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Abstract. We consider the solution concept of stochastic stability, and propose
the price of stochastic anarchyas an alternative to theprice of (Nash) anarchy
for quantifying the cost of selfishness and lack of coordination in games. As a
solution concept, the Nash equilibrium has disadvantages that the set of stochas-
tically stable states of a game avoid: unlike Nash equilibria, stochastically stable
states are the result of natural dynamics of computationally bounded and decen-
tralized agents, and are resilient to small perturbations from ideal play. The price
of stochastic anarchy can be viewed as a smoothed analysis ofthe price of an-
archy, distinguishing equilibria that are resilient to noise from those that are not.
To illustrate the utility of stochastic stability, we studythe load balancing game
on unrelated machines. This game has an unboundedly large price of Nash anar-
chy even when restricted to two players and two machines. We show that in the
two player case, the price of stochastic anarchy is 2, and that even in the general
case, the price of stochastic anarchy is bounded. We conjecture that the price of
stochastic anarchy isO(m), matching the price of strong Nash anarchy without
requiring player coordination. We expect that stochastic stability will be useful in
understanding the relative stability of Nash equilibria inother games where the
worst equilibria seem to be inherently brittle.
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1 Introduction

Quantifying theprice of (Nash) anarchyis one of the major lines of research in algorith-
mic game theory. Indeed, one fourth of the authoritative algorithmic game theory text
edited by Nisan et al. [20] is wholly dedicated to this topic.But the Nash equilibrium
solution concept has been widely criticized [15, 4, 9, 10]. First, it is a solution charac-
terization without a road map for how players might arrive atsuch a solution. Second,
at Nash equilibria, players are unrealistically assumed tobe perfectly rational, fully
informed, and infallible. Third, computing Nash equilibria is PPAD-hard for even2-
player,n-action games [6], and it is therefore considered very unlikely that there exists
a polynomial time algorithm to compute a Nash equilibrium even in a centralized man-
ner. Thus, it is unrealistic to assume that selfish agents in general games will converge
precisely to the Nash equilibria of the game, or that they will necessarilyconvergeto
anything at all. In addition, the price of Nash anarchy metric comes with its own weak-
nesses; it blindly uses the worst case over all Nash equilibria, despite the fact that some
equilibria are more resilient than others to perturbationsin play.

Considering these drawbacks, computer scientists have paid relatively little atten-
tion to if or how Nash equilibria will in fact be reached, and even less to the question of
which Nash equilibria are more likely to be played in the event players do converge to
Nash equilibria. To address these issues, we employ the stochastic stability framework
from evolutionary game theory to study simple dynamics of computationally efficient,
imperfect agents. Rather than defining a-priori states suchas Nash equilibria, which
might not be reachable by natural dynamics, the stochastic stability framework allows
us to define a natural dynamic, and from it derive the stable states. We define theprice
of stochastic anarchyto be the ratio of the worst stochastically stable solution to the
optimal solution. The stochastically stable states of a game may, but do not necessar-
ily, contain all Nash equilibria of the game, and so the priceof stochastic anarchy may
be strictly better than the price of Nash anarchy. In games for which the stochastically
stable states are a subset of the Nash equilibria, studying the ratio of the worst stochas-
tically stable state to the optimal state can be viewed as a smoothed analysis of the
price of anarchy, distinguishing Nash equilibria that are brittle to small perturbations in
perfect play from those that are resilient to noise.

The evolutionary game theory literature onstochastic stabilitystudiesn-player
games that are played repeatedly. In each round, each playerobserves her action and its
outcome, and then uses simple rules to select her action for the next round based only
on her size-restricted memory of the past rounds. In any round, players have a small
probability of deviating from their prescribed decision rules. The state of the game is
the contents of the memories of all the players. Thestochastically stable statesin such a
game are the states with non-zero probability in the limit ofthis random process, as the
probability of error approaches zero. The play dynamics we employ in this paper are
the imitation dynamics studied by Josephson and Matros [16]. Under these dynamics,
each player imitates the strategy that was most successful for her in recent memory.

To illustrate the utility of stochastic stability, we studythe price of stochastic anar-
chy of the unrelated load balancing game [2, 1, 11]. To our knowledge, we are the first
to quantify the loss of efficiency in any system when the players are in stochastically
stable equilibria. In the load balancing game on unrelated machines, even with only two
players and two machines, there are Nash equilibria with arbitrarily high cost, and so
the price of Nash anarchy is unbounded. We show that these equilibria are inherently
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brittle, and that for two players and two machines, the priceof stochastic anarchy is
2. This result matches the strong price of anarchy [1] without requiring coordination
(at strong Nash equilibria, players have the ability to coordinate by forming coalitions).
We further show that in the generaln-player,m-machine game, the price of stochastic
anarchy is bounded. More precisely the price of stochastic anarchy is upper bounded by
thenmth n-step Fibonacci number. We also show that the price of stochastic anarchy
is at leastm + 1.

Our work provides new insight into the equilibria of the loadbalancing game. Un-
like some previous work on dynamics for games, our work does not seek to propose
practical dynamics with fast convergence; rather, we use simple dynamics as a tool for
understanding the inherent relative stability of equilibria. Instead of relying on player
coordination to avoid the Nash equilibria with unbounded cost (as is done in the study
of strong equilibria), we show that these bad equilibria areinherently unstable in the
face of occasional uncoordinated mistakes. We conjecture that the price of stochastic
anarchy is closer to the linear lower bound, paralleling theprice of strong anarchy.

In light of our results, we believe the techniques in this paper will be useful for
understanding the relative stability of Nash equilibria inother games for which the worst
equilibria are brittle. Indeed, for a variety of games in theprice of anarchy literature,
the worst Nash equilibria of the lower bound instances are not stochastically stable.

1.1 Related Work

We give a brief survey of related work in three areas: alternatives to Nash equilibria as
a solution concept, stochastic stability, and the unrelated load balancing game.

Recently, several papers have noted that the Nash equilibrium is not always a suit-
able solution concept for computationally bounded agents playing in a repeated game,
and have proposed alternatives. Goemans et al. [15] study players who sequentially
play myopic best responses, and quantify theprice of sinkingthat results from such
play. Fabrikant and Papadimitriou [9] propose a model in which agents play restricted
finite automata. Blum et al. [4, 3] assume only that players’ action histories satisfy a
property calledno regret, and show that for many games, the resulting social costs are
no worse than those guaranteed by price of anarchy results.

Although we believe this to be the first work studying stochastic stability in the
computer science literature, computer scientists have recently employed other tools
from evolutionary game theory. Fisher and Vöcking [13] show that under replicator
dynamics in the routing game studied by Roughgarden and Tardos [22], players con-
verge to Nash. Fisher et al. [12] went on to show that using a simultaneous adaptive
sampling method, play converges quickly to a Nash equilibrium. For a thorough survey
of algorithmic results that have employed or studied other evolutionary game theory
techniques and concepts, see Suri [23].

Stochastic stability and its adaptive learning model as studied in this paper were first
defined by Foster and Young [14], and differ from the standardgame theory solution
concept of evolutionarily stable strategies (ESS). ESS area refinement of Nash equilib-
ria, and so do not always exist, and are not necessarily associated with a natural play
dynamic. In contrast, a game always has stochastically stable states that result (by con-
struction) from natural dynamics. In addition, ESS are resilient only to single shocks,
whereas stochastically stable states are resilient to persistent noise.

2



Stochastic stability has been widely studied in the economics literature (see, for
example, [24, 17, 19, 5, 7, 21, 16]). We discuss in Sect. 2 concepts from this body of
literature that are relevant to our results. We recommend Young [25] for an informative
and readable introduction to stochastic stability, its adaptive learning model, and some
related results. Our work differs from prior work in stochastic stability in that it is the
first to quantify the social utility of stochastically stable states, theprice of stochastic
anarchy.

We also note a connection between the stochastically stablestates of the game and
the sinks of a game, recently introduced by Goemans et al. as another way of studying
the dynamics of computationally bounded agents. In particular, the stochastically stable
states of a game under the play dynamics we consider correspond to a subset of the
sink equilibria, and so provide a framework for identifyingthe stable sink equilibria.
In potential games, the stochastically stable states of theplay dynamics we consider
correspond to a subset of the Nash equilibria, thus providing a method for identifying
which of these equilibria are stable.

In this paper, we study the price of stochastic anarchy in load balancing. Even-Dar
et al. [8] show that when playing the load balancing game on unrelated machines, any
turn-taking improvement dynamics converge to Nash. Andelman et al. [1] observe that
the price of Nash anarchy in this game is unbounded and they show that the strong price
of anarchy is linear in the number of machines. Fiat et al. [11] tighten their upper bound
to match their lower bound at a strong price of anarchy of exactly m.

2 Model and Background

We now formalize (from Young [24]) the adaptive play model and the definition of
stochastic stability. We then formalize the play dynamics that we consider. We also
provide in this section the results from the stochastic stability literature that we will
later use for our results.

2.1 Adaptive Play and Stochastic Stability

Let G = (X, π) be a game withn players, whereX =
∏n

j=1 Xi represents the strategy
setsXi for each playeri, andπ =

∏n

j=1 πi represents the payoff functionsπi : X → R

for each player.G is played repeatedly for successive time periodst = 1, 2, . . ., and at
each time stept, playeri plays some actionst

i ∈ Xi. The collection of all players’
actions at timet defines a play profileSt = (St

1, S
t
2, . . . , S

t
n). We wish to model com-

putationally efficient agents, and so we imagine that each agent has some finite memory
of sizez, and that after time stept, all players remember a history consisting of a se-
quence of play profilesht = (St−z+1, St−z+2, . . . , St) ∈ (X)z .

We assume that each playeri has some efficiently computable functionpi : (X)z ×
Xi → R that, given a particular history, induces a sampleable probability distribution
over actions (for all playersi and historiesh,

∑

a∈Xi
pi(h, a) = 1). We writep for

∏

i pi. We wish to model imperfect agents who make mistakes, and so we imagine that
at timet each playeri plays according topi with probability1− ε, and with probability
ε plays some action inXi uniformly at random.3 That is, for all playersi, for all actions

3 The mistake probabilities need not be uniform random—all that we require is that the distri-
bution has support on all actions inXi.
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a ∈ Xi, Pr[st
i = a] = (1 − ε)pi(h

t, a) + ε
|Xi|

. The dynamics we have described define

a Markov processPG,p,ε with finite state spaceH = (X)z corresponding to the finite
histories. For notational simplicity, we will write the Markov process asP ε when there
is no ambiguity.

The potential successors of a history can be obtained by observing a new play pro-
file, and “forgetting” the least recent play profile in the current history.

Definition 2.1. For any S′ ∈ X , A historyh′ = (St−z+2, St−z+3, . . . , St, S′) is a
successorof historyht = (St−z+1, St−z+2, . . . , St).

The Markov processP ε has transition probabilitypε
h,h′ of moving from stateh =

(S1, . . . , Sz) to stateh′ = (T 1, . . . , T z):

pε
h,h′ =

{

∏n

i=1(1 − ε) pi(h, T z
i ) + ε

|Xi|
if h′ is a successor of h;

0 otherwise.

We will refer to P 0 as the unperturbed Markov process. Note that forε > 0,
pε

h,h′ > 0 for every historyh and successorh′, and that for any two historiesh and

ĥ not necessarily a successor ofh, there is a series ofz historiesh1, . . . , hz such that
h1 = h, hz = ĥ, and for all1 < i ≤ z, hi is a successor ofhi−1. Thus there is positive
probability of moving between anyh and anyĥ in z steps, and soP ε is irreducible.
Similarly, there is a positive probability of moving between anyh and anŷh in z + 1
steps, and soP ε is aperiodic. Therefore,P ε has a unique stationary distributionµε.

The stochastically stable states of a particular game and player dynamics are the
states with nonzero probability in the limit of the stationary distribution.

Definition 2.2 (Foster and Young [14]).A stateh is stochastically stablerelative to
P ε if limε→0 µε(h) > 0.

Intuitively, we should expect a processP ε to spend almost all of its time at its stochas-
tically stable states whenε is small.

When a playeri plays at random rather than according topi, we call this a mistake.

Definition 2.3 (Young [24]).Supposeh′ = (St−z+1, . . . , St) is a successor ofh. A
mistakein the transition betweenh andh′ is any elementSt

i such thatpi(h, St
i ) = 0.

Note that mistakes occur with probability≤ ε.

We can characterize the number of mistakes required to get from one history to
another.

Definition 2.4 (Young [24]). For any two statesh, h′, the resistancer(h, h′) is the
minimum total number of mistakes involved in the transitionh → h′ if h′ is a successor
of h. If h′ is not a successor ofh, thenr(h, h′) = ∞.

Note that the transitions of zero resistance are exactly those that occur with positive
probability in the unperturbed Markov processP 0.

Definition 2.5. We refer to the sinks ofP 0 asrecurrent classes. In other words, arecur-
rent classof P 0 is a set of statesC ⊆ H such that any state inC is reachable from any
other state inC and no state outsideC is accessible from any state insideC.
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We may view the state spaceH as the vertex set of a directed graph, with an edge
from h to h′ if h′ is a successor ofh, with edge weightr(h, h′).

Observation 2.6. We observe that the recurrent classesH1, H2, . . ., where eachHi ⊆
H , have the following properties:

1. From every vertexh ∈ H , there is a path of cost 0 to one of the recurrent classes.
2. For eachHi and for every pair of verticesh, h′ ∈ Hi, there is a path of cost 0

betweenh andh′.
3. For eachHi, every edge(h, h′) with h ∈ Hi, h

′ 6∈ Hi has positive cost.

Let ri,j denote the cost of the shortest path betweenHi andHj in the graph de-
scribed above. We now consider the complete directed graphG with vertex set{H1, H2, . . .}
in which the edge(Hi, Hj) has weightri,j . LetTi be a directed minimum-weight span-
ning in-tree ofG rooted at vertexHi. (An in-tree is a directed tree where each edge is
oriented toward the root.) Thestochastic potentialof Hi is defined to be the sum of the
edge weights inTi.

Young proves the following theorem characterizing stochastically stable states:

Theorem 2.7 (Young [24]).In anyn-player gameG with finite strategy sets and any
set of action distributionsp, the stochastically stable states ofPG,p,ε are the recurrent
classes of minimum stochastic potential.

2.2 Imitation Dynamics

In this paper, we study agents who behave according to a slight modification of the
imitation dynamics introduced by Josephson and Matros [16]. (We note that this modi-
fication is of no consequence to the results of Josephson and Matros [16] that we present
below.) Playeri using imitation dynamics parameterized byσ ∈ N chooses his action
at timet + 1 according to the following mechanism:

1. Playeri selects a setY of σ play profiles uniformly at random from thez profiles
in historyht.

2. For each play profileS ∈ Y , i recalls the payoffπi(S) he obtained from playing
actionSi.

3. Playeri plays the action among these that corresponds to his highestpayoff; that
is, he plays theith component ofargmaxS∈Y πi(S). In the case of ties, he plays a
highest-payoff action at random.

The valueσ is a parameter of the dynamics that is taken to ben < σ ≤ z/2. These
dynamics can be interpreted as modeling a situation in whichat each time step, players
are chosen at random from a pool of identical players, who each played in a subset of the
lastz rounds. The players are computationally simple, and so do not counterspeculate
the actions of their opponents, instead playing the action that has worked the best for
them in recent memory.

We will say that a historyh is monomorphicif the same action profileS has been
repeated for the lastz rounds:h = (S, S, . . . , S). Josephson and Matros [16] prove the
following useful fact:

Proposition 2.8. A set of states is a recurrent class of the imitation dynamicsif and
only if it is a singleton set consisting of a monomorphic state.
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Since the stochastically stable states are a subset of the recurrent classes, we can
associate with each stochastically stable stateh = (S, . . . , S) the unique action profile
S it contains. This allows us to now define the price of stochastic anarchy with respect
to imitation dynamics. For brevity, we will refer to this throughout the paper as simply
the price of stochastic anarchy.

Definition 2.9. Given a gameG = (X, π) with a social cost functionγ : X → R, the
price of stochastic anarchyofG is equal tomax γ(S)

γ(OPT) , whereOPT is the play profile
that minimizesγ and themax is taken over all play profilesS such thath = (S, . . . , S)
is stochastically stable.

Given a gameG, we define thebetter response graphof G: The set of vertices
corresponds to the set of action profiles ofG, and there is an edge between two action
profilesS andS′ if and only if there exists a playeri such thatS′ differs fromS only
in playeri’s action, and playeri does not decrease his utility by unilaterally deviating
from Si to S′

i. Josephson and Matros [16] prove the following relationship between this
better response graph and the stochastically stable statesof a game:

Theorem 2.10. If V is the set of stochastically stable states under imitation dynamics,
thenV = {S : (S, . . . , S) ∈ V} is either a strongly connected component of the better
response graph ofG, or a union of strongly connected components.

Goemans et al. [15] introduce the notion of sink equilibria and a corresponding
notion of the “price of sinking”, which is the ratio of the social welfare of the worst
sink equilibrium to that of the social optimum. We note that the strongly connected
components of the better response graph ofG correspond to the sink equilibria (under
sequential better-response play) ofG, and so Theorem 2.10 implies that the stochasti-
cally stable states under imitation dynamics correspond toa subset of the sinks of the
better response graph ofG, and we get the following corollary:

Corollary 2.11. The price of stochastic anarchy of a gameG under imitation dynamics
is at most the price of sinking ofG.

3 Load Balancing: Game Definition and Price of Nash Anarchy

The load balancing game on unrelated machines models a set ofagents who wish to
schedule computing jobs on a set of machines. The machines have different strengths
and weaknesses (for example, they may have different types of processors or differing
amounts of memory), and so each job will take a different amount of time to run on
each machine. Jobs on a single machine are executed in parallel such that all jobs on
any given machine finish at the same time. Thus, each agent whoschedules his job on
machineMi endures theloadon machineMi, where the load is defined to be the sum of
the running times of all jobs scheduled onMi. Agents wish to minimize the completion
time for their jobs, and social cost is defined to be themakespan: the maximum load on
any machine.

Formally, an instance of the load balancing game on unrelated machines is defined
by a set ofn players andm machinesM = {M1, . . . , Mm}. The action space for each
player isXi = M . Each playeri has some costci,j on machinej. Denote the cost
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of machineMj for action profileS by Cj(S) =
∑

i s.t.Si=j ci,j . Each playeri has
utility function πi(S) = −Csi

(S). The social cost of an action profileS is γ(S) =
maxj∈M Cj(S). We defineOPT to be the action profile that minimizes social cost:
OPT = argminS∈X γ(S). Without loss of generality, we will always normalize so
thatγ(OPT) = 1.

The coordination ratio of a game (also known as the price of anarchy) was intro-
duced by Koutsoupias and Papadimitriou [18], and is intended to quantify the loss of
efficiency due to selfishness and the lack of coordination among rational agents. Given
a gameG and a social cost functionγ, it is simple to quantify theOPT game stateS:
OPT = argminγ(S). It is less clear how to model rational selfish agents. In mostprior
work it has been assumed that selfish agents play according toa Nash equilibrium, and
the price of anarchy has been defined as the ratio of the cost ofthe worst (pure strategy)
Nash state toOPT. In this paper, we refer to this measure as the price of Nash anarchy,
to distinguish it from the price of stochastic anarchy, which we defined in Sect. 2.2.

Definition 3.1. For a gameG with a set of Nash equilibrium statesE , the price of
(Nash) anarchyis maxS∈E

γ(S)
γ(OPT) .

We show here that even with only two players and two machines,the load balancing
game on unrelated machines has a price of Nash anarchy that isunbounded by any
function ofm andn. Consider the two-player, two-machine game withc1,1 = c2,2 = 1
andc1,2 = c2,1 = 1/δ, for some0 < δ < 1. Then the play profileOPT = (M1, M2)
is a Nash equilibrium with cost 1. However, observe that the profile S∗ = (M2, M1)
is also a Nash equilibrium, with cost1/δ (since by deviating, players can only increase
their cost from1/δ to 1/δ + 1). The price of anarchy of the load balancing game is
therefore1/δ, which can be unboundedly large, althoughm = n = 2.

4 Upper Bound on Price of Stochastic Anarchy

The load balancing game is an ordinal potential game [8], andso the sinks of the better-
response graph correspond to the pure strategy Nash equilibria. We therefore have by
Corollary 2.11 that the stochastically stable states are a subset of the pure strategy Nash
equilibria of the game, and the price of stochastic anarchy is at most the price of anarchy.
We have noted that even in the two-person, two-machine load balancing game, the price
of anarchy is unbounded (even for pure strategy equilibria). Therefore, as a warmup, we
bound the price of stochastic anarchy of the two-player, two-machine case.

4.1 Two Players, Two Machines

Theorem 4.1. In the two-player, two-machine load balancing game on unrelated ma-
chines, the price of stochastic anarchy is 2.

Note that the two-player, two-machine load balancing game can have at most two
strict pure strategy Nash equilibria. (For brevity we consider the case of strict equilibria.
The argument for weak equilibria is similar). Note also thateither there is a unique
Nash equilibrium at(M1, M1) or (M2, M2), or there are two atN1 = (M1, M2) and
N2 = (M2, M1).

An action profileN Pareto dominatesN ′ if for each playeri, CNi
(N) ≤ CN ′

i
(N ′).
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Lemma 4.2. If there are two Nash equilibria, andN1 Pareto dominatesN2, then only
N1 is stochastically stable (and vice versa).

Proof. Note that ifN1 Pareto dominatesN2, then it also Pareto dominates(M1, M1)
and(M2, M2), since each is a unilateral deviation from a Nash equilibrium for both
players. Consider the monomorphic state(N2, . . . , N2). If both players make simulta-
neous mistakes at timet to N1, then by assumption,N1 will be the action profile in
ht+1 = (N2, . . . , N2, N1) with lowest cost for both players. Therefore, with positive
probability, both players will draw samples of their histories containing the action pro-
file N1, and therefore play it, untilht+z = (N1, . . . , N1). Therefore, there is an edge in
G from h = {N2, . . . , N2} to h′ = {N1, . . . , N1} of resistance2. However, there is no
edge fromh′ to any other state inG with resistance< σ. Recall our initial observation
that in fact,N1 Pareto dominates all other action profiles. Therefore, no set of mistakes
will yield an action profile with higher payoff thanN1 for either player, and so to leave
stateh′ will require at leastσ mistakes (so that some player may draw a sample from
their history that contains no instance of action profileN1). Therefore, given any min-
imum spanning in-tree ofG rooted ath, we may add an edge(h, h′) of weight 2, and
remove the outgoing edge fromh′, which we have shown must have cost≥ σ. This is a
minimum spanning tree rooted ath′ with strictly lower cost. We have therefore shown
thath′ has strictly lower stochastic potential thanh, and so by Theorem 2.7,h is not
stochastically stable. Since at least one Nash equilibriummust be stochastically stable,
h′ = (N1, . . . , N1) is the unique stochastically stable state. ut

Proof (of Theorem 4.1).If there is only one Nash equilibrium(M1, M1) or (M2, M2),
then it must be the only stochastically stable state (since in potential games these are a
nonempty subset of the pure strategy Nash equilibria), and must also beOPT. In this
case, the price of anarchy is equal to the price of stochasticanarchy, and is 1. Therefore,
we may assume that there are two Nash equilibria,N1 andN2. If N1 Pareto dominates
N2, thenN1 must beOPT (since load balancing is a potential game), and by Lemma
4.2,N1 is the only stochastically stable state. In this case, the price of stochastic anarchy
is 1 (strictly less than the (possibly unbounded) price of anarchy). A similar argument
holds if N2 Pareto dominatesN1. Therefore, we may assume that neitherN1 nor N2

Pareto dominate the other.
Without loss of generality, assume thatN1 is OPT, and that inN1 = (M1, M2),

M2 is the maximally loaded machine. Suppose thatM2 is also the maximally loaded
machine inN2. (The other case is similar.) Together with the fact thatN1 does not
Pareto dominateN2, this gives us the following:

c1,1 ≤ c2,2

c2,1 ≤ c2,2

c1,2 ≥ c2,2

From the fact that bothN1 andN2 are Nash equilibria, we get:

c1,1 + c2,1 ≥ c2,2

c1,1 + c2,1 ≥ c1,2

In this case, the price of anarchy among pure strategy Nash equilibria is:

c1,2

c2,2
≤

c1,1 + c2,1

c2,2
≤

c1,1 + c2,1

c1,1
= 1 +

c2,1

c1,1
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Similarly, we have:

c1,2

c2,2
≤

c1,1 + c2,1

c2,2
≤

c1,1 + c2,1

c2,1
= 1 +

c1,1

c2,1

Combining these two inequalities, we get that the price of Nash anarchy is at most
1 + min(c1,1/c2,1, c2,1/c1,1) ≤ 2. Since the price of stochastic anarchy is at most the
price of anarchy over pure strategies, this completes the proof. ut

4.2 General Case:n Players,m Machines

Theorem 4.3. The general load balancing game on unrelated machines has price of
stochastic anarchy bounded by a functionΨ depending only onn andm, and

Ψ(n, m) ≤ m · F(n)(nm + 1),

whereF(n)(i) denotes theith n-step Fibonacci number.4

To prove this upper bound, we show that any solution worse than our upper bound
cannot be stochastically stable. To show this impossibility, we take any arbitrary solu-
tion worse than our upper bound and show that there must always be a minimum cost
in-tree inG rooted at a different solution that has strictly less cost than the minimum
cost in-tree rooted at that solution. We then apply Proposition 2.8 and Theorem 2.7. The
proof proceeds by a series of lemmas.

Definition 4.4. For any monomorphic Nash stateh = (S, . . . , S), let theNash Graph
of h be a directed graph with vertex setM and directed edges(Mi, Mj) if there is some
playeri with Si = Mi andOPTi = Mj. Let theclosureM̄i of machineMi, be the set
of states reachable fromMi by following0 or more edges of the Nash graph.

Lemma 4.5. In any monomorphic Nash stateh = (S, . . . , S), if there is a machineMi

such thatCi(S) > m, then every machineMj ∈ M̄i has costCj(S) > 1.

Proof. Suppose this were not the case, and there exists anMj ∈ M̄i with Cj(S) ≤ 1.
SinceMj ∈ M̄i, there exists a simple path(Mi = M1, M2, . . . , Mk = Mj) with
k ≤ m. SinceS is a Nash equilibrium, it must be the case thatCk−1(S) ≤ 2 because
by the definition of the Nash graph, the directed edge fromMk−1 to Mk implies that
there is some playeri with Si = Mk−1, but OPTi = Mk. Since1 = γ(OPT) ≥
Ck(OPT) ≥ ci,k, if player i deviated from his action in Nash profileS to S′

i = Mk,
he would experience costCk(S) + ci,k ≤ 1 + 1 = 2. Since he cannot benefit from
deviating (by definition of Nash), it must be that his cost inS, Ck−1(S) ≤ 2. By the
same argument, it must be thatCk−2(S) ≤ 3, and by induction,C1(S) ≤ k ≤ m. ut

Lemma 4.6. For any monomorphic Nash stateh = (S, . . . , S) ∈ G with γ(S) > m,
there is an edge fromh to someg = (T, . . . , T ) whereγ(T ) ≤ m with edge cost≤ n
in G.

4 F(n)(i) =

(

1 if i ≤ n;
Pi

j=i−n
F(n)(j) otherwise.

F(n)(i) ∈ o(2i) for any fixedn.
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Proof. Let D = {Mj : Ci(S) ≥ m}, and define the closure ofD, D̄ =
⋃

Mi∈D M̄i.
Consider the successor stateh′ of h that results when every playeri such thatSt

i ∈ D̄
makes a mistake and plays on their OPT machineSt+1

i = OPTi, and all other players
do not make a mistake and continue to playSt+1

i = St
i . Note that by the definition of

D̄, for Mj ∈ D̄, for all playersi playing machinej in S, OPTi ∈ D̄. Let T = St+1.
Then for allj such thatMj ∈ D̄, Cj(T ) ≤ 1, sinceCj(T ) ≤ Cj(OPT) ≤ 1. To see
this, note that for every playeri such thatSt

i = Mj ∈ D̄, St+1
i = Mj if and only if

OPTi = Mj . Similarly, for every playeri such thatSt+1
i = Mj ∈ D̄ but St

i 6= Mj,
OPTi = Mj, and so for each machineMj ∈ D̄, the agents playing onMj in T are
a subset of those playing onMj at OPT. Note that by Lemma 4.5, for allMj ∈ D̄,
Cj(S) > 1. Therefore, for every agenti with St

i ∈ D̄, πi(T ) > πi(S), and so for
h′′ = (S, . . . , S, T, T ) a successor ofh′, r(h′, h′′) = 0. Reasoning in this way, there
is a path of zero resistance fromh′ to g = (T, . . . , T ). We have therefore exhibited
a path betweenh andg that involves only|{i : St

i ∈ D̄}| ≤ n mistakes. Finally,
we observe that ifMj ∈ D̄ thenCj(T ) ≤ 1, and by construction, ifMj 6∈ D̄, then
Cj(T ) = Cj(S) < m, since as noted aboveMj 6∈ D̄ implies that the players playing
Mj in S are the same set playingMj in T . Thus, we haveγ(T ) ≤ m, which completes
the proof. ut

Lemma 4.7. Let h = (S, . . . , S) ∈ G be any monomorphic state withγ(S) ≤ m.
Any path inG from h to a monomorphic stateh′ = (S′, . . . , S′) ∈ G whereγ(h′) >
m · F(n)(mn + 1) must contain an edge with cost≥ σ, whereF(n)(i) denotes theith

n-step Fibonacci number.

Proof. Suppose there were some directed pathP in G (h = h1, h2, . . . , hl = h′)
such that all edge costs were less thanσ. We will imagine assigning costs to players
on machines adversarially: for a playeri on machineMj , we will considerci,j to be
undefined until play reaches a monomorphic statehk in which he occupies machine
j, at which point we will assignci,j to be the highest value consistent with his path
from hk−1 to hk. Note that since initiallyγ(S) ≤ m, we must have for alli ∈ N ,
ci,Si

≤ m = mF(n)(n).
There aremn costsci,j that we may assign, and we have observed that our firstn

assignments have taken values≤ mF(n)(n) = mF(n)(1). We will assume inductively
that ourkth assignment takes value at mostmF(n)(k). Let hk = (T, . . . , T ) be the
last monomorphic state inP such that onlyk cost assignments have been made, and
hk+1 = (T ′, . . . , T ′) be the monomorphic state at which thek + 1st cost assignment
is made for some playeri on machineMj . Since by assumption, fewer thanσ mistakes
are made in the transitionhk → hk+1, it must be thatci,j ≤ CTi

(T ); that is,ci,j can be
no more than playeri’s experienced cost in stateT . If this were not so, playeri would
not have continued playing on machinej in T ′ without additional mistakes, since with
fewer thanσ mistakes, any sample of sizeσ would have contained an instance ofT
which would have yielded higher payoff than playing on machinej. Note however that
the cost of any machineMj in T is at most:

Cj(T ) ≤
∑

i:ci,j 6= undefined

ci,j ≤

n−1
∑

i=0

mF(n)(k − i) = mF(n)(k + 1)

where the inequality follows by our inductive assumption. We have therefore shown
that thekth cost assigned is at mostmF(n)(k), and so the claim follows since there are
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at mostnm costsci,j that may be assigned, and the cost on any machine inS′ is at most
the sum of then highest costs. ut

Proof (of Theorem 4.3).Given any stateh = (S, . . . , S) ∈ G whereγ(S) > m ·
F(n)(mn+1), we can exhibit a statef = (U, U, . . . , U) with lower stochastic potential
thanh such thatγ(U) ≤ m · F(n)(nm + 1) as follows.

Consider the minimum weight spanning in-treeTh of G rooted ath. We will use
it to construct a spanning in-treeTf rooted at a statef as follows: We add an edge of
cost at mostn from h to some stateg = (T, . . . , T ) such thatγ(T ) ≤ m (such an
edge is guaranteed to exist by Lemma 4.6). This induces a cycle throughh andg. To
correct this, we remove an edge on the path fromg to h in Th of cost≥ σ (such an
edge is guaranteed to exist by Lemma 4.7). Since this breaks the newly induced cycle,
we now have a spanning in-treeTf with root f = (U, U, . . . , U) such thatγ(U) ≤
m · F(n)(mn + 1). Since the added edge has lower cost than the removed edge,Tf has
lower cost thanTh, and sof has lower stochastic potential thanh.

Since the stochastically stable states are those with minimum stochastic potential by
Theorem 2.7 and Proposition 2.8, we have proven thath is not stochastically stable.ut

5 Lower Bound on Price of Stochastic Anarchy

In this section, we show that the price of stochastic anarchyfor load balancing is at least
m, the price of strong anarchy. We show this by exhibiting an instance for which the
worst stochastically stable solution costsm times the optimal solution. Our proof that
this bad solution is stochastically stable uses the following lemma to show that the min
cost in-tree rooted at that solution inG has cost as low as the min cost in-tree rooted at
any other solution. We then simply apply Theorem 2.7 and Proposition 2.8.

Lemma 5.1. For two monomorphic statesh andh′ corresponding to play profilesS
andS′, if S′ is a unilateral better response deviation fromS by some playeri, then the
resistancer(h, h′) = 1.

Proof. Suppose playeri makes the mistake of playingS′
i instead ofSi. Since this is a

better-response move, he experiences lower cost, and so long as he samples an instance
of S′, he will continue to playS′

i. No other player will deviate without a mistake, and
so play will reach monomorphic stateh′ afterz turns. ut

M1 M2 M3 M4

1 1 1 − δ ∞ ∞
2 2 − 2δ 1 2 − 3δ ∞
3 3 − 4δ ∞ 1 3 − 5δ

4 4 − 6δ ∞ ∞ 1

Fig. 1. A load-balancing game with price of stochastic anarchym for m = 4. The entry corre-
sponding to playeri and machineMj represents the costci,j . Theδs represent some sufficiently
small positive value and the∞s can be any sufficiently large value. The optimal solution is
(M1, M2, M3, M4) and costs 1, but(M2, M3, M4, M1) is also stochastically stable and costs
4 − 6δ. This example can be easily generalized to arbitrarym.

11



Theorem 5.2. The price of stochastic anarchy of the load balancing game onunrelated
machines is at leastm.

Proof. To aid in the illustration of this proof, refer to the instance of the load balanc-
ing game pictured in Fig. 1. Consider the instance of the loadbalancing game onm
unrelated machines wheren = m and the costs are as follows. For each playeri from
1 to n, let ci,i = 1. For each playeri from 2 to n, let ci,1 = i − 2(i − 1)δ, whereδ
is a diminishingly small positive integer. Finally, for each playeri from 1 ton − 1, let
ci,i+1 = i−(2i−1)δ. Let all other costs be∞ or some sufficiently large positive value.

Note that in this instance the optimal solution is achieved when each playeri plays
on machineMi and thusγ(OPT) = 1. Also note that the only pure-strategy Nash
states in this instance are the profilesN1 = (M1, M2, . . . , Mm),
N2 = (M2, M1, M3, M4, . . . , Mm), N3 = (M2, M3, M1, M4, . . . , Mm), . . . , Nm−1 =
(M2, M3, M4, . . . , Mm−1, M1, Mm), Nm = (M2, M3, M4, . . . , Mm, M1). We ob-
serve thatγ(Nm) = m − 2(m − 1)δ ≈ m, and the monomorphic state corresponding
to Nm is stochastically stable:

Note that for the monomorphic state corresponding to each Nash profileNi, there is
an edge of resistance 2 to any monomorphic state(Si, . . . , Si) whereSi is on a better-
response path to Nash profileNi+1. This transition can occur with two simultaneous
mistakes as follows: At the same time stept, playeri plays on machineMi+1, and
playeri + 1 plays on machineMi. Since for this turn, playeri plays on machineMi+1

alone, he experiences cost that isδ less than his best previous cost. Playeri + 1 expe-
riences higher cost. Therefore, playeri + 1 returns to machineMi+1 and continues to
play it (sinceNi continues to be the play profile in his history for which he experienced
lowest cost). Playeri continues to sample the play profile from time stept for the nextσ
rounds, and so continues to play onMi+1 without further mistakes (even though player
i+1 has now returned). In this way, play proceeds inz timesteps to a new monomorphic
stateSi without any further mistakes. Note that inSi, playersi andi + 1 both occupy
machineMi+1, and soSi is one better-response move, and hence one mistake, away
from Ni+1 (by moving to machineM1, playeri + 1 can experienceδ less cost).

Finally, we construct a minimum spanning in-treeTNm
from the graphG rooted at

Nm. For the monomorphic state corresponding to the Nash profileNi, 1 ≤ i ≤ m − 1,
we include the resistance 2 edge toSi. All other monomorphic states correspond to
non-Nash profiles, and so are on better-response paths to some Nash state (since this is
a potential game). When a state is on a better-response path to two Nash statesNi and
Nj , we consider only the stateNi such thati > j. For each non-Nash monomorphic
state, we insert the edge corresponding to the first step in the better-response path to
Ni, which by Lemma 5.1 has cost 1. Since non-Nash monomorphic states are part of
shortest-path in-trees to Nash monomorphic states, which have edges to Nash states of
higher index, this process produces no cycles, and so forms aspanning in-tree rooted
atNm. Moreover, no spanning tree ofG can have lower cost, since every edge inTNm

is of minimal cost: the only edges inTNm
that have cost> 1 are those leaving strict

Nash states, butanyedge leaving a strict Nash state must have cost≥ 2. Therefore, by
definition of stochastic potential, Theorem 2.7, and Proposition 2.8, the monomorphic
state corresponding toNm is stochastically stable. ut

Remark 5.3.More complicated examples than the one we provide here show that the
price of stochastic anarchy is greater thanm, and so our lower bound is not tight. For
an example, see Figure 2.
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M1 M2 M3 M4

1 1 1 ∞ 4 − 3δ

2 2 − δ 1 2 − δ ∞
3 3 − 2δ 3 − 2δ 1 3 − 2δ

4 4 − 3δ 5 − 4δ ∞ 1

Fig. 2. The optimal solution here is(M1, M2, M3, M4) and costs 1, but by similar reasoning as
in the proof of Theorem 5.2,(M4, M3, M1, M2) is also stochastically stable and costs5 − 4δ.
This example can be easily generalized to arbitrary values of m.

We note the exponential separation between our upper and lower bounds. We conjec-
ture, however, that the true value of the price of stochasticanarchy falls closer to our
lower bound:

Conjecture 5.4.The price of stochastic anarchy in the load balancing game with unre-
lated machines isO(m).

If this conjecture is correct, then theO(m) bound from the strong price of anarchy [1]
can be achieved without coordination.

6 Conclusion and Open Questions

In this paper, we propose the evolutionary game theory solution concept of stochastic
stability as a tool for quantifying the relative stability of equilibria. We show that in
the load balancing game on unrelated machines, for which theprice of Nash anarchy
is unbounded, the “bad” Nash equilibria are not stochastically stable, and so the price
of stochastic anarchy is bounded. We conjecture that the upper bound given in this
paper is not tight and the cost of stochastic stability for load balancing isO(m). If this
conjecture is correct, it implies that the fragility of the “bad” equilibria in this game is
attributable to their instability, not only in the face of player coordination, but also to
minor uncoordinated perturbations in play. We expect that the techniques used in this
paper will also be useful in understanding the relative stability of Nash equilibria in
other games for which the worst equilibria are brittle. Thispromise is evidenced by the
fact that the worst Nash in the worst-case instances in many games (for example, the
Roughgarden and Tardos [22] lower bound showing an unbounded price of anarchy for
routing unsplittable flow) are not stochastically stable.
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