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Abstract

We study social learning by agents located on a social or spatial graph, with
emphasis on the question of whether different types, of unequal merit, may
persist side by side indefinitely in a constantly learning connected society. In
contrast to studies that previously considered this question([3, 4, 1], we bring
evidence to answer this in the affirmative, showing that diverse learning societies
which are stable exist, making their emergence possible, perhaps even likely.
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1. Introduction

Agents who face a choice of actions with uncertain payoff rely on their own
experience as well as on the opinion of others. We have previously studied the
behavior and dynamics of such a system[2] when the latter is available as a
reputation of the action considered. This is defined as an aggregated record
of selectively reported outcomes of the action, which is publicly available to
all agents and is often condensed into a single real number enabling a heuris-
tic comparison or ranking of actions based on reputation. We noted that the
informal concept of reputation as a society’s consensus opinion is formally em-
bodied in reputation systems, also called recommendation systems, of which
YouTube, TripAdvisor, Google Scholar and the Google search engine itself are
massively-used examples.

In that study all agents were undifferentiated by position or social connec-
tions. In the current study, we place the agents on a social or spatial graph. An
agent repeatedly chooses among several available experts of uncertain expertise,
relying in her! choice on the opinion of her neighbors, the neighbors being those
directly connected to her vertex with a directed graph edge.
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The opinion of the neighbors is condensed into an aggregated reputation
record of all experts, which, since every agent has a different set of neighbors,
is local to that agent. The reputation record counts favorable mentions of
each expert (possibly discounted over time and weighted by source) and ranks
experts based on that count. The true expertise, with full information of the
state of the world, is a fixed and agent-independent probability that the expert
will provide satisfactory service. An agent wishes to get satisfactory service in
the least number of tries, so is motivated to try experts in descending order
of their expertise. The expertise, however, is not directly observable, and the
reputation order serves as a noisy signal of the expertise order. Since an agent
will stop querying experts once she gets satisfactory service, the reputation order
is crucial to which experts receive a chance to prove their worth. As the agent
will also report successful service to her own neighbors’ reputation records, her
neighbors’ subsequent choices will be affected leading to possible propagation
of reputation throughout society’s graph.

For simplicity we assume there are only two experts, A and B, whose re-
spective expertise is e4,ep € (0,1]. Each agent’s reputation record, at any
given time, consists of r4 and rp, real numbers that count favorable mentions
(possibly discounted and weighted by source) of A and B, respectively. We fur-
thermore assume that the agent’s own experience has also been suitably weighed
into the reputation record, so that the agent determines her behavior based on
the rank order of her r4 and rp: We call an agent with a higher or equal r4 an
A-type, and an agent with a higher 5 a B-type?. An A-type will use expert A
primarily, with expert B used as a fallback option. Similarly a B-type will use
expert B primarily, using A as a fallback option.

We therefore have a partition of agents into A-types and B-types at any time.
Assume all agents seek service from the experts at all integral times 1,2,.... A
partition is called stable if, once achieved, it does not change subsequently under
the dynamics described?. A partition is called diverse if not all agents have the
same type. In a connected society, is a stable diverse partition possible?

This question has been posed by Bala and Goyal[l] and answered, in the
context of their model, in the negative when (rephrased to our terminology) the
experts have different expertise. In case experts are equal in expertise, they show
a stable diverse partition is possible under some further assumptions, stating “To
analyze issues of conformity/diversity in general is quite a difficult problem.”
(section 5). Ellison and Fudenberg [4] also make the distinction between equal
and unequal “technologies” competing for adoption in a learning population
while searching for conformity versus diversity outcomes of their model. In the
unequal case, they conclude that their model might fail to reach conformity
only when it fails to reach any steady state at all, and so apparently answer the
diversity question in the negative. Nevertheless, as we discuss below, we believe
our result may apply to a network version of their model. De Groot [3] shows

2An arbitrary tie-breaking rule is applied
3 At least with high probability, as the dynamics are probabilistic.



that a committee trying to reach a consensus on a probability distribution by
each member observing and weighting other members distributions will indeed
converge on a CONsensus.

Evolutionary dynamics provide a parallel, in form at least, to the questions
discussed in social learning. The fitness of a type is parallel to our expertise,
and it is known that in a population in which two different types compete no
diversity is possible unless their fitness is equal (e.g. Nowak[7]). Moreover, the
Moran process (ibid.), used to analyze evolutionary dynamics in finite popula-
tions is incapable of a diverse steady state by its nature. The key parameter
under investigation there is the fization probability, i.e. the probability that one
particular type (a mutant) will take over the entire population, the alternative
being its extinction. In evolutionary graph theory (Lieberman et. al.[6]) vari-
ous graphs, where edges denote spatial proximity, are investigated as to whether
they increase or diminish the fixation probability of types.

Our aim is to show a different result, i.e. that stable diversity is possible
even when experts have different expertise. Thus we point out a critical differ-
ence between evolutionary dynamics and the dynamics of social learning, which
underlies the different result. Evolutionary dynamics progresses by the random
selection of one node in the vicinity, and once selected, only that node deter-
mines the progeny. In social learning, the entire neighborhood of a node comes
into play. When, as is natural and common, social neighborhood is based on
spatial proximity, this idea has been epitomized by the saying “It takes a village
to raise a child”, or by the verse “Man is but the imprint of the landscape of
his birthplace” by the Hebrew poet Saul Tchernichovsky.

The reputation model of social learning may be called learning by the sug-
gestion of alternatives. Unlike in other models of social learning, alternatives
do not differ in their payoff but in their probability for success. All successful
outcomes are equally satisfactory, whether provided by the best expert or by an
inferior one. This gives a real chance for a “good enough” expert to be adopted
and locked in by virtue of being given the first chance to perform. The role
of reputation, as a guide to agents in which order they should try alternatives,
is therefore critical, and dynamics in which feedback effects perpetuate high
reputation and shut out objectively superior experts are common.

Our main result, in graph-theoretical terms, states that every finite social
graph has a stable, diverse partition, provided every agent has self-weight.
Namely, each agent counts itself amongst her neighbors. This is represented
by a loop edge from the vertex to itself. As we show, this minimal “inertia” is
sufficient to enable a stable and diverse partition regardless of how many real
neighbors an agent has.

Furthermore, we conjecture that as the graph becomes infinitely dense, in
the sense that the number of neighbors of every agent — oo, the need for any
self-weight loops vanishes, and the infinitely dense graph has a stable diverse
partition. We refer to this conjecture as the Map Conjecture.

The Map Conjecture has a geometric / geographical interpretation when
each agent is seen as a point on a map, and all other agents in its influence
sphere of radius R > 0 are considered neighbors. In other words, the social



graph has an (undirected) edge for any pair of agents whose distance is R or
less. We say that a point set V is dense if for every point v € V the set of
points from V in its influence sphere has a positive measure. (The reader is
encouraged to keep in mind a setting where V resides in the plane and measure
means area). Then the map conjecture states that if the point set defined by
the agents is dense, it can be partitioned in a stable yet diverse manner.

The geographical interpretation demonstrates the following: Dense popula-
tion groups of different types may reside in close proximity (at least on their
mutual boundary) while continuously interacting through social learning with
all their neighbors, with their geographical division remaining stable, even if
one of the types is in some sense superior to the other.

The results we develop in this paper apply to our reputation model of social
learning, yet they do not depend on all details of this model, and so may well
apply to other models. Crucially for our results, the global version of our model
allows more than one steady state. That is to say, that, under some restrictions
on €4, €p, either A or B may emerge as stable reputation leaders under suitable
initial conditions. This, as we show, enables a mixed community of A-types
and B-types to stably coexist in a connected network. The property of having
multiple possible steady states is shared by other models of social learning.
In particular, it is a result of Ellison and Fudenberg [4], which leads us to
believe that a suitable setting of their model in a social or spatial network will
enable diverse steady states. To phrase this in their terms, whether a superior
technology is efficiently adopted or an inferior technology is inefficiently adopted
may turn out to be a matter of geography.

The rest of this paper is organized as follows:

In section 2 we describe the social learning model through reputation. In
section 3 we analyze the behavior of the model and find necessary and sufficient
conditions for a diverse steady state. In section 4 we specialize the model to a
geographical setting and state the Map Conjecture. In section 5 we discuss and
describe the possible solutions, and offer concluding remarks.

2. The Model

A finite social network has N agents, represented by the vertices V(G) of
an undirected finite graph G(V, E) with loops. An edge in E(G) represents a
mutual influence between a pair of individuals. The incidence matrix (azy) is
defined as usual. If zy € E(G) then a,, = 1, otherwise a,, = 0. The number
of edges at each vertex is its degree:

Yy € V(Q), Z Agy = d(x) (2.1)
zeV(G)

Vertices are allowed to have loops, representing the fact that an agent’s own
experience takes part in influencing her own reputation record.

There are two experts, A and B, each able to provide a service that is
repeatedly sought by each of the agents, at integral times 1,2, ..., called rounds.



The agents are determined to get satisfactory service and will try both experts,
if necessary, to get it. However, as the interaction with an expert carries a
cost, they are motivated to start with the expert with the highest probability of
success. FEach of the experts has an ezpertise, representing the probability that
his service will be satisfactory to the agent for any given agent-expert encounter.
This probability is independent of the outcome of any trial by a different agent,
or by the same agent in a different round. However, a repeat query of an expert
by an agent in the same round yields the same result as the first query, so that
it is pointless.

A’s expertise is e4 € (0,1] while B’s expertise is eg € (0, 1]. Agents do not
know the true expertise of the experts, and use the signals provided by their
reputation to make inferences on it.*

Fach agent x, at time ¢, sees a reputation record consisting of real numbers
ra(x,t),rp(x,t): reputations of A and B respectively. The reputation record is
a running aggregate of feedback reported by the agent and her neighbors on the
experts’ performance, and its value at the start of round ¢ represents the entire
information an agent has to guide her behavior in that round: The agent has
no recall of past reputation records, no information on unsuccessful encounters
with experts and no access to any reputation record but her own.?.

Under these circumstances, agents’ belief on who the better expert is depends
on which expert has the higher reputation: If r4(z,t) > rp(z,t), that expert is
A and z is called A-type (at time t). Otherwise that expert is B and z is called
B-type.

At each round, a Z-type (Z € {A, B}) agent behaves as follows: She queries
expert Z. If not satisfied, she will query the other expert. Finally, if any of the
experts was satisfactory, she will provide feedback to her own reputation record
and to all her neighbor agents to which she has an edge using the following
procedure.

At the end of round ¢, and for each agent x:

e The reputation record for the next round ¢ + 1 is initialized from the
existing reputation record, applying a discounting factor « € [0, 1]:

ra(z,t+ 1)« ara(x,t) (2.2)
rp(z,t +1) « arg(z,t)

e Subsequently, if expert Y € { A, B}’s service was satisfactory in the round,
2 updates her neighbor’s reputation records. For each y € V(G):

ry(y,t+1) <= ry(y,t + 1) + azy (2.4)

4That reputation is indeed a valid signal for expertise is proven, in a slightly altered context,
in the paper “Market Share Indicates Quality” which is part of this thesis

5As in the global case, this mechanism may be explained by the presence of a reputation
system that provides personalized, localized services for the agent



When all reputation records for round ¢+ 1 have been updated by round t’s
results, round ¢ + 1 will start, and so on.

The reputation records at round 1 are initial conditions. Their origin is
extraneous to the model.

3. Steady-States of the Model

We investigate the behavior of the model, and specifically ask under what
conditions it will reach a steady state. We define a steady state as follows:

Define V4 (t) C V(G) to be the set of agents who are A-types at time t.
Vi (t) = V(G) — Va(t) is the set of agents who are B-types at time .

A (strict) steady state of the social graph is said to be reached at round T if
for all rounds ¢t > T', V4(t) = V4(T'). Since our dynamics are probabilistic, strict
steady states are hard to find. We instead define quasi-stability or stability by
expectation:

An agent x is said to be quasi-stable at time T if either:

o It is A-type and for all t > T E[ra(z,t)] > E[rp(x,t)], or
e It is B-type and for all ¢t > T E[ra(z,t)] < E[rp(z,t)].

If all agents are quasi-stable at time 7" we say that the social graph is quasi-
stable at time T'.

At each round, each A-type agent has probability €4 of positive feedback for
A, and probability (1—e4)ep of positive feedback for B. Each B-type agent has
probability ep of positive feedback for B, and probability (1 —eg)ea of positive
feedback for A.

Let u,z(t) be the expectation of total feedback on agent z’s reputation of
expert Z € {A, B} at time ¢, then:

Uga(t) =€a Z ays + (1 —€p)ea Z Qya (3.1)

yeEVaA(t) yeVE(t)
uyp(t) = (1 —€a)ep Z Qys + €B Z Ay (3.2)
yEVA(L) yEVE(t)

Subtracting and dividing by e4€p:

meal®) “ven®) 1 L) s e Lo Y,

€AEB B €A
yeEVA (L) yeVE(t)

Denote g4 := l(1 + L - i) and ¢p = %(1 4+ L %)
We call ¢4, qp the qualities of expert A, B respectively. Note that g4 +qp =
1. Then we have:

Upa(t) —u
9“4()—5“3_%4 Z ys — qB Z ye (3.4)

2€ 4€
ACB yeVa(t) yEVE(t)
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Figure 1: Conformity/diversity depending on expertise levels

Observe in (3.4) that if V4(¢) is constant for all ¢ > T then so is uz4(t) —
uzp(t). In a steady state, it is therefore impossible for z to be an A-type if
uga(t) — ugp(t) < 0, because each round r4(z,t) — rp(x,t), initially positive
at T, would decrease on average by at least uyp(t) — uza(t) > 0 (discount-
ing decreases it even more). Therefore with probability 1 at some future ¢
ra(z,to) < rp(x,to) and x will no longer be an A-type, contradicting the as-
sumption of a steady state.

Similarly in a steady state it is impossible for = to be a B-type if u,4(t) —
’U,ZB(t) > 0.

Note again in (3.4) that if ¢4 and gp are of opposite sign, then wu, 4 (t) —u. 5 (t)
has the same sign for all agents x € V. By the above argument, in this case if
a steady state occurs it cannot be diverse, because such a steady state cannot
hold both A-types and B-types.

As our interest is in diverse steady states, we turn our attention to the case
where ¢4 and gp have the same sign. As both cannot be negative we must have
ga > 0and gp > 0, or (see figure 1):

1< ——-—<1 (3.5)

Referring once more to (3.4) we see that the social graph is quasi-stable at
time ¢ if, and only if:
e For each A-type agent x:

qga Z ayquB Z oy (36)

yeVal(t) yeEVE(t)



e For each B-type agent x:

qa Z ayzqu Z Gy (37)

erA(t) yEVB(t)

Conclusion 1. A social graph is quasi-stable iff its partition into A-types and
B-types has every agent with at least as many neighbors (weighed by type) on
its own side of the partition as on the other side.

More specifically: Quasi-stability requires that every A-type agent has at least
g = 1 — qa of its neighbors from A-types, and that every B-type agent has at
least g4 = 1 — qp of its neighbors from B-types.

When expertise levels are equal, qualities are equal, g4 = gg = % and each
agent requires at least half of its neighbors from its own kind.

When expertise levels are unequal, each A-type agent must have at least a
q = 1 — g4 fraction of her neighbors to be A-type. Likewise for type B. Note
that this means that “high-quality” types can be stable in an environment with
relatively few similar neighbors, while “low-quality” types need a large majority
of similar neighbors to “survive”.

While the criterion for quasi-stability is simply stated, it has no easy solu-
tions, and indeed the existence of a solution appears unlikely, especially when
no loops are present, and expertise levels are different.

Here is an example for which no stable diverse partition exists:

Example 1. Let G be the complete graph with N agents, and without loops,
i.e. Vo € V(G), a0 =0, and Vz,y € V(GQ),x # y,azy = 1.

For any qa € [0,1],qp = 1 — qa, no stable diverse partition exists for this
social network. For let the set of A-types be called V4 C V(G). By (3.6) each
member of Va is quasi-stable iff

qa(|Val = 1) > gs(N — [Val) (3.8)
While by (3.7) each member not in V4 is quasi-stable iff:
qalVal < q(N — [Va| - 1) (3.9)

But (3.8) and (3.9) contradict each other.
If a loop is added to every vertex of G, a stable diverse partition is possible:
(assuming qgN to be an integer) any partition in which |Va| = qgN is stable.

This effect of loops is not restricted to the above example. In fact, any
social graph in which a loop is attached to every vertex has a stable and diverse
partition:

Theorem 1. Every social graph G(V, E) in which az, = 1 for every x € V(G)
has a stable and diverse partition for every pair of qualities qa,qp satisfying
qga+qp=1.



PRrROOF. This is a consequence of result by Stiebitz[8] showing that for every
graph G(V, E) and functions a,b : V — N satisfiying dg(z) > a(z) + b(z) + 1
for every vertex x € V, there is a diverse partition (A, B) of V such that

1. da(z) > a(x) for every vertex X € A, and
2. dp(z) > b(z) for every vertex X € B

Setting a(x) = |gad(x)], b(x) = [gpd(x)] — 1, the result applies to G(V, E),
so there exists a diverse partition (A4, B) of V. d

4. The Social Graph on a Map

We now take the social graph described in Section 2 and put it on a map,
defining what we will call a social map. To this end we specialize the model in
the following ways:

e Every agent is placed at some point on R?, the two-dimensional plane,
endowed with a metric p. A constant influence radius R > 0 is associated
with the social map to define neighborhood: Two agents are connected by
an edge if their mutual distance (according to u) is R or less.

e We let the agent population be large, so that it can be idealized as a planar
domain V', where for every point = the set B(xz, R) NV has a positive two-
dimensional measure.

e No loops: an agent’s self-weight is zero.

The most obvious choice for p is the Euclidean planar metric. But it may
also be defined by any metric, to take account of geographical obstacles and
available modes of transportation: E.g. the travel time, or economic cost of
traveling from one point to another is a possible choice of the p metric.

Let us spell out the model, adapted from Section 2, for social maps:

A social map M (V, i, R) is a compact® A\-measurable” set V of points in the
plane R?, equipped with a metric ;1 and an influence radius R > 0 to define
neighborhood: Points ¢, d are neighbors if u(c,d) < R.

As in Section 2 there are two experts A and B, with expertise levels €4, ep
respectively, and qualities g4 := %(1 + é — é) and ¢qp := %(1 + é — é) We
assume q4 > 0,gp > 0 since, as we have seen, these are necessary conditions
for a stable, diverse partition.

With each v € V and at any round t¢ there are associated reputation values
ra(v,t),rp(v,t) of experts A, B respectively.

At any time ¢, V' is partitioned into V4(t), the subset of V' whose agents are
A-type: V4 :={v € V|ra(v,t) > rg(v,t)}, and Vg(t) = V \ Va(t), the subset
of V whose agents are B-type.

6In the topology induced by the metric .
7\ is the planar Lebesgue measure.



The neighborhood of v € V is denoted N(v), and is the subset of V in v’s
influence radius, i.e. agents whose distance from v is R or less: N(v) := {y €
Vip(y,v) < R}

A social map is called dense if the neighborhood of each agent has positive
Lebesgue measure, i.e. for all v € V:

MN(®)) >0 (4.1)

We can then rephrase the criterion for quasi-stability of social graphs for
social maps: A dense social map M (V, u, R) is quasi-stable at time ¢, if, and
only if:

e For each v € V()
AN (v) N V4(1)) > g A (N (v) N VE(T)) (4.2)
e For each v € Vg(¥)

qaA(N(v) N Va(t)) < gA(N(v) N V(1)) (4.3)
We now make the Map Conjecture:

Conjecture 1. Let M(V, u, R) be a dense social map. Let qa,qp be the quali-
ties of type A, B, respectively, with qa+qp = 1. Then M has a stable and diverse
partition for qa,qp. Le. V can be partitioned into Va(t), V() satisfying (4.2)
and (4.3).

We can at present offer no complete proof of the conjecture. Instead we
sketch an outline of a proof which suggests that it is true:

1. We can construct increasingly fine grids covering V:

e The social graph G,,(V,,, E,,) is constructed by covering the map by
a grid of squares with side €, = 0,(1). The vertex set V,, consists of
the grid squares which are wholly in V' (see Figure 2).

e The edge set E,, connect those grid squares of V,, whose square centers
are in each other’s neighborhood, as defined by p, R.

e (5, is then a simple, undirected graph.

2. Since every vertex has a loop (every grid square centre is in its own neigh-
borhood), by Theorem 1 there exists a stable, diverse partition (A,,, By,).

3. If the series of partitions (A,,B,),n = 1,2,... converges to a definite
partition (A4, B) of V', then that partition satisfies the conjecture.

e By convergence we mean convergence according to the symmetric-
difference (A) pseudo-metric: The A distance between two sets U, V/
is the Lebesgue measure of their symmetric difference: A(U,V) =
AM(U\V)U(V\U)). A series A-converges to a limit if its A distance
from the limit converges to 0.

10
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Figure 2: Grid coverage of map

4. Therefore the conjecture is true whenever the series A,, (or B,,) A-converges.

That every social map has such a convergent grid partition remains to be
proven. We note that not every series of partitions necessarily converges: For
example, an increasingly fine checkerboard partition of a square does not A-
converge, as the A distance between any two elements of the series is constant
at half the square’s measure. Stiebitz’ existence proof is non-constructive and
of little use in ruling out non-convergence.

5. Discussion

5.1. Some Solutions

The Map Conjecture merely states the existence of diverse stable partitions,
but gives no clue as to how such a partition might look. Deriving an actual
solution, whether in analytic or numeric form, for any specific case is difficult.
Therefore we turn now to some special cases for which we are able to explicitly
describe a solution. In the following, we restrict the metric used to the Euclidean
distance.

The case of equal qualities g4 = gqp = % is of special interest. Here we note
that any set that has an axis of symmetry may be partitioned along the axis
of symmetry: E.g. an isosceles triangle may be partitioned along one of its
altitudes, a circular disc may be partitioned by any of its diameters, etc.

The case of unequal qualities g4 # ¢p lends itself to a simple solution if the
set to be partitioned contains a large enough circular disc:

Theorem 2. Let a social map M(V,u, R) be given, and assume unequal qual-
ities g4 # qp. Assume w.l.o.g. that q4 > qp. Then, if a disc of sufficiently

11



large radius lies entirely within V', a stable diverse partition may be constructed
as follows:

o When § < qa < 2: Let 0 € (0,7) be implicitly given by:

il e 1 -

2 2tan?? tan%

2

Set r = ﬁ If a disc B(O,r+ R) is wholly contained in V', partition V
2

into the inside and the outside of a circle of radius r and centre O, with

the inside disc B(O,r) populated by A-types and the outside populated by

B-types.

e When % < ga < 1: If a disc B(O, %) exists which is wholly contained
in V', partition V into a point set V4 populated by A-types, of measure
nR2qp, which is wholly contained in B(O, %), and a point set V \ Vy,
populated by B-types.

ProoF. For % <qa < %7 such a partitioned map is shown in figure 3. Clearly
the partition is stable if the criteria for quasi-stability (4.2), (4.3) hold with
equality on the partition boundary. Due to radial symmetry, if this is true for
one point on the boundary, say X, it holds for all.

At X, this means that:

MB(X,R)UB(0,7)) = qg\(B(X,R)) = nR%qp (5.2)
Observe in figure 3 that sin% = %. And:

R

-0
AMB(X,R)UB(O,r)) = “=2R* + 6r> - R——— (5.3)
2 2tan 5
Therefore:
1 1 0 1
B=9 9 { 2 sin? g tang (54)
1 176 0 1
= - —|Z_ — 5.5
2 27 [2 2tan? ¢ tang} (5:5)
ga=1—qp= (5.6)
1 176 0 1
_§+%b_2tan2g+tang} (5'7)
where r = 2);19 as claimed. This solution is valid so long as B(X, R) and
sy

B(O,r) intersect, i.e. for r > g S0<m=qa< %.

For g4 > %, see figure 4 for illustration. Observe that if V4, the community
of A-types (exemplified by the peanut-shaped region in figure 4), is entirely
within B(O, £), then every agent in V4 has all of V4 within her influence

12
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Figure 3: Partition into inside and outside of a circle

radius. Furthermore, since B(O, %) is entirely within the map, every agent
in B(O, £) has her entire influence radius within the map and so the measure
of her influence region is 7R?. As the measure of V4 is 7R%qp, (4.2) holds for
all A-type, while (4.3) holds for all B-types, so such a partition is stable. O

The social interpretation for the partition with g4 > i is that a strong
minority can survive in an arbitrary geographical setting, provided they reside
close enough to influence each other. When this occurs, their proportion of the
population in their area of prevalence is not too low for survival, nor too high,
as they would take over the entire population. Their weaker neighbors are also

stable by virtue of their larger numbers.

5.2. Dynamics

The existence of diverse steady states raises the question of whether such
steady states are likely to arise from a random partition, and whether one can
point to real-world situations which approximate the model and the dynamics
that arise out of it.

We developed a program that simulates the dynamics of the model on a map
of the continental USA (see figures 5-9). The map is divided into RED-types
and BLU E-types, starting at some arbitrary initial division, from which the
partition evolves, ending in either conformity, where one of the types populates
the entire map, or in diversity, where a stable partition of the two types is
reached. Two instructive examples demonstrate each of the alternatives: In
figure 5, RED is the superior type with quality 0.55. After many rounds, the
BLU E-types retreat, but manage to hold their ground in a stable frontier shown
in figure 6. Caution should be used when interpreting these results: The agents
on the map are simulated by finite-sized pixels, and pixelation effects are not
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Figure 4: Partitions for strong minorities

GRED = . gRED = .

gBLUE = .45 gBLUE = .45

Figure 5: initial ggryp = 0.45 Figure 6: final ggryg = 0.45

negligible (e.g. they allow the red-blue border to be mostly straight, which
would be impossible in the continuous case). An inspection of the final steady
state also makes clear that the particular position of the final border hinged
on a fortunate angle it made with map boundaries at its “Great Lakes” and
“Caribbean” ends.

In figure 7 RED’s quality advantage is larger, and the BLU E-types eventu-
ally (see figure 9) become extinct. An intermediate partition shown in figure 8
shows that in advanced stages of retreat the BLU E-types are concentrated in
the peninsulas of New England, Florida and Delaware, where they are relatively
insulated from contact with the dominant RE D-types.

The pattern of BLUF retreat is similar to the 20004 year retreat of the
Celtic languages in Europe, as they are being displaced by Romance and Ger-
manic languages. The diachronic distribution seen in figure 10 [9, 5], shows that
the Celtic languages that once dominated central and western FEurope, have
gradually retreated towards western peninsulas and islands, and at present take
refuge (perhaps only temporarily) in several relatively insulated regions includ-
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GRED = .56 GRED = .56

GBLUE = .42 qBLUE = .42 GRED = .58

gBLUE = .42

Figure 7: initial ¢rug Figure 8: intermediate
0.42 gpLur = 0.42 Figure 9: final gy g = 0.42

ing the peninsulas of Bretagne, Cornwall and Wales.

The retreat of the Celtic languages is, in general, not due to the retreat of
the Celtic people themselves, at least not in recent history. Indeed the Scots
and the Irish, for example, retain their national and cultural identity, but have
abandoned their Celtic tongues in favor of English. The retreat of the Celtic
languages is due, not to the extinction or migration of their speakers (which
would better be described by demographics or population dynamics), but to
the adoption of a language in place of another, a form of social learning.
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Diachronic distribution of Celtic pecples: &J
|:| core Hallstatt territory, by the 6th century BC
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Figure 10: Diachronic distribution of Celtic languages (source: Wikipedia)
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