all X-labeled core-

graphs Γ of total size δt and rank m (so that δt is an integer, of course). Since we count words of
length t tracing every edge at least twice, νt (J) = 0 if δ > 1

2 . So we restrict to the case δ ∈
[
0, 1

2

]
.

The counting is performed in several steps:

• First, let us bound the number of unlabeled and unoriented connected pointed graphs with δt
edges and rank m (here the rank of a connected graph is e−v+1). As in the proof of Lemma
3.4.1, each such graph has some spanning tree and m excessive edges. The paths through
the tree from ⊗ to the origins and termini of these edges cover the entire tree. Denote these
paths by p1,1, p1,2, p2,1, p2,2, . . . , pm,1, pm,2. We ‘unveil’ the spanning tree step by step: first
we unveil p1,1. The only unknown is its length ∈ {0, 1, . . . , δt− 1}. Then p1,2 leaves p1,1 at
one of ≤ δt possible vertices and goes on for some length < δt. Now, p2,1 leaves p1,1 ∪ p1,2 at
one of ≤ δt possible vertices and goes on for < δt new edges. This goes on 2m times in total
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(afterward, the ends of pi,1 and pi,2 are connected by an edge). In total, there are at most(
(δt)

2
)2m

= (δt)
4m possible unlabeled pointed graphs of rank m with δt edges†.

• Next, we bound the number of labelings of each such graph Γ (here, the labeling includes
also the orientation of each edge). Label some edge (there are 2k options) and then gradually
label edges adjacent to at least one edge which is already labeled (at most 2k − 1 possible
labels for each edge). Over all the number of possible labelings of Γ is ≤ 2k · (2k − 1)

δt−1.

• For a given labeled core-graph Γ, let J = πX1 (Γ) be the corresponding subgroup. We claim
that νt (J) ≤

(
4t2
)3m−1 · (2m− 1)

(1−2δ)t. Indeed, note first that if the basepoint ⊗ is a leaf,
then every reduced w must first follow the string from ⊗ to the first “topological” vertex
(vertex of degree ≥ 3), and then return to the string only in its final steps back to ⊗. So we
can assume w traces a leaf-free graph of rank m and at most δt edges. A reduced word w ∈ J
which traces every edge at least twice, also traverses any topological edge at least twice, each
time in one shot (without backtracking). Each time w traces some topological edge ẽ in Γ, it
begins in one of ≤ t possible positions (in w), and from ≤ 2 possible directions of ẽ. So there
≤ 4t2 possible ways in which w traces ẽ for the first two times. By Claim 3.4.2(2) there are at
most 3m− 1 topological edges, and so at most

(
4t2
)3m−1 possibilities for how w traces each

topological edge of Γ for the first two times. The rest of w is of length (at most) (1− 2δ) t,
and in every step there are at most 2m− 1 ways to proceed, by Claim 3.4.2(1).

Hence, ∑
J≤Fk: rk(J)=m
|ΓX(J)|=δt

νt (J) ≤ (δt)
4m · 2k (2k − 1)

δt−1 ·
(
4t2
)3m−1

(2m− 1)
(1−2δ)t

≤ c · t10m−2 ·
[
(2k − 1)

δ
(2m− 1)

1−2δ
]t

= c · t10m−2 ·

( 2k − 1

(2m− 1)
2

)δ
(2m− 1)

t . (3.4.2)

Recall that δ ∈
[
0, 1

2

]
and δt ∈ N. We bound

∑
J≤Fk: rk(J)=m νt (J) by t

2 times the maximal possible
value of the r.h.s. of (3.4.2) (when going over all possible values of δ). When 2m − 1 ≤

√
2k − 1,

the r.h.s. of (3.4.2) is largest when δ = 1
2 , so we get overall∑

J≤Fk: rk(J)=m

νt (J) ≤ c · t10m−1 ·
[√

2k − 1
]t
. (3.4.3)

For 2m− 1 ≥
√

2k − 1, the r.h.s. of (3.4.2) is largest when δ = 0, so we get overall∑
J≤Fk: rk(J)=m

νt (J) ≤ c · t10m−1 · [2m− 1]
t
.

The proposition follows.

The next step is to deduce an analogue result for non-reduced words. To this goal, we use an
extended version of the well known cogrowth formula due to Grigorchuk [Gri77] and Northshield
[Nor92]. Let Γ be a connected d-regular graph. Let bΓ,v (t) denote the number of cycles of length t
at some vertex v in Γ, and let nΓ,v (t) denote the size of the smaller set of non-backtracking cycles
of length t at v. The spectral radius of AΓ, denoted rad (Γ)‡, is equal to lim supt→∞ bΓ,v (t)

1/t
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(in particular, this limit does not depend on v). The cogrowth of Γ is defined as cogr (Γ) = cogr (·)
lim supt→∞ nΓ,v (t)

1/t, and is also independent of v.
The cogrowth formula expresses rad (Γ) in terms of cogr (Γ): it determines that rad (Γ) =

g (cogr (Γ)), where g : [1, d− 1]→
[
2
√
d− 1, d

]
is defined by

g (α) =

{
2
√
d− 1 α ≤

√
d− 1

d−1
α + α α ≥

√
d− 1

. (3.4.4)

Another way to view the parameters rad (Γ) and cogr (Γ) is the following: let Td be the d-
regular tree with basepoint ⊗, let p : Td → Γ be a covering map such that p (⊗) = v, and let
S = p−1 (v) ⊆ V (Td) be the fiber above v. Then bΓ,v (t) is the number of paths of length t in Td
emanating from ⊗ and terminating inside S. Similarly, nΓ,v (t) is the number of non-backtracking
paths of length t in Td emanating from ⊗ and terminating in S. This is also equal to the number
of vertices in the t-th sphere† of Td belonging to S.

For our needs we introduce (in a separate paper - [Pud15b])‡ an extended formula applying to
other types of subsets S of V (Td), which do not necessarily correspond to a fiber of a covering
map of a graph. Even more generally, we extend the formula to a class of functions on V (Td) (this
extends the previous case if S is identified with its characteristic function 1S):

For f : V (Td)→ R, denote by βf (t) the sum βf (t)

βf (t) =
∑

p: a path from⊗
of length t

f (end (p))

over all (possibly backtracking) paths of length t in Td emanating from ⊗. Similarly, denote by
νf (t) the same sum over the smaller set of non-backtracking paths of length t emanating from ⊗. νf (t)

Theorem 3.4.4. [Extended Cogrwoth Formula [Pud15b]] Let d ≥ 3, f : V (Td) → R, βf (t) and
νf (t) as above. If νf (t) ≤ c · αt then

lim sup
t→∞

βf (t)
1/t ≤ g (α) .

With this theorem at hand, one can obtain the sought-after bound on the number of non-reduced
words from the one on reduced words:

Corollary 3.4.5. For every k ≥ 2 and m ∈ {1, . . . , k},

lim sup
t→∞

 ∑
w∈CPmt

(
B d

2

) |Crit (w)|


1/t

≤

{
2
√

2k − 1 2m− 1 ≤
√

2k − 1
2k−1
2m−1 + 2m− 1 2m− 1 ≥

√
2k − 1

.

Proof. Consider the the Cayley graph of Fk which is a 2k-regular tree. Every vertex corresponds
to a word in Fk, and we let fm (w) = 1π(w)=m |Crit (w)|. The corollary then follows by applying
Theorem 3.4.4 on fm, using Proposition 3.4.3.

In Section 3.8 it is shown (Theorem 3.8.5) that the bound in Corollary 3.4.5 represents the
accurate exponential growth rate of the sum, and even merely of the number of not-necessarily-
reduced words with primitivity rank m. This result uses further results from [Pud15b].
†A tighter bound of (δt)3m can also be obtained quite easily. We do not bother to introduce it because this

expression is anyway negligible when exponential growth rate is considered.
‡If Γ is finite, rad (Γ) = d. If Γ is the d-regular tree, rad (Γ) = 2

√
d− 1.

†The t-th sphere of the pointed Td is the set of vertices at distance t from ⊗.
‡The results in [Pud15b] include a new proof of the original cogrowth formula.
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Remark 3.4.6. Interestingly, the threshold of
√

2k − 1 shows up twice, apparently independently,
both in Proposition 3.4.3 and in the (extended) cogrowth formula.

Finally, for m = 0 there is exactly one relevant reduced word: w = 1, and this word has exactly
one critical subgroup: the trivial subgroup. Thus, it suffices to bound the number of words in(
X ∪X−1

)t reducing to 1. This is a well-known result:

Claim 3.4.7.

lim sup
t→∞

∣∣∣CP0
t

(
B d

2

)∣∣∣1/t = lim sup
t→∞

∣∣∣{w ∈ (X ∪X−1
)t ∣∣∣w reduces to 1

}∣∣∣1/t = 2
√

2k − 1.

Proof. Denote by cΓ (t, u, v) the number of paths of length t from the vertex u to the vertex v cΓ (t, u, v)
in a connected graph Γ. If, as above, AΓ denotes the adjacency operator on l2 (V (Γ)), then
cΓ (t, u, v) = 〈A t

Γδu, δv〉1 (〈·, ·〉1 marks the standard inner product). If Γ has bounded degrees, then
AΓ is a bounded self-adjoint operator, hence

rad (Γ) = ‖AΓ‖ = lim sup
t→∞

t
√
cΓ (t, u, v) (3.4.5)

for every u, v ∈ V (Γ). Moreover,

cΓ (t, u, v) =
〈
A t

Γδu, δv
〉

1
≤
∥∥A t

Γδu
∥∥ · ‖δv‖ ≤ ‖AΓ‖

t · ‖δu‖ · ‖δv‖ = rad (Γ)
t (3.4.6)

(For these facts and other related ones we refer the reader to [Lyo12, §6]).
The words of length t reducing to 1 are exactly the closed paths of length t at the basepoint of

the 2k-regular tree T2k. So the number we seek is
lim supt→∞

t
√
cT2k

(t, v, v), which therefore equals rad (T2k) = 2
√

2k − 1.

3.4.2 An arbitrary regular base-graph Ω

We proceed with the observation that when Ω is d-regular (but not necessarily the bouquet), the
bounds from Corollary 3.4.5 generally apply. We begin with a few claims that will be useful also
in the next subsection dealing with irregular base graphs.

Let rk (Ω) denote the rank of the fundamental group of a finite graph Ω, so rk (Ω) = |E (Ω)| − rk (Ω)
|V (Ω)| + 1. We claim there are no words in CPt (Ω) admitting finite primitivity rank which is
greater than rk (Ω):

Lemma 3.4.8. Let Ω be a finite, connected graph. Then π (w) ∈ {0, 1, . . . , rk (Ω) ,∞} for every
w ∈ CPt (Ω).

Proof. Recall from Section 3.2 that we denote k = |E (Ω)| and orient each of the k edges arbitrarily
and label them by x1, . . . , xk. With the orientation and labeling of its edges, Ω becomes a non-
pointed X-labeled graph, where X = {x1, . . . , xk}. (This is not a core-graph, for it has no basepoint
and may have leaves.) So every path in Ω of length t can be regarded as an element of

(
X ∪X−1

)t
and (after reduction) of Fk = F (X). If a word w ∈ CPt (Ω) begins (and ends) at v ∈ V (Ω),
then w ∈ Jv, where Jv = πX1 (Ωv) is the subgroup of Fk corresponding to the X-labeled graph Ω Jv,Ωv
pointed at v. The rank of Jv is independent of v and equals rk (Ω). It is easy to see that Jv

∗
≤ Fk

(recall that ‘ ∗≤’ denotes a free factor): obtain a basis for Jv by choosing an arbitrary spanning tree
and orienting the edges outside the tree, as in the proof of Lemma 3.4.1. This basis can then be
extended to a basis of Fk by the xi’s associated with the edges inside the spanning tree. So if w is
primitive in Jv, is it also primitive in Fk and π (w) =∞. Otherwise, π (w) ≤ rk (Jv) = rk (Ω).

Moreover, proper algebraic extensions of words in CPt (Ω) are necessarily subgroups of Jv for
some v ∈ V (Ω):

Claim 3.4.9. In w ∈ CPt (Ω) is a cycle around the vertex v and 〈w〉 �alg N , then N ≤ Jv.
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Proof. As Jv
∗
≤ Fk, it follows that Jv ∩N

∗
≤ N (see e.g. [PP15, Claim 3.9]). So if w belongs to N ,

it belongs to the free factor Jv ∩N of N , which is proper, unless N ≤ Jv.

If Ω is d-regular, |E (Ω)| = d
2 |V (Ω)| so that rk (Ω) =

(
d
2 − 1

)
|V (Ω)| + 1 ≥ d

2 (with equality
only for the bouquet). The following Corollary distinguishes between three classes of primitivity
rank: the interval 0, 1 . . . ,

⌊√
d−1+1

2

⌋
, the interval

⌈√
d−1+1

2

⌉
, . . . ,

⌊
d
2

⌋
and

⌈
d
2

⌉
, . . . , rk (Ω).

Corollary 3.4.10. Let Ω be a finite, connected d-regular graph, and let m ∈ {0, 1, . . . , rk (Ω)}.
Then

lim sup
t→∞

 ∑
w∈CPmt (Ω)

|Crit (w)|

1/t

≤


2
√
d− 1 2m− 1 ∈

[
−1,
√
d− 1

]
d−1

2m−1 + 2m− 1 2m− 1 ∈
[√
d− 1, d− 1

]
d 2m− 1 ∈ [d− 1, 2rk (Ω)− 1]

.

Proof. First, for words with π (w) = 0, that is, words reducing to 1, their number is |V (Ω)| times
the number of cycles of length t at a fixed vertex in the d-regular tree. Thus, as in the proof of
Claim 3.4.7,

lim sup
t→∞

 ∑
w∈CP0

t (Ω)

|Crit (w)|

1/t

= lim sup
t→∞

∣∣CP0
t (Ω)

∣∣1/t = 2
√
d− 1 · lim sup

t→∞
|V (Ω)|1/t = 2

√
d− 1.

For m ≥ 1, since the extended cogrowth formula (Theorem 3.4.4) applies here too, it is enough to
prove that for reduced words we have:

lim sup
t→∞

 ∑
w∈CPmt (Ω):
w is reduced

|Crit (w)|


1/t

≤


√
d− 1 2m− 1 ∈

[
1,
√
d− 1

]
2m− 1 2m− 1 ∈

[√
d− 1, d− 1

]
d− 1 2m− 1 ∈ [d− 1, 2rk (Ω)− 1]

From Claim 3.4.9 we deduce that every critical subgroup is necessarily a subgroup of Jv = πX1 (Ωv)
for some vertex v ∈ V (Ω). As in the proof of Proposition 3.4.3, we denote

νt (J) =

∣∣∣∣∣
{
w ∈ Fk

∣∣∣∣∣ |w| = t, w traces each edge

of ΓX (J) at least twice

}∣∣∣∣∣
for every J ≤ Fk, and as in (3.4.1), we obtain the bound:∑

w∈CPmt (Ω):
w is reduced

|Crit (w)| ≤
∑

v∈V (Ω)

∑
J≤Jv: rk(J)=m

νt (J) .

We carry the same counting argument as in the proof of Proposition 3.4.3:

• The first stage, where we count unlabeled and unoriented pointed graphs of a certain size and
rank remains unchanged.

• For the second stage of labeling and orienting the graph, we first choose v (|V (Ω)| options),
and then we use the fact that whenever J ≤ Jv, there is a core-graph morphism η : ΓX (J)→
Ωv, which is, as always, an immersion (i.e. locally injective). So we first label an arbitrary
edge incident to the basepoint ⊗, and this one has to be labeled like one of the d edges incident
with ⊗ at Ωv. We then label gradually edges adjacent to at least one already-labeled edge.
Thus, the image of one of the endpoints of the current edge under the core-graph morphism
is already known, and there are at most d− 1 options to label the current edge. Overall, the
number of possible labelings is bounded by |V (Ω)| · d (d− 1)

δt−1.
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• The third and last stage, where we estimate νt (J) for a particular J , is almost identical. The
only difference is that every vertex in ΓX (J) is of degree at most min {2m, d}, so overall we
obtain νt (J) ≤

(
4t2
)3m−1 · (min {2m, d} − 1)

(1−2δ)t.

We conclude as in the proof of Proposition 3.4.3.

3.4.3 An arbitrary base-graph Ω

We now return to the most general case of an arbitrary connected base graph Ω. Theorem 3.4.11
below is needed for proving the bound on the new spectrum of the adjacency operator on Γ, the
random covering of Ω in the Cn,Ω model (the first part of Theorem 3.1.4). The small variation
needed for the second part of this theorem, dealing with the Markov operator, is discussed in
Section 3.7.1.

Recall that T denotes the universal covering of Ω (and of Γ), and ρ = ρA (Ω) denotes the spectral T
radius of its adjacency operator. Recall also that we denote k = |E (Ω)| and orient each of the k
edges arbitrarily and label them by x1, . . . , xk. With the orientation and labeling of its edges, Ω
becomes a non-pointed X-labeled graph, where X = {x1, . . . , xk}. Every path in Ω of length t can
be regarded as an element of

(
X ∪X−1

)t and (after reduction) of Fk = F (X). We also denoted
rk (Ω) = |E (Ω)| − |V (Ω)|+ 1 and showed that π (w) ∈ {0, 1, . . . , rk (Ω) ,∞} for every w ∈ CPt (Ω)
(Lemma 3.4.8). The main theorem of this subsection is the following:

Theorem 3.4.11. Let Ω be a finite, connected graph, and let m ∈ {1, . . . , rk (Ω)}. Then

lim sup
t→∞

 ∑
w∈CPmt (Ω)

|Crit (w)|

1/t

≤ (2m− 1) · ρ.

Before proceeding to the proof of this theorem, let us refer to the case m = 0 which is left out.
These are words reducing to 1, and the trivial element of Fk has exactly one critical subgroup, so∑
w∈CPmt (Ω) |Crit (w)| equals

∣∣CP0
t (Ω)

∣∣.
Claim 3.4.12.

lim sup
t→∞

∣∣CP0
t (Ω)

∣∣1/t = ρ.

Proof. For a given vertex v ∈ V (Ω), each cycle at v of length t reducing to 1 lifts to a cycle in T
at v̂, where v̂ ∈ p−1 (v) is some vertex at the fiber above v of the covering map p : T → Ω. The
number of cycles of length t reducing to 1 at v is thus [A t

T δv̂]v̂, and[
A t
T δv̂
]
v̂

=
〈
A t
T δv̂, δv̂

〉
1
≤
∥∥A t

T

∥∥ · ‖δv̂‖2 =
∥∥A t

T

∥∥ = ρt

(the last equality follows from AT being self-adjoint), and thus

lim sup
t→∞

∣∣CP0
t (Ω)

∣∣1/t ≤ lim sup
t→∞

[
|V (Ω)| · ρt

]1/t
= ρ.

To show there is actual equality, repeat the argument from Claim 3.4.7.

We return to the proof of Theorem 3.4.11. By Claim 3.3.1,∑
w∈CPmt (Ω)

|Crit (w)| =
∑

N≤Fk:
rk(N)=m

|{w ∈ CPt (Ω) |N ∈ Crit (w)}|

≤
∑

N≤Fk:
rk(N)=m

|{w ∈ CPt (Ω) | 〈w〉 �alg N}| (3.4.7)
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⊗ ⊗ • ⊗ •

Figure 3.4.1: The three CR representatives of topological graphs of rank 2: Figure-Eight, Barbell
and Theta.

and we actually bound the latter summation. For every N ≤ Fk, we let βt (N) denote the corre- βt (N)
sponding summand, namely

βt (N) = |{w ∈ CPt (Ω) | 〈w〉 �alg N}| .

Note that while a non-reduced element w ∈ CPt (Ω) with w ∈ N might not correspond to a close
path in ΓX (N), it always does correspond to a close path at the basepoint of the Schreier coset
graph ΓX (N).

If N ≤ Fk satisfies that the basepoint ⊗ of ΓX (N) is not a leaf, call N and its core-graph CR CR
(cyclically reduced). The following claim shows it is enough to consider CR subgroups.

Claim 3.4.13. If N ≤ Fk is CR then∑
N ′ is conjugate to N

βt (N ′) ≤ tβt (N) .

Proof. The Schreier graphs of N and of any conjugate of it differ only by the basepoint. If N ′
is some conjugate of N and w′ ∈ CPt (Ω) satisfies 〈w′〉 �alg N ′, then the path corresponding to
w′ in the Schreier graph ΓX (N ′) must visit all vertices and edges of the core of ΓX (N ′), and in
particular the basepoint of ΓX (N) (by Lemma 3.4.1). So there is some cyclic rotation w of w′
satisfying 〈w〉 �alg N (clearly, w also belongs to CPt (Ω)). On the other hand, each such w has at
most t possible cyclic rotations, each of which corresponds to one w′ and one N ′.

Next, we classify the subgroups N ≤ Fk according to their “topological” core graph Λ. As
implied in the short discussion preceding Claim 3.4.2, this is the homeomorphism class of the
pointed ΓX (N). Namely, this is the graph obtained from ΓX (N) by ignoring vertices of degree two,
except for (possibly) the basepoint. As Claim 3.4.13 allows us to restrict to one CR representative
from each conjugacy class of subgroups in Fk, we also restrict attention to one CR representative
Λ of each “conjugacy class” of topological core graphs. Ignoring the basepoints, any Λ′ in the
“conjugacy class” of Λ retracts to this representative. For example, we need exactly three such
representatives in rank 2, as shown in Figure 3.4.1.

The following proposition is the key step in the proof of Theorem 3.4.11.

Proposition 3.4.14. Let Λ be a pointed finite connected graph without vertices of degree 1 or 2
except for possibly the basepoint, and let δ denote its maximal degree. Then the sum of βt (N) over
all subgroup N ≤ Fk whose core graph is topologically Λ is at most

|V (Ω)| ·
(
4t4
)|E(Λ)| · (δ − 1)

t · ρt.

Proof. Denote r = |E (Λ)|. Order and orient the edges of Λ {e1, e2, . . . , er} so that e1 emanates
from ⊗, and for every i ≥ 2, ei emanates either from ⊗ or from a vertex which is the beginning or
endpoint of one of e1, . . . , ei−1. In addition, let v0 denote ⊗ and vi denote the endpoint of ei for
1 ≤ i ≤ r. For example, one can label the barbell-shaped graph as follows: ⊗e3 ;; e1

//• e2bb , where

v0 = v3 are ⊗ and v1 = v2 are •. Also, denote by beg (i) the smallest index j such that ei begins at
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vj , so ei is a directed edge from vbeg(i) to vi and beg (i) < i. In our example, beg (1) = beg (3) = 0
and beg (2) = 1.

Note that each N corresponding to Λ is determined by the paths (words in Fk) associated with
e1, . . . , er. From Claim 3.4.9 it follows one can restrict to subgroups N which are subgroups of Jv
for some v ∈ V (Ω). So fix some v0 ∈ V (Ω) and also some v̂0 ∈ V (T ) which projects to v0. We
claim that every subgroup N ≤ Jv0

corresponding to Λ is completely determined by a set of vertices
v̂1, . . . , v̂r in T : the topological edge in ΓX (N) associated with ei corresponds to the path in T
from v̂beg(i) to v̂i. (There are some constraints on the choices of the v̂i’s. For example, if vi = vj
then v̂i and v̂j must belong to the same fiber of the projection map p : T → Ω. However, as we
only bound from above, we ignore these constraints.) So instead of summing over all possible N ’s,
we go through all possible choices of vertices v̂1, . . . , v̂r in T .

The counting argument that follows resembles the one in Proposition 3.4.3. Fix a particular
N ≤ Jv0

corresponding to Λ and let v̂1, . . . , v̂r be the corresponding vertices in T . By Lemma 3.4.1,
if w ∈

(
X ∪X−1

)t satisfies 〈w〉 �alg N , then its reduced form traverses every topological edge of
ΓX (N) at least twice. For each i, assume that w first traverses the topological edge associated with
ei starting at position τi,1 (the position is in w, namely 0 ≤ τi,1 ≤ t− 1), and in `i,1 steps, and then
from position τi,2 in `i,2 steps (recall that w is not reduced so `i,2 may be different from `i,1). The
directions of these traverses are εi,1, εi,2 ∈ {±1}. In total, there are less than t2r options for the
τi,j ’s, less than t2r options for the `i,j ’s and less than 22r options for the εi,j ’s: a total of less than(
4t4
)r options. There are t− `1,1 − `1,2 − . . .− `r,1 − `r,2 remaining steps, and these are divided to

at most 4r segments (we can always assume one of the τi,1’s equals 0). Denote the lengths of these
segments by q1, . . . , q4r (some may be 0). The i’th segment reduces to some path in ΓX (N), with
at most (δ − 1)

qi possibilities (recall that δ marks the maximal degree of a vertex in Λ). Overall,
there are at most (δ − 1)

q1+...+q4r ≤ (δ − 1)
t options to choose the reduced paths traced by these

4r segments in w. Given such a reduced path for the i’th segment, let x̂i, ŷi ∈ V (T ) be suitable
vertices in the tree such that the reduced path lifts to the unique reduced path from x̂i to ŷi.

Now, we sum over all subgroups N corresponding to Λ and all words w ∈ CPt (Ω) with 〈w〉 �alg
N . By adding a factor of |V (Ω)|

(
4t4
)r · (δ − 1)

t we assume we already know v0 and v̂0, the τi,j ’s,
`i,j ’s, εi,j ’s, the qi’s and the reduced 4r paths. Moreover, conditioning on knowing v̂1, . . . , v̂r, we also
know the x̂i’s and the ŷi’s. Recall that cΓ (t, u, v) denotes the number of paths of length t in a graph
Γ from the vertex u to the vertex v, and that by (3.4.6), cT (t, u, v) ≤ ρt for every u, v ∈ V (T ). For
each i = 1, . . . , r and j = 1, 2, there are cT

(
`i,j , v̂beg(i), v̂i

)
possible subwords corresponding to the

j’th traverse of ei (even if εi,j = −1, because cT
(
`i,j , v̂beg(i), v̂i

)
= cT

(
`i,j , v̂i, v̂beg(i)

)
). Similarly,

there are at most cT (qi, x̂i, ŷi) subwords corresponding to the the i’th intermediate segment. Thus,
if α = |V (Ω)| ·

(
4t4
)r · (δ − 1)

t then

∑
N≤Fk:

ΓX(N)∼=Λ

βt (N) ≤ α ·
∑

v̂1,...,v̂r∈V (T )

 r∏
i=1

2∏
j=1

cT
(
`i,j , v̂beg(i), v̂i

) 4r∏
i=1

cT (qi, x̂i, ŷi)

≤ α ·

[
4r∏
i=1

ρqi

] ∑
v̂1,...,v̂r∈V (T )

 r∏
i=1

2∏
j=1

cT
(
`i,j , v̂beg(i), v̂i

)
Note that beg (i) < i, so cT

(
`i,j , v̂beg(i), v̂i

)
only depends on `i,j and v̂0, . . . , v̂i (and not on

v̂i+1, . . . , v̂r). Therefore, if we write f (i) =
∏2
j=1 cT

(
`i,j , v̂beg(i), v̂i

)
, we can split the sum to

obtain:

∑
N≤Fk:

ΓX(N)∼=Λ

βt (N) ≤ α · ρ
∑
qi

∑
v̂1∈V (T )

f (1)

 ∑
v̂2∈V (T )

f (2) [. . .]
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The following step is the crux of the matter. We use the fact that each topological edge is
traversed twice to get rid of the summation over vertices in T . We begin with the last edge er,
where we replace the expression

∑
v̂r∈V (T ) f (r) as follows:∑

v̂r∈V (T )

f (r) =
∑

v̂r∈V (T )

cT
(
`r,1, v̂beg(r), v̂r

)
cT
(
`r,2, v̂beg(r), v̂r

)
=

∑
v̂r∈V (T )

cT
(
`r,1, v̂beg(r), v̂r

)
cT
(
`r,2, v̂r, v̂beg(r)

)
(∗)
= cT

(
`r,1 + `r,2, v̂beg(r), v̂beg(r)

)
≤ ρ`r,1+`r,2 .

The crucial step here is the equality
(∗)
= . It follows from the fact that v̂r can be recovered as the

vertex of T visited by the path of length `r,1 + `r,2 after `r,1 steps. After “peeling” the expres-
sion

∑
v̂r∈V (T ) f (r), we can go on and bound

∑
v̂r−1∈V (T ) f (r − 1) by ρ`r−1,1+`r−1,2 and so on.

Eventually, we obtain

∑
N≤Fk:

ΓX(N)∼=Λ

βt (N) ≤ α · ρ
∑
qi

r∏
i=1

ρ`i,1+`i,2 = |V (Ω)| ·
(
4t4
)r · (δ − 1)

t · ρt.

Finally, we are in position to establish the upper bounds stated in Theorem 3.4.11. Fix m ∈
{1, 2, . . . , rk (Ω)}. Then by (3.4.7) and Claim 3.4.13,∑

w∈CPmt (Ω)

|Crit (w)| ≤
∑

N≤Fk:
rk(N)=m

βt (N)

≤
∑

[N ]∈ConjCls(Fk,m)
N is CR

tβt (N) (3.4.8)

where the final summation is over all conjugacy classes of subgroups of rank m in Fk, and for each
class N is a CR representative. Moreover, we choose these representatives N so that if [N1] and
[N2] correspond the same non-pointed topological graph, the representatives N1 and N2 correspond
to the same pointed topological graph Λ.

Finally, split the summation of the CR representatives N by their topological graph Λ. By Claim
3.4.2, each such Λ has maximal degree at most 2m and at most 3m − 1 edges, so by Proposition
3.4.14, the N ’s corresponding to each Λ contribute to the summation in (3.4.8) at most

t · |V (Ω)| ·
(
4t4
)3m−1 · (2m− 1)

t · ρt.

This finishes the proof of Theorem 3.4.11 as there is a finite number of topological graphs Λ of rank
m.

3.5 Controlling the Error Term of E [Fw,n]
In this section we establish the third step of the proofs of Theorems 3.1.1, 3.1.4, and 3.1.5, as
introduced in the overview of the proof (Section 3.2). Recall that according to Theorem 3.2.3, for
every w ∈ Fk the following holds:

E [Fw,n] = 1 +
|Crit (w) |
nπ(w)−1

+O

(
1

nπ(w)

)
.
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But the O (·) term depends on w. Our goal here is to obtain a bound on the O (·) term, which
depends solely on the length of w and π (w), namely a bound which is uniform on all words of a
certain length and primitivity rank. This is done in the following proposition:

Proposition 3.5.1. Let w ∈
(
X ∪X−1

)t satisfy π (w) 6= 0 (so w does not reduce to 1). If n > t2

then

E [Fw,n] ≤ 1 +
1

nπ(w)−1

(
|Crit (w)|+ t2+2π(w)

n− t2

)
.

Achieving such a bound requires more elaborated details from the proof of Theorem 3.2.3, which
appears in [PP15]. We therefore begin with recalling relevant concepts and results from [PP15].
We then present the proof of Proposition 3.5.1 in Section 3.5.5.

Before that, let us mention that the same statement holds for words in
(
X ∪X−1

)t that reduce
to 1:

Claim 3.5.2. Let w ∈
(
X ∪X−1

)t satisfy π (w) = 0 (so w reduces to 1). If n > t2 then

E [Fw,n] ≤ 1 +
1

nπ(w)−1

(
|Crit (w)|+ t2+2π(w)

n− t2

)
.

Proof. Recall that π (w) = 0 if and only if w = 1 as an element of Fk. But then the only w-critical
subgroup is the trivial one, and so E [Fw,n] = n = 1+ 1

n−1

(
|Crit (w)| − 1

n

)
which is indeed less than

the bound in the statement.

3.5.1 The partial order “covers”
In Section 3.3.2 morphisms of core graphs were discussed. Recall that a morphism ΓX (H)→ ΓX (J)
exists (and is unique) if and only if H ≤ J (Claim 3.3.3). A special role is played by surjective
morphisms of core graphs:

Definition 3.5.3. Let H ≤ J ≤ Fk. Whenever the morphism ηXH→J : ΓX (H) → ΓX (J) is
surjective, we say that ΓX (H) covers ΓX (J) or that ΓX (J) is a quotient of ΓX (H). As for the
groups, we say that H X-covers J and denote this by H ≤�

X J . H ≤�
X J

By “surjective” we mean surjective on both vertices and edges. Note that we use the term
“covers” even though in general this is not a topological covering map (a morphism between core
graphs is always locally injective at the vertices, but it need not be locally bijective). In contrast,
the random graphs in Cn,H are topological covering maps, and we reserve the term “coverings” for
these.

For instance, H = 〈x1x2x
−3
1 , x 2

1 x2x
−2
1 〉 ≤ Fk X-covers the group J = 〈x2, x

2
1 , x1x2x1〉, the

corresponding core graphs of which are the leftmost and rightmost graphs in Figure 3.5.1. As
another example, a core graph Γ X-covers ΓX (Fk) (which is merely a wedge of k loops) if and only
if it contains edges of all k labels.

As implied by the notation, the relation H ≤�
X J indeed depends on the given basis X of Fk.

For example, if H = 〈x1x2〉 then H ≤�
X F2. However, for Y = {x1x2, x2}, H does not Y -cover F2,

as ΓY (H) consists of a single vertex and a single loop and has no quotients apart from itself.
It is easy to see that the relation “≤�

X ” indeed constitutes a partial ordering of the set of subgroups
of Fk. In fact, restricted to f.g. subgroups it becomes a locally-finite partial order, which means
that if H ≤�

X J then the interval of intermediate subgroups [H,J ]�
X

= {M ≤ Fk |H ≤�
X M ≤�

X J}
is finite:

Claim 3.5.4. If H ≤ Fk is a f.g. subgroup then it X-covers only a finite number of groups. In
particular, the partial order “≤�

X ” restricted to f.g. subgroups of Fk is locally finite.

Proof. The claim follows from the fact that ΓX (H) is finite (Claim 3.3.2(1)) and thus has only
finitely many quotients. Each quotient corresponds to a single group, by (3.3.2).
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3.5.2 Partitions and quotients
It is easy to see that a quotient ΓX (J) of ΓX (H) is determined by the partition it induces on the
vertex set V (ΓX (H)) (the vertex-fibers of the morphism ηXH→J). However, not every partition P of
V (ΓX (H)) corresponds to a quotient core-graph. Indeed, ∆, the graph we obtain after merging the
vertices grouped together in P , might not be a core-graph: two distinct j-edges may have the same
origin or the same terminus. (For a combinatorial description of core-graphs see e.g. [Pud14, Claim
2.1].) Then again, when a partition P of V (ΓX (H)) yields a quotient which is not a core-graph, we
can perform Stallings foldings† until we obtain a core graph. We denote the resulting core-graph
by‡ ΓX(H)/P . Since Stallings foldings do not affect πX1 , this core graph ΓX(H)/P is ΓX (J), where ΓX(H)/P
J = πX1 (∆). The resulting partition P̄ of V (ΓX (H)) (the blocks of which are the fibers of ηXH→J)
is the finest partition of V (ΓX (H)) which gives a quotient core-graph and which is still coarser
than P . We illustrate this in Figure 3.5.1.

⊗v1 • v2

• v3•v4

1 //

2

��1 //

1

��

2

ZZ

⊗
{v1,v4}

•{v2}

•
{v3}

1
11

2

��

1

##

1qq

2

YY ⊗
{v1,v4}

•
{v2,v3}

1

$$

1

ee

2

YY

2

ZZ

Figure 3.5.1: The left graph is the core graph ΓX (H) of H =
〈
x1x2x

−3
1 , x 2

1 x2x
−2
1

〉
≤ F2. Its

vertices are denoted by v1, . . . , v4. The graph in the middle is the quotient corresponding to the
partition P = {{v1, v4} , {v2} , {v3}}. This is not a core graph as there are two 1-edges originating at
{v1, v4}. In order to obtain a core quotient-graph, we use the Stallings folding process and identify
these two 1-edges and their termini. The resulting core graph, ΓX(H)/P , is shown on the right and
corresponds to the partition P̄ = {{v1, v4} , {v2, v3}}.

One can think of ΓX (J) = ΓX(H)/P as the core graph “generated” from ΓX (H) by the partition
P . It is now natural to look for the “simplest“ partition generating ΓX (J). Formally, we introduce
a measure for the complexity of partitions: if P ⊆ 2X is a partition of some set X , let

‖P‖ def= |X | − |P | =
∑
B∈P

(|B| − 1) . (3.5.1)

Namely, ‖P‖ is the number of elements in the set minus the number of blocks in the partition.
For example, ‖P‖ = 1 iff P identifies only a single pair of elements. It is not hard to see that
‖P‖ is also the minimal number of identifications one needs to make in X in order to obtain the
equivalence relation P . Restricting to pairs of subgroups H,J with H ≤�

X J , we can define the
following distance function:

Definition 3.5.5. Let H,J ≤fg Fk be subgroups such that H ≤�
X J , and let Γ = ΓX (H),

∆ = ΓX (J) be the corresponding core graphs. We define the X-distance between H and J ,
denoted ρX (H,J) or ρ (Γ,∆) as ρX (H,J)

ρX (H,J) = min

{
‖P‖

∣∣∣∣ P is a partition of V (ΓX (H))

s.t. ΓX(H)/P = ΓX (J)

}
. (3.5.2)

†A folding means merging two equally-labeled edges with the same origin or with the same terminus. See also
Figure 3.5.1. For a fuller description of Stallings foldings we refer the reader to [Pud14, PP15].
‡In [PP15], the notation ΓX (H)/P was used to denote something a bit different (the unfolded graph ∆).
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For example, the rightmost core graph in Figure 3.5.1 is a quotient of the leftmost one, and the
distance between them is 1. For a more geometric description of this distance function, as well as
more details and further examples, we refer the readers to [Pud14, PP15].

Of course, the distance function ρX (H,J) is computable. It turns out that it can also be used
to determine whether H is a free factor of J :

Theorem 3.5.6. [[Pud14],Theorem 1.1 and Lemma 3.3] Let H,J ≤fg Fk such that H ≤�
X J . Then

rk (J)− rk (H) ≤ ρX (H,J) ≤ rk (J) .

Most importantly, the minimum is obtained (namely, rk (J)− rk (H) = ρX (H,J)) if and only if H
is a free factor of J .

This theorem is used, in particular, in the proof in [PP15] of Theorem 3.2.3.
So far the partitions considered here were partitions of the vertex set
V (ΓX (H)). However, it is also possible to identify (merge) different edges in ΓX (H), as long

as they share the same label, and then, as before, perform the folding process to obtain a valid
core graph. Moreover, it is possible to consider several partitions P1, . . . , Pr, each one either of
the vertices or of the edges of ΓX (H), identify vertices and edges according to these partitions
and then fold. We denote the resulting core graph by ΓX(H)/〈P1,...,Pr〉. It is easy to see that one ΓX(H)/〈P1,...,Pr〉

can incorporate this more involved definition into the definition of the distance function ρX (H,J),
because, for instance, identifying two edges has the same effect as identifying their origins (or
termini). In fact, the following holds:

ρX (H,J) = min

{
‖P1‖+ . . .+ ‖Pr‖

∣∣∣∣ Pi : a partition of V (ΓX (H)) or of E (ΓX (H))

s.t. ΓX(H)/〈P1,...,Pr〉 = ΓX (J)

}
. (3.5.3)

3.5.3 From random elements of Sn to random subgroups
Recall that Theorem 3.2.3 estimates E [Fw,n], the expected number of fixed points of w (σ1, . . . , σk),
where σ1, . . . , σk ∈ Sn are chosen independently at random in uniform distribution. The first step
in its proof consists of a generalization of the problem to subgroups:

For every f.g. subgroups H ≤ J ≤ Fk, let αJ,Sn : J → Sn be a random homomorphism chosen
at uniform distribution (there are exactly |Sn|rk(J) such homomorphisms). Then αJ,Sn (H) is a
random subgroup of Sn, and we count the number of common fixed points of this subgroup, namely
the number of elements in {1, . . . , n} fixed by all permutations in αJ,Sn (H). Formally, we define ΦH,J

ΦH,J (n)
def
= E

∣∣common
fixed−points (αJ,Sn (H))

∣∣ .
This indeed generalizes E [Fw,n] for

E [Fw,n] = Φ〈w〉,Fk (n) . (3.5.4)

3.5.4 Möbius inversions
The theory of Möbius inversions applies to every poset (partially ordered set) with a locally-finite
order (recall that an order � is locally-finite if for every x, y with x � y, the interval [x, y]�

def
=

{z |x � z � y} is finite). Here we skip the general definition and define these inversions directly in
the special case of interest (for a more general point of view see [PP15]).

In our case, the poset in consideration is subfg (Fk) = {H ≤ Fk |H is f.g.}, and the partial order
is ≤�

X , which is indeed locally-finite (Claim 3.5.4). We define three derivations of the function Φ
defined in Section 3.5.3: the left one (L), the right one (R) and the two-sided one (C). These are
usually formally defined by convolution of Φ with the Möbius function of subfg (Fk)≤�

X
(see [PP15])
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but here we define them in an equivalent simpler way: these are the functions satisfying, for every
H ≤�

X J ,

ΦH,J (n) =
∑

M∈[H,J]�
X

LM,J (n) =
∑

M,N :H≤�
XM≤�

XN≤�
XJ

CM,N (n) =
∑

N∈[H,J]�
X

RH,N (n) . (3.5.5)

Note that the summations in (3.5.5) are well defined because the order is locally finite. To see that
(3.5.5) can indeed serve as the definition for the three new functions, use induction on |[H,J ]|: for
example, for any H ≤�

X J , LH,J (n) = ΦH,J (n)−
∑
M∈[H,J)�

X

LM,J (n) and all pairs (M,J) on the

r.h.s. satisfy |[M,J ]| < |[H,J ]|.

Φ

L R

C

With all this defined, we can state the main proposi-
tions along the proof of the main result in [PP15].

Proposition 3.5.7 ([PP15], Proposition 5.1). The func-
tion R is supported on algebraic extensions.

Namely, if J is not an algebraic extension of H, then
RH,J (n) = 0 for every n. Since, if H ≤alg J then H ≤�

X J
(e.g. [PP15, Claim 4.2]), we obtain that

ΦH,J (n) =
∑

N :H≤algN≤J

RH,N (n) . (3.5.6)

Next, ΦH,J (n) is given a geometric interpretation: it turns out it equals the expected number
of lifts of ηH→J : ΓX (H)→ ΓX (J) to a random n-covering of ΓX (J) in the model Cn,ΓX(J) [PP15,
Lemma 6.2]. Similarly, LH,J (n) counts the average number of injective lifts [PP15, Lemma 6.3].
For given H and J , it is not hard to come up with an exact rational expression in n for the expected
number of injective lifts, i.e. of LH,J (n), for large enough n (in fact, n ≥ |E (ΓX (H))| suffices, see
[PP15, Lemma 6.4]) . As the other three functions (Φ, R and C) are obtained via addition and
subtraction of a finite number of LM,J (n)’s, we obtain

Claim 3.5.8. Let H,J ≤ Fk be f.g. subgroups such that H ≤�
X J . Then for n ≥ |E (ΓX (H))|, the

functions ΦH,J (n), LH,J (n), RH,J (n) and CH,J (n) can all be expressed as rational expressions in
n.

After some involved combinatorial arguments, one obtains from this the following expression
for CM,N (n): Denote by Sym (S) the set of permutations of a given set S. Every permutation
σ ∈ Sym (S) defines, in particular, a partition on S whose blocks are the cycles of σ. By abuse of
notation we denote by σ both the permutation and the corresponding partition. For instance, one
can consider its “norm” ‖σ‖ (see (3.5.1); this is also the minimal length of a product of transpositions
that gives the permutation σ). We also use VM and EM as short for V (ΓX (M)) and E (ΓX (M)), VM , EM
respectively.

Proposition 3.5.9 ([PP15], Section 7.1). LetM,N ≤ Fk be f.g. subgroups withM ≤�
X N . Consider

the set

TM,N =

(σ0, σ1, . . . , σr)

∣∣∣∣∣∣∣
r ∈ N, σ0 ∈ Sym (VM )

σ1, . . . , σr ∈ Sym (EM ) \ {id}
ΓX(M)/〈σ0,σ1,...,σr〉 = ΓX (N)

 .

Then

CM,N (n) =
1

nrk(M)−1

∑
(σ0,σ1,...,σr)∈TM,N

(−1)
r ·
(
−1

n

) r∑
i=0
‖σi‖

.

The derivation of the main result of [PP15] (Theorem 3.2.3) from Theorem 3.5.6 and Propositions
3.5.7 and 3.5.9 is short: see the beginning of Section 7 in [PP15].
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3.5.5 Proving the uniform bound for the error term
We now have all the tools required for proving Proposition 3.5.1. Namely, we now prove that every
1 6= w ∈ Fk of length t and every n > t2,

E [Fw,n] ≤ 1 +
1

nπ(w)−1

(
|Crit (w)|+ t2+2π(w)

n− t2

)
.

(Note that we pass here to reduced words. Reducing an element of
(
X ∪X−1

)t does not affect
E [Fw,n], and only tightens the upper bound.)

Proof. [of Proposition 3.5.1] Recall (Section 3.5.3) that E [Fw,n] = Φ〈w〉,Fk (n) and this quantity is
given by some rational expression in n (for large enough n, say n ≥ |w|, see Claim 3.5.8). This
expression can be expressed as a Taylor series in 1

n , so write

E [Fw,n] =

∞∑
s=0

as (w)

ns

where as (w) ∈ R (in fact these are integers: see [Pud14, Claim 5.1] and also the sequel of the
current proof). By Theorem 3.2.3, a0 = 1, a1 = a2 = . . . = aπ(w)−2 = 0 and απ(w)−1 = |Crit (w)|
(unless π (w) = 1 in which case a0 = 1 + |Crit (w)|). So our goal here is to bound the remaining
coefficients as (w) for s ≥ π (w).

The discussion in Section 3.5.4 yields the following equalities:

E [Fw,n] = Φ〈w〉,Fk (n) =
∑

N : 〈w〉≤algN≤Fk

R〈w〉,N (n) =

=
∑

M,N : 〈w〉≤�
XM≤�

XN

CM,N (n) =
∑

M : 〈w〉≤�
XM

∑
N :M≤�

XN

CM,N (n)

From Proposition 3.5.9 we obtain that for a fixed M ,∑
N :M≤�

XN

CM,N (n) =
1

nrk(M)−1

∑
r∈N

(−1)
r

∑
σ0∈Sym(VM )

σ1,...,σr∈Sym(EM )\{id}

(
−1

n

)‖σ0‖+...+‖σr‖

.

For every q ≥ 0 define the following set:

PM,q =

(σ0, . . . , σr)

∣∣∣∣∣∣∣
r ∈ N, σ0 ∈ Sym (VM )

σ1, . . . , σr ∈ Sym (EM ) \ {id}
‖σ0‖+ . . .+ ‖σr‖ = q

 , (3.5.7)

so that ∑
N :M≤�

XN

CM,N (n) =
1

nrk(M)−1

∞∑
q=0

(−1)
q

nq

∑
(σ0,...,σr)∈PM,q

(−1)
r
.

Hence,

as (w) =

s+1∑
i=1

∑
M : 〈w〉≤�

XM
rk(M)=i

(−1)
s−(i−1)

∑
(σ0,...,σr)∈PM,s−(i−1)

(−1)
r
. (3.5.8)

In what follows we ignore the alternating signs of the summands in (3.5.8) and bound |as (w)| by

|as (w)| ≤
s+1∑
i=1

∑
M : 〈w〉≤�

XM
rk(M)=i

∣∣PM,s−(i−1)

∣∣ . (3.5.9)
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Claim: For every M ≤fg Fk with 〈w〉 ≤�
X M , we have |PM,q| ≤ t2q.

Proof of Claim: Fix M and denote bq = |PM,q|. Clearly, b0 = 1, and we proceed by induction
on q. Let q ≥ 1. We split the set PM,q by the value of σr. For r = 0 there are at most

|{σ ∈ Sym (VM ) | ‖σ‖ = q}| ≤
(
|Vm|

2

)q
≤
(
t

2

)q
≤ t2q

2q

elements with r = 0. (For the middle inequality note that |VM | ≤
∣∣V〈w〉∣∣ ≤ t; this is also the case

with the edges: |EM | ≤
∣∣E〈w〉∣∣ ≤ t.) For r ≥ 1, σr is a permutation of the set of edges EM and

given σr, the number of options for σ0, . . . , σr−1 is exactly bq−‖σr‖. By the induction hypothesis we
obtain:

bq ≤ t2q

2q
+

∑
σr∈Sym(EM )\{id}

bq−‖σr‖ =
t2q

2q
+

q∑
α=1

bq−α |{σ ∈ Sym (EM ) | ‖σ‖ = α}|

≤ t2q

2q
+

q∑
α=1

t2q−2α t
2α

2α
= t2q.

We proceed with the proof of the proposition. For a given w ∈
(
X ∪X−1

)t there are at most(|V〈w〉|
2

)β
≤
(
t
2

)β partitions of norm β of V〈w〉, and so at most
(
t
2

)β subgroups M of rank β with
〈w〉 ≤�

X M (see Theorem 3.5.6). Hence from (3.5.9) we obtain,

|as (w)| ≤
s+1∑
i=1

(
t

2

)i
t2(s−(i−1)) ≤

s+1∑
i=1

t2i

2i
· t2(s−i+1) ≤ t2s+2.

Finally,

∣∣∣∣E [Fw,n]− 1− |Crit (w)|
nπ(w)−1

∣∣∣∣ =

∣∣∣∣∣∣
∞∑

s=π(w)

as (w)

ns

∣∣∣∣∣∣ ≤
∞∑

s=π(w)

|as (w)|
ns

≤
∞∑

s=π(w)

t2s+2

ns
= t2 ·

(
t2

n

)π(w)

· n

n− t2
.

This finishes the proof.

3.6 Completing the Proof for Regular Graphs
In this section we complete the proofs of Theorems 3.1.1 and 3.1.5. In addition, we explain (in
Section 3.6.4) the source of the gap between these results on the one hand and Friedman’s result
and Conjecture 3.1.3 on the other.

3.6.1 Proof of Theorem 3.1.1 for d even
We begin with the case of even d in Theorem 3.1.1. We show that a random d-regular graph Γ on
n vertices in the permutation model (a random n-covering of the bouquet with d

2 loops) satisfies
a.a.s. λ (Γ) < 2

√
d− 1 + 0.84, where λ (Γ) is the largest non-trivial eigenvalue of AΓ. As explained

in more details in Appendix 3.A, this yields the same result for a uniformly random d-regular simple
graph.
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So let d = 2k and n, t = t (n) be such that n > t2 and t is even. The base graph Ω is the bouquet
with k loops, so CPt (Ω) =

(
X ∪X−1

)t. By (3.2.2), Proposition 3.5.1 and Claim 3.5.2,

E
[
λ (Γ)

t
]
≤

∑
w∈(X∪X−1)t

(E [Fw]− 1) =

=

k∑
m=0

∑
w∈(X∪X−1)

t
:

π(w)=m

(
|Crit (w)|
nm−1

+O

(
1

nm

))

≤
k∑

m=0

1

nm−1

∑
w∈(X∪X−1)

t
:

π(w)=m

(
|Crit (w)|+ t2+2m

n− t2

)

≤
(

1 +
t2+2k

n− t2

) k∑
m=0

1

nm−1

∑
w∈(X∪X−1)

t
:

π(w)=m

|Crit (w)|

Let ε > 0. For m ∈ {0, 1, . . . , k}, Corollary 3.4.5 (for m ≥ 1) and Claim 3.4.7 (for m = 0) yield
that for large enough t, ∑

w∈(X∪X−1)
t
:

π(w)=m

|Crit (w)| ≤ [g (2m− 1) + ε]
t
,

where g (·) is defined as in (3.4.4):

g (2m− 1) =

{
2
√
d− 1 2m− 1 ≤

√
d− 1

2m− 1 + d−1
2m−1 2m− 1 ≥

√
d− 1

.

Thus

E
[
λ (Γ)

t
]
≤

(
1 +

t2+2k

n− t2

) k∑
m=0

[g (2m− 1) + ε]
t

nm−1

≤
(

1 +
t2+2k

n− t2

)
· (k + 1) ·

·

[
max

{
n1/t [g (−1) + ε] , g (1) + ε, g(3)+ε

n1/t . . .

. . . , g(2k−3)+ε

(n1/t)
k−2 ,

2k+ε

(n1/t)
k−1

}]t
(3.6.1)

Recall that Γ is a random graph on n vertices. In order to obtain the best bound, t needs to be
chosen to minimize the maximal summand in the r.h.s. of (3.6.1). This requires t = θ (log n): if t is
larger than that, the last elements are unbounded, and if t is smaller than that, the first element is
unbounded. Thus, in particular,

(
1 + t2+2k

n−t2

)
= 1 + on (1). We show that for every d there is some

constant c = c (d), such that if t is chosen so that n1/t ≈ c, then all k+ 1 elements in the set in the
r.h.s. of (3.6.1) are strictly less than 2

√
d− 1 + 0.835 (for small enough ε). Thus, for large enough

t, E
[
λ (Γ)

t
]
≤
[
2
√
d− 1 + 0.835

]t
. A standard application of Markov’s inequality then shows that

Prob
[
λ (Γ) < 2

√
d− 1 + 0.84

]
→

n→∞
1.

Indeed, for d ≥ 26, one can set n1/t = e
2

5
√
d−1 . Simple analysis shows that for d ≥ 26,

e
2

5
√
d−1 < 1 + 5

12
√
d−1

, so the element corresponding to m = 0 is at most 2
√
d− 1 · e

2
5
√
d−1 <
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2
√
d− 1

(
1 + 5

12
√
d−1

)
= 2
√
d− 1 + 5

6 < 2
√
d− 1 + 0.835. This first element is clearly larger than

all other elements corresponding to m such that 2m−1 ≤
√
d− 1. Among all other values of m, the

maximal element is obtained when 2m − 1 ≈ 4.55
√
d− 1, but its value is bounded from above by

1.94
√
d− 1 + 0.4 (again, by simple analysis). For all remaining d′s (4, 6, . . . , 24), it can be checked

case by case that choosing n1/t so that n1/t · 2
√
d− 1 = 2

√
d− 1 + 0.8 works (and see the table in

Section 3.6.2).

3.6.2 From even d to odd d

In this subsection we derive the statement of Theorem 3.1.1 for d odd from the now established
statement for d even. We showed that for d even we have a.a.s. λ (Γ) < 2

√
d− 1 + 0.84. The idea

is that every upper bound applying to some value of d also applies to d− 1.
As explained in Appendix 3.A, by contiguity results from [GJKW02], it is enough to show the

2
√
d− 1 + 1 upper bound for random graphs Γ in a random model denoted G∗n,d (the result for

random simple graphs than follows immediately).

Claim 3.6.1. Let d ≥ 3 be odd. Assume that a random (d+ 1)-regular graph Γ in the permu-
tation model satisfies a.a.s. λ (Γ) < C. Then a random d-regular graph Γ in G∗n,d also satisfies
a.a.s. λ (Γ) < C.

Proof. Let Γ be a random d-regular graph in G∗n,d. By ([GJKW02, Theorem 1.3], the permutation
model Pn,d+1 is contiguous to the distribution on (d+ 1)-regular graphs obtained by considering Γ
and adding a uniformly random perfect matching m. (As d is odd, the number of vertices n in Γ
is necessarily even.) Denote by Γ̂ the random graph obtained this way. It is enough to show that
λ
(

Γ̂
)
≥ λ (Γ)− on (1) with probability tending to 1 as n→∞.

Indeed, let µ be the eigenvalue of Γ whose absolute value is largest (so λ (Γ) = |µ|), and let
f ∈ `2 (V (Γ)) be a corresponding real eigenfunction with ‖f‖ = 1. In particular,

∑
v∈V (Γ) f (v) = 0

and
∑
v∈V (Γ) f (v)

2
= 1. We have

λ
(

Γ̂
)
≥
〈
AΓ̂f, f

〉
= 〈AΓf, f〉+ 2

∑
e∈m

f
(
e+
)
f
(
e−
)

= µ+ 2
∑
e∈m

f
(
e+
)
f
(
e−
)
,

where the summation is over all edges e in the random perfect matching m, and e+ and e− mark
the two endpoints of e. Let R denote the random summation 2

∑
e∈m f (e+) f (e−). We finish by

showing that R is generally very small.
To accomplish that we use standard identities involving symmetric polynomials over

f (v1) , . . . , f (vn). Let pk =
∑
v f (v)

k be the k’th symmetric Newton polynomial, so p1 = 0
and p2 = 1. Moreover, since |f (v)| < 1 for every v, |pk| < p2 = 1. We use the fact that every
symmetric polynomial is a polynomial in the pk’s and is thus bounded.

To begin with,

E [R] = n · 1(
n
2

) ∑
{u,v}∈(V2)

f (v) f (u) =
2

n− 1
s2 (f (v1) , . . . , f (vn)) ,

where s2 is the second elementary symmetric function: s2 (x1, . . . , xn) =
∑
i<j xixj . Since s2 =

1
2

(
p2

1 − p2

)
= − 1

2 , we conclude that E [R] = − 1
n−1 = on (1).

Similarly,

E
[
R2
]

= 4 · n
2
· 1(

n
2

) ∑
{u,v}∈(V2)

f (v)
2
f (u)

2
+ 8 ·

(
n/2

2

)
· 1(

n
4

) ∑
{u,v,w,x}∈(V4)

f (u) f (v) f (w) f (x) ,

=
4

n− 1

∑
{u,v}∈(V2)

f (v)
2
f (u)

2
+

48

(n− 1) (n− 3)

∑
{u,v,w,x}∈(V4)

f (u) f (v) f (w) f (x) .
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Since the two summations here are symmetric polynomials, they are bounded, and thus E
[
R2
]

=
on (1) and so is the variance of R. Thus R = on (1) with probability tending to 1 as n→∞.

If d ≥ 3 is odd, we can thus use our bound for d+ 1 to obtain that a.a.s.

λ (Γ) < 2
√

(d+ 1)− 1 + 0.84 = 2
√
d+ 0.84 ≈ 2

√
d− 1 +

1√
d

+ 0.84.

This proves our result for large enough d. Indeed, for d ≥ 41, 2
√
d+ 0.84 < 2

√
d− 1 + 1.

For smaller values of odd d we use tighter results for d + 1. For example, we seek the smallest
constant c for which a bound of 2

√
4− 1 + c can be obtained for 4-regular graphs in our methods.

In order to minimize max
{
n1/t · 2

√
d− 1, 2

√
d− 1, 4

n1/t

}
(see (3.6.1)), we choose n1/t =

√
4

2
√
d−1

to get an upper bound of 3.723 (compared with 2
√
d− 1 = 3.464, so here c ≈ 0.259). For d = 3

this bound is useless (it is larger than the trivial bound of 3).
The following table summarizes the bounds we obtain for d ≤ 20 in the scenario of Theorem 1.

This can be carried on to establish Theorem 3.1.1 for d ≤ 40.

d Upper Bound c in 2
√
d− 1 + c n1/t d Uppder Bound c in 2

√
d− 1 + c

4 3.723 0.259 1.075 3 3 0.172
6 4.933 0.460 1.103 =⇒ 5 4.933 0.933
8 5.868 0.576 1.109 =⇒ 7 5.868 0.969
10 6.646 0.646 1.108 =⇒ 9 6.646 0.989
12 7.323 0.689 1.104=⇒ 11 7.323 0.998
14 7.928 0.7169 1.099=⇒ 13 7.928 0.9998
16 8.482 0.7352 1.095=⇒ 15 8.482 0.999
18 8.994 0.747 1.091=⇒ 17 8.994 0.994
20 9.473 0.755 1.087=⇒ 19 9.473 0.988

Remark 3.6.2. Of course, the method presented here to derive the statement of Theorem 3.1.1 for
odd d’s from the statement for even d’s works only because of the small additive constant we have
in the result. To obtain a tight result (Friedman’s Theorem) in our approach, we will need another
method to work with odd d’s.

One plausible direction is as follows. We may construct a random d-regular graph with d
odd using k = d−1

2 random permutations plus one random perfect matching. If we label the edges
corresponding to the perfect matching by b, and orient the edges corresponding to the permutations
and label them by a1, . . . , ak, the graphs become Schreier graphs of subgroups of Fk ∗ Z/2Z =〈
a1, . . . , ak, b

∣∣ b2 = 1
〉
. It is conceivable that the machinery we developed for the free group (and

especially, Theorem 3.2.3) can be also developed for this kind of free products.

3.6.3 Proof of Theorem 3.1.5
The only change upon the previous case (Theorem 3.1.1 with d even) is that the summation in (3.6.1)
over the primitivity rank m does not stop at k = d

2 but continues until rk (Ω) = |V (Ω)|
(
d
2 − 1

)
+ 1.

However, when m > k, it follows from Corollary 3.4.10 that the corresponding term inside the max
operator is d

(n1/t)
m−1 which is strictly less than d

(n1/t)
d/2−1 (for every choice of t and n), but this

latter term is already there in (3.6.1). Thus, the maximal term is remained unchanged, and we
obtain the same bound overall as in the even case of Theorem 3.1.1, namely 2

√
d− 1 + 0.84.

Let us stress that in this case the proof as is works for all d ≥ 3 (odd and even alike). As before,
for small d’s we can obtain better bounds, even if d is odd. For example, for d = 3 one can obtain
an upper bound of

√
3 · 2
√
d− 1 ≈ 2.913.
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3.6.4 The source of the gap
It could be desirable to use the approach presented in this paper and replace the constant 1 in
Theorem 3.1.1 with arbitrary ε > 0, to obtain Friedman’s tight result. Unfortunately, this is still
beyond our reach. It is possible, however, to point out the source of the gap and how it may be
potentially overcome.

The first inequality in our proof (as outlined in Section 3.2) is in bounding
{
E
[
λ (Γ)

t
]}1/t

by{
E
[∑

µ∈Spec(AΓ)\{d} µ
t
]}1/t

. As long as t = θ (log n), our loss here is bounded, and if t� log n we
lose nothing. This is because

λ (Γ)
t ≤

∑
µ∈Spec(AΓ)\{d}

µt ≤ n · λ (Γ)
t

=
[
n1/t · λ (Γ)

]t
.

On the other hand, if t � log n, one cannot get anything: It is known (e.g. [GZ99, Corollary 1])
that for every δ > 0 there exists 0 < ε < 1 such that at least ε · n of the eigenvalues of Γ satisfy
|µ| ≥ ρ− δ (here ρ = 2

√
d− 1). If t ∈ o (log n) then n1/t tends to infinity, and thus ∑
µ∈Spec(AΓ)\{d}

µt


1/t

>
{
εn (ρ− δ)t

}1/t

→
n→∞

∞.

Our proof proceeds by bounding this t-th moment of the non-trivial spectrum. Let us stress that
as long as t = t (n) is small enough in terms of n so that the error term in Proposition 3.5.1 is neg-
ligible (t = o

(
n1/(2+2k)

)
suffices), the upper bound our technique yields for E

[∑
µ∈Spec(AΓ)\{d} µ

t
]

is tight. In particular, for large enough d, and t ≈ c log n with a suitable constant c = c (d),E
 ∑
µ∈Spec(AΓ)\{d}

µt


1/t

≈ 2
√
d− 1 + 0.84.

To see why, note that all relevant steps of the proof yield equalities or tight bounds: the second
step, which relies on Theorem 3.2.3, has only equalities so it is surely tight. In the third step, we
prove that the error term is on (1) for every w of length t (note the proof bounds the absolute value
of the error term). As mentioned above, the bound we have in the fourth step for the exponential
growth rate of

∑
w∈(X∪X−1)t:π(w)=m |Crit (w)| is, in fact, the correct value (see Theorem 3.8.5).

In the final, fifth step we can tighten our calculation to come closer to the real constant (slightly
smaller than 0.84), but we cannot improve it considerably.

What is, then, the source of this gap? It seems, therefore, that the reason the bound we
get for λ (Γ) is not tight lies in rare events that enlarge E

[
λ (Γ)

t
]
substantially. For example,

in the permutation model every vertex of Γ is isolated with probability 1
nk

, so overall there are
on average 1

nk−1 isolated vertices. Each such vertex is responsible to an additional eigenvalue d,

alongside the trivial one. These rare events alone contribute 1
nk−1 · dt to E

[
λ (Γ)

t
]
. For example,

for d = 4 (k = 2) and n1/t ≈ 1.075 as in the table in Section 3.6.2, isolated vertices contribute

about
[

4
(1.075)

]t
≈ 3.721t to E

[
λ (Γ)

t
]
, which is roughly the bound we obtain in this case.

There are other, slightly more complicated, rare events that contribute much to E
[
λ (Γ)

t
]
.

Consider, for instance, the event that when d = 4 the random graph Γ contains the subgraph
• • . If this subgraph is completed to a 4-regular graph by attaching a tree to each vertex,
its spectral radius becomes 3.5. Since this resulting graph topologically covers (the connected
component of the subgraph in) Γ, we get a non-trivial eigenvalue which is at least 3.5 (but normally
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very close to 3.5). On average, there are 2
n such subgraphs in Γ, so they contribute about 2

n · 3.5
t

to E
[
λ (Γ)

t
]
. When n1/t is small enough, this is strictly larger than

[
2
√
d− 1

]t ≈ 3.464t.
Each such small graph corresponds to a few particular subgroups of Fk. For example, the

subgraph • • corresponds to one of four subgroups, one of which is
•x1
"" ⊗ x1

{{x2oo .One therefore needs to realize which are all these ‘bad’ subgroups, show
their overall ‘probability’ is small (the average number of appearances of H ≤ Fk in Γ is ex-
actly LH,Fk), and somehow omit their contribution to E

[
λ (Γ)

t
]
. This would be relatively easy if

our analysis of E [Fw] were based on E [Fw] =
∑
M∈[〈w〉,Fk]�

X

LM,Fk , but it is based, instead, on

E [Fw] =
∑
N∈[〈w〉,Fk]�

X

R〈w〉,N (see Section 3.5). It seems that overcoming this difficulty requires

a better control over the error term: this might enable us to omit the contribution of these ‘bad’
subgroups from our bounds.
Remark 3.6.3. These ‘bad’, rare events are parallel to the notion of tangles in [Fri08].

3.7 Completing the Proof for Arbitrary Graphs
The completion of the proof of Theorem 3.1.4 is presented in this Section. We begin with the proof
of the first statement of the theorem which concerns the spectrum of the adjacency operator of Γ,
the random n-covering of the fixed base graph Ω. The variations needed in order to establish the
statement about the Markov operator are described in Section 3.7.1.

Recall that ρ = ρA (Ω) denotes the spectral radius of the adjacency operator of the covering tree.
Our goal now is to prove that for every ε > 0, λA (Γ), the largest absolute value of a non-trivial
eigenvalue of the adjacency operator AΓ, satisfies asymptotically almost surely

λA (Γ) <
√

3 · ρ+ ε. (3.7.1)

As in the proof of Theorem 3.1.1 (the beginning of Section 3.6), let n, t = t (n) be so that n > t2

and t is even. Using (3.2.2), Proposition 3.5.1, Claim 3.5.2 and Lemma 3.4.8, one obtains

E
[
λA (Γ)

t
]
≤

∑
w∈CPt(Ω)

(E [Fw]− 1) =

≤
(

1 +
t2+2 rk(Ω)

n− t2

) rk(Ω)∑
m=0

1

nm−1

∑
w∈CPmt (Ω)

|Crit (w)|

Let ε > 0. From Theorem 3.4.11 and Lemma 3.4.12 it follows now that for t even and large enough,

E
[
λA (Γ)

t
]
≤

(
1 +

t2+2 rk(Ω)

n− t2

)n · [ρ+ ε]
t

+

rk(Ω)∑
m=1

[(2m− 1) · ρ+ ε]
t

nm−1

 .
≤

(
1 +

t2+2 rk(Ω)

n− t2

)
(1 + rk (Ω)) ·

·

[
max

{
n1/t [ρ+ ε] , ρ+ ε,

3ρ+ ε

n1/t
,

5ρ+ ε(
n1/t

)2 , . . . , (2 rk (Ω)− 1) ρ+ ε(
n1/t

)rk(Ω)−1

}]t
(3.7.2)

Again, to obtain a bound we must have t ∈ θ (log n), and the best bound we can obtain in this

general case is obtained by choosing n1/t ≈
√

3 , so
(

1 + t2+2 rk(Ω)

n−t2

)1/t

→
n→∞

1, and the maximal

value inside the set in (3.7.2) is then
√

3 (ρ+ ε). Again, a standard application of Markov inequality
finishes the proof.
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3.7.1 The spectrum of the Markov operator
After establishing the first statement of Theorem 3.1.4, we want to explain how the proof should be
modified to apply to λM (Γ), the maximal absolute value of a non-trivial eigenvalue of the Markov
operator on Γ. The goal is to show that for every ε > 0

λM (Γ) <
√

3 · ρM (Ω) + ε (3.7.3)

asymptotically almost surely.
As we note in Appendix 3.B, the Markov operator is given by BΓD

−1
Γ , where BΓ is the adjacency

matrix and DΓ the diagonal matrix with the degrees of vertices in the diagonal. This is conjugate
to and thus share the same spectrum with QΓ = D

−1/2
Γ BΓD

−1/2
Γ , but the latter has the advantage

of being symmetric, so we work with it.
The (u, v) entry of QΓ equals 1√

deg(u) deg(v)
times the number of edges between u and v. For

every path w in Γ we assign a weight function f (w) as follows: if w starts at v0, then visits
v1, v2, . . . , vt−1 and ends at vt, then f (w) = 1√

deg v0·deg v1·...·deg vt−1·
√

deg vt
. It is easy to see that

[Q t
Γ ]u,v equals the sum of f (w) over all paths w of length t from u to v, and thus∑

λ∈Spec(MΓ)

λt = trMΓ =
∑

w∈CPt(Γ)

f (w) .

Moreover, note that when a path from the covering Γ projects to the base graph Ω, its weight does
not change. Using this fact, we can imitate step I from Section 3.2 to obtain, for t even,

λM (Γ)
t ≤

∑
µ∈Spec(MΓ)

µt −
∑

µ∈Spec(MΩ)

µt =
∑

w∈CPt(Γ)

f (w)−
∑

w∈CPt(Ω)

f (w) =

=
∑

w∈CPt(Ω)

f (w) [Fw,n (σ1, . . . , σk)− 1] .

The second and third steps remain the same, obtaining

E
[
λM (Γ)

t
]
≤
(

1 +
t2+2 rk(Ω)

n− t2

) rk(Ω)∑
m=0

1

nm−1

∑
w∈CPmt (Ω)

f (w) |Crit (w)| .

The next modification needs take place in the fourth step, where instead of bounding∑
w∈CPt(Ω):π(w)=m |Crit (w)|, one needs to bound

∑
w∈CPt(Ω):π(w)=m f (w) |Crit (w)|. But the exact

same proofs work if we merely replace ρA (Ω) with ρM (Ω). Theorem 3.4.11 becomes

lim sup
t→∞

 ∑
w∈CPmt (Ω)

f (w) |Crit (w)|

1/t

≤ (2m− 1) · ρM (Ω) . (3.7.4)

and likewise, Lemma 3.4.12 becomes

lim sup
t→∞

 ∑
w∈CP0

t (Ω)

f (w)

1/t

= ρM (Ω) .

Similarly, the definition of βt (N) (preceding Claim 3.4.13) should be modified to

βt (N) =
∑

w∈CPt(Ω): 〈w〉�algN

f (w)
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and in the proof of Claim 3.4.13 one should use the fact that f (w) does not change when the closed
path w is being cyclically rotated. Finally, in the proof of Proposition 3.4.14 we sometimes replace
a path with its inverse and use the symmetry of the operator. This is the reason for working with
QΓ rather than with MΓ. Also, the coefficient |V (Ω)| from the statement of the proposition needs
be replaced with some constant function of the degrees of all vertices.

Because the bounds in (3.7.4) are exactly those in Theorem 3.4.11 only with ρM (Ω) instead of
ρA (Ω), the final step of the proof (which appears in Section 3.7) also remains unchanged.

3.8 The Distribution of Primitivity Ranks
In this subsection we show that the upper bounds from Proposition 3.4.3 and Corollary 3.4.5 are the
accurate exponential growth rates of the number of words (reduced or not) and critical subgroups
with a given primitivity rank. This is not needed for the proof of the main results of this paper.
However, it does show that in the proof of Theorem 3.1.1, the fourth step of the proof, where words
and critical subgroups are counted, yields a tight bound. Thus, the origin of the gap between our
result and Friedman’s lies elsewhere (see Section 3.6.4).

First, let us recall a theorem due to the author and Wu which counts primitive words in Fk.

Theorem 3.8.1. [PW14] For every k ≥ 3, let pk (t) denote the number of primitive words of length
t in Fk. Then,

lim
t→∞

t
√
pk (t) = 2k − 3.

For F2 it is known that this exponential growth rate equals
√

3 ([Riv04]). These results show
that the portion of primitive words among all words of length t decays exponentially fast†. They
are used in the following theorem, which states that the upper bounds from Proposition 3.4.3 are
accurate.

Theorem 3.8.2. Let k ≥ 2 and m ∈ {1, 2, . . . , k}. Let ck,m (t)

ck,m (t) = |{w ∈ Fk | |w| = t, π (w) = m}| .

Then,

lim sup
t→∞

ck,m (t)
1/t

=

{√
2k − 1 2m− 1 ≤

√
2k − 1

2m− 1 2m− 1 ≥
√

2k − 1
. (3.8.1)

In fact, as the proof shows, for m ≥ 2, we can replace the lim sup with regular lim, and for
m = 1 we can replace lim supt→∞ ck,1 (t)

1/t with limt→∞ ck,1 (2t)
1/2t.

Corollary 3.8.3. A generic word in Fk has primitivity rank k.

Proof. [of Theorem 3.8.2] The r.h.s. of (3.8.1) is an upper bound for the lim sup by Proposition 3.4.3.
It remains to show that for every m ∈ {1, . . . , k}, there is some subset of words with primitivity
rank m and growth rate max

(√
2k − 1, 2m− 1

)
.

Consider first the case 2m − 1 >
√

2k − 1. Take any subset of the generators S ⊆ X of size
m and consider the subgroup H = F (S). Its core graph is a bouquet of m loops. The number of
words of length t in H is 2m · (2m− 1)

t−1. By Theorem 3.8.1, a random word in H of length t is
a.a.s. non-primitive in H, so its primitivity rank is at most m. On the other hand, the exponential
growth rate of all words with π (w) < m combined is smaller then (2m− 1) (by Proposition 3.4.3).
†That primitive words in Fk are negligible in this sense follows from the earlier results [BV02], [BMS02b, Thm

10.4] and [Shp05], where the exponential growth rate from Theorem 3.8.1 is shown to be ≤ 2k − 2− ok (1).
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Thus, a word w ∈ H of length t satisfies π (w) = m a.a.s, and we are done. In particular, we proved
that for such values of m,

lim sup
t→∞

ck,m (t)
1/t

= lim
t→∞

ck,m (t)
1/t

= 2m− 1.

Now assume that 2m − 1 ≤
√

2k − 1. Consider subgroups of the form H = 〈x1, . . . , xm−1, u〉
where u is a cyclically reduced word of length ∼ t

2 such that its first and last letters are not one of{
x±1

1 , . . . , x±1
m−1

}
. Then, ΓX (H) has the form of a bouquet of m− 1 small loops of size 1 and one

large loop of size ∼ t
2 . Now consider the word w = w (u) = x 2

1 x
2
2 . . . x

2
m−1u

2. Obviously, the growth
rate of the number of possible u’s (as a function of t) is

√
2k − 1, hence also the growth rate of the

number of different w’s. It can be shown that w is not primitive in H, using the primitivity criterion
from Theorem 3.5.6 ([Pud14, Thm 1.1]). (In fact, it follows from [PP15, Lemma 6.8] that as an
element of the free group H, w has primitivity rank m with H being the sole w-critical subgroup.)
Thus, π (w) ≤ m. In general, the primitivity rank might be strictly smaller. For example, for
m = 3 and u = x3x

2
1x

2
2x3, we have π (w) = 2 because w is not a proper power yet is not primitive

in
〈
x3, x

2
1x

2
2

〉
. However, we claim that for a generic u, the primitivity rank of w is exactly m.

Indeed, if this is not the case, then there is some m̃ < m such that the growth rate of words
w as above with π (w) = m̃ is

√
2k − 1. By the proof of Proposition 3.4.3 and especially (3.4.2) ,

it follows that most of these words (w = w (u) with π (w) = m̃) have an algebraic extension N of
rank m̃ such that the number of edges in ΓX (N) is close to t

2 . (By (3.4.2), the total number of
words of length t with an algebraic extension N of rank m̃ and δt edges in ΓX (N), for some δ < 1

2 ,
grows strictly slower than

√
2k − 1.) So almost all these words w = w (u) trace twice every edge of

some ΓX (N) of rank m̃ with roughly t
2 edges. In particular, each such w = w (u) traces twice some

topological edge in ΓX (N) of length at least 1
2(3m−1) t. This implies that there is some linear-size

two overlapping subwords of u or of u−1. But for a generic u, the longest subword appearing twice
in u or in u−1 has length of order log t.

Since the w’s we obtained are of arbitrary even length, this shows that if 2m − 1 ≤
√

2k − 1,
then

lim sup
t→∞

ck,m (t)
1/t

= lim
t→∞

ck,m (2t)
1/2t

=
√

2k − 1.

If, in addition, m ≥ 2, the same argument as above works also for w = w (u) = x 3
1 x

2
2 . . . x

2
m−1u

2

which is of arbitrary odd length. Thus, limt→∞ ck,m (t)
1/t

=
√

2k − 1.

Remark 3.8.4. It follows from the proofs of Proposition 3.4.3 and Theorem (3.8.2) that while for
2m − 1 >

√
2k − 1 the main source for words with π (w) = m is in subgroups with core graphs of

minimal size (and their conjugates), the main source for 2m − 1 <
√

2k − 1 is in subgroups with
core graphs of maximal size, namely of size roughly t

2 .
Recall that in the proof of Theorem 3.1.1 we used bounds on the number of not-necessarily-

reduced words (and their critical subgroups). Here, too, the bounds from Corollary 3.4.5 are accurate
for every value of m:

Theorem 3.8.5. Let k ≥ 2 and m ∈ {0, 1, 2, . . . , k,∞}. Let bk,m (t)

bk,m (t) =
∣∣∣{w ∈ (X ∪X−1

)t ∣∣∣π (w) = m
}∣∣∣ .

Then for m = 0 we have
lim
t→∞
t even

bk,0 (t)
1/t

= 2
√

2k − 1.

For m ∈ {1, . . . , k},

lim
t→∞

bk,m (t)
1/t

=

{
2
√

2k − 1 2m− 1 ≤
√

2k − 1

2m− 1 + 2k−1
2m−1 2m− 1 ≥

√
2k − 1

.
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Finally, for m =∞ we have

lim
t→∞

bk,∞ (t)
1/t

= 2k − 2 +
2

2k − 3
.

This shows, in particular, that as in the case of reduced words, a generic word in
(
X ∪X−1

)t
is of primitivity rank k, namely, the share of words with this property tends to 1 as t→∞. It also
shows that for every m, the growth rate of the number of words with primitivity rank m is equal
to the growth rate of the larger quantity of

∑
w∈(X∪X−1)t:π(w)=m |Crit (w)|.

Proof. For m = 0 this is (the proof of) Claim 3.4.7 (evidently, there are no odd-length words reduc-
ing to 1). For 1 ≤ m with 2m− 1 ≤

√
2k − 1 the same proof (as in Claim 3.4.7) can be followed as

long as we present at least one even-length and one odd-length words with primitivity rank m. And
indeed, as mentioned above (and see [Pud14, Lemma 6.8]), π

(
x 2

1 x
2
2 . . . x

2
m

)
= π

(
x 3

1 x
2
2 . . . x

2
m

)
= m.

If 2m− 1 >
√

2k − 1, the statement follows from the statements on reduced words (Theorems 3.8.2
and 3.8.1) and an application of the extended cogrowth formula [Pud15b] (here a bit more elabo-
rated results from [Pud15b], not mentioned in Theorem 3.4.4, are required).

The result of the last theorem are summarized in Table 3.2.

3.9 Open Questions
We end with some open problems that suggest themselves from this paper:

• Can one obtain a better control over the error term in Theorem 3.2.3? This would probably
require not ignoring the alternating signs in (3.5.8). As explained in Section 3.6.4, this may
be the seed to closing the gap in the result of Theorem 3.1.1.

• Is it possible to generalize the techniques in this paper (and even more so the ones from
[PP15]) to odd values of d? (See Remark 3.6.2).

• Can one obtain the accurate exponential growth rate of the number of not-necessarily-reduced
words with a given primitivity rank in a general base graph Ω, thus improving the statement
of Theorems 3.4.11 and 3.1.4? This may require a further extension of the cogrowth formula
that applies to non-regular graphs (there have been a few attempts in this aim, see e.g. [Bar99,
Nor04, AFH07]).

• Several classic results from the theory of expansion in graphs were generalized lately to simpli-
cial complexes of dimension greater than one (see e.g. [GW12, PRT12, Lub13]). In particular,
a parallel of Alon-Boppana Theorem is presented in [PR12]. Is there a parallel to Alon’s con-
jecture in this case? Can the methods of the current paper be extended to higher dimensions?
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Appendices

3.A Contiguity and Related Models of Random Graphs

Random d-regular graphs
In this paper, the statement of Theorem 3.1.1 is first proved for the permutation model of random
d-regular graphs with d even. We then derive Theorem 3.1.1, stated for the uniform distribution on
all d-regular simple graphs on n vertices with d even or odd, using results of Wormald [Wor99] and
Greenhill et al. [GJKW02]. These works show the contiguity (see footnote on page 80) of different
models of random regular graphs.

In particular, they describe the following model: consider dn labeled points, with d points in
each of n buckets, and take a random perfect matching of the points. Letting the buckets be vertices
and each pair represent an edge, one obtains a random d-regular graph. This model is denoted G∗n,d.
It is shown [GJKW02, Theorem 1.3] that G∗n,d is contiguous to the permutation model Pn,d (for
d even). If Γ is a random d-regular graph in G∗n,d, the event that Γ is a simple graph (with no
loops nor multiple edges) has positive probability, bounded away from 0. Moreover, within this
event, simple graphs are distributed uniformly†. Thus, for even values of d, Theorem 3.1.1 follows
from the corresponding result for the permutation model. The derivation of the odd case also uses
contiguity results, as explained in Section 3.6.2.

Random d-regular bipartite graphs
As an immediate corollary from Theorem 3.1.5 we deduced that a random d-regular bipartite graph
is “nearly Ramanujan” in the sense that besides its two trivial eigenvalues ±d, all other eigenvalues
are at most 2

√
d− 1 + 0.84 in absolute value a.a.s. (Corollary 3.1.6). Our proof works in the model

Cn,Ω (here Ω is the graph with 2 vertices and d parallel edges connecting them). However, by the
results of [Ben74], the probability that our graph has no multiple edges is bounded away from zero
(asymptotically it is e−(d2)). Thus, our result applies also to the model of d random disjoint perfect
matchings between two sets of n vertices. This model, in turn, is contiguous to the uniform model
of bipartite (vertex-labeled) d-regular simple graphs (for d ≥ 3: see [MRRW97, Section 4]‡), so our
result applies in the latter model as well.

Random coverings of a fixed graph
In Theorem 3.1.4 we consider random n-coverings of a fixed graph Ω in the model Cn,Ω, where a
uniform random permutation is generated for every edge of Ω. An equivalent model is attained
if we cover some spanning tree of Ω by n disjoint copies and then choose a random permutation
for every edge outside the tree (that is, the same automorphism-types of non-labeled graphs are
obtained with the same distribution). In fact, picking a basepoint ⊗ ∈ V (Ω), there is yet another
description for this model: The classification of n-sheeted coverings of Ω by the action of π1 (Ω,⊗)
on the fiber {⊗} × [n] above ⊗ shows that Cn,Ω is equivalent to choosing uniformly at random an
action of the free group π1 (Ω,⊗) on {⊗} × [n].

A different but related model uses the classification of connected, pointed coverings of (Ω,⊗) by
the corresponding subgroups of π1 (Ω,⊗). A random n-covering is thus generated by choosing a
†To be precise, vertex-labeled simple graphs are distributed uniformly in this event. Unlabeled simple graphs have

probability proportional to the order of their automorphism group. Then again, for d ≥ 3, this group is a.a.s. trivial,
so the result of Theorem 3.1.1 applies both to the uniform model of labeled graph and to the uniform model of
unlabeled graphs.
‡In fact, there is an explicit proof there only for d = 3. To derive the general case, one can show that a

random (d+ 1)-regular graph is contiguous to a random d-regular bipartite graph plus one edge-disjoint random
matching (following, e.g., the computations in [BM86]). We would like to thank Nick Wormald for helpful private
communications surrounding this point.
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random subgroup of index n. However, it seems that this model is contiguous to Cn,Ω if rk (Ω) ≥ 2
(note that the random covering Γ in Cn,Ω is a.a.s. connected provided that rk (Ω) ≥ 2). Indeed, the
only difference is that in the new model, the probability of every connected graph Γ from Cn,Ω is
proportional to 1

|Aut(Γ)| . When rk (Ω) ≥ 2, it seems that a.a.s. |Aut (Γ)| = 1, which would show
that our result applies to this model as well.

Finally, there is another natural model that comes to mind: given a periodic infinite tree,
namely a tree that covers some finite graph, one can consider a random (simple) graph Γ with n
vertices covered by this tree (with uniform distribution among all such graphs with n vertices, for
suitable n’s only). One can then analyze λ (Γ), the largest absolute value of an eigenvalue besides†
pf (Γ). (This generalizes the uniform model on d-regular graphs.) Occasionally, all the quotients
of some given periodic tree T cover the same finite “minimal” graph Ω. Interestingly, Lubotzky
and Nagnibeda [LN98] showed that there exist such T ’s with a minimal quotient Ω which is not
Ramanujan (in the sense that λ (Ω) is strictly larger than ρ (T ), the spectral radius of T ). Since all
the quotients of T inherit the eigenvalues of Ω, their λ (·) is also bounded away from ρ (T ) (from
above). Hence, the corresponding version of Conjecture 3.1.3 is false in this general setting.

3.B Spectral Expansion of Non-Regular Graphs
In this section we provide some background on the theory of expansion of irregular graphs, describing
how spectral expansion is related to other measurements of expansion (combinatorial expansion,
random walks and mixing). This further motivates the claim that Theorem 3.1.4 shows that if the
base graph Ω is a good (nearly optimal) expander, then a.a.s. so are its random coverings. We
would like to thank Ori Parzanchevski for his valuable assistance in writing this appendix.

The spectral expansion of a (non-regular) graph Γ onm vertices is measured by some function on
its spectrum, and most commonly by the spectral gap: the difference between the largest eigenvalue
and the second largest. As mentioned above, it is not apriori clear which operator best describes
in spectral terms the properties of the graph. There are three main candidates (see, e.g. [GW12]),
all of which are bounded‡, self-adjoint operators and so have real spectrum:

(1) The adjacency operator AΓ on
(
`2 (V (Γ)) , 1

)§:
(AΓf)(v) =

∑
w∼v

f (w)

If Γ is finite this operator is represented in the standard basis by the adjacency matrix, and
its spectral radius is the Perron-Frobenius eigenvalue pf (Γ). The spectrum in this case is

pf (Γ) = λ1 ≥ λ2 ≥ . . . ≥ λm ≥ −pf (Γ) ,

and the spectral gap is pf (Γ) − λ (Γ), where λ (Γ) = max {λ2,−λn}¶. The spectrum of AΓ

was studied in various works, for instance [Gre95, LN98, Fri03, LP10].

(2) The averaging Markov operator MΓ on
(
`2 (V (Γ)) ,deg (·)

)‖:
(MΓf)(v) =

1

deg (v)

∑
w∼v

f (w)

†Leighton showed that two finite graphs with a common covering share also some common finite covering [Lei82].
It follows that all finite quotients of the same tree share the same Perron-Frobenius eigenvalue.
‡All operators considered here are bounded provided that the degree of vertices in Γ is bounded. This is the case

in all the graphs considered in this paper.
§Here,

(
`2 (V (Γ)) , 1

)
stands for `2-functions on the set of vertices V (Γ) with the standard inner product:

〈f, g〉 =
∑

v f (v) g (v); In the summation
∑

w∼v , each vertex w is repeated with multiplicity equal to the number of
edges between v and w.
¶Occasionally, the spectral gap is taken to be pf (Γ)− λ2 (Γ).
‖Here,

(
`2 (V (Γ)) , deg (·)

)
stands for l2-functions on the set of vertices V (Γ) with the inner product: 〈f, g〉 =∑

v f (v) g (v) deg (v).
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This operator is given by D−1
Γ AΓ, and its spectrum is contained in [−1, 1]. The eigenvalue 1

corresponds to locally-constant functions when Γ is finite, and in this case the spectrum is

1 = µ1 ≥ µ2 ≥ . . . ≥ µm ≥ −1.

The spectral gap is then 1−µ (Γ) here µ (Γ) = max {µ2,−µm}. Up to a possible affine trans-
formation, the spectrum ofMΓ is the same as the spectrum of the simple random walk operator
(AΓD

−1
Γ ) or of one of the normalized Laplacian operators (I−AΓD

−1
Γ or I−D−1/2

Γ AΓD
−1/2
Γ ).

This spectrum is considered for example in [Sin93, Chu97, GZ99].

(3) The Laplacian operator ∆+
Γ on

(
`2 (V (Γ)) , 1

)
:(

∆+
Γ f
)

(v) = deg (v) f (v)−
∑
w∼v

f (w)

The Laplacian equals DΓ−AΓ, where DΓ is the diagonal operator (DΓf) (v) = deg (v) · f (v).
The entire spectrum is non-negative, with 0 corresponding to locally-constant functions when
Γ is finite. In the finite case, the spectrum is

0 = ν1 ≤ ν2 ≤ . . . ≤ νm,

the spectral gap being ν2 − ν1 = ν2. The Laplacian operator is studied e.g. in [AM85].

For a regular graph Γ, all different operators are identical up to an affine shift. However, in the
general case there is no direct connection between the three different spectra. In this paper we
consider the spectra of AΓ and of MΓ. At this point we do not know how to extend our results to
the Laplacian operator ∆+

Γ .
The spectrum of all three operators is closely related to different notions of expansion in graphs.

The adjacency operator, for example, has the following version of the expander mixing lemma: for
every two subsets S, T ⊆ V (Γ) (not necessarily disjoint), one has

|E (S, T )− pf (Γ) volpf (S) volpf (T )| ≤ λ (Γ)

√
|S| · |T |
m

,

where volpf (S) = 〈1S , fpf (Γ)〉 and fpf (Γ) is the (normalized) Perron-Frobenius eigenfunction. This
is particularly useful in the Cn,Ω model since the fpf (Γ) is easily obtained from the Perron-Frobenius
eigenfunction of Ω by

fpf (Γ) =
1√
n
fpf (Ω) ◦ π.

In the d-regular case, this amounts to the usual mixing lemma:
∣∣∣E (S, T )− d |S|·|T |m

∣∣∣ ≤
λ (Γ)

√
|S| · |T |. If one takes T = V \ S, one can attain a bound on the Cheeger constant of Γ

(see (3.B.1)).
As for the averaging Markov operator, it is standard that µ (Γ) controls the speed in which a

random walk converges to the stationary distribution. In addition, if one defines deg (S) to denote
the sum of degrees of the vertices in S, then∣∣∣∣E (S, T )− deg (S) deg (T )

2 |E (Γ)|

∣∣∣∣ ≤ µ (Γ)
√

deg (S) deg (T ).

Moreover, consider the conductance of Γ

φ (Γ) = min
∅6=S⊆V

deg(S)≤ deg(V )
2

|E (S, V \ S)|
deg (S)

.
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Then the following version of the Cheeger inequality holds [Sin93, Lemmas 2.4, 2.6]:

φ2 (Γ)

2
≤ 1− µ2 ≤ 2φ (Γ) .

Finally, the spectrum of the Laplacian operator is related to the standard Cheeger Constant of
Γ, defined as

h (Γ) = min
∅6=S⊆V

|S|≤ |V |
2

|E (S, V \ S)|
|S|

. (3.B.1)

By the so-called “discrete Cheeger inequality” [AM85]:

h2 (Γ)

2k
≤ ν2 ≤ 2h (Γ)

with k being the largest degree of a vertex. In addition, one has a variation on the mixing lemma
for ∆+

Γ as well [PRT12, Thm 1.4].
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Abstract
In the free group Fk, an element is said to be primitive if it belongs to a free generating set. In this
paper, we describe what a generic primitive element looks like. We prove that up to conjugation, a
random primitive word of length N contains one of the letters exactly once asymptotically almost
surely (as N →∞).

This also solves a question from the list ‘Open problems in combinatorial group theory’
[Baumslag-Myasnikov-Shpilrain 02’]. Let pk,N be the number of primitive words of length N
in Fk. We show that for k ≥ 3, the exponential growth rate of pk,N is 2k − 3. Our proof also
works for giving the exact growth rate of the larger class of elements belonging to a proper free factor.
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4.1 Introduction
Let Fk be the free group on k generators X = {x1, . . . , xk} (k ≥ 2). Elements in Fk are represented
by reduced words in the alphabet X±1 =

{
x±1

1, x
±1
2, · · · , x

±1
k

}
. A word w ∈ Fk is called primitive

if it belongs to some free generating set. We let Pk,N denote the set of primitive elements of word Pk,N
length N in Fk. It is known (see, for example, [BMS02b]) that as N → ∞ the set of primitive
words is exponentially small in Fk. Namely, the exponential growth rate ρk

ρk
def
= lim sup

N→∞

N

√
|Pk,N |

is strictly smaller than that of the whole free group Fk, which is 2k−1. As observed in [Riv04], ρ2 =√
3, which gives the only case where the growth rate is known. For k ≥ 3, various upper bounds on

ρk have been established [BV02, BMS02b, Shp05]. The best upper bound to date is due to Shpilrain
[Shp05] who showed ρk ≤ λk, where λk is the greatest real root of λ

(
λ2 − 1

)
(λ− (2k − 2)) + 1.

Here λk < 2k − 2 for each k, but λk approaches 2k − 2 in the limit. A simple lower bound of
ρk ≥ 2k−3 stems from the fact that every word of the form x1w(x2, x3, · · · , xk), where w is a word
of length N −1 in

{
x±1

2 , . . . , x±1
k

}
, forms a free generating set together with {x2, x3, · · · , xk}, hence

is primitive.
The exact value of ρk is the content of one of the open questions, attributed to M. Wicks, in

[BMS02a, Problem F17] (see also the active website [BMS, Problem F19]). Here we answer the
question and show the following tight result:

Theorem 4.1.1. For all k ≥ 3,

ρk = lim
N→∞

N

√
|Pk,N | = 2k − 3.

Moreover, there are positive constants ck and Ck such that

ck ·N · (2k − 3)
N ≤ |Pk,N | ≤ Ck ·N · (2k − 3)

N
.

Remark 4.1.2. The second statement of Theorem 4.1.1 can be sharpened to |Pk,N | = (1 + oN (1)) ·
Ĉk · N · (2k − 3)

N for a specific constant Ĉk which can be computed. This can be inferred from
Theorem 4.1.3 and the analysis in Proposition 4.3.1 below.

The above theorem follows from an analysis of conjugacy classes of primitives in free groups. A
word w = a1a2 · · · aN is called cyclically reduced if a1 6= a−1

N . Such words, up to a cyclic permutation
of letters, uniquely represent conjugacy classes in Fk. Hence for w ∈ Fk we call the conjugacy class
[w] the cyclic word associated with w. Let the cyclic length of w, denoted by |w|c, be the length of [w]

|w|cthe cyclically reduced representatives of [w].
There is a stark difference between the behavior of P2,N and that of Pk,N when k ≥ 3: whereas

in F2 ‘most’ long primitives are conjugates of short ones, it turns out that for higher rank free
groups the generic primitive word is nearly cyclically-reduced. In particular, the growth of the set
of primitive elements is the same as that of primitive conjugacy classes (cyclic words) with respect
to cyclic length. (This is the content of Proposition 4.3.1 below.)

Consider the set Ck,N
Ck,N = {[w] |w ∈ Fk is primitive and |w|c = N} .

We compare the size of Ck,N with its subset of cyclic-words in which some letter x ∈ X appears
exactly once (either as itself or its inverse), namely the set Lk,N

Lk,N = {[w] | somex ∈ X appears in w exactly once} ⊆ Ck,N .
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The size of Lk,N can be easily approximated as† |Lk,N | ≈ 2k (2k − 2) (2k − 3)
N−2

. So that

lim sup
N→∞

N

√
|Lk,N | = 2k − 3.

Theorem 4.1.3. For k ≥ 2

lim sup
N→∞

N

√
|Ck,N | = 2k − 3.

For k ≥ 3,
lim sup
N→∞

N

√
|Ck,N \ Lk,N | < 2k − 3.

Moreover,

|Ck,N | = (1 + oN (1)) · 2k (2k − 2)

(2k − 3)
2 (2k − 3)

N
.

The second statement of theorem 4.1.3 means that except for an exponentially small set, all
primitive cyclic-words contain one of the letters exactly once. When k ≥ 3 the first and last
statements are an immediate consequence of the second one and the approximated size of Lk,N as
given above.

Note that the first statement of theorem 4.1.3 is also valid for k = 2: the exponential growth
rate of conjugacy classes of primitives in F2 is 1. This special case was already shown in [MS03,
Prop 1.4]: it turns out the size of C2,N is exactly 4ϕ (n), where ϕ (·) is the Euler function. Whereas
ρ2 =

√
3 is strictly larger than 1, for all k ≥ 3 the growth of primitive cyclic-words is the same as

the growth of primitive words.
A natural question along the same vein would be to estimate the growth of the larger set Sk,N Sk,N

consisting of words in Fk which are contained in a proper free factor (clearly, Pk,N ⊆ Sk,N ). Our
proof of Theorem 4.1.1 also applies to this question and yields that Sk,N has the same exponential
growth rate as Pk,N :

Corollary 4.1.4. For k ≥ 3 we have

lim
N→∞

N

√
|Sk,N | = lim

N→∞
N

√
|Sk,N \ Pk,N | = 2k − 3.

We show that limN→∞
N
√
|Sk,N | ≤ 2k − 3 in Section 4.3.4. This requires only a small variation

on the proof of Theorem 4.1.1. The lower bound is, again, easier, and follows immediately from
the fact that primitives are exponentially negligible in Fk (this fact follows from Theorem 4.1.1 but
also, as mentioned above, from previous results concerning the growth of primitives). Indeed, this
fact shows that most words in any size k − 1 subset of the letters are non-primitive. We conclude
that the number of non-primitive words in Sk,N grows at least as fast as (2k − 3)

N . Thus Sk,N is
indeed larger than Pk,N in a non-negligible manner, namely,

lim
N→∞

N

√
|Sk,N \ Pk,N | ≥ 2k − 3 = lim

N→∞
N

√
|Pk,N |.

Remark 4.1.5. For a different proof showing that limN→∞
N
√
|Sk,N \ Pk,N | = 2k − 3, see

[Pud15a, Thm 8.2] (in the terminology therein, every word in Sk,N \ Pk,N has primitivity rank
≤ k − 1). In the techniques of that paper (especially [Pud15a, Prop. 4.3]), it can be shown that
a generic word in Sk,N \Pk,N is, up to conjugation, a word in some (k − 1)-subset of the letters of X.

†This expression is very close to the truth, except that we double count words in which two or more letters appear
exactly once. The exact cardinality of Lk,N can be obtained by an application of the inclusion-exclusion formula.
Note that the share of doubly-counted words is exponentially negligible in Lk,N : it is of exponential order (2k − 5)N .
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Our proofs rely on a thorough analysis of the Whitehead algorithm to detect primitive elements.
To a lesser extent, we also use a characterization of primitive elements based on the distribution
they induce on finite groups. In Section 4.2 we give some background on Whitehead algorithm
and describe the graphs used in it, called Whitehead graphs. We then divide the set of primitives
into finitely many classes according to certain properties of their Whitehead graphs. Most of these
classes turn out to be of negligible size, but we postpone the somewhat technical proof of this
fact to Section 4.4. In Section 4.3 we give some background on the aforementioned “statistical”
characterization of primitives, estimate the size of the remaining classes of primitives and complete
the proofs of Theorems 4.1.1, 4.1.3 and of Corollary 4.1.4. We end with some open questions in
Section 4.5.

Acknowledgements
We would like to thank Tsachik Gelander for bringing our attention to the question. We thank
Warren Dicks, Ilya Kapovich, Nati Linial, Shahar Mozes and Alexey Talambutsa for beneficial
comments. We also thank the anonymous referee for his valuable comments. The second author
would like to thank the Hebrew University for providing hospitality and stimulating mathematical
environment during which part of this work was conducted.

4.2 Whitehead Graphs
In [Whi36a], Whitehead introduced the first algorithm to detect primitive words in Fk (and more
generally subsets of bases of Fk). (Subsequently, in [Whi36b], he solved a more general question:
Given two words w1, w2 ∈ Fk, when does there exist an automorphism φ ∈ Aut (Fk) mapping w1

to w2? Note that w1 is primitive if and only if there is an automorphism mapping it to a single-
letter word.) Along the years it has become the most standard way of detecting primitive elements.
Stallings generalized the algorithm in order to detect words belonging to free factors of Fk [Sta99].
For other algorithms to detect primitives see, e.g., [LS70, Chapter I.2] or [Pud14].

The algorithm is based on the following construction: Let Mk be a 3-manifold which is the
connected sum of k copies of S1 × S2. Clearly, we have π1(Mk) = Fk. Fix a set of k disjoint
2-spheres S1, S2, · · · , Sk, one corresponding to each summand, so that M̂k = Mk\

⋃k
i=1 Si is simply

connected with 2k boundary components S+
1 , S

−
1 , S

+
2 , · · · , S

−
k . The manifold Mk may be visualized

as the double of a handlebody Hk with {Si} being the double of a cut system of Hk (a cut system
is a set of disjoint discs that cuts the handlebody into a ball). For every w ∈ Fk = π1(Mk), the
cyclic word [w] can be realized as a simple curve inMk. Conversely, given any oriented curve inMk

one can write down a cyclic word in Fk by reading off the sequence of spheres the curve intersects,
with signs. Hence we get a bijective correspondence between cyclic words [w] and homotopy classes
of oriented simple curves in Mk.

Given any proper non-empty subset U ⊂
{
S+

1 , S
−
1 , · · · , S

−
k

}
, there is an embedded 2-sphere SU

in M̂k separating the boundary components in U from those not in U . For every v ∈ X±1 denote
by Sv the corresponding boundary component of M̂ (so Sxi = S+

i and Sx−1
i

= S−i ). If there exists
some v = x εj ∈ X±1 such that Sv /∈ U and Sv−1 ∈ U then SU is an essential non-separating sphere†

in M̂k ∪Sj . The Whitehead automorphism ϕ(U,v) of Fk is then defined by replacing the sphere
Sj by SU and writing each cyclic word as the intersection pattern of the corresponding curve with
the new set of spheres. In the example illustrated above, S+

3 /∈ U and S−3 ∈ U hence we may replace
S3 with SU . Writing down ϕ(U,v) formally one gets:

• ϕ(U,v)(v) = v ; ϕ(U,v)(v
−1) = v−1;

†Namely, a non-contractible embedding of a sphere which does not separate M̂k ∪Sj into two connected compo-
nents.
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S1

S2 S3

S4

+

-

+ - +
-

+

-

SU -
+

Figure 4.2.1: Spheres Si in Hk and SU with U =
{
S+

1 , S
−
1 , S

+
2 , S

−
3

}
• for u 6= v,

– ϕ(U,v)(u) = u if Su, Su−1 /∈ U ;
– ϕ(U,v)(u) = vuv−1 if Su, Su−1 ∈ U ;
– ϕ(U,v)(u) = vu and ϕ(U,v)(u

−1) = uv−1 if Su ∈ U , Su−1 /∈ U ;

By forgetting the order in which the spheres are intersected and looking only at the arcs connecting
boundary components in M̂k one gets a finite graph with 2k vertices labeledX±1 =

{
x±1

1 , · · · , x±1
k

}
.

This is called the Whitehead graph of the cyclic word [w], denoted by Γ(w). For example, Γ (w) Γ (w)
for w = x1x

2
2 x
−1
3 x−2

2 ∈ F3 is:

x1 x−1
1

x2 x−1
2

x3 x−1
3

Going from manifolds to graphs, to every (U , v) defined as above corresponds a partition of the
vertices by Z = {xu |Su ∈ U} and Y = X±1\(Z ∪ {v}). Denote φY,Z,v = ϕ(U,v), and notice that φY,Z,v
X±1 = Y q Z q {v}. The following theorem, part of the foundation for Whitehead’s algorithm,
plays a central role in our argument:

Theorem 4.2.1. [Sta99, Thm 2.4] If w is contained in a proper free factor of Fk, then Γ (w) has
a cut vertex.

Namely, there exists a vertex v such that Γ(w)\ {v} is disconnected. This includes the case
where Γ (w) is itself disconnected. Note that, in particular, all primitive elements are contained in
a rank one free factor, hence have Whitehead graphs with cut vertices.

Note that the cyclic length |w|c of w is the number of edges in the Whitehead graph correspond-
ing to a cyclically reduced representative. A natural candidate for a length reducing Whitehead
automorphism is therefore to replace the sphere corresponding to the cut vertex v by one that
separates a connected component of Γ(w)\ {v}. Indeed, we have the following:

Proposition 4.2.2. [Sta99, Prop 2.3] Let v be a cut-vertex of Γ (w), and let Y and Z be a non-
trivial partition of the remaining vertices so that there are no edges between Y and Z, and v−1 ∈ Z.
Then

|φY,Z,v (w)|c = |w|c − E (Y, v) .
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Here E (Y, v) is the number of edges connecting v to Y . For instance, for w = x1x
2
2 x
−1
3 x−2

2

as above, there are two possible cut-vertices: x2 and x−1
2 . If one chooses v = x2 and Z ={

x1, x
−1
1 , x−1

2

}
, then [φY,Z,v (w)] = [x2x1x2x

−1
3 x−2

2 ] = [x1x2x
−1
3 x−1

2 ] has cyclic length 4.
Moreover, it is easy to see that if w is contained in a proper free factor then it is almost always

possible to find a triplet (Y,Z, v) as in Proposition 4.2.2 with E (Y, v) > 0: the only exceptions are
|w|c ≤ 1 or when w is a word in a proper subset of the letters, say x1, . . . , xj (j < k), and it does
not belong to a proper free factor in F (x1, . . . , xj). This is the crux of the Whitehead algorithm to
detect primitives: since the second case cannot occur for primitive elements with |w|c > 1, if w is
primitive one can always apply a sequence of Whitehead automorphisms according to cut vertices
in the Whitehead graph, until it becomes a (conjugate of a) single-letter word.

Our proof of Theorem 4.1.1 (and of Corollary 4.1.4) relies on a rigorous analysis of the possible
triplets (Y, Z, v). We say that a triplet (Y, Z, v) is valid for the cyclic word [w] if it satisfies the
statement in Proposition 4.2.2 (namely, if v is a cut-vertex of Γ (w), Y and Z are a non-trivial
partition of the remaining vertices with E (Y, Z) = 0, and v−1 ∈ Z). Let AY,Z,v denote the set of
all cyclic words having (Y, Z, v) as a valid triplet; namely AY,Z,v

AY,Z,v = {[w] | (Y,Z, v) is a valid triplet for w}

and ANY,Z,v

ANY,Z,v = {[w] ∈ AY,Z,v | |w|c = N} .

By Theorem 4.2.1,
Ck,N ⊆

⋃
(Y,Z,v)

ANY,Z,v

taking the union over all possible triplets partitioning X±1 (with Y,Z 6= ∅ and v−1 ∈ Z).
We proceed by bounding the growth of primitives in AY,Z,v for each of the finitely many triplets

(Y,Z, v). Intuitively, the cut vertex and partition will restrict the number of possible ways to
connect vertices, hence result in a smaller growth rate. In the extreme case, if both sets Y and Z
contain roughly half of the elements of X±1, namely |Y | ≈ k and |Z| ≈ k; then from any vertex
in Y one can connect only to another vertex in Y ∪ {v}, resulting in ∼ k choices. If we ignore
the possibility of going through v, then the possible number of such cyclic words would be roughly
only kN , which amounts to an exponential growth rate of k (note that this applies to the whole
set AY,Z,v and not only to the primitives in it). Hence we should expect AY,Z,v to grow faster for
triplets (Y, Z, v) where one of Y,Z is almost all of X±1.

Indeed it turns out that AY,Z,v is negligible unless one of Y,Z is very small:

Proposition 4.2.3. Every triplet (Y, Z, v) satisfies

lim sup
N→∞

N

√∣∣∣ANY,Z,v∣∣∣ < 2k − 3,

unless min(|Y |, |Z|) = 1 or Y =
{
x, x−1

}
for some letter x.

The proof of this proposition involves some careful analysis in various cases, and we postpone
it to Section 4.4. In Section 4.3 we assume this proposition, give the precise growth rates for the
remaining essential partitions and obtain our theorems.

4.3 Proof of Theorems
In this section we complete the proofs of Theorems 4.1.1 and 4.1.3 and of Corollary 4.1.4.
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4.3.1 Primitives and cyclic primitives
Here, we present the observation that, unlike in F2 , for k ≥ 3 it suffices to count conjugacy classes
containing primitive words.

Proposition 4.3.1. For k ≥ 3, if |Ck,N | ≤ C · (2k− 3)N for some C > 0 as follows from Theorem
4.1.3, then

|Pk,N | ≤ D ·N · (2k − 3)N

for some D > 0.

Proof. Each w ∈ Pk,N is of the form
uw′u−1

where w′ ∈ Fk is cyclically reduced and primitive. Let ` be the word length of u, so that 0 ≤ ` ≤ N−1
2

and |w|c = |w′|c = N − 2`.
Since w′ is primitive, in particular, it is not a proper power, hence each of its cyclic shifts is

different. Namely, the cyclic word [w′] is represented by exactly N − 2` distinct cyclically reduced
words. On the other hand, u can be any word of length ` as long as the first letter of u−1 and the
last letter of u do not cancel out their adjacent letters in w′. There are (2k − 1)

`−1
(2k − 2) such

words. Therefore,

|Pk,N | =

bN−1
2 c∑
`=0

(N − 2`) |Ck,N−2`| (2k − 2) (2k − 1)
`−1

≤ N ·
bN−1

2 c∑
`=0

|Ck,N−2`| (2k − 1)
`

≤ N ·
bN−1

2 c∑
`=0

C · (2k − 3)
N−2`

(2k − 1)
`

= N · C · (2k − 3)
N

bN−1
2 c∑
`=0

(
2k − 1

(2k − 3)
2

)`
.

For k ≥ 3,
(

2k−1
(2k−3)2

)
≤ 5

9 < 1. Bounding the geometric series, we deduce that |Pk,N | ≤ D · N ·

(2k − 3)
N .

The proposition shows that Theorem 4.1.1 follows from Theorem 4.1.3: For the lower bound in
Theorem 4.1.1 recall that the number of cyclically reduced primitive words of length N with one of
the letters appearing exactly once is

N · |Lk,N | = (1− oN (1)) ·N · 2k · (2k − 2) · (2k − 3)
N−2

.

To complete the proofs of Theorems 4.1.1 and 4.1.3, it remains to bound from above the growth
of cyclic primitives. Before starting the proof we present in Section 4.3.2 a couple of useful facts
which will be used in the sequel.

4.3.2 Ingredients for bounding cyclic primitives
First, we give some background on a line of thought regarding primitive words which is different from
Whitehead’s and leads to a measure-theoretic characterization of primitives. Let w = x ε1i1 x

ε2
i2
· · ·x εNiN

be a word in Fk. For every group G, w induces a word map from the Cartesian product Gk to G,
by substitutions:

w : (g1, . . . , gk) 7→ g ε1i1 g
ε2
i2
· · · g εNiN .
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When G is finite (compact) and Gk is given the uniform (Haar, resp.) measure, the push forward by
w of this measure results in a new measure on G, which we denote by Gw. It is an easy observation Gw
that if w1 and w2 are in the same AutFk-orbit of Fk, then they induce the same measure on every
finite or compact group, namely Gw1 = Gw2 (see [PP15, Observation 1.2]). In particular, if w is
primitive, then Gw = Gx1 which is clearly the uniform (Haar) measure on G.

It is natural to ask whether the converse also holds. Namely, if Gw1
= Gw2

for every finite
(compact) group, does it imply that w1 and w2 are in the same AutFk-orbit? This conjecture
is still wide open. However, the special case concerning primitives was settled in [PP15]. It is
shown there that if Gw is uniform for every finite group G, then w is primitive. In the heart of the
argument in [PP15] lies a result about the distributions induced by words on the symmetric groups
Sn. We re-formulate it as follows:

Theorem 4.3.2. [PP15, Thm 1.7] Let w ∈ Fk. For every n ∈ N let σw,n be a random permutation
in Sn distributed according to (Sn)w. Then w is non-primitive if and only if there exists some n0

such that for all n > n0 we have

E(|Fix (σw,n)|) > 1,

where Fix (σ) denotes the set of fixed points of σ.

Note that for w primitive, σw,n is a uniformly distributed random permutation in Sn, hence the
expected number of fixed points is exactly 1. From this theorem we derive the following fact which
will be useful in the argument. We say that w1 and w2 are letter disjoint words if their reduced
forms use disjoint subsets of the alphabet X.

Proposition 4.3.3. Let w1, w2 ∈ Fk be letter disjoint words. If the concatenation w1w2 is primi-
tive, then at least one of w1 or w2 is primitive.

Proof. Since the push-forward measure by w is a class function, the probability Pr(σw,n(i) = i)
is independent of i (here i ∈ {1, . . . , n}), and likewise, Pr(σw,n(i) = j) is independent of i and j
as long as i 6= j. Thus, E(|Fix(σw,n)|) > 1 if and only if Pr(σw,n(1) = 1) > 1

n . Let p(w, n) =
Pr(σw,n(1) = 1).

Since w1 and w2 are letter disjoint, they induce independent push-forward measures on Sn. If
both words are non-primitive then for large enough n, both p(w1, n) > 1

n and p(w2, n) > 1
n , which

implies

p (w1w2, n) = Pr(σw1w2,n(1) = 1)

=

n∑
j=1

Pr(σw1,n(1) = j) · Pr(σw2,n(j) = 1)

= p(w1, n)p(w2, n) + (n− 1)
1− p(w1, n)

n− 1
· 1− p(w2, n)

n− 1

=
1

n
+

n

n− 1
·
(
p(w1, n)− 1

n

)
·
(
p(w2, n)− 1

n

)
>

1

n
.

This contradicts the assumption that w1w2 is primitive.

Recall that by Proposition 4.2.3 primitives from AY,Z,v for most triplets (Y,Z, v) are negligible.
We make some simple observations about the remaining three types of triplets:

• If |Y | = 1, say Y = {a}, and w ∈ AY,Z,v then each appearance of a is followed by v−1 and
each appearance of a−1 is preceded by v. It is not hard to see that the growth rate here is

at least
√

(2k − 3)
2

+ 1 > 2k − 3. Indeed, consider the (2k − 2) (2k − 3) ordered reduced
pairs of letters not containing a±1 and, in addition, the pair av−1. Each one of these pairs
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can be followed by one of (2k − 3) (2k − 3) + 1 of these pairs, which shows the lower bound.
Since every possible pair of letters is followed by one of less than (2k − 1)

2 possible pairs,
the growth rate is strictly less than 2k − 1. In fact, the exact growth rate is the largest
(real) root of λ5−(2k − 3)λ4−3λ3+(2k − 3)λ2+3λ+(2k − 3), which tends to 2k−3 as k →∞.

• If Y =
{
a, a−1

}
then every instance of a±1 in a word from AY,Z,v is in the form . . . vamv−1 . . .

for some 0 6= m ∈ Z. The exponential growth rate here is the largest (real) root of
λ4 − (2k − 2)λ3 + (2k − 4)λ2 + (2k − 2)λ − 6k + 11, which again approaches 2k − 3 from
above as k → ∞. Again, looking at pairs of letters one can easily infer the growth rate is
strictly less than 2k − 1.

• Finally, if |Z| = 1, namely Z =
{
v−1

}
, then v−1 is followed only by v−1, and v is preceded only

by v. So AY,Z,v consists of all cyclic words not containing v±1 (together with {vm |m ∈ Z}).
Hence, the growth rate is exactly (2k − 3).

In particular, this analysis gives rise to the following naive bound:

Corollary 4.3.4. Let k ≥ 2. Every triplet (Y,Z, v) satisfies

lim sup
N→∞

N

√∣∣∣ANY,Z,v∣∣∣ < 2k − 1.

4.3.3 Proof of Theorem 4.1.3
The moral of the following proof will be that even when the set AY,Z,v has exponential growth
rate larger than 2k − 3, every cyclic primitive [w] ∈ AY,Z,v can be shortened ‘fast enough’ by the
corresponding Whitehead automorphism φY,Z,v. Recall that the second statement of Theorem 4.1.3
is that for k ≥ 3,

lim sup
N→∞

N

√
|Ck,N \ Lk,N | < 2k − 3. (4.3.1)

As mentioned in Section 4.1, when k ≥ 3 the other two statements of the theorem follow from
(4.3.1), and for k = 2, the relevant statement (lim supN→∞

N
√
|C2,N | = 1) is already known [MS03,

Prop. 1.4]. Therefore, we shall prove (4.3.1) by induction on k, assuming only that k ≥ 3 and that
for k − 1 we have

lim sup
N→∞

N

√
|Ck−1,N | = 2k − 5.

Assume then that k ≥ 3, and let Mk,N ⊆ Ck,N\Lk,N be the set of cyclic primitive words such Mk,N

that either

• [w] ∈ ANY,Z,v with Y = {x} and x appearing at least 4 times in [w], or

• [w] ∈ ANY,Z,v with Y =
{
x, x−1

}
and [w] containing at least 2 instances of vxmv−1 (for any

0 6= m ∈ Z).

Let M c
k,N denote the complement of Mk,N inside Ck,N\Lk,N . We proceed by showing that the M c

k,N

exponential growth rates of |Mk,N | and |M c
k,N | are both strictly less than 2k − 3.

Lemma 4.3.5.

lim sup
N→∞

N

√∣∣∣M c
k,N

∣∣∣ < 2k − 3.
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Proof. In light of Proposition 4.2.3 we only need to consider cyclic primitive words [w] ∈M c
k,N with

a Whitehead partition (Y,Z, v) where min {|Y |, |Z|} = 1 or Y = {x, x−1}.
If |Z| = 1 then by definition Z = {v−1}, and every cyclic word in AY,Z,v is either a power of v

or a word in the alphabet X±1 \
{
v±1

}
. The set {vn} is clearly negligible. In the latter case, [w]

is primitive in the letters X \
{
v±1

}
. It follows from the induction hypothesis that the exponential

growth rate of this set of cyclic primitives is 2k − 5 < 2k − 3 .
Assume next that Y = {x, x−1} and [w] has exactly one instance of vxmv−1 for some |m| ≥ 2

(the case |m| = 1 is impossible asM c
k,N ∩Lk,N = ∅). Pick a representative of [w] of the form [xmw′],

where w′ has length < N and does not contain the letter x. By Proposition 4.3.3, w′ is primitive
in Fk−1 hence this set has exponential growth rate 2k − 5.

The remaining case is Y = {x} and x±1 appearing exactly twice or thrice in [w] (again, if x±1

appears only once, then [w] belongs to Lk,N ). Consider first the case where x±1 appears exactly
twice:
We can write [w] in the form [

(u1xu2)
±1
w1 (u1xu2)

±1
w2

]
,

where u1, u2 are maximal sequence of letters preceding and following both instances of x±1, respec-
tively.

Let `i be the length of ui. Up to a factor of N3, which is negligible in terms of exponential
growth rates, we know `1, `2, |w1| and |w2|. There are about (2k − 3)

`1+`2 options for the values
of u1 and u2. The automorphism ψ ∈ Aut (Fk) which maps x 7→ u−1

1 xu−1
2 and leaves unchanged

the remaining letters, maps [w] to the primitive cyclic word

[w′] =
[
x±1w1x

±1w2

]
.

Let N ′ = N − 2 (`1 + `2) be the length of w′. We claim that the number of possible w′ is bounded
above by C · (2k − 3− ε)N

′
for some C, ε > 0, ε small. This will suffice as the number of possible

[w] is then bounded by some polynomial in N times

(2k − 3− ε)N
′
· (2k − 3)

`1+`2 = (2k − 3− ε)N−2`1−2`2 ·
√

2k − 3
2`1+2`2 ≤ (2k − 3− ε)N .

Firstly, if one of w1 or w2 is trivial, then as in the preceding case, the number of options for [w′]

is at most some constant times (2k − 5)
N ′ . So, assume w1, w2 6= 1. The word [w′] belongs to

some AN
′

Y ′,Z′,v′ . By the maximality of u1 and u2, each of the vertices x and x−1 in the Whitehead
graph Γ (w′) has at least two neighbors in X±1 \

{
x, x−1

}
. Hence, Y ′ 6= {x} ,

{
x−1

}
,
{
x, x−1

}
.

Also, it is not possible that v′ = x±1 and Z ′ =
{

(v′)
−1
}
, since cyclic words corresponding to this

triplet are either words in X \ {v′} or powers of v′. Hence, the triplet (Y ′, Z ′, v′) induces some
non-trivial partition of (X \ {x})±1 (both Y ′ and Z ′ intersect (X \ {x})±1). Hence, w1 and w2 are
words (albeit not cyclic) corresponding to some non-trivial triplet partitioning (X \ {x})±1. But by
Corollary 4.3.4, the exponential growth of such subsets is strictly less than 2 (k − 1)− 1 = 2k − 3.

Finally, consider the case where Y = {x} and x±1 appears exactly three times in [w]:
The proof that this subset grows slower than (2k − 3)

N is very similar to the previous case. This
time, each such word is of the form[

(u1xu2)
±1
w1 (u1xu2)

±1
w2 (u1xu2)

±1
w3

]
with u1, u2 maximal. It can be shortened via an automorphism to

[w′] =
[
x±1w1x

±1w2x
±1w3

]
of length N ′. Again, up to a polynomial factor of N4 we know `1, `2, |w1| , |w2| and |w3|, and we
claim that the number of options for [w′] is bounded by some constant times (2k − 3− ε)N

′
with



CHAPTER 4. GROWTH OF PRIMITIVE ELEMENTS IN FREE GROUPS 134

ε > 0. Hence the total number of options for [w] is bounded by some polynomial in N times

(2k − 3− ε)N−3`1−3`2 · (2k − 3)
`1+`2 ≤ (2k − 3− ε)N

for ε small enough. Indeed, if two of w1, w2 and w3 are trivial, we are again in the same situation as
in the case Y =

{
x, x−1

}
. Otherwise, the exact same argument as before shows that [w′] ∈ AN ′Y ′,Z′,v′

for some triplet (Y ′, Z ′, v′) partitioning (X \ {x})±1 non-trivially.
This covered all the cases of M c

k,N and hence the lemma is established.

Now we move on to the remaining set Mk,N . The idea is to shorten such words by applying
appropriate Whitehead automorphisms until the result falls outside ofMk,∗ (i.e. outside ofMk,n for
all n). To achieve this goal we first consider cyclic words [w] ∈ Mk,N such that the corresponding
automorphism φY,Z,v maps them into Lk,∗: [φY,Z,v(w)] ∈ Lk,∗ . Denote this subset by L̃k,N ⊆Mk,N . L̃k,N
We claim that:

Lemma 4.3.6.

lim sup
N→∞

N

√∣∣∣L̃k,N ∣∣∣ < 2k − 3.

Proof. Consider first the words [w] ∈ L̃k,N with triplet (Y,Z, v) where Y = {x}. The effect of
φ = φY,Z,v on [w] is precisely that: each instance of the form . . . xv−1 . . . becomes simply . . . x . . .,
and each instance of . . . vx−1 . . . turns into . . . x−1 . . .. In particular, the only letter whose number
of appearances in [w] is changed by φ is v. By definition, [w] ∈ L̃k,N ⊆Mk,N ⊆ Ck,N \Lk,N , so the
letter which [φ (w)] contains exactly once is necessarily v±1. Hence, aside for one, all occurrences
of v±1 in [w] are as part of either xv−1 or vx−1. We deduce that [w] is of the form

[vw′]

with w′ being a word of length N − 1 in 2 (k − 2) building blocks of length 1:
(
X \

{
x±1, v±1

})±1

and 2 building blocks of length 2:
(
xv−1

)±1. (In other words, w′ is any word in Fk−1 but where
one of the letters is of length 2). This kind of words clearly has exponential growth rate strictly
less than 2k − 3. (To be precise, the growth rate is the larger root of λ2 − (2k − 4)λ− 2.)

The complement of this latter subset inside L̃k,N consists of primitive cyclic words belonging to
ANY,Z,v with Y =

{
x, x−1

}
. This time, φ turns each instance of . . . vxmv−1 . . . into . . . xm . . .. The

same arguments as before show that if [w] is such a word, then

[w] = [vw′]

where w′ is composed of building blocks from
(
X \

{
x±1, v±1

})±1 together with{
vxmv−1

∣∣ 0 6= m ∈ Z
}
. Every letter in w′ is followed by one of at most (2k − 4) possible

letters, showing this type of words also has exponential growth rate < 2k− 3, and thus completing
the proof.

Lemma 4.3.7.
lim sup
N→∞

N

√
|Mk,N | < 2k − 3.

Proof. Every [w] ∈ Mk,N is equipped with some triplet (Y,Z, v) from the definition of Mk,N (so
Y = {x} or Y =

{
x, x−1

}
for some x ∈ X±1). First, we observe that the corresponding Whitehead

automorphism φY,Z,v shortens [w] by at least 4. There are in total 2k (2k − 2) triplets with Y = {x}
and k (2k − 2) triplets with Y =

{
x, x−1

}
. LetW denote the set of these 2k (2k − 2)+k (2k − 2) =

6k (k − 1) possible Whitehead automorphisms.
In other words, for every [w] ∈ Mk,N there exists φ1 ∈ W such that |φ1 (w) |c = N ′ ≤ N − 4.

If [φ1 (w)] ∈Mk,N ′ we apply the corresponding automorphism φ2 ∈ W and obtain a cyclic word of
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length ≤ N − 8. Since for all n we have Ck,n = Lk,n ∪Mk,n ∪M c
k,n, one can continue this process

until the resulting cyclic word is either in M c
k,n or in L̃k,n for some 2 ≤ n ≤ N (note that each

cyclic word in Mk,∗ is of length ≥ 8). Let [ŵ] ∈M c
k,n ∪ L̃k,n be the cyclic-word we obtain this way,

i.e.
[w]

φ1→ [w1]
φ2→ [w2]→ . . .

φr→ [ŵ] .

Each element in Mk,N is uniquely determined by r, n = |ŵ|c, [ŵ] ∈ M c
k,n ∪ L̃k,n and

(φ1, φ2, · · · , φr) ∈ Wr, where r ≤ R =
⌊
N−n

4

⌋
. For each n, the number of possible tuples

(φ1, φ2, · · · , φr) is

R∑
i=0

|W|i =

R∑
i=0

[6k (k − 1)]
i ≤ [6k (k − 1)]

R+1 − 1

6k (k − 1)− 1
≤ 2 [6k (k − 1)]

R
.

By Lemmas 4.3.5 and 4.3.6, the possible number of [ŵ] of length n is bounded from above by
C · (2k − 3− ε)n for some C, ε > 0. Summing over all possible values of n we obtain:

|Mk,N | ≤ 2C ·
N∑
n=2

(2k − 3− ε)n · [6k (k − 1)]
R

≤ 2C ·
N∑
n=2

(2k − 3− ε)n · ( 4
√

6k(k − 1))N−n.

For k ≥ 3 we can pick ε small enough so that

4
√

6k (k − 1) < 2k − 3− ε,

hence
|Mk,N | < 2C ·N · (2k − 3− ε)N .

This completes the proof of (4.3.1), hence also of Theorem 4.1.3. Theorem 4.1.1 now follows by
Proposition 4.3.1.

4.3.4 The growth of non-primitives belonging to free factors
Finally, let us say some words about the variation of the proof required for Corollary 4.1.4. Recall
that Sk,N denotes the set of words of length N in Fk belonging to a proper free factor. We ought
to show that |Sk,N | grows exponentially with base (2k − 3). We already mentioned on Page 126
why (2k − 3) is a lower bound. To show it is also an upper bound, we repeat similar arguments as
above†:

Firstly, the same argument as in Section 4.3.1 shows the exponential growth of Sk,N is the same
as the exponential growth of Sk,N , the set of cyclic-words of length N belonging to a proper free Sk,N
factor. By Theorem 4.2.1, each [w] ∈ Sk,N belongs to some ANY,Z,v. For most triplets, Proposi-
tion 4.2.3 shows they grow slower than (2k − 3)

N . When Z =
{
v−1

}
, ANY,Z,v ⊆ Sk,N and grows

exponentially with base (2k − 3).
Consider next words in ANY,Z,v such that either

• Y =
{
x, x−1

}
and there is exactly one instance of vxmv−1, or

†In fact, the proof of Corollary 4.1.4 alone could be shorter than the proof of Theorem 4.1.3. The same shorter
proof would show that lim supN→∞

N
√
Ck,N = 2k − 3. In other words, much of the complexity of the analysis in

Sections 4.3.2 and 4.3.3 is required only for showing the stronger result that the growth rate of
∣∣Ck,N \ Lk,N

∣∣ is
strictly smaller than 2k − 3.



CHAPTER 4. GROWTH OF PRIMITIVE ELEMENTS IN FREE GROUPS 136

• Y = {x} and there are up to three instances of x±1.

It is evident that this set of words has exponential growth rate (2k − 3).
The remaining words from Sk,N , which we denote by Qk,N , can be described in a similar fashion

to the cyclic words from Mk,N . In a similar argument as in Lemma 4.3.7, we can shorten each word
from Qk,N by the corresponding Whitehead automorphisms until we get a word outside Qk,N . Since
we have already seen that

∣∣Sk,N \Qk,N ∣∣ has exponential growth rate (2k − 3), we can complete the
proof of Corollary 4.1.4 in the same manner we proved Lemma 4.3.7.

4.4 Most Triplets are Negligible
The last section is dedicated to proving Proposition 4.2.3, stating that for most triplets, the set
AY,Z,v has exponential growth rate strictly smaller than (2k − 3). This is done by way of considering
different cases according to the cardinalities |Y | and |Z|, and treating each case separately. To
simplify the notation we denote |Y | and |Z| by y and z, respectively. Note that y + z = 2k − 1.
The assumptions of Proposition 4.2.3 are that y, z ≥ 2 and Y 6= {x, x−1}. The main technique is to
rely on the following intuitive lemma. We call a set of words in Fk Markovian if it is closed under
taking prefixes and if to every x ∈ X±1 corresponds a fixed subset Σx ⊆ X±1 of letters which can
follow x. Namely, if w ∈ A is of length N and terminates with x, one can extend it to a word
in A of length (N + 1) by appending one of the letters from Σx. Obviously, the sets AY,Z,v are
all Markovian (to be precise, the set of all cyclically reduced representatives of the cyclic words in
some AY,Z,v is Markovian).

Lemma 4.4.1. Let A be a Markovian set of words in Fk and let α > 1. Assume that for each letter
x ∈ X±1 there is some 1 ≤ r = r (x) ∈ N such that x is followed by one of less than αr possible
r-tuples of letters. Then the exponential growth of A is less than α.

Proof. For every x ∈ X±1 and 1 ≤ i ≤ r (x) let Tx,i denote the number of possible i-tuples which
can follow x in words from A. (In particular, Tx,r(x) < αr(x).) For w1, w2 ∈ A we say that w2 is an
i-extension of w1 if w1 is a prefix of w2 and |w2| − |w1| = i.

Let AN be the set of words of length N in A. Define a subset B ⊆ A by the following recursive
rules: A1 ⊆ B and if w ∈ B terminates with x, then

• all i-extensions of w for 1 ≤ i ≤ r (x)−1 do not belong toB (there are Tx,1+Tx,2+. . .+Tx,r(x)−1

such words), and

• all the Tx,r(x) words which are r (x)-extensions of w belong to B.

Define f : A→ R as follows: for every w ∈ B terminating with the letter x,

• set f(w) = 1, and

• for every 1 ≤ i ≤ r (x)− 1 and every i-extension u of w, set

f (u) =

(
Tx,r(x)

)i/r(x)

Tx,i
<

αi

Tx,i
.

Now, set g (N) =
∑
w∈AN f (w). For w ∈ B terminating with x and 1 ≤ i ≤ r (x), the sum of f

over all i-extensions of w is less than α times the sum over all (i− 1)-extensions of w. We obtain
that g (N + 1) < α ·g (N), so the exponential growth rate of g is < α. We end the proof by claiming
that c < g(N)

|AN | < C for some positive constants c, C. Indeed, one can set

c = min
x∈X±1

1≤i≤r(x)

(
Tx,r(x)

)i/r(x)

Tx,i
, C = max

x∈X±1

1≤i≤r(x)

(
Tx,r(x)

)i/r(x)

Tx,i
.
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We now return to the proof of Proposition 4.2.3. We shall use Lemma 4.4.1 for the sets AY,Z,v
with α = 2k − 3.
Case 1: |Y |, |Z| ≥ 4: Let [w] ∈ AY,Z,v and let x ∈ X±1 appear in w. If x ∈ Y then
either the inverse of the following letter is v or it belongs to Y \ {x}, so there are y options, and
y = 2k−1−z ≤ 2k−5. The same argument applies for x ∈ Z . Finally, the only letter that cannot
follow v is v−1, so v is followed by:

• one of y letters from Y , which are followed in turn by one of y letters, or

• one of z − 1 letters from Z \
{
v−1

}
, which are followed in turn by one of z letters, or

• v, which is followed by one of 2k − 1 letters.

Overall, there are y2 + z (z − 1) + (2k − 1) possibilities for the two letters following v. It is easy to
see that under the assumptions in the current case, this expression is largest when y = 2k − 5 and
z = 4. But even in this case,

y2 + z (z − 1) + (2k − 1) = (2k − 5)
2

+ 12 + (2k − 1) < (2k − 3)
2
,

(note that if y, z ≥ 4 then k ≥ 5). This completes the proof.

Case 2: |Y | = 3: Assume first that k ≥ 5, so 2k− 3 ≥ 7. As in the previous proof, let x ∈ X±1

be a letter in a word from AY,Z,v. If x ∈ Y , the following letter is one of y = 3 possibilities. If
x ∈ Z there are at most z = 2k − 4 possibilities. Finally, if x = v, then v is followed by

• one of 3 letters from Y , which are followed in turn by one of 3 letters, or

• one of 2k − 5 letters from Z \
{
v−1

}
, which are followed in turn by one of 2k − 4 letters, or

• v, which is followed by one of 2k − 1 letter.

Overall, there are 32 + (2k − 5) (2k − 4) + (2k − 1) possibilities for the two letters following v. This
is strictly less than (2k − 3)

2 for k ≥ 5.
Suppose next that k = 4, so now 2k − 3 = 5. Any x ∈ X±1 \ {v} is followed by at most

4 possible letters. As for v itself, we need to distinguish between two cases: either Y does not
contain a letter and its inverse, in which case w.l.o.g. Y = {a, b, c} and Z =

{
a−1, b−1, c−1, v−1

}
;

or w.l.o.g. Y =
{
a, a−1, b

}
and Z =

{
b−1, v−1, c±1

}
. In the first case an easy computation† shows

that v is followed by one of 115 possible triplets of letters, and we are done as 115 < 53. In the
second case, v is followed by one of 617 possible quadruplets, and 617 < 54.

Finally, if y = 3 and k = 3 (k cannot be smaller than 3 if y = 3), then 2k− 3 = 3. The partition
is, up to name changes, Y =

{
a, a−1, b

}
and Z =

{
b−1, v−1

}
. An easy computation shows that

any letter x 6= v is followed by at most 8 possible pairs of letters, and v is followed by at most
17,883 possible 9-tuples (and 17,833 < 39 = 19,683).‡

Case 3: |Z| = 3 Assume first that k ≥ 4, hence 2k − 3 ≥ 5. If x ∈ Y , it is followed by the
inverse of one of 2k− 5 letters from Y \ {x} or by v−1, a total of 2k− 4 possibilities. A letter from
Z is followed by one of 3 < 2k − 3 letters (v−1 and two letters whose inverse belongs to Z).

To analyze the number of possibilities after v, we distinguish between two cases:

(1) Assume that Z contains a letter and its inverse, i.e. Z =
{
v−1, a, a−1

}
. In this case,

• Every x ∈ Y , is followed either by one of 2k − 5 letters from Y \
{
x−1

}
which are then

followed by one of (2k − 4) letters, or by v−1 which is followed by one of 3 possible
letters: a total of (2k − 5) (2k − 4) + 3 = 4k2 − 18k + 23 possible pairs.

†Computation of this kind can be easily carried out in some Excel-type spreadsheet program.
‡Alternatively, one can show that the exponential growth rate here equals the largest real root of λ5−3λ4 +λ3−

λ2 − λ+ 7, which is about 2.68.
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• The letter a is followed either by one of two letters from Z (a or v−1), which are in turn
followed by one of 3 possible letters, or by v which is followed by one of 2k − 1 letters:
a total of 2 · 3 + (2k − 1) = 2k + 5 possible pairs. The same computation holds for a−1.

• Every pair of letters following v starts either with some x ∈ Z (2 ·3 options), by v (2k−1

options) or by some x ∈ Y ((2k − 4)
2 options): a total of 6 + 2k − 1 + (2k − 4)

2
=

4k2 − 14k + 21 possible pairs.

We can now count the number of possible triplets of letters following v:

• 2 (2k + 5) triplets begin with a or a−1.

• (2k − 4)
(
4k2 − 18k + 23

)
triplets begin with some x ∈ Y .

• 4k2 − 14k + 21 triplets begin with v.

The total number of possible triplets following v is, therefore, 8k3 − 48k2 + 108k − 61 which
is strictly less than (2k − 3)

3 when k ≥ 4.

(2) The other possibility is that Z does not contain a letter and its inverse, hence Z =
{
v−1, a, b

}
.

A similar computation shows that v is followed in this case by one of 8k3− 56k2 + 160k− 145
which is again strictly less than (2k − 3)

3 when k ≥ 4.

Finally, if k = 3 then Z =
{
v−1, a, b

}
and Y =

{
a−1, b−1

}
(for otherwise Y =

{
x, x−1

}
). Another

technical computation shows that a−1 and b−1 are followed by at most 2 possible letters, v−1

by at most 7 possible pairs of letters, a and b by at most 237 < 35 5-tuples, and v by at most
41,372,449 < 316 16-tuples of letters†.

Case 4: |Y | = 2 Since Y 6=
{
x, x−1

}
, assume w.l.o.g. that Y = {a, b}. The possibility k = 3

was already dealt with in the previous case, so assume k ≥ 4. Similar calculations to those above
show that:

• a and b are followed by one of 2 < (2k − 3) letters.

• a−1 and b−1 are followed by one of
(
4k2 − 14k + 16

)
< (2k − 3)

2 pairs of letters.

• Any letter x such that x, x−1 ∈ Z is followed by one of
(
4k2 − 16k + 21

)
< (2k − 3)

2 pairs of
letters.

• v−1 is followed by one of
(
4k2 − 16k + 19

)
< (2k − 3)

2 pairs of letters.

• v is followed by one of
(
8k3 − 44k2 + 106k − 91

)
triplets of letters. This is strictly less than

(2k − 3)
3 for k ≥ 5. For k = 4, a concrete computation shows v is followed by one of 613 < 54

possible 4-tuples of letters.

Case 5: |Z| = 2 Assume w.l.o.g. that Z =
{
a, v−1

}
. The case k = 3 was handled in the case

|Y | = 3, so assume k ≥ 4. Again, the following formulas can be easily computed:

• a and v−1 are each followed by one of 2 < (2k − 3) letters.

• a−1 is followed by one of
(
4k2 − 14k + 14

)
< (2k − 3)

2 pairs of letters.

• Any letter x such that x, x−1 ∈ Y is followed by one of
(
4k2 − 16k + 19

)
< (2k − 3)

2 pairs of
letters.

†Alternatively, the exponential growth rate here equals the largest real root of λ4 − 2λ3 − 4λ2 + 2λ+ 7, which is
about 2.85.
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• v is followed by one of
(
8k3 − 40k2 + 80k − 51

)
triplets of letters. This is strictly less than

(2k − 3)
3 for k ≥ 6. For k = 5, a concrete computation shows v is followed by one of 1,951 < 74

possible 4-tuples of letters, and for k = 4, v is followed by one of 557 < 54 possible 4-tuples
of letters.

This finishes the proof of Proposition 4.2.3.

4.5 Open Questions
Finally, we mention the following closely related questions which are still open:

Question 4.5.1. What can be said about the growth of Aut (Fk) with respect to standard generating
sets such as

i) Nielsen moves?
ii) Whitehead automorphisms?

Question 4.5.2. What is the smallest possible exponential growth rate of Pk,N (or Ck,N ) with
respect to arbitrary finite generating sets of Fk (not necessarily bases)?

Question 4.5.3. What is the growth of Ck,N \Lk,N? What does a generic primitive cyclic element
containing every letter at least twice (or not at all) look like? Is it, up to permuting the letters, of
the form x1w (x1x2, x3, x4, . . . , xk)? (In particular, the latter set of words shows that the growth
of Ck,N \ Lk,N is at least λk, the largest root of λ3 − (2k − 5)λ2 − λ − (2k − 3), which satisfies
λk ↘ 2k − 5 as k →∞.)

Question 4.5.4. What is the growth of other Aut (Fk)-orbits in Fk? Which orbits, other than that
of the primitives, have the largest growth?
We conjecture the following is true: For w ∈ Fk, let µ (w) denote the minimal (positive) number
of instances of some letter x ∈ X in any element of the Aut (Fk)-orbit of w (this number does not
depend on x). Then the growth of the set of cyclic words in the orbit of w is µ(w)

√
2k − 3. If true,

this shows that unless w is primitive, most words in its orbit are conjugates of small words, so that
the growth of the orbit is always

√
2k − 1.
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Abstract
We study the free group of rank two from the point of view of Stallings core graphs. The first
half of the paper examines primitive elements in this group, giving new and self-contained proofs
for various known results about them. In particular, this includes the classification of bases of this
group. The second half of the paper is devoted to constructing a counterexample to a conjecture
by Miasnikov, Ventura and Weil, which seeks to characterize algebraic extensions in free groups in
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5.1 Introduction
Let F be a finitely generated free group. A subgroup J of F is said to be an algebraic extension of
another subgroup H, if H ≤ J and there does not exist an intermediate subgroup H ≤M � J such
thatM is a proper free factor of J . We denote this by H ≤alg J . This notion, which was formulated H ≤alg J
independently by several authors (and already appears in [Tak51]), is central to the understanding
of the lattice of subgroups of F. For example, it can be shown that every extension H ≤ J of free
groups admits a unique intermediate subgroup H ≤alg M ≤ff J (where ≤ff denotes a free factor).
Moreover, if H ≤ F is a finitely generated subgroup, it has only finitely many algebraic extensions
in F. Thus, every group containing H is a free extension of one of the algebraic extensions of H,
which is a well known theorem of Takahasi [Tak51]. For proofs of the mentioned facts, as well as a
general survey of algebraic extensions, we refer the reader to [MVW07].

Given a basis X of F and H ≤ F, we denote by ΓX (H) the Stallings core graph of H with ΓX (H)
respect to X. This is a pointed, directed, X-labeled graph, such that the words formed by closed
paths around the basepoint are precisely the elements of H, and which is minimal with respect
to this property. One way to construct this graph is by taking the Schreier right coset graph
of H in F w.r.t. X and then deleting all “hanging trees”, i.e., all edges which are not traced by
some non-backtracking loop around the basepoint. Figure 5.1.1 demonstrates the core graph of
H =

〈
ab−1a, a−2b

〉
for X = {a, b} and F = F (X). We refer to [Sta83, KM02, MVW07, Pud14] for

further background on Stallings graphs.

Figure 5.1.1: The core graph ΓX (H) where X = {a, b} and
H =

〈
ab−1a, a−2b

〉
≤ F (X).

⊗ a // •

• a //

b

OO

•

a

__

b

OO

Given the basis X, and two subgroups H,J ≤ F, there is a graph morphism (which preserves the
basepoint, directions and labeling) from ΓX (H) to ΓX (J) if and only if H ≤ J . Such a morphism
is unique, when it exists. Given H,J ≤ F, we say that H X-covers J if H ≤ J and the morphism X-covers
from ΓX (H) to ΓX (J) is onto. We denote this by H ≤�

X J . (In [MVW07] this is indicated by ≤�
X

saying that J is a “X-principal overgroup” of H, and by the notation J ∈ OX (H).)

It is not hard to see (e.g. [MVW07, prop. 3.7], or [PP15, claim 4.2]) that if H ≤alg J , then
H ≤�

X J for every basis X of F. The following conjecture, raised in [MVW07], asks whether the
converse also holds.

Conjecture ([MVW07, §5(1)]). If H ≤ J ≤ F and H ≤�
X J for every basis X of F then J is an

algebraic extension of H.

The main result of this paper is a counterexample to this conjecture:

Proposition (Prop. 5.4.1). Let F2 = F (a, b) be the free group on two generators, H =
〈
a2b2

〉
, and

J =
〈
a2b2, ab

〉
. Then H ≤�

X J for every basis X of F2, but J is not an algebraic extension of H.

The relation “H ≤�
X J” is basis-dependent, while the relation “H ≤�

X J for every basis X” is
intrinsic, as is “H ≤alg J”. Proposition 5.4.1 means that the latter two relations are different,
and this raises the intriguing question of understanding the algebraic significance of “covering with
respect to all bases”.

The proof of Proposition 5.4.1 follows from a thorough analysis of Stallings graphs, using classical
results (e.g. [Nie17, Coh72, CMZ81, OZ81]) on primitive elements and bases of F2. It turns out that
these results can also be proven by appealing solely to Stallings graphs, and we use the opportunity
to provide self-contained proofs for them in Section 5.3. Section 5.2 recalls some basic facts about
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Stallings graphs and foldings, and presents two auxiliary lemmas which will be used later on. Finally,
the proof of the counterexample (Proposition 5.4.1) is given in Section 5.4, and some concluding
remarks in Section 5.5.

5.2 Stallings Graphs
We assume that the reader is familiar with the theory of Stallings foldings, but recall the basic
facts. If Γ is a pointed, directed, X-labeled graph, we denote by πX1 (Γ) the subgroup of F = F (X) πX1 (Γ)
consisting of the words which appear as closed loops around the basepoint of Γ. The operators
πX1 and ΓX constitute a bijection between subgroups of F (X) and X-labeled core graphs, which
matches f.g. subgroups to finite graphs.

If Γ is a finite (pointed, directed) X-labeled graph, and πX1 (Γ) = H, then ΓX (H) is obtained
from Γ by repeatedly performing one of the following operations, in any order, until neither of them
is possible:

(1) Folding - merging two edges with the same label, and the same origin or terminus (and thus
merging also the other ends).

(2) Trimming - deleting a leaf which is not the basepoint, and the edge which leads to it.

The following lemma shows that under certain conditions only foldings are necessary in this process:

Lemma 5.2.1. Let Γ be a finite, pointed, directed, X-labeled graph such that at every vertex, except
possibly the basepoint, there are at least two types of edges (the type of an edge consists of its label
and direction). Then the core graph ΓX (H) of H = πX1 (Γ) is obtained from Γ by foldings alone
(i.e. without trimming).

Proof. Evidently, Γ cannot have leaves, except for possibly the basepoint. Folding steps do not
decrease the number of types of edges at a vertex, so that the property in the statement still holds
after every folding step, and no new leaves are created throughout the process.

This simple lemma will prove out to be extremely useful. It already plays a role in Lemma 5.2.3,
which characterizes X-covering in simple extensions.

Definition 5.2.2. Let Γ be a pointed and directed X-labeled graph and let w ∈ F. We say that
w appears in Γ if there exist paths p1, p2 in Γ such that p1 starts at the basepoint, p2 terminates appears in
at the basepoint, and w = p1p2 (i.e. p1p2 is the presentation of w as a reduced word in X ∪X−1).

For example, for H in Figure 5.1.1, a3 and a2ba−1 appear in ΓX (H), but a2b2 does not. Notice
that if w appears in Γ, s.t. πX1 (Γ) = H, and Γ satisfies the conditions of Lemma 5.2.1, then w
appears in ΓX (H) as well. This will play a significant part in Section 5.4.

Lemma 5.2.3. Let H ≤ F, w ∈ F and J = 〈H,w〉. Then H ≤�
X J if and only if w appears in

ΓX (H).

Proof. Assume first that w appears in ΓX (H), and let p1, p2 be as in Definition 5.2.2. Denote
by Γ the graph obtained from ΓX (H) by identification of p1’s endpoint and p2’s start-point. We
have πX1 (Γ) = J , and the (pointed, directed, labeled) map from ΓX (H) to Γ is onto. Since Γ
satisfies the conditions of Lemma 5.2.1, ΓX (J) is obtained from it by foldings alone. We have
now that ΓX (H) maps onto Γ, which maps onto ΓX (J), and by transitivity it follows that H ≤�

X J .
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Figure 5.2.1: Γ = ΓX (H)
⋃
pw′

Assume now that w does not appear in ΓX (H). Let
p1 be the maximal path beginning at the basepoint of
ΓX (H) which is a prefix of w, and denote by v1 its end-
point. Let p2 be the maximal path ending at the base-
point of ΓX (H) which is a suffix of w, and v2 its begin-
ning. If w = p1w

′p2, take Γ = ΓX (H)
⋃
pw′ where pw′

is a path labeled by w′, whose beginning is attached to
v1, and whose endpoint to v2 (see Figure 5.2.1). Now
πX1 (Γ) = J and Γ has no foldable edges nor leaves, i.e.
Γ = ΓX (J). Thus ΓX (H) is a subgraph of ΓX (J), and in
particular does not map onto it. (In fact, since the map
from ΓX (H) to ΓX (J) is injective, H is a free factor of
J .)
Remark 5.2.4. With some further work, the basic idea of Lemma 5.2.3 can lead to an algorithm to
detect primitive words and free factors in F. See [Pud14, Thm 1.1].

5.3 Primitives in F2

In this section we give new proofs for the classical theorems on primitive words and bases of F2

[Nie17, Coh72, CMZ81, OZ81]. Throughout the section X denotes the basis {a, b} of F2 = F (a, b).
We start with the following lemma, which reduces the classification of bases of F2 to that of

cyclically reduced (henceforth: CR) bases. CR

Lemma 5.3.1. Let Y = {u, v} be any basis of F2.

(1) Write u = xux−1 † and v = yvy−1 with u, v CR. Then either x is a prefix of y or y is a prefix
of x.

(2) Assume that x is a prefix of y, and write u = xux−1 and v = xwvw−1x−1. Then w is a prefix
of some power of u or of u−1 (which implies that w−1uw is a cyclic rotation of u).

(3) The basis (xw)
−1
Y xw =

{
w−1uw, v

}
is CR.

Therefore, any basis of F2 is of the form
{
xux−1, xwvw−1x−1

}
where w is a prefix of some power

of u±1,
{
w−1uw, v

}
is a CR basis, and x is any word s.t. xux−1 and xwvw−1x−1 are reduced.

Proof. The graph Γ = •v
"" ⊗ x //yoo • u

|| satisfies πX1 (Γ) = 〈u, v〉 = F2. It also satisfies the
conditions of Lemma 5.2.1, and must therefore fold into ΓX (F2) = ⊗a

##
b

{{
. The only vertex

at which folding may occur is the basepoint ⊗, and after the first identification of edges the only
possible folding place is at the identified termini. Continuing in this manner shows that for Γ to
fold into ΓX (F2), the shorter word among x, y must be completely merged with a prefix of the
longer one, giving (1). By the same arguments, the graph Γ′ = •v

"" ⊗ u
{{woo must fold into

ΓX (F2), and for this to happen w must wind itself completely around u, or around u−1 (i.e. w
must be a prefix of some power of u or of u−1). It follows that w−1uw is a cyclic rotation of u, and{
w−1uw, v

}
is a CR basis.

Moving on to CR bases, we have the following:

Proposition 5.3.2. Let {u, v} be a CR basis of F2, such that |u|+ |v| ≥ 3 ‡, and |u| ≤ |v|. Then
either u is a prefix or a suffix of v, or u−1 is.
†By “write” we mean that xux−1 is a reduced expression of u - no cancellation is needed. This convention will

repeat throughout the paper, and we will not mention it again.
‡Here |w| is the length of w as a reduced word in X ∪X−1.
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Proof. Since |v| ≥ 2 and v is not a proper power, v contains both a and b (possibly with negative
exponents), and thus 〈v〉 ≤�

X F2. Since F2 = 〈u, v〉, Lemma 5.2.3 implies that u appears in ΓX (〈v〉),
which is just a cycle labeled by v as a word in X ∪X−1.

Let p′ be the maximal prefix of u which is a path emanating from the basepoint of ΓX (〈v〉).
Since |u| ≤ |v|, this means that p′ is a prefix of v or of v−1. By inverting v if necessary we assume
that p′ is a prefix of v. Let s′ be the maximal suffix of u which is a path ending at the basepoint
of ΓX (〈v〉). Since u is CR, s′ cannot be a suffix of v−1, and must be a suffix of v.

Letm be the middle part of u where p′ and s′ overlap (it may be empty: |m| = |p′|+|s′|−|u| ≥ 0).
Write p′ = pm, s′ = ms, which means that u = pms (see Figure 5.3.1). Thus, if p is empty then
u = pms = s′ is a suffix of v, and if s is empty then u is a prefix of v. We proceed to show that
they cannot be both nonempty.

Figure 5.3.1: Illustration of the decomposi-
tion of v.

v
p′

s′

p t m s
p m s
p q r q r . . . q r q s

Let Γ = ⊗u
##

v
{{

. Since πX1 (Γ) = 〈u, v〉 = F2 and Γ satisfies the conditions of Lemma
5.2.1, it must fold into ΓX (F2) = ⊗a

##
b

{{
, and we will show that this cannot happen if

p, s 6= 1.
Assume therefore that p, s 6= 1. Since |v| ≥ |u| we can write v = ptms, and t 6= 1 since otherwise

u = v (this shows, in particular, that |v| > |u|). Since pm is a prefix of v, m is a prefix of tm, which
means that m is a prefix of some (positive) power of t (see again Figure 5.3.1). We consider two
cases:

Case (i): m is not a power of t. In this case t = qr with q, r 6= 1, and m = (qr)
n
q with n ≥ 0

(see Figure 5.3.1; n = 0 corresponds to the possibility that p′ and s′ do not overlap in v). Since

u = p (qr)
n
qs and v = p (qr)

n+1
qs, Γ folds into Γ′ =

•
q ��⊗

p 55

•s
ii r

hh
.

We aim to show that no folding can occur in Γ′, but let us first introduce the following notations:
for w ∈ F (X), we denote by w1 the first letter of w as a reduced word in X ∪ X−1, and for two
words w,w′ we write w ⊥ w′ to indicate that w1 6= (w′)1. Namely, w ⊥ w′ implies that no folding ⊥
occurs in •woo w′ // .

Returning to Γ′, we have p ⊥ s−1 since u (or equivalently v) is CR, so no folding occurs at ⊗.
Since v = p (qr)

n+1
qs is reduced, p−1, r−1 ⊥ q and q−1 ⊥ r, s. We also have r ⊥ s, for otherwise

p′s1 = p (qr)
n
qr1 would be a common prefix of u = p′s and v = p (qr)

n+1
qs, contradicting

the maximality of p′. Finally, r−1 ⊥ p−1 follows in the same way from the maximality of s′,
and we conclude that Γ′ cannot be folded any further, i.e. Γ′ = ΓX (〈u, v〉), which contradicts
ΓX (〈u, v〉) = ΓX (F2).

Case (ii): m equals a power of t, m = tn (n ≥ 0), so that u = ptns and v = ptn+1s. This
time Γ folds into Γ′ = ⊗ p ""• tbbscc . We have p ⊥ s−1 as before; p−1 ⊥ t and t−1 ⊥ s follows from
v = ptn+1s being reduced; s ⊥ t holds, since otherwise ptns1 = ptnt1 would be a common prefix
of u and v, contradicting the maximality of p′ = ptn; likewise, p−1 ⊥ t−1 by the maximality of s′.
Now, if n > 0 then t ⊥ t−1 since v = ptn+1s is reduced, and if n = 0 then p−1 ⊥ s since u = ps
is reduced. In either case, Γ′ cannot fold into ΓX (F2): For n = 0, assuming that Γ′ folds at all,
ΓX (〈u, v〉) = ⊗ p ""•scc

r //• t′bb , where t = rt′r−1 with t′ CR. Thus, ΓX (〈u, v〉) 6= ΓX (F2). For

n > 0, Γ′ folds into ⊗ p′ ��•
s′^^

r //• tbb where r is the common suffix of p and s−1, so that p = p′r,

s = s′r. If p′, s′ 6= 1 we are done, and p′ = s′ = 1 is impossible since p ⊥ s−1. If p′ = 1 6= s′
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then the graph folds into •s′′
"" ⊗ r //yoo • t

|| where s′′ is CR and s′ = ys′′y−1, and likewise for
p′ 6= 1 = s′.

Definition. A word w ∈ F (a, b) is monotone if for every letter (a or b) all the exponents of this monotone
letter in w have the same sign.

Proposition 5.3.3. A CR primitive word in F2 is monotone.

Proof. Let u be a CR primitive. By Lemma 5.3.1, possibly applying some cyclic rotation to u, we
can complete it to a CR basis {u, v}. We show that both u and v are monotone, by induction on
|u| + |v|. The base case |u| + |v| = 2 is trivial. Assume that |u| ≤ |v|. Using Proposition 5.3.2,
and perhaps replacing u, v, or both of them by their inverses (which does not affect monotonicity),
we can write v = ut. Now {u, t} is a basis with |u| + |t| < |u| + |v|, and we claim that t is CR as
well. Otherwise, t = rt′r−1 with t′ CR and r 6= 1, and we have ΓX (〈u, t〉) = ⊗ r //u

## • t′
|| ,

as u ⊥ u−1 since u is CR, (t′)
−1 ⊥ t′ since t′ is, and all other relevant pairs since v = urt′r−1 is.

This, of course, contradicts 〈u, t〉 = F2.
Therefore, by the induction hypothesis u and t are monotone. Assume first that |u| ≤ |t|. Since

v = ut is CR, u−1 cannot be neither a prefix nor a suffix of t. Thus, by Proposition 5.3.2 u must be
a prefix or a suffix of t, and in either case v is monotone. The same argument applies to the case
|u| > |t|.

We stress the following observation made in the proof:

Corollary 5.3.4. Let {u, v} be a CR basis of F2 with u a prefix of v, and write v = ut. Then
{u, t} is again a CR basis.

This leads to a constructive description of all CR bases of F2:

Proposition 5.3.5. Any CR basis of F2 is obtained as follows: given a pair of positive co-prime
integers (p, q), there is a unique sequence of pairs

(p, q) = (p0, q0) , (p1, q1) , . . . , (p`, q`) = (1, 1) (5.3.1)

which is the result of applying the Euclidean g.c.d. algorithm (i.e. if pi < qi then pi+1 = pi and
qi+1 = qi − pi, and vice-versa). Let X` = {u`, v`} be one of the four bases

{
a±1, b±1

}
, and define

Xi = {ui, vi} iteratively for i = `− 1 . . . 0 by

(ui, vi) =

{
(ui+1 , vi+1ui+1) pi < qi

(ui+1vi+1 , vi+1 ) qi < pi.
(5.3.2)

Finally, take X0, conjugate its elements by any common prefix or suffix (thus cyclically rotating
both of them), and possibly replace one of them by its inverse.

Proof. This construction certainly gives a CR basis of F2 (CR follows from monotonicity), and it
remains to show that every CR basis is thus obtained. This is done by reversing the process, as
follows. Let {x0, y0} be a CR basis. Discarding the trivial bases

{
a±1, b±1

}
, we can assume (by

inversion if necessary) that one of x0 or y0 is a prefix/suffix of the other (by Proposition 5.3.2).

Lemma. x0, y0 can be rotated by a a common prefix/suffix, so that a sequence of CR bases
{x1, y1} , . . . , {x`, y`} with the following properties is obtained:

(1) For every 0 ≤ i ≤ `− 1, the shorter of xi, yi is a suffix of the longer one.

(2) Each basis is obtained from the previous one by

(xi+1, yi+1) =

{
(xi, t) |xi| < |yi| and yi = txi

(t, yi) |yi| < |xi| and xi = tyi.
(5.3.3)
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(3) {x`, y`} is one of the four bases
{
a±1, b±1

}
.

Proof of the Lemma. If we do not perform the rotation of x0, y0 by a common prefix/suffix, the
same holds, but with the exception that at each stage the shorter among xi, yi may be a prefix of
the longer one, and not a suffix: this follows from by Proposition 5.3.2, and Corollary 5.3.4, which
ensures that all of these bases are CR. Assume that the process first fails at step m, i.e. the shorter
among xm, ym is not a suffix of the longer one, and assume for simplicity that xm is shorter, so that
ym = xmt.

Since x0, y0 are products of positive powers of xm and ym = xmt, it follows that xm is a
common prefix of both of them. Therefore, {x′0, y′0} =

{
x−1
m x0xm, x

−1
m y0xm

}
is a cyclic rotation of

{x0, y0}. Let {x′i, y′i}i=0...m be the bases obtained by (5.3.3) from {x′0, y′0}. Since the expression
of x′i, y′i as words in x′m, y

′
m is the same as that of xi, yi as words in xm, ym, we still have that

at every step until m the shorter of x′i, y′i is a suffix of the longer one. In fact, x′i = x−1
m xixm

and likewise for y′i, for all i ≤ m. Now, assertion (1) holds for step m as well, as x′m = xm and
y′m = x−1

m (xmt)xm = txm = tx′m.
We continue in this manner: at the next step at which assertion (1) fails we replace {x′0, y′0}

by {x′′0 , y′′0} which resolves that step, and note that x′′0 , y′′0 is still a cyclic rotation of the original
x0, y0 by a common prefix/suffix, and that no new failures of (1) were introduced by this change
for the previous steps. Repeating this for every failure of (1) guarantees that it hold throughout
the process.

We continue the proof of the proposition, assuming that x0, y0 were inverted and rotated ac-
cording to the Lemma, and {x1, y1} , . . . , {x`, y`} are the bases obtained by (5.3.3). The sequence of
integer pairs (|x0| , |y0|) , . . . , (|x`| , |y`|) = (1, 1) is then the sequence obtained by the Euclidean algo-
rithm for (|x0| , |y0|) (as in (5.3.1)), and in particular this shows that |x0| , |y0| are co-prime. Thus, if
one takes (p, q) = (|x0| , |y0|) and (u`, v`) = (x`, y`), and follows (5.3.2) as explained in the statement
of the proposition, the process in (5.3.3) is reversed, and one obtains (u0, v0) = (x0, y0).

Corollary 5.3.6. For a CR basis {u, v}, regard u and v as cyclic words, and assume (by inverting
u if necessary) that one of them is a subword of the other. Then one of a, b always appears (in
both u and v) with exponent ε for some fixed ε ∈ {1,−1}, and the other letter always appears with
exponent m or m+ 1 for some m ∈ Z.

Proof. Let Xi = {ui, vi} (0 ≤ i ≤ `) be the bases constructed in Proposition 5.3.5 to give X0 =
{u, v}. Assume, for simplicity, that X` = {u`, v`} = {a, b}, and that in the first step the first
option in (5.3.2) holds, so that X`−1 = {a, ba}. Let r be the number of times the first option in
(5.3.2) holds before it fails, i.e. X`−2 =

{
a, ba2

}
, . . . , X`−r = {a, bar} (possibly r = 1). If r = `

then the statement holds. Otherwise, X`−r−1 = {abar, bar}, and now every cyclic word which is a
product of the elements of X`−r−1 (with positive exponents only) clearly satisfies the statement of
the corollary with ε = 1 and m = r. Since u and v are such words, we are done.

5.4 The counterexample
Let X = {a, b} and F2 = F (X). In this section we prove the following:

Proposition 5.4.1. Let H =
〈
a2b2

〉
, and J =

〈
a2b2, ab

〉
. Then H ≤�

Y
J for every basis Y of F2,

but J is not an algebraic extension of H.

Proof. First, as H is a free factor of J (since J = H ∗ 〈ab〉), it is clear that J is not an algebraic
extension ofH, and it is left to show thatH covers J with respect to every basis Y = {u, v}. For any
automorphism ϕ of F2, H ≤�

X J iff ϕ (H) covers ϕ (J) w.r.t. the basis ϕ (X) = {ϕ (a) , ϕ (b)}. As
ϕ (X) achieves all bases of F2, what we seek to show is equivalent to the assertion that

〈
u2v2

〉
≤�
X〈

u2v2, uv
〉
for every basis {u, v}.
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By Lemma 5.2.3, showing that
〈
u2v2

〉
X-covers

〈
u2v2, uv

〉
is equivalent to verifying that uv

appears in ΓX
(〈
u2v2

〉)
. For the case where u and v are CR this is shown in Lemma 5.4.3, and the

case where only one of them is CR is handled in Lemma 5.4.4. For the general case, let Y = {u, v}
be the base at hand, and write u = xux−1 and v = yvy−1 with u, v CR. By Lemma 5.3.1, x is a
prefix of y, or vice-versa. Thus, if w is the shorter among x, y then w−1Y w is a basis with one CR
element, which was already handled. Inferring from this the result for the original Y is done in
Lemma 5.4.2. For this we need an additional technical assumption on ΓX

(〈
w−1u2v2w

〉)
, which is

seen to hold in Lemmas 5.4.3 and 5.4.4.

Lemma 5.4.2. Let {u, v} be a basis of F2 such that u and v share a common prefix w and a
common suffix w−1, and write u = wuw−1 and v = wvw−1. If

(1) uv appears in ΓX
(〈
u2v2

〉)
, and

(2) either u1 or
(
v−1

)
1
emanates from the basepoint of ΓX

(〈
u2v2

〉)
,

then uv appears in ΓX
(〈
u2v2

〉)
.

Proof. Observe the graph Γ, which is obtained by attaching a path labeled by w to the basepoint
of ΓX

(〈
u2v2

〉)
and moving the basepoint to the origin of the w-path:

⊗
ΓX
(〈
u2v2

〉)_djp{



�"
-

;
H Q W \ b g m v �

�
�

(
4CNTZ_

=⇒
•

Γ
_djp{



�"

-
;

H Q W \ b g m v �
�

�
(

4CNTZ_

⊗ <<w

The graph Γ folds into ΓX
(
πX1 (Γ)

)
= ΓX

(〈
u2v2

〉)
, since if satisfies the conditions of Lemma 5.2.1:

the only vertex that needs checking is the gluing place, and there the conditions hold by assumption
(2) and the fact that w−1 ⊥ u, v−1 (as u, v are reduced). Finally, since uv appears in ΓX

(〈
u2v2

〉)
,

uv = wuvw−1 appears in Γ, and thus also in its folding ΓX
(〈
u2v2

〉)
.

Lemma 5.4.3. If {u, v} is a CR basis of F2 then

(1) uv appears in ΓX
(〈
u2v2

〉)
, and

(2) u1 or
(
v−1

)
1
emanates from the basepoint of ΓX

(〈
u2v2

〉)
.

Proof. If |u| + |v| = 2 then the claims hold, so assume that |u| + |v| ≥ 3. Since ΓX
(〈
u2v2

〉)
=

ΓX
(〈
v−2u−2

〉)
and ΓX

(〈
u2v2, uv

〉)
= ΓX

(〈
v−2u−2, v−1u−1

〉)
, one can look at

{
v−1, u−1

}
instead

of {u, v} (this also does not affect assertion (2)), and thus it is enough to handle the cases where
|u| < |v|.

Observe the graph Γ =
• u

((⊗
u 66

◦
vvv•v

hh , which obviously satisfies πX1 (Γ) =
〈
u2v2

〉
. At the black

vertices there can be no folding, as u−1 ⊥ u follows from u being CR, and likewise for v. In what
follows we will continue to mark by • vertices at which we already know that no folding can occur,
and by ◦ vertices at which we do not know this.

Assume first that u−1 is not a prefix of v, and m is the maximal common prefix of u−1 and

v. Writing u = u′m−1 and v = mv′, Γ folds into
• u′

((⊗
u 66

•
v′
vv

•moo
•v

hh . After trimming one obtains

Γ′ =
• u′

((⊗
u 66

•
v′
vv•v

hh , which satisfies the conditions of Lemma 5.2.1: u−1 ⊥ u′ since u is CR and u′ is

a prefix of u, and likewise for v and v′−1; u′−1 ⊥ v′ by the maximality of m. Therefore, Γ′ folds



CHAPTER 5. STALLINGS GRAPHS, ALG. EXTENSIONS & PRIMITIVES IN F2 149

into ΓX
(〈
u2v2

〉)
. Since uv appears in Γ′, and both u1 and

(
v−1

)
1
leave its basepoint, the same

holds after any foldings, and in particular in ΓX
(〈
u2v2

〉)
.

Assume now that u−1 is a prefix of v and write v = u−1t. Now Γ folds and trims into
◦ t

((⊗
u 66

•
•t

hh
u

66 , as u ⊥ t and t−1 ⊥ u−1 follow from v = u−1t being CR. Let m be the maximal

common prefix of u−1 and tu−1, and write u = um−1, tu−1 = mq (note that
∣∣tu−1

∣∣ > ∣∣u−1
∣∣ ≥ |m|).

The last graph then folds and trims into Γ′ =
•
q ��⊗

u 55

•t

ii (with u possibly empty, in which case

Γ′ = ⊗ q   •taa ). This graph satisfies the conditions of Lemma 5.2.1: q−1 ⊥ t since tu−1 = mq is CR,
being a cyclic rotation of v, and if u is not empty then u−1 ⊥ q by maximality of m. Since uv = t
appears in Γ′ and

(
t−1
)

1
=
(
v−1

)
1
leaves its basepoint, the same holds for ΓX

(〈
u2v2

〉)
, which is

obtained from it by foldings.

Lemma 5.4.4. If {u, v} is a basis of F2 with u or v CR then

(1) uv appears in ΓX
(〈
u2v2

〉)
, and

(2) u1 or
(
v−1

)
1
emanates from the basepoint of ΓX

(〈
u2v2

〉)
.

Proof. If both u and v are CR then we are done by Lemma 5.4.3. Again, by replacing u and v
with v−1 and u−1 respectively we can assume that u is CR and v is not (here u is not necessarily
shorter). Writing v = wvw−1 with v CR (and w 6= 1), w is a prefix of some power of u or u−1 by

Lemma 5.3.1. The graph formed by a single u2v2-loop folds and trims into Γ =
•

u
//◦ w

((⊗
u 66

w ((
•

v
vv• •voo

,

where at all the black vertices there can be no folding since u and v are CR and v is reduced.
If w is a prefix of a (positive) power of u then at ◦ there is no folding as well since u is CR, so that

ΓX
(〈
u2v2

〉)
is obtained from Γ by foldings. Therefore to establish that uv appears in ΓX

(〈
u2v2

〉)
it is enough to show that it appears in Γ. This is not obvious in first sight, but it is true: w is a
prefix of a positive power of u, so that uw is a prefix of u2w, hence uv = uwvw−1 indeed appears
in Γ. Finally, both u1 and

(
v−1

)
1

= w1 leave the basepoint of Γ and thus also of ΓX
(〈
u2v2

〉)
.

We assume now that w is a prefix of some power of u−1, and observe six cases.
Case (i): 2 |u| ≤ |w|, so that w = u−2w with w possibly empty. In this case Γ folds and trims

into Γ′ =
•

v
//• v

((⊗
w 66

•
•u

hh
• w

66
uoo

, which satisfies Lemma 5.2.1 (even if w = 1). Now uv = u−1wvw−1u2

appears in Γ′: vw−1u2 is a suffix of Γ′ oriented clockwise, and u−1w is a prefix of Γ′ oriented
counterclockwise since w is a prefix of u−1w. In addition,

(
v−1

)
1

= w1 =
(
u−1

)
1
leaves ⊗.

Case (ii): |u| < |w| < 2 |u|, so that we can write u = qr and w = r−1q−1r−1 with q, r 6= 1.

Now Γ folds and trims into Γ′ =
◦

v
//• v

((⊗
q 66

•
rvv•r

hh
•

qoo
, and no folding can occur at the black vertices.

If at ◦ there is no folding as well, then uv = r−1vrqr appears in Γ′ and
(
v−1

)
1

= w1 =
(
r−1
)

1

leaves ⊗, yielding the same for ΓX
(〈
u2v2

〉)
.

Assume now that there is folding at ◦, so that q−1 and v2 have a common prefix. If this prefix
is shorter than |v| than the vrqr part in Γ′ survives in ΓX

(〈
u2v2

〉)
, and thus uv = r−1vrqr still

appears in it. Otherwise, v is a prefix of q−1, so that r−1v is a prefix of Γ′ oriented CCW, and rqr
is a suffix of Γ′ oriented CW, so that uv appears already in the lower half of Γ′. Finally, this half
survives in ΓX

(〈
u2v2

〉)
since q−1 cannot overlap with r, since u = qr is monotone by Proposition

5.3.3. In both cases
(
v−1

)
1

=
(
r−1
)

1
still leaves ⊗.

Case (iii): w = u−1. The reasoning here is as in the previous case with r = 1.
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In cases (iv)− (vi) w is a proper prefix of u−1, and we write u = qr and w = r−1 (with

r, q 6= 1). Here Γ folds and trims into Γ′ =
•

q
//◦ v

))•
r 55

•
v
vv⊗q

hh
...

roo
, with folding possible only at ◦,

and the folding cannot reach past ... due to the monotonicity of u = qr. This already shows that(
v−1

)
1

=
(
r−1
)

1
must leave the basepoint of the final Stallings graph ΓX

(〈
u2v2

〉)
. It is left to

show that the folding and trimming at ◦ does not prevent uv = qvr from appearing in ΓX
(〈
u2v2

〉)
.

If the lower half of Γ′ survives the folding and trimming then uv certainly appears in it. We assume
therefore that there is folding at ◦, and that it encompasses either all of v to the right of ◦ or all of
rq to the left of it (i.e. it reaches the lower half of Γ′).

Case (iv): |v| ≤ |q|. By our assumption, v is a prefix of q−1, so q = qv−1 (q may be empty).

Γ′ then folds and trims into Γ′′ =
•v

uu r
//• q

))• ◦
v
vv⊗q

hh
...

roo
. Now uv = qvr = qr and since the folding

from ◦ downward must stop at ... (or earlier), the • ⊗
qoo ...

roo part survives in ΓX
(〈
u2v2

〉)
(since

|v| <
∣∣q−1r−1v

∣∣) and we are done.
Case (v): |q| < |v| ≤ |rq|. Now we can assume that v is a prefix of q−1r−1, so that r = st and

v = q−1t−1 (possibly with s = 1). In this case uv = qvr = t−1r already appears in the ⊗ ...
roo part

of Γ′, which always survives due to monotonicity.
Case (vi): |rq| < |v|. Now we can assume that q−1r−1 is a prefix of v. Therefore, uv = qvr

is a suffix of vr, and thus appears in the ⊗ ...
roo •voo part in Γ′. If v is not a prefix of q−1r−1q−1

then the folding from ◦ downward stops before reaching this part, and we are done. We thus
add the assumption that v is a prefix of q−1r−1q−1. Since |rq| < |v| we can write q = st so

that v = q−1r−1t−1 = t−1s−1r−1t−1. Now Γ′ folds and trims into Γ′′ =
•t

uu •
s
oo

◦ •
rii

⊗s

hh
...

roo t

66 , and

uv = r−1t−1r appears in ⊗ ...
roo t //• , which survives any further folding since |s| <

∣∣t−1s−1r−1
∣∣.

5.5 Epilogue
While the original conjecture [MVW07, §5(1)] fails, it is plausible that some modification of it holds.
One possible option is the following:

Conjecture 5.5.1. Let H ≤ J be subgroups of the free group F. Then H ≤alg J iff H ≤�
X J for

every free extension F′ of F, and every basis X of F′.

Since the relation H ≤alg J does not depend on the ambient group, one direction holds as
before. But in contrast with the original conjecture, the example in Section 5.4 is no longer a
counterexample: let F = F (a, b), H =

〈
a2b2

〉
and J =

〈
ab, a2b2

〉
. For F′ = F (a, b, c) and

X =
{
a, cb−1, cbc−1

}
, H does not X-cover J : denote x = a, y = cb−1 and z = cbc−1. Then written

in this basis, H =
〈
x2y−1z2y

〉
and J =

〈
x2y−1z2y, xy−1zy

〉
. By Lemma 5.2.3, H ≤�

X J iff xy−1zy

appears in Γ{x,y,z}
(〈
x2y−1z2y

〉)
, which is not the case.

Another plausible option is that the original conjecture from [MVW07, §5(1)] holds for free
groups of rank three or more, as it is clear that the counterexample exploits many idiosyncrasies of
F2. If this is true, then Conjecture 5.5.1 follows as well.
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Epilogue

The results elaborated in the five manuscripts included in this thesis constitute important progress
in their lines of research. In most chapters I also presented some intriguing open questions sparked
by the different results. In this short epilogue, let me mention two questions which I consider to be
the most interesting ones.

• Separating Aut (Fk)-orbits: A very challenging open question is the following. The (now
resolved) question about primitive words and measure preservation is actually a special case
of a more general problem. The primitives constitute a single Aut (Fk)-orbit in Fk. In the
same manner that they induce the same measure on every finite (or compact) group, it is an
easy observation that any two words belonging to the same Aut (Fk)-orbit induce the same
measure on every finite (compact) group. But does the converse hold? Namely, if w1 and w2

belong to different orbits, is there necessarily some (finite? compact?) group on which they
induce different measures? Not only is this question very natural, it also has some interesting
implications. For example, a positive answer would provide us with an algorithm to solve
the automorphism decidability problem for free groups. Namely, to determine whether two
given words belong to the same Aut (Fk)-orbit. A famous algorithm of Whitehead [Whi36b]
solves this decidability problem, but much is left to be desired in terms of complexity and
more generally in terms of our understanding of Aut (Fk)-orbits in Fk. (See [PP15, Sec. 8],
or Section 2.8 here, for details).

• Distribution of second eigenvalue: I hope that the methods I developed in [Pud15a]
(Chapter 3) can be improved to produce a new, simplified proof of Alon’s conjecture (Fried-
man’s theorem) and to yield a complete proof of the generalized Alon-Friedman conjecture
regarding random graph coverings. However, as aforementioned, even after Alon’s conjecture
is established, many open questions remain concerning λ, the second (absolute value of an)
eigenvalue of a random d-regular graph on n vertices. In fact, very little is known about the
distribution of λ. A major open question is the following: what is the probability that a
random d-regular graph is Ramanujan, i.e. that λ ≤ 2

√
d− 1? Numeric simulations were con-

ducted by several researchers (see, for instance, [MNS08] and [HLW06]) but different pieces of
evidence suggest contradicting answers. We hope our new approach may eventually contribute
to answering these open questions. In fact, even the following, much weaker question is not
known: are there infinitely many Ramanujan d-regular graphs for every d ≥ 3? The positive
results here are by explicit constructions of Ramanujan graphs when d−1 is a prime power by
[LPS88, Mar88, Mor94]. In a recent major breakthrough, Marcus, Spielman and Srivastava
[MSS13] show the existence of infinitely many d-regular bipartite-Ramanujan graphs for every
d ≥ 3. Still, the original problem remains open.
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