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ARTICLE INFO ABSTRACT
Article history: We consider the following solitaire game whose rules are remi-
Received 26 July 2011 niscent of the children’s game of leapfrog. The game is played on
Available online 20 March 2012 a poset (P, <) with n elements. The player is handed an arbi-
Keywords: trary permutation 7w = (x1, X2, ..., X;) of the elements in P. At each
Poset round an element may “skip over” a smaller element preceding it,
Strong convergence i.e. swap positions with it. For example, if x; < x;41, then it is al-
Order lowed to move from 7 to the permutation (X1, X2, ..., Xi—1, Xi+1, Xi,
Xit2,...,Xp) of P’s elements. The player is to carry out such steps

as long as such swaps are possible. When there are several consec-
utive pairs of elements that satisfy this condition, the player can
choose which pair to swap next. Does the player’s choice of swaps
matter for the final permutation or is it uniquely determined by
the initial order of P’s elements? The reader may guess correctly
that the latter proposition is correct. What may be more surpris-
ing, perhaps, is that this question is not trivial. The proof works by
constructing an appropriate system of invariants.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let (P, <) be a poset with n elements. We say that the elements x,y € P are comparable
if either x < y or y < x. Otherwise we say they are incomparable and write x || y. Let m =
(x1,X2,...,X,) be some permutation of P’s elements. A swap changes this permutation to (x1, x2, ...,
Xi—1, Xi+1, Xi, Xi+2, . . . » Xp) for some index i. This swap is permissible if x; < x; 1. A permutation of P’s
elements is called terminal if no swap is permissible. We say that 7 converges to a terminal permu-
tation o of P’s elements if it is possible to move from 7 to o through some sequence of permissible
swaps. Clearly, every sequence of permissible swaps is finite, since no two elements can be swapped
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more than once, and therefore every permutation converges. The main result in this note states that
the convergence is strong, in the sense that the permutation converges to the same terminal permu-
tation regardless of the order of swaps:

Theorem 1. Every permutation 1 of the elements of a finite poset (P, <) converges to exactly one terminal
permutation.

The question arose in the analysis of certain dynamic economic systems [2] in which agents com-
pete against each other. An agent’s standing in the process is quantified by a positive real number
that captures his current reputation. As the process unfolds, reputations go up and down, but the ab-
solute scores do not matter and the only issue is the agents’ ranking by reputation. It can be shown
that in the setting of [2] the possible order changes are governed by an (unknown, but fixed) partial
order on the agents. However, the actual timing and dynamics at which agents move up and down in
the reputation ranking is controlled by a complex set of stochastic rules. The question came up, then,
what can be said about the players’ ranking when the system reaches a steady state. As our result
shows, the steady state of the dynamical system is determined solely by its initial state. We hope
that the result may be useful in the study of dynamical systems in the physical and biological fields
as well.

Elementary though this question is, it seems to be new. We note, however, that strong convergence
has been studied before in combinatorics. Several beautiful theorems establish strong convergence
phenomena in various “reflection games”. The common theme is this: A graph G = (V, E) is given
along with a function w : V — Z. In addition, there is a rule that allows certain local modifications
to w. Such local changes can take place only as long as w takes some negative values and the process
terminates when w > 0. Several such games were analyzed in the literature [1,4,3,6,5]. All these pa-
pers show that even though there generally exist a number of possible allowed steps, every sequence
of allowed steps terminates and the terminal position is independent of the steps chosen. In some
cases it is even shown that the number of steps till termination depends only on the initial position.
Despite the apparent similarity, we do not see a reduction between our results and these theorems.

2. The proof

Proof. Let 7w converge to some terminal permutation 7. The uniqueness of 7 is proved by providing
a criterion, depending only on 7, as to which pairs of elements appear in the same order in 77 and 7
and which are reversed.

An (x, y)-link in 7 is a sequence x = z1, 22, ..., 2, = y that appear in this order (not necessarily
consecutively) in 7t such that z, || zy+1 for every o € [k — 1].

Clearly, if x || y no permissible swap can change the relative order of x and y. Consequently:

o No sequence of permissible swaps can change the relative order of x and y if an (x, y)-link exists.
o No sequence of permissible swaps can create or eliminate an (x, y)-link.

We say that (x, y) is a critical pair in 7 if (i) x < y, (ii) x precedes y in 7 and, (iii) there is no
(x, y)-link in 7.

We now assert and prove the criterion for whether any two elements x and y in 7r, with x pre-
ceding y, preserve or reverse their relative order in a terminal permutation:

1. If y < x, the order is preserved.
2. If there exists an (x, y)-link, the order is preserved.
3. Otherwise, i.e. if (x, y) is a critical pair, the order is reversed.

The first element of the criterion is trivial and the second has already been dealt with. It remains
to show the third and last element: Since an (x, y)-link cannot be created or eliminated by permissible
swaps, an equivalent statement to this claim is that a permutation t with a critical pair cannot be
terminal. We prove this by induction on the number of elements in 7 separating x and y:
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At the base of induction, if x and y are neighbor elements, the assertion is true since as x < y
the permutation is not terminal. Now let k be the number of elements separating x and y, and the
induction hypothesis is that if the number of elements separating a pair is less than k it cannot be
critical.

Let z be an element between x in y in 7. Assume X < z. Then by the induction hypothesis there
exists an (x, z)-link. Now consider the relation between z and y: z || y is impossible, because then y
could be concatenated to the (x, z)-link to form an (x, y)-link, contrary to the assumption that (x, y) is
a critical pair. Similarly, z < y would by the induction hypothesis prove the existence of a (z, y)-link,
but this is impossible as it could be concatenated to the (x, z)-link to form an (x, y)-link. This leaves
¥y < z as the only possibility.

In summary x<z=y <z

By similar reasoning z <y = z < x.

Furthermore, the possibility x || z together with z || y can be dismissed as constituting an (x, y)-
link, leaving just two possible scenarios satisfied by each z between x and y:

e zis “small”, i.e. z<xand z< y.
e zis “large”, i.e. x<zand y <z

Since t is terminal, x’s immediate neighbor must be “small”, and y’s immediate neighbor must be
“large”. Between these two, there must exist two consecutive elements z1, z; such that z; is “small”
and zp is “large”. But this leads to a contradiction as z; < x < z; = z1 < zp, which implies that 7 is
not terminal. Therefore (x, y) cannot be critical, completing the proof by induction that a terminal
permutation cannot have a critical pair.

This completes the proof for the uniqueness of the terminal permutation. 0O

3. Remarks

As the proof shows, the relative final order of every pair of elements x and y is determined by the
existence of a link that connects them. If a link exists, then x, y maintain their initial relative order in
the final permutation. If no such link exists, their final relative order agrees with their mutual order
relation.

The proof also demonstrates that the number of swaps to reach termination is uniquely defined:
Between the initial and terminal permutation, sum the displacements of elements that moved forward
(alternatively sum the displacements of backward moving elements).

The result shows as well how to efficiently determine the terminal permutation given how the
elements are ordered initially: Perform an arbitrary swap until no more swaps are possible.

One of the referees asked us whether the result extends from posets to directed acyclic graphs. At
least at its simplest form the analogous claim is incorrect. Let D be the directed path on 3 vertices
A — B — C. The permutation ABC converges to BAC if A, B are swapped, but to ACB if B, C are
swapped.

It is of interest to understand how many terminal permutations various posets have. In particular
how is this parameter distributed over all n-element posets?
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