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ABSTRACT

Online reputation systems collect, maintain and disseminate
reputations as a summary numerical score of past interac-
tions of an establishment with its users. As reputation sys-
tems, including web search engines, gain in popularity and
become a common method for people to select sought ser-
vices, a dynamical system unfolds: Fzxperts’ reputation at-
tracts the potential customers. The experts’ expertise affects
the probability of satisfying the customers. This rate of suc-
cess in turn influences the experts’ reputation. We consider
here several models where each expert has innate, constant,
but unknown level of expertise and a publicly known, dy-
namically varying, reputation.

The specific model depends on (i) The way that experts’
reputation affects customers’ preferences, (ii) How experts’
reputation is modified as a result of their success/failure in
satisfying the customers’ requests.

We investigate several such models and elucidate some
of the key characteristics of reputation in such a market of
experts and customers.
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1.1 How to Find a Good Expert

How do you find a good restaurant to celebrate that spe-
cial occasion? How to find a lawyer, mechanic or medical
specialist when you need one? Where do you find the cita-
tion you need in your paper for a subject that is peripheral to
your own work? How to find a good movie, a book, a travel
destination or a cool YouTube video? Traditional methods
of answering these questions are more and more being aug-
mented, or even replaced, by online reputation systems.

According to Friedman et. al.[6], online reputation sys-
tems collect, maintain and disseminate reputations, aggre-
gated records of past interactions of each participant in a
community. While reputation systems have been used to
track the trustworthiness of a participant, the property be-
ing tracked by a reputation system is more generally a mea-
sure of the quality or ability of a participant in a certain
class of interactions. Online systems for grading restaurants,
travel destinations, movies as well as academic papers and
researchers are examples.

We use “expertise” as a catch-all term for the attribute on
which a reputation system is designed to report. FExpertise
may be a measure of the quality of services (of a certain
kind) rendered, ability to perform a task well, ability to cor-
rectly answer questions or predict events of a certain kind, or
trustworthiness in interactions. Participants in a reputation
system may be divided into experts, who provide a service
and have an aggregated reputation record, and users, who
use the expert’s services and the system’s disseminated rep-
utations. In so-called peer-to-peer reputation systems each
participant serves in both roles.

We define expertise to be the probability that an expert’s
service will meet a user’s requirements, with the probability
meant to cover the great variability in this user-expert inter-
action: variations between the requirements of members of
the community, variations of requirements on different oc-
casions, and variations in the skill of the expert according
to his! own circumstances. We make the assumption that
this expertise probability is an objective and fixed attribute
of an expert, which is however hidden and can only be esti-
mated by trials. Hence the value of the reputation system in
providing a community of users information that is helpful
in estimating expertise.

We treat expertise as an innate ability of an expert, not a
strategic choice. We assume that an expert cannot perform
better than his fixed expertise and has no cost in doing his
best (and therefore has no motive in performing worse).

Throughout this paper we refer to experts as masculine and
to members of the public as feminine.



1.2 Reputation

The reputation provided by a reputation system may con-
sist of the aggregated record of reported past interactions.
More commonly it is a numerical score derived from that
record, enabling experts rated by the system to be ranked.
The reputations disseminated by a reputation system help
users estimate the objective expertise (defined as probabil-
ity for success) of each expert. Often, it is enough if the
reputations assist users in ranking the estimated expertise
levels, since a user’s strategy typically consists of selecting
the best available expert.

A reputation system may therefore be called effective if,
given the way past interactions are reported and aggregated,
a higher reputation score more often than not reflects a
higher expertise. Consequently the effectiveness of a rep-
utation system depends not only on its design, but on its
sources of information as well.

When all past interactions, successful or not, are recorded
by a reputation system, designing it for effectiveness is sim-
ple: The success rate of each expert (the ratio of successes
to trials) is an unbiased estimator of expertise and there-
fore may be used as the reputation score. Users may make
the natural and simple choice of the highest-score expert, or
may engage in longer-range and ultimately superior k-armed
bandit strategies[7].

However, full reporting, or even representative reporting
of interactions is not realistic in most real-world situations.
Often, the motivations of users who provide reports to a rep-
utation system lead to one-sided reporting, of successes only,
or, less commonly, of failures only. Some systems, such as
search engines (where the “endorsements” consist of links),
or academic importance (where the “endorsements” consist
of citations), simply have no scope for negative mention.
Statistics made of sales figures, such as for books or movies,
also reflect only positive choices, while a customer’s decision
not to buy is a silent, unrecorded act. Nor is the problem
solely a question of the reputation system’s design: Users
seem to be inclined to report positive interactions, while
generally glossing over negative ones. For example, a system
of “thumbs up//down” introduced to rate YouTube videos
shows that “thumbs up” occurrences consistently outnum-
ber “thumbs down” occurrences so heavily that it is doubt-
ful that their relative proportion measures viewer approval/
disapproval.

1.3 Expertise vs. Reputation

We aim to investigate the relation between expertise and
reputation in a reputation system: Does reputation, the
public’s perception of expertise, reflect real expertise in the
long run? Can we be assured that, between several ex-
perts of varying skill, eventually the expert of highest ex-
pertise will have the highest reputation? Or, alternatively,
might reputation be self-perpetuating, with a high reputa-
tion merely reflecting a favorable head start?

Both possibilities are plausible. On the one hand, an ex-
pert’s reputation is reinforced by a customer’s positive expe-
rience, which becomes more likely the higher his expertise.
On the other hand, the number of his customers depends on
his current reputation. Both expertise and current reputa-
tion therefore contribute positively to future reputation and
either may conceivably dominate in the long run.

The expertise-reputation contest is well-known to the cor-
porate world: Entry into an established market is gener-

92

ally difficult and costly. Having an excellent product may
not suffice, and the newcomer may need to spend a lot to
close his reputation gap: For example, in the mid-1990’s
Netscape ruled the web browser world, until Microsoft’s In-
ternet Explorer managed (with considerate effort) to side-
line it. On the other hand, the success of Mozilla’s Firefox,
a non-profit open source browser, teaches that entry against
an entrenched leader is possible, and on merit alone.

Nobody in their right mind expects a better-tasting but
no-name cola drink to supplant Coca-Cola and Pepsi-Cola.
Nor is it commonly believed that the unrivaled supremacy
of these mega brands rests on the unrivaled quality of their
soft drinks.

The situation is well-known in the cultural world, where
being “in vogue” is in large part self-sustaining: The people
who flock to see a Van Gogh exhibition, a Rolling Stones
concert or a performance of Verdi’s Aida seem to be driven at
least in part by the respective artists being acknowledged as
“all-time greats”. Indeed Van Gogh’s wretched career during
his own lifetime indicates that there is nothing inevitable
about his posthumous fame.

In arts, music and literature there is still an intangible but
definite “expertise”, but when considering the “reputation”
of TV personalities, movie stars, supermodels and so on, it
becomes less and less clear what it is that sustains them in
their elevated position in the face of the hordes of wannabes
who would love to take their place and seem just as qualified.
This has led a cynic to quip “a celebrity is someone who is
famous for being well-known”.

1.4 Search Engines as Reputation Systems

Web search engines, and in particularly the ubiquitous
Google, play the part of universal “managers” of reputation.
The Google search engine is easily the world’s most popular
reputation system. Google famously employs the Page-Rank
algorithm [3] to rank the importance of pages. Briefly, the
importance of a page is the sum of the importance of each
page that hyperlinks to it, plus a constant self-importance.

In the full version of this paper we demonstrate a close
relationship between page-rank values and the value of rep-
utation as defined in our model.

Google and the Page-Rank algorithm exemplify well the
interaction of “expertise” and “reputation”: In response to a
search query, Google ranks pages in order of their “reputa-
tion” (in fact, their page rank), which is indicative of their
“expertise” (in fact, their likelihood to be what was searched
for). A page found in a search is likely to acquire new links
(for example, when looking for a travel destination, which
will later be mentioned in the traveler’s blog). It is tac-
itly assumed (by Google and its users) that this procedure
ultimately causes the objectively best pages to be ranked
high. Whether or not this is indeed the likely outcome is
the subject of our investigation.

1.5 Main Results

Analyzing how the reputation ranking of experts evolves
given their expertise and initial ranking, we show that being
ahead in reputation confers a quantifiable advantage that
may balance inferiority in expertise (“No. 2 Tries Harder”).
In a system where reputation is enhanced positively, a steady-
state order is always reached, and is unique given initial
conditions. On the other hand, when negative feedbacks are
included, reputation orders become chaotic. We also prove



that reputation is indeed a positive signal for expertise in
(almost) all conceivable reputation systems.

1.6 Reputation in Economics and Game The-
ory

The subject of reputation is extensively discussed in the
literature of game theory. It was introduced by Selten in
the “chain-store paradox” [12] to mean the belief of players
in games that another player takes actions that fall within a
certain class, e.g. “aggressive”. Kreps and Wilson [9] showed
how reputation may affect behavior in Bayesian games where
there is uncertainty about players’ payoff structure. Reputa-
tion is usually used in order to capture strategic choices that
a player selects at will (such as honesty or aggresiveness),
rather than intrinsic attributes, such as quality of service or
expertise in a field, which a player cannot choose at will.

The concept of brand as a carrier of a firm’s reputation
was put forward by Kreps [8], in the context of moral hazard.
Cabral [4] discusses firm reputation as a posterior belief of its
customers of the firm’s quality level given the firm’s history
of performance, in the context of whether a firm with a
strong brand is well-advised to use the same brand for a
new product.

The term reputation system was originally used for online
systems whose participants grade each other’s trustworthi-
ness, or competence, of which the one used by eBay is the
archetype. eBay’s reputation system has been extensively
studied, e.g. by Dellarocas|5].

Tadelis[13] as well as Mailath and Samuelson[10] consider
reputation as a tradable asset: A firm’s reputation is a noisy
signal of its competence or effort observable by customers.
Firms may trade in reputations, and such trades are only
partially observable by customers.

Information cascades [2] study situations in which it is
optimal for an individual, having observed the actions of
those ahead of her, to follow the behavior of the preceding
individual without regard to her own information. Informa-
tion cascades have been advanced as an explanation of the
localized conformity of behavior and the fragility of mass be-
havior. Information cascades have some features in common
with reputation systems, but typically their models lack user
feedback which is key to the formation of reputation.

1.7 Organization of this paper

Section 2 presents our model.

In Section 3 we analyze in detail the behavior of the
reputation-expertise model and prove most of our main re-
sults.

In Section 4 we discuss the rationality of the behavior
outlined in our model, and prove that it is rational, under
very broad assumptions.

In Section 5 we summarize and discuss future work.

In the full version of this paper the interested reader will
find a demonstration of the relation between our model’s
notion of reputation and the measures used by web search
engines to rank search results, proofs of the theorems and
lemmas, as well as supplementary details on the behavior of
the model.

2. THE MODEL

We use a model wherein N users repeatedly seek the ser-
vices of n experts, each expert having a publicly known rep-
utation. The reputations evolve dynamically and represent
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the aggregate feedback of the users based on their satis-
faction with the services they received. The probability of
providing satisfactory service to any user request is mod-
eled as the expert’s expertise, a fixed but hidden quantity
characterizing each expert.

When seeking service, users engage experts according to
some selection order, stopping when they are satisfied with
the service (or when they have exhausted all experts). The
selection order may be simply the experts ordered by de-
scending reputation (the “Reputation Ordered Scheme”), or
may also take into account a user’s previous experience with
experts (“Loyalty Schemes”).

2.1 Rounds

Time is discrete: At each integral time a round takes
place, in each of which each user seeks a service that may be
provided by any of the experts. The service provided by an
expert may either succeed or fail. Each expert has his own
reputation and expertise. The reputation of expert ¢ is
a real-valued function of the discrete time, r; = ri(t) repre-
senting accumulated user feedback (at round t) on expert 4’s
success rate. The expertise of expert ¢ is his actual success
probability €; € [0,1] in satisfying users requests. At any
given round ¢, the current reputation values r1(t), ..., n(t)
are common knowledge to all users. On the other hand, the
expertise values €1, ..., €, are unknown to the experts and
the users.

2.2 Success and Failure Probabilities

The outcome of expert i’s service is a random Bernoulli
event with probability ¢; for success and probability 1 — ¢;
for failure. This outcome is independent of any other user-
expert interaction in any round. However, a repeat service
request to an expert in the same round produces the same
result as the first request. Therefore there is no point in
seeking the service of the same expert more than once in a
round.

2.3 Selection Order

The order in which experts are asked in each round is
called the selection order. Users follow their selection order
until success, or until no more experts are available. The
selection order may be based on the reputations publicly
known at the start of the round, or on the user’s previous
experience, or both. A user has no direct information of
other users’ experience. The selection order may be non-
deterministic.

A selection scheme that depends only on the order of ex-
perts’ reputations (and not, e.g., on actual reputation val-
ues) is called order-based.

A user that queries an expert in some particular round, is
called a customer of the expert in that round.

2.4 Reputation Update Rule

At the end of each round, each expert’s reputation is up-
dated according to his customers’ experience in that round.
For every successful service (i.e., for every satisfied cus-
tomer) in the current round, the expert’s reputation is incre-
mented by 3, and for every failed service (i.e., a dissatisfied
customer) in the current round, it is decremented by 1 — (.
The total of all reputation updates for an expert in a round
is called the expert’s feedback. The parameter 0 < g < 1
is called the reward/penalty factor. Note that for 8 =1,
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Figure 1: Flow, timing and feedback in the

reputation-order scheme

only successes are rewarded, while for § = 0, only failures
are penalized.

At the beginning of each round, the previous round’s rep-
utation is multiplied by a persistence (discount) factor 0 <
a < 1. No discounting corresponds to o = 1.

We denote the number of customers of expert i in round
t by ¢;(t), and his feedback in round ¢ by w;(t). Let S;(t) C
[N],Ui(t) C [N] be i’s set of satisfied and unsatisfied cus-
tomers, respectively. Then [S;(¢t) U U;(t)| = ¢i(t), and the
full reputation update rule is:

wi(t) = [S:(D)|8 — [U:(1)[(1 - B) (2.1)

ri(t+1) = ari(t) + wi(t) (2.2)

It is easy to express the expectation of expert i’s feedback
in round ¢. If he has ¢;(t) customers at that round, then

E[wi(t)] = B Elci(t)] — (1 = B)(1 — &) Elei ()] =
E[wi(t)] = (ei + 8 — 1) E[ci(t)]

(2.3)
(2.4)

It follows that the expected feedback of an expert is pos-
itive if and only if his expertise € is > 1 — 3, regardless of
the selection order or any other detail.

2.5 Selection Order as a Markov Chain

Figure 1 demonstrates the flow of a user in a round in
the reputation-ordered scheme with 3 experts, shown as a
Markov chain with feedback side-effects.

The 3 experts are ranked by reputation so that r1 > ro >
rs. The diagram represents the flow so long as this order is
stable (an order change, if it happens, is noted only at the
start of a round, at the ¢ < ¢t 4+ 1 oval). Each of the three
states (circles) represents a possible query of one of the ex-
perts, with two emanating edges representing failure (em-
anating right), and success (emanating downwards), with
their respective feedback updates.

3. BEHAVIOR OF THE MODEL

We explore the behavior of the model under various se-
lection schemes. The main question that will interest us
is whether the rank order of expert reputations reaches a
steady state in the long run, and if so, to what extent the
reputation ranking in the long run reflects the experts’ ob-
jective levels of expertise €1,...,€,, vs. the initial order of
reputations r1(0) > ... > r,(0).

Since the model is stochastic in nature, the notion of
steady state should be clarified. To this end we define the
notion of quasi-stability:

3.1 Quasi-Stability
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DEFINITION 1. A setting is a combination of a reputa-
tion ranking r1(t) > ... > ra(t), of experts with exper-
tise levels €1, ..., €, and a selection scheme S (with reward-
penalty factor 3).

The i’th pair within o setting consists of a leader, the
expert at index i, and the pair’s follower - the expert with
index i+ 1.

The i’th pair within a setting is said to be quasi-stable
(at round t) if the expected reputation of the pair’s leader
given the setting (as defined in (2.1)) is greater or equal to
the expected reputation of the pair’s follower, at all rounds
starting at t, i.e.:

Elrs(T)] > E[ris1 (7)), V>t (3.1)

where the probability space for the expectation is taken
over all possible user-expert interactions in rounds after t,
assuming that the expert order does not change.

If a pair is not quasi-stable, it is called unstable.

For order-based schemes, feedback expectations stay con-
stant so long as the reputation order does not change. There-
fore in view of (2.2) the definition of quasi-stability is equiv-
alent to:

E[w;(t)] > E[wit+1(t)]

Quasi-stability encompasses the notion of stochastic sta-
bility of the order between the leader and the follower in a
pair: The leader is expected to retain his position in subse-
quent rounds, perhaps indefinitely. Since the feedback is a
random variable, this is not guaranteed: An unlikely lucky
streak may close the gap and put the follower in the lead.
In the context of our model, a “lucky streak” for an expert
would be to have a higher rate of success than his true level
of expertise. The probability for this happening vanishes as
the number of users N grow without limit, as by Law of
Large Numbers the (relative) variance in reputation feed-
back per round vanishes.

We use the term WITH HIGH PROBABILITY or w.h.p. for
short to describe an attribute that, in the scope of a given
time frame, is expected to be true with probability 1 — o(1)
as N — oo. Thus an equivalent to saying that a pair is
quasi-stable is the statement that it is w.h.p. stable, or that
the leader’s reputation is w.h.p. greater than the follower’s.

In contrast, an unstable pair is guaranteed to experience
an order change between leader and follower, in a time frame
that does not depend on the number of users.

We use the following additional definitions on stability:

(3.2)

DEFINITION 2. A setting is called quasi-stable if all pairs
within it are quasi-stable.

A setting that is not quasi-stable, i.e. if any pair within it
is unstable, is called unstable.

A pair within a setting is called two-sided quasi-stable
if it is quasi-stable and if it would be quasi-stable in a setting
wherein the pair’s leader and follower have traded places.

A pair within a setting is called two-sided unstable or
chaotic if it is unstable and if it would be unstable in a
setting wherein the pair’s leader and follower have traded
places.

Two-sided quasi-stability describes a situation wherein
whoever leads retains the lead. Two-sided instability de-
scribes a situation wherein no lead is stable.



3.2 The Reputation-Ordered Scheme

In the reputation ordered scheme all users select experts
in descending order of their current reputations.

The scheme is “memoryless”: Users have no recall of what

happened in previous rounds. Therefore it is irrelevant whether

they are the same users each round: In memoryless schemes,
there is no significance to users’ identity, and all users em-
ploy the same selection order for experts.

Let us analyze the dynamics of this scheme. Assume the
experts are indexed by their reputation order (at round t)
ri(t) > ra(t) > ... > r,(t) and have respective expertise
€1,...,6n. All N users will be the 1st expert’s customers,
C1 (t) =N.

By expectation, e1¢1(t) of the customers will be satisfied,
and (1 —e1)c1(t) will be dissatisfied. 1st expert’s dissatisfied
customers will become 2nd expert’s customers. In general,
7’th expert’s dissatisfied customers will become (i 4+ 1)’th
expert’s customers. Formally (and marking by cp+1(t) the
number of users who failed with all experts):

Elei+1(t)] = (1 — &) E[e:(2)], Vi € [n] (3-3)
Therefore:
Elci(t)] = N 1:[(1 —€5), Vi€ [n+1] (3.4)

j=1

Under what conditions will the reputation order be quasi-
stable?

THEOREM 1. Let n experts be indexed by their reputation
order (at round t) r1(t) > ro(t) > ... > ro(t) and have
respective expertise €1, .. Let n1 be the smallest in-
dex for which €,, = 1, or let ny = n if no such indezx ez-
ists. Then the order is quasi-stable under the reputation-
ordered scheme if and only if the following equivalent in-
equalities apply for each i € [n1 — 1]:

. En.

iGz‘ > €41

1. LEADER’S ADVANTAGE: Toc
— &

1
. FOLLOWER’S HANDICAP: P> €
2. FOLLOWER’S C € = ﬁ+5i+162+1

€ €it1

3. RECIPROCAL DIFFERENCE: L i <1

PROOF. The expected feedback of each expert (see (2.4))
is:
E[wi(t)] = (e + 8 — 1) E[es(1)],

Since this scheme is order-based, it is quasi-stable if Vi €
[n — 1] Elwi(t)] > Elwit1(t)]. If ¢ > ny the inequality
holds trivially, as both expectations are zero. Otherwise the
condition translates to:

(€i + B8 —1)E[ci(t)] = (i1 + 8 — 1) Elci+1(t)]
By (3.3):
(€1 + B —1)Elei(t)] > (eix1 4+ B —1)(1 — &) Elei(t)] (3.7)

Dividing both sides by E[c;(t)] (a positive number as i <
’I"L1)Z

Vi € [n] (3.5)

(3.6)

a+p—12 (1 +8-1)(1—-¢e)

Which, by rearrangement, leads to each of the three equiv-
alent inequalities. [

(3.8)
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COROLLARY 1. Under the reputation-ordered scheme, the
quasi-stability of a pair within a setting depends only on the
expertise of the pair’s leader and follower.

Under the reputation-ordered scheme, rank certainly has
its privileges: Considering the situation where experts get
positive feedback only (8 = 1), Corollary 2 shows that being
ahead in reputation confers on an expert with expertise € an
advantage factor of 1/(1 — €) in expertise over followers:

COROLLARY 2. Under the conditions of Theorem 1 with
a reward-only scheme (B = 1), quasi-stability requires the
following equivalent inequalities for each i € [nq — 1]:

1. LEADER’S ADVANTAGE: _Ls_ei > €41
1

1
1
) . - —_—
2. FOLLOWER’S HANDICAP:  €; > Thei; Gitl
9. RECIPROCAL DIFFERENCE: + — —— < 1
€4 €41 —

It is worth noting that this advantage becomes insur-
mountable when e > 1/2, for in this case ie > 1, and
therefore the pair is quasi-stable against any follower.

A different perspective on this is to consider the disadvan-
tage of being second: Corollary 2 shows that this inflicts a
handicap factor of 1/(1+€) on an expert with expertise . In
other words, an expert can reasonably expect to overtake a
leader over whom his advantage in expertise is greater than
his handicap. Again, it is worth noting that Hl_ee < 1/2.
That is, a follower can never expect to overtake a leader
with expertise of more than 1/2.

A pair whose leader and follower have the same expertise
is always two-sided quasi-stable, i.e. between equals, the or-
der determined by initial conditions is preserved. Generally,
by Corollary 2 (3), two-sided quasi-stability exists iff:

—1<l— ! <1

€ €it1

(3.9)

On the other hand, when negative feedback applies (8 =
0), chaos reigns, as spelled out by Corollary 3:

COROLLARY 3. Under the conditions of Theorem 1 with a
penalty-only scheme (8 =0), quasi-stability is possible only
ifer =1 ore; =0 for all but the first expert. (Substituting
B =0 in Theorem 1 (3) we derive either €;41 =0 or e; > 1
which is impossible as we assumed i < n1 ).

As negative feedback is gradually added (i.e. as 3 gradu-
ally decreases below 1), the above situation changes in sev-
eral respects. By Theorem 1:

e The leader’s advantage decreases from 1/(1 —¢€) to 3/
(1 — ¢), disappearing (i.e. equaling 1) at the critical
point S =1—e.

e A leader with expertise greater than 1/(1 + ) has an
unassailable position.

e The follower’s handicap decreases from 1+ € to (8 + ¢,
disappearing (i.e. equaling 1) at the critical point 8 =
1—e

e Note (see (2.4)) that experts with expertise above the
critical 1 — 3 have positive feedback expectation, while
experts with expertise below the critical value have
negative feedback expectation.



e A pair with leader expertise of less than 1 — 3 and
follower expertise of at least 1 — (3 is always unstable,
while in reverse order it is always quasi-stable.

e Two-sided quasi-stability is possible only if both fol-
lower and leader have expertise greater or equal to

1- 3.

COROLLARY 4. Under the conditions of Theorem 1, two-
sided instability, i.e. chaos, is possible only if an expert pair
exists such that €¢; < 1 — 3 as well as €,41 <1 — (3.

Proor. By Theorem 1 two-sided instability requires both
of the following inequalities to be true:

1
L8 (3.10)
€ €i4+1
1
— E >1 (3.11)
€541 €;

Multiplying both sides of (3.11) by 8 and adding (3.10)
results in:

1 2
1_8 + B —6—>1+5
S L =
1
= —(1-p%)>1+3
1
= ;(1—5)>1
= 1—0>¢€;

Similarly, multiplying both sides of (3.10) by 8 and adding
(3.11) leads to 1 — B > €;41. [

Note, though, that Corollary 4 states a necessary, but not
a sufficient condition for two-sided instability. For example,
B = 0.5,e1 = 0.4,e2 = 0.1 is quasi-stable, and becomes
chaotic only for 8 < 0.15.

3.3 Steady State Orders
3.3.1 Definitions

Previously in this section we defined the notion of quasi-
stability and instability of a setting, and formulated crite-
ria for it in reputation-ordered settings. Assuming unstable
pairs will eventually flip their leader-follower order, and as-
suming quasi-stable pairs to be stable?, we ask:

1. Will the setting converge to a steady state, i.e. to a
quasi-stable setting?

2. If so, given the setting, what will the steady state set-
ting be?

3. Given an initial setting, is the steady state unique?

We will answer these questions for the reputation-ordered
scheme and for other schemes, but first we need some defi-
nitions:

DEFINITION 3. A selection scheme is called regular if in
settings that employ it the quasi-stability of a pair depends
only on the expertise values of the leader and of the follower.

?Meaning that we neglect the o(1) (as N — oco) probability
for their experiencing an order change
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By Corollary 1 the reputation-ordered scheme is regular.

DEFINITION 4. The notation €1 <s €2 means that a pair
with leader expertise €1 and with follower expertise €2 is un-
stable under the regular selection scheme S.

The notation €1 £s €2 means that a pair with leader exper-
tise €1 and with follower expertise ex is quasi-stable under
the regular selection scheme S.

A setting is called chaotic with respect to selection scheme
S if it includes a chaotic pair: a pair of erperts with ex-
pertise €1, €2 such that €1 <s €2 and €2 <5 €7.

The instability operator is transitive, i.e. €1 <s€e2 and
€3 <s €3 = €1 <s€3. This follows from the definition of in-
stability (Definition 1).

Recall that in a regular setting the quasi-stability or in-
stability of an expert pair depends only on their respective
expertise levels. Therefore, in a non-chaotic setting, the in-
stability operator is a partial order on the levels of expertise.

3.3.2  Existence and Uniqueness

Starting at some initial setting in which the experts are
arranged by descending reputation and numbered from 1
to n, 11(0) > ... > rn(0) with respective expertise €1, .. . €,
the initial order is described by the permutation (1,2, ...,n)
of [n]. If this setting is not quasi-stable, then at some future
round, two neighboring experts in an unstable pair will trade
places. E.g. if the leader and follower at pair 7 trade places,
the resulting permutation is (1,...,i—1,i+1,4,94+2,...,n).

Let us mark the expert order at round ¢ by the permu-
tation 7w (t) = (w1 (), m2(t),...,mn(t)). mi(t) is the expert at
the 7’th position at round ¢.

The meaning of reaching a steady state is that there exists
around T with a quasi-stable setting, i.e.: rr () (T) > ... >
Trn (T) (T) and €x1(T) 743 PN 745 €rmpn(T)-

The path from the initial setting to the steady-state set-
ting consists of successive swapping of the leader and fol-
lower in unstable pairs, until no more such swapping is pos-
sible.

We now derive a general result in the theory of partially
ordered sets (=posets). This result will be applied below
to the instability operator, on the way to answering our
questions regarding steady states.

Let (P, <) be a finite poset. If z,y € P and either z < y
or y < x holds, we say that z,y are comparable. Other-
wise we say they are incomparable and write = || y. Let m =
(21,...,zn) be an ordering of P’s elements. A swap changes
this permutation to (z1,...,%i—1,Tit1,Zi, Tit2,...,Tn) for
some index i. This swap is permissible if z; < z;+1. We
say that a permutation o of P’s elements is reachable from
7 if it is possible to move from 7 to o through a sequence of
permissible swaps. A permutation of P’s elements is called
terminal if no swap is permissible. It is an easy observa-
tion that starting from any permutation of P, any series of
permissible swaps is finite, since every two elements can be
swapped at most once.

THEOREM 2. For every permutation w of the elements of
a finite poset (P, <) there is exactly one terminal permuta-
tion reachable from .

PROOF. See the full version of this paper. []

Armed with this general result on posets, we derive a
general theorem regarding the existence and uniqueness of
steady-state reputation orders:



THEOREM 3. Given a setting with a reqular selection scheme:

1. If the setting is not chaotic it will converge to a quasi-
stable setting.

2. If the setting converges to a quasi-stable setting, it will
w.h.p. converge to the same setting.

PRrOOF. The theorem is an immediate consequence of The-
orem 2 by noting:

1. The instability relation under a non-chaotic, regular
setting defines a partial order on the levels of expertise.

2. Order changes in a setting are w.h.p. between some
unstable expert pair.

3. In a steady-state order all expert pairs are quasi-stable,
i.e. none are unstable.

O

As consequence of Theorem 3 there exists a simple algo-
rithm to determine the steady-state order arising out of any
given setting: Calculate the quasi-stability or instability of
all pairs in a setting. Switch the order of any unstable pair.
Repeat until reaching a setting with no unstable pair.

EXAMPLE 1. In the reward-only reputation- ordered scheme,
let n = 4, with initial setting
1 1 1

(61 = 17622576325764:1)

This initial setting is already quasi-stable. A slightly differ-
ent initial setting

1 1

(61 = 1762 = 5763 - 5764 = 1)
eventually settles on the quasi-stable
1 1 1
(62 = 5764 = 1761 = 1763 = g)

If B is lowered to %, the behavior changes: Both initial set-
tings converge to the naturally-ordered sequence:
1 1

(64:1762:7763:7761 = 7)

2 3 4
3.4 Indifference to Expert Delays

Our model (Section 2) posits that all queries and replies
occur within a single integral unit of time: a round.

We now wish to expand the model to allow flexible tim-
ing: Let each expert ¢ have a delay of §; between query
and answer (or, between query time and the time at which
satisfaction or disappointment of the user manifests itself).

By example, Figure 2 is the flow diagram and Markov
chain of the 3-expert reputation-ordered scheme with gener-
alized delays. It is a generalization of the basic model’s flow
diagram given in Figure 1 in which §; = 1,02 = d3 = 0.

Clearly, a similar Markov chain and flow diagram exists
for every selection order scheme: For every possible and rel-
evant history of the scheme, there is a subchain of n expert
nodes, ordered by the selection order. Each expert node, for
an expert with expertise ¢, has two emanating edges in the
chain: First, a failure edge with probability 1 — e, leading to
the next expert in the selection order (or, for the last expert,
back to the pre-round delay). Second, a success edge with
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Figure 2: Flow, timing and feedback in the
reputation-ordered scheme with generalized delays

probability e leads to the pre-round delay of the updated
user history.

In the general case, there are M = mn expert nodes in
the flow diagram, where m is the number of distinct user
histories, and M delays, one per expert node.

So long as the reputation order of the experts does not
change, each participating user may be seen as taking a
random walk through the Markov chain. An order change
changes the Markov chain.

We now claim that the delays are of no importance to the
behavior of the model:

THEOREM 4. Let there be n experts ordered by their rep-
utations r1 > ... > rn and M expert nodes in the selection
order’s Markov chain. Let Ay = (d1,1,...,01,m) be a set of
expert delays for each expert node and As = (82,1, ...,02,:m)
be another such set. Then the values of reputation expert
feedback under the two delay sets are proportional. Specifi-
cally, there exist constants for each delay set, Ca,,Ca, such
that for each exrpert i:

’wi(t;A1)CA1 = wi(t;Ag)CAz (3.12)

Where the notation w;(t; A) generalizes (2.1): The feed-
back of expert i at round t with set of expert delays A.

PROOF. Assume that in addition to node delays, there
is a fixed edge delay § > 0. Consider the probability of
finding the user in some particular edge, conditional on her
being at any edge: This probability depends only on the
Markov chain’s graph and transition probabilities, and is
independent of the node delays (or of §).

With each edge is associated a reputation feedback. Per
unit time, the expected reputation feedback from any par-
ticular edge is the edge feedback multiplied by the probabil-
ity of finding the user at that particular edge during a unit
of time. Since the edge feedback is constant, and the edge
probabilities are in fixed proportions to each other, the theo-
rem follows for any particular §. In particular, it holds while
0 — 0, and so holds in the limit, with no edge delays. [

COROLLARY 5. The quasi-stability, instability and other
behavioral aspects of a setting are independent of expert de-
lays. The behavior under different sets of delays is identical
with a suitable scaling of the time.

3.5 The Loyalty Scheme

We now introduce a selection scheme in which users have
memory:

Each round, each user remembers the expert that suc-
ceeded for her in the previous round (if there was such an
expert), and selects him first in the current round. If this
expert fails, the user will revert to the reputation-ordered
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Figure 3: Flow, timing and feedback in the loyalty
scheme

scheme, i.e. the second expert selected will be the highest-
reputation so far unselected, etc.

We call it the loyalty scheme. The loyalty scheme at-
tributes limited recall to the user: She remembers what
worked out for her last time, but not more. Clearly the loy-
alty scheme models many real-world situations better than
the memoryless reputation-ordered scheme. Our analysis
will show that this limited recall significantly affects the
quantitative and qualitative behavior of the model.

An example is given in Figure 3 for the 3-expert loyalty
scheme, in which there are 3 expert nodes for each of the 3
relevant histories: the 3 distinct user loyalty states.

However, to avoid some complexities of the loyalty scheme,
we first concentrate on a variation that is “well-behaved”,
which we will call the dual loyalty scheme. In the dual
loyalty scheme, as in the loyalty scheme, the user first queries
the expert who succeeded for her last time, and if this expert
fails, will revert to the reputation-ordered scheme, querying
all experts in order of descending reputation, but without
skipping over the first expert to which the user was
loyal. This necessarily means that the user may query this
expert twice. So, for this modified scheme, we waive our
standing assumption that asking the same question twice of
an expert always yields the same answer.

This waiver, while admittedly artificial, has the merit of
simplifying the analysis of the scheme, and, as we will see
later, of making it regular.

The (unmodified) loyalty scheme is analyzed in the full
version of this paper.

THEOREM 5. Let n experts be indexed by their reputation
order (at round t) ri(t) > r2(t) > ... > ro(t) and have
respective expertise €1, . .., €y, all of which are < 1. Then the
order is quasi-stable under the dual loyalty scheme if and
only if for each i € [n —1]:

Ei-i-ﬁ—l
>
i-ap

€i+1+0—1
1—¢€41

(3.13)

PROOF. See the full version of this paper. [
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Note that the requirement that all expertise levels be
smaller than 1 is necessary, because if any experts have ex-
pertise of 1, the only possible steady-state is where all users
are loyal to one of these experts.

COROLLARY 6. The dual loyalty scheme is regular. This
is directly observed from (3.13).

COROLLARY 7. Under the terms of Theorem 5 with a reward-
only scheme (B = 1), quasi-stability requires the following
equivalent inequalities for each i € [n — 1]:

1

1
1. (1—€;)2 € Z T—€irq €i+1
2. LEADER’S ADVANTAGE: jE— € = €41
9. RECIPROCAL DIFFERENCE: + — —— < 1 — €
€; €41

Comparing these results with the corresponding results
for the reputation-ordered scheme (Corollary 2), we observe
that the loyalty property diminishes the value of a lead in
reputation, although it does not nullify it: The leader’s ad-
vantage is reduced from a factor of 1/(1—¢) to 1/(1 —e+4¢)
and the reciprocal difference from 1 to 1 — e.

However, unlike in the reputation-ordered scheme where
a leader’s position with expertise of above % is unassailable,
loyalty does not allow for unassailable positions: A leader
of expertise € will be overtaken by a follower of expertise
ﬁ which is not greater than 1 and so feasible.

Two-sided quasi-stability is still feasible, but the window
for it is narrower. The analogue of (3.9) is:

1 1
—(1—€ip1) < ——
€ €itl

<1-—¢

(3.14)

In addition, we observe that the penalty-only scheme (5 =
0) is, like in the reputation-ordered scheme, chaotic in any
setting.

EXAMPLE 2. Let the initial setting in a dual loyalty scheme
(n=8,8=1) be:

(61 = 0.17 €2 = 0.2, €3 = 0.3, €4 = 0.4,
€5 = 0.57 € = 0.67 €7 = 0.7, €8 = 08)

This setting will eventually settle on the quasi-stable

(64 = 0.47 €5 = 0.5, €6 — 0.6, €7 = 0.7,
€8 — 0.8, €3 = 0.3, €2 = 0.2, €1 = 0.1)

3.6 Other Observations regarding Steady-States

In addition to whether a steady-state exists, we may take
interest in the value of reputation at steady-state, or rather,
in its expectation. Referring to (2.2), we note that in an
order-based scheme, w;(t) is constant so long as the reputa-
tion order is stable, which is the definition of a steady-state.
Therefore, from (2.2), letting w; = E[w;(t)] and assuming
an order-based scheme, it is observed that tlirgo ”T(t) = w;(t)

in the absence of discounting (o = 1). On the other hand,
with discounting (o < 1), applying expectation to both sides
of (2.2) , ¥’th (constant) expected feedback at steady-state,
r; = E[r;(t)] has a fixed point satisfying r; = ar; + w;, and
therefore:

w;

Ty =

e (3.15)



In the chaotic case, where no steady-state exists, and two-
sided instability exists between an expert pair, we may ask
what part of the time, on average, each of the experts has
the lead. For order-based schemes, we provide the following
answer: _

Label a chaotic expert pair as 1 and 2. Let w!,i =1,2,j =
1,2 be ¢’s reputation feedback when j has the lead. Then,
define:

— 1 1
Al:ﬂ)g—’u)l

Ao = wi — wh

By the definition of two-sided instability, A; > 0 and
Ao > 0. Clearly, Ay is the expected per-round change to
the reputation difference r2 — 1 when expert 1 leads, while
—Ay is the same when expert 2 leads. Let p; and p2 be
the probabilities that expert 1 and 2, respectively, holds the
lead (p1 + p2 = 1).

The per-round expected change to the reputation differ-
ence is therefore A = p1 A1 —p2As. As the reputation lead is
expected to change an infinite number of times, necessarily
A = 0, therefore:

_ AQ
b= A+ As
— Al
b2 = Aq+ Ag

For example, using the reputation-ordered scheme (which
is order-based), and with penalties only (8 = 0):

Referring to (3.6) and (3.7), and noting that E[c;(t)] de-
pends only on experts ranked higher than ¢, which we may
therefore mark as a constant C':

g
I
Q

S
Il
Q

Il
Q

S

N R N= He
Il
Q

Therefore:
A =wh —wi = Cea(1 —€)

Ay = wi —wi = Cer (1 — e)

Expert 1’s and 2’s time-shares of the lead are in proportion

Ail : ﬁ? and therefore in proportion 111 : 122.
4. THE RATIONALITY OF USING REPU-

TATION AS AN INDICATOR OF EXPER-
TISE

As part of the model, we ascribed to each user a selection
order of experts in which she queries experts in descending
order of their reputation (barring private information about
experts’ history, as in the loyalty scheme).

The justification for employing such a selection scheme is
that reputation is a positive indicator of expertise, i.e. that
between any two experts, chances are 50% or better that
the expert with the higher reputation has the higher exper-
tise. But is this indeed the case? In other words, can a
user, who knows that reputation is tallied through the feed-
back of a community of other users, each using some known
or unknown selection rule, make a reasoned deduction that
reputation signals expertise?
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The question may appear puzzling in light of the results we
have obtained, showing that often it is the less accomplished
expert that is able to hold an indefinite lead in reputation
over his betters, but to be aware of a possibility is not the
same as knowing that it indeed occurred.

The question of rationality may be posed as follows: Sup-
pose a particular user is aware of the expert selection meth-
ods employed by all other users. If in aggregate a community
of users is more likely to reward the “losers” than the “win-
ners” with a high reputation, the user would do well not to
follow their collective advice, and eschew the high-reputation
experts. However, if the community’s behavior is sufficiently
“well-behaved” to exclude such possibilities, using reputation
as a signal for expertise is rationally justified.

That a user community may conceivably not be “well-
behaved” is shown by the following example: Let all users
have total recall of all their previous expert interactions, and
let them each base their selection exclusively on expert suc-
cess percentage, but using a reverse order: They give prece-
dence to the expert that failed them most. Clearly such a
scheme would reward the worst experts with the most cus-
tomers, an advantage that may easily outweigh their lower
success percentage and so provide the worst experts with
the higher reputation feedback.

The anomaly in the above example is the irrational be-
havior of the users with their private information, i.e. their
own experience: It makes no sense for them to prefer the ex-
perts that failed them most. We shall show that excluding
irrational user behavior with their own experience is enough
to make reputation a reliable signal of expertise:

In doing so, we want to allow the most general schemes
through which users consider their experience with an ex-
pert: A user may choose to remember all previous encoun-
ters, or only the most recent m encounters, and she may
attach significance to the order of experiences, e.g. A user
who remembers the past two encounters with an expert, only
one of which was successful, may value the experience higher
if the success was on the most recent encounter, rather than
in the penultimate one. However, for the valuation to be
rational, a user must not value failure higher than success in
any particular encounter, i.e. if a user remembers the most
recent m encounters, and encounter k € [m] is the k’th most
recent, then, changing that experience from success to fail-
ure, all other parameters held constant (i.e. all encounters
except k, all experiences with other experts, and all expert
reputations), may not advance the expert in the user’s se-
lection order. Briefly, in a rational user’s selection order, an
expert does not gain by failing in any particular trial.

As advancing in the selection order means a greater proba-
bility of the user becoming the expert’s customer, we define
this rationality requirement as experience-monotonicity of
that probability:

DEFINITION 5. Let a user remember her past m encoun-
ters with an expert. Let her experience be Z C [m], such
that i € Z iff the i’th most recent encounter was success-
ful. Let C(Z) be the probability for the user, with experience
Z before some round to become a customer of the expert in
that round. A selection order, and a user that employs it,
are called experience-monotone if:

o The order depends on nothing other than the current
expert reputations and on a (possibly partial) recall of
experts’ success-failure ratio.



e for each pair of expert experiences Z1 and Z2, Z1 C
Z2=C(Z1) < C(Z22).

All selection orders previously considered are experience
monotone: Clearly the loyalty scheme is experience mono-
tone, since a recall of a previous round’s success moves an ex-
pert to first position. So are all selection orders that have no
recall. Note that the monotonicity requirement is on expe-
rience alone, and does not rule out taking a non-monotone,
and apparently illogical view of reputation.

The (rather weak) restriction of experience monotonicity
allows us to prove the following general result:

THEOREM 6. Observing the reputation of two experts (at
some round t), the expert with the higher reputation is likely
(with probability > 50%) to have the higher expertise, pro-
vided:

e All users are experience-monotone.
e There is no prior information on expertise.

e There is no additional information showing that the
reputation difference was previously (smaller t) larger
or that it is smaller in the future (bigger t).

PRrROOF. See the full version of this paper. []

Immediate corollaries are that observing all current expert
reputations, the expert with the highest reputation is most
likely to have the highest expertise, and that the expertise
ranking order is most likely (out of all possible rankings) to
be the reputation ranking order.

S.  CONCLUSION AND FUTURE STUDY

We have presented a model to demonstrate and study the
origins of reputation and its dynamics. Our key findings are
that superior expertise may trail indefinitely behind superior
reputation, and that reliance on reputation as a positive
signal of expertise is correct strategic behavior for users of
any reasonable reputation system. As consequence of the
latter we may conclude that reputation systems may emerge
by the participation and cooperation of autonomous agents.

For widest applicability of these results, we aimed to make
the model as general as possible. Further study is needed in
this regard: Our analysis was framed in the context of formal
reputation systems, which by their nature enforce a uniform
presentation of reputation on users. It would be natural to
extend the analysis to the broader, informal phenomenon
of reputation, formed in economic and social environments
through various mechanisms, including word-of-mouth, the
influence of mass media, and the influence of acknowledged
authorities. This may lead to probabilistic selection rules
proportional to reputation rather than rank-ordered by it.

Extensions of the model including money should be con-
sidered, with the firm in the role of expert. Access by users
may be priced by the experts, or alternatively, may be free
to the user but worth money to the expert (as in pay-per-
click setups). Such a model may be augmented by the pos-
sibility of “buying” reputation (which we have eschewed in
the current paper) by expenditure on advertising and other
forms of marketing to raise a firm’s brand/reputation. A
further natural extension is the possibility of “buying” exper-
tise, modeling expenditure on R&D as a means of increasing
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the quality of a firm’s products and services, represented as
expertise in our model.

We also propose to study differentiation between users
by location or by social milieu, by treating reputation as
a local rather than a global attribute of an expert. “Lo-
cal” here should be understood in terms of a social or geo-
graphical network in which user feedback influences only the
immediate neighbors of the user in the social or geograph-
ical graph, rather than contributing to a global, common-
knowledge reputation as in the current study. Such a frame-
work would then be suitable for studying social learning,
a subject already extensively studied in the literature with
various learning models, e.g. [1] [11], and the plausibility of
the formation of stable barriers to influence in a social or
geographical network.
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