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Abstract. We consider the solution concept of stochastic stabilitg propose
the price of stochastic anarchgs an alternative to thgrice of (Nash) anarchy
for quantifying the cost of selfishness and lack of coordiimatn games. As a
solution concept, the Nash equilibrium has disadvantdugtsthe set of stochas-
tically stable states of a game avoid: unlike Nash equdibtstochastically stable
states are the result of natural dynamics of computatipmalinded and decen-
tralized agents, and are resilient to small perturbatioms fideal play. The price
of stochastic anarchy can be viewed as a smoothed analysig giice of an-
archy, distinguishing equilibria that are resilient tosefrom those that are not.
To illustrate the utility of stochastic stability, we stutlye load balancing game
on unrelated machines. This game has an unboundedly laagegiNash anar-
chy even when restricted to two players and two machines.\& shat in the
two player case, the price of stochastic anarchy is 2, artcetiean in the general
case, the price of stochastic anarchy is bounded. We congetitat the price of
stochastic anarchy ©(m), matching the price of strong Nash anarchy without
requiring player coordination. We expect that stochastibisty will be useful in
understanding the relative stability of Nash equilibriaother games where the
worst equilibria seem to be inherently brittle.
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1 Introduction

Quantifying theprice of (Nash) anarchig one of the major lines of research in algorith-
mic game theory. Indeed, one fourth of the authoritativeadigmic game theory text
edited by Nisan et al. [20] is wholly dedicated to this tofcit the Nash equilibrium
solution concept has been widely criticized [15, 4,9, 10fst-it is a solution charac-
terization without a road map for how players might arriveath a solution. Second,
at Nash equilibria, players are unrealistically assumebe@erfectly rational, fully
informed, and infallible. Third, computing Nash equiliiis PPAD-hard for evegi-
player,n-action games [6], and it is therefore considered very @hfikhat there exists
a polynomial time algorithm to compute a Nash equilibriurarein a centralized man-
ner. Thus, it is unrealistic to assume that selfish agenterireigal games will converge
precisely to the Nash equilibria of the game, or that they mékcessarilyconvergeto
anything at all. In addition, the price of Nash anarchy neetdmes with its own weak-
nesses; it blindly uses the worst case over all Nash egjiaijidespite the fact that some
equilibria are more resilient than others to perturbatiorday.

Considering these drawbacks, computer scientists haderpkitively little atten-
tion to if or how Nash equilibria will in fact be reached, anen less to the question of
which Nash equilibria are more likely to be played in the éy@ayers do converge to
Nash equilibria. To address these issues, we employ thhastc stability framework
from evolutionary game theory to study simple dynamics ehpatationally efficient,
imperfect agents. Rather than defining a-priori states siscNash equilibria, which
might not be reachable by natural dynamics, the stochastidlisy framework allows
us to define a natural dynamic, and from it derive the stallest We define thgrice
of stochastic anarchto be the ratio of the worst stochastically stable solutmithe
optimal solution. The stochastically stable states of agamy, but do not necessar-
ily, contain all Nash equilibria of the game, and so the patstochastic anarchy may
be strictly better than the price of Nash anarchy. In game#/foch the stochastically
stable states are a subset of the Nash equilibria, studyégtio of the worst stochas-
tically stable state to the optimal state can be viewed as@o#rad analysis of the
price of anarchy, distinguishing Nash equilibria that anitlb to small perturbations in
perfect play from those that are resilient to noise.

The evolutionary game theory literature stochastic stabilitystudiesn-player
games that are played repeatedly. In each round, each plagerves her action and its
outcome, and then uses simple rules to select her actiohdandxt round based only
on her size-restricted memory of the past rounds. In anydpplayers have a small
probability of deviating from their prescribed decisiodes The state of the game is
the contents of the memories of all the players. Stoehastically stable statéssuch a
game are the states with non-zero probability in the limihéf random process, as the
probability of error approaches zero. The play dynamics meley in this paper are
the imitation dynamics studied by Josephson and Matros [18der these dynamics,
each player imitates the strategy that was most successféf in recent memory.

To illustrate the utility of stochastic stability, we stuthe price of stochastic anar-
chy of the unrelated load balancing game [2, 1, 11]. To ounkedge, we are the first
to quantify the loss of efficiency in any system when the playae in stochastically
stable equilibria. In the load balancing game on unrelatachimes, even with only two
players and two machines, there are Nash equilibria witktrartly high cost, and so
the price of Nash anarchy is unbounded. We show that theskbeiguare inherently



brittle, and that for two players and two machines, the potstochastic anarchy is
2. This result matches the strong price of anarchy [1] withrequiring coordination
(at strong Nash equilibria, players have the ability to dimate by forming coalitions).
We further show that in the generalplayer,m-machine game, the price of stochastic
anarchy is bounded. More precisely the price of stochasticchy is upper bounded by
the nmth n-step Fibonacci number. We also show that the price of sgtichanarchy
is at leastn + 1.

Our work provides new insight into the equilibria of the |daalancing game. Un-
like some previous work on dynamics for games, our work da¢sseek to propose
practical dynamics with fast convergence; rather, we us@lsi dynamics as a tool for
understanding the inherent relative stability of equilibinstead of relying on player
coordination to avoid the Nash equilibria with unboundestdas is done in the study
of strong equilibria), we show that these bad equilibriaiaterently unstable in the
face of occasional uncoordinated mistakes. We conjechatethe price of stochastic
anarchy is closer to the linear lower bound, parallelinggtiee of strong anarchy.

In light of our results, we believe the techniques in this grapill be useful for
understanding the relative stability of Nash equilibriaiher games for which the worst
equilibria are brittle. Indeed, for a variety of games in pirece of anarchy literature,
the worst Nash equilibria of the lower bound instances atetozhastically stable.

1.1 Related Work

We give a brief survey of related work in three areas: altdraato Nash equilibria as
a solution concept, stochastic stability, and the unrdlltad balancing game.

Recently, several papers have noted that the Nash equitibs not always a suit-
able solution concept for computationally bounded agelatgimg in a repeated game,
and have proposed alternatives. Goemans et al. [15] stuherd who sequentially
play myopic best responses, and quantify piiee of sinkingthat results from such
play. Fabrikant and Papadimitriou [9] propose a model inchiggents play restricted
finite automata. Blum et al. [4, 3] assume only that playecsioa histories satisfy a
property callecho regret and show that for many games, the resulting social costs are
no worse than those guaranteed by price of anarchy results.

Although we believe this to be the first work studying stotitastability in the
computer science literature, computer scientists haventBcemployed other tools
from evolutionary game theory. Fisher and Vocking [13]whbat under replicator
dynamics in the routing game studied by Roughgarden an3$d&2], players con-
verge to Nash. Fisher et al. [12] went on to show that usingrauléaneous adaptive
sampling method, play converges quickly to a Nash equilibriFor a thorough survey
of algorithmic results that have employed or studied otivetutionary game theory
techniques and concepts, see Suri [23].

Stochastic stability and its adaptive learning model adistlin this paper were first
defined by Foster and Young [14], and differ from the standgmehe theory solution
concept of evolutionarily stable strategies (ESS). ES@aedinement of Nash equilib-
ria, and so do not always exist, and are not necessarily iassdavith a natural play
dynamic. In contrast, a game always has stochasticallyessadites that result (by con-
struction) from natural dynamics. In addition, ESS areliegdi only to single shocks,
whereas stochastically stable states are resilient taspemsnoise.



Stochastic stability has been widely studied in the econsriierature (see, for
example, [24,17,19,5,7,21,16]). We discuss in Sect. 2 oiscfrom this body of
literature that are relevant to our results. We recommenahyd25] for an informative
and readable introduction to stochastic stability, itsptia learning model, and some
related results. Our work differs from prior work in stoctiastability in that it is the
first to quantify the social utility of stochastically statdtates, the@rice of stochastic
anarchy

We also note a connection between the stochastically sstdiies of the game and
the sinks of a game, recently introduced by Goemans et aha@ber way of studying
the dynamics of computationally bounded agents. In pdaticthe stochastically stable
states of a game under the play dynamics we consider corrédgpaoa subset of the
sink equilibria, and so provide a framework for identifyitige stable sink equilibria.
In potential games, the stochastically stable states opline dynamics we consider
correspond to a subset of the Nash equilibria, thus progidimethod for identifying
which of these equilibria are stable.

In this paper, we study the price of stochastic anarchy id le&lancing. Even-Dar
et al. [8] show that when playing the load balancing game aelated machines, any
turn-taking improvement dynamics converge to Nash. Andelet al. [1] observe that
the price of Nash anarchy in this game is unbounded and tloay tfat the strong price
of anarchy is linear in the number of machines. Fiat et all fiyhten their upper bound
to match their lower bound at a strong price of anarchy of #iac.

2 Model and Background

We now formalize (from Young [24]) the adaptive play modetighe definition of
stochastic stability. We then formalize the play dynamitat twe consider. We also
provide in this section the results from the stochasticiktalliterature that we will
later use for our results.

2.1 Adaptive Play and Stochastic Stability
LetG = (X, ) be a game with players, whereX = ]_[?:1 X, represents the strategy

n

setsX; for each playet, andr = Hj:1 m; represents the payoff functions: X — R
for each playerG is played repeatedly for successive time peribés1, 2, ..., and at
each time step, playeri plays some actior! € X;. The collection of all players’
actions at time defines a play profil&® = (S, S%,...,St). We wish to model com-
putationally efficient agents, and so we imagine that eaehtdtas some finite memory
of sizez, and that after time stefy all players remember a history consisting of a se-
quence of play profiles? = (St—=*1 §t==+2 ' §!) € (X)*.

We assume that each playidras some efficiently computable functipn: (X)* x
X; — R that, given a particular history, induces a sampleable gvidity distribution
over actions (for all players and historiesh, . x. pi(h,a) = 1). We writep for
[ L; pi- We wish to model imperfect agents who make mistakes, andesmagine that
at timet each playet plays according tp; with probability1 — ¢, and with probability
e plays some action itX; uniformly at randon® That is, for all players, for all actions

3 The mistake probabilities need not be uniform random—ait the require is that the distri-
bution has support on all actions k.



a€ X;,Pr[st =a] = (1 —€)p;(ht,a) + =T The dynamics we have described define
a Markov proces®% 7 with finite state spacél = (X)* corresponding to the finite
histories. For notational simplicity, we will write the Mav process a®< when there
is no ambiguity.

The potential successors of a history can be obtained byvibgea new play pro-
file, and “forgetting” the least recent play profile in the @nt history.

Definition 2.1. For any S’ € X, A historyh/ = (S'=*+2 gt==+3 Gt §')is a
successoof historyht = (St==+1 gt==+2 Gt)

The Markov proces#* has transition probability;, ,,, of moving from state: =
(S1,...,5%) tostateh’ = (T",...,T?):

e {H?_1(1 — ) pi(h,T7) + 57 if W'is asuccessor of h;
Phw = i

0 otherwise.

We will refer to P° as the unperturbed Markov process. Note thatefar 0,
p;. > 0 for every historyh and successo’, and that for any two histories and

h not necessarily a successor/gfthere is a series aof historiesh, ..., h, such that
hi = h, h, = h,and foralll < i < z, h; is a successor df;_;. Thus there is positive
probability of moving between any and anyk in z steps, and sd@< is irreducible.
Similarly, there is a positive probability of moving betweany’ and anyh in z + 1
steps, and s®€ is aperiodic. Thereforg?< has a unique stationary distributign.

The stochastically stable states of a particular game aayepldynamics are the
states with nonzero probability in the limit of the stationdistribution.

Definition 2.2 (Foster and Young [14]).A stateh is stochastically stableslative to
Peif lime_ p(h) > 0.

Intuitively, we should expect a proceBs to spend almost all of its time at its stochas-
tically stable states whenis small.
When a playef plays at random rather than accordingtpwe call this a mistake.

Definition 2.3 (Young [24]). Suppose’ = (St—=*T1, ... S!) is a successor of. A
mistakein the transition betweeh and /' is any elemens? such thatp;(h, Sf) = 0.
Note that mistakes occur with probabilitye.

We can characterize the number of mistakes required to get &me history to
another.

Definition 2.4 (Young [24]). For any two statesh, i/, the resistance-(h, ') is the
minimum total number of mistakes involved in the transition /' if i’ is a successor
of h. If A" is not a successor df, thenr(h, h’) = oco.

Note that the transitions of zero resistance are exacthethizat occur with positive
probability in the unperturbed Markov proceB8.

Definition 2.5. We refer to the sinks d? asrecurrent classe#n other words, aecur-
rent clasof P is a set of state€ C H such that any state i@V is reachable from any
other state inC' and no state outsid€' is accessible from any state inside



We may view the state spacé as the vertex set of a directed graph, with an edge
from h to b if b’ is a successor df, with edge weight:(h, h').

Observation 2.6. We observe that the recurrent clasdés, Ho, . . ., where eactH; C
H, have the following properties:

1. From every vertek € H, there is a path of cost 0 to one of the recurrent classes.

2. For eachH; and for every pair of verticed, h’ € H;, there is a path of cost 0
betweerh andh’.

3. For eachH;, every edgéh, ') with h € H;, ' ¢ H; has positive cost.

Let r; ; denote the cost of the shortest path betwégrand H; in the graph de-
scribed above. We now consider the complete directed @fapth vertexse{ Hy, Ho, ...}
in which the edgéH,, H;) has weight; ;. LetT; be a directed minimum-weight span-
ning in-tree ofG rooted at vertex{;. (An in-tree is a directed tree where each edge is
oriented toward the root.) Treochastic potentiadf H; is defined to be the sum of the
edge weights iff;.

Young proves the following theorem characterizing stotibalty stable states:

Theorem 2.7 (Young [24]).In anyn-player gameG with finite strategy sets and any
set of action distributiong, the stochastically stable states Bf 7> are the recurrent
classes of minimum stochastic potential.

2.2 Imitation Dynamics

In this paper, we study agents who behave according to at stighification of the
imitation dynamics introduced by Josephson and Matros [Y& note that this modi-
fication is of no consequence to the results of Josephson atrd$/[16] that we present
below.) Player using imitation dynamics parameterizeddy= N chooses his action
at timet + 1 according to the following mechanism:

1. Player: selects a set” of o play profiles uniformly at random from theprofiles
in history ;.

2. For each play profil& € Y, i recalls the payoffr;(S) he obtained from playing
actions;.

3. Playeri plays the action among these that corresponds to his highgsff; that
is, he plays thé'" component ofirgmaxg.y ;(S). In the case of ties, he plays a
highest-payoff action at random.

The values is a parameter of the dynamics that is taken tmbe o < z/2. These
dynamics can be interpreted as modeling a situation in wétigach time step, players
are chosen at random from a pool of identical players, whb pkayed in a subset of the
lastz rounds. The players are computationally simple, and so deammterspeculate
the actions of their opponents, instead playing the actian lhas worked the best for
them in recent memory.

We will say that a history: is monomorphidgf the same action profilé has been
repeated for the lastrounds:h = (S, 5, ..., .S). Josephson and Matros [16] prove the
following useful fact:

Proposition 2.8. A set of states is a recurrent class of the imitation dynarfiesid
only if it is a singleton set consisting of a monomorphicestat



Since the stochastically stable states are a subset of ¢chereat classes, we can
associate with each stochastically stable state (S, ..., S) the unique action profile
S it contains. This allows us to now define the price of stodbastarchy with respect
to imitation dynamics. For brevity, we will refer to this tughout the paper as simply
the price of stochastic anarchy.

Definition 2.9. Given a gamé& = (X, 7) with a social cost functiory : X — R, the

price of stochastic anarcloy GG is equal tomax W(VO(PS,)T) , WwhereOPT is the play profile

that minimizesy and themax is taken over all play profile§ such that, = (S, ..., S)
is stochastically stable.

Given a gamé&Z, we define thebetter response grapbf G: The set of vertices
corresponds to the set of action profilegtafand there is an edge between two action
profiles S and.S’ if and only if there exists a playérsuch thatS’ differs from .S only
in playeri’s action, and player does not decrease his utility by unilaterally deviating
from S; to S.. Josephson and Matros [16] prove the following relatiop&igitween this
better response graph and the stochastically stable staaegame:

Theorem 2.10. If V is the set of stochastically stable states under imitatigmagnics,
thenV = {S: (S,...,S) € V}is either a strongly connected component of the better
response graph af, or a union of strongly connected components.

Goemans et al. [15] introduce the notion of sink equilibned @ corresponding
notion of the “price of sinking”, which is the ratio of the satwelfare of the worst
sink equilibrium to that of the social optimum. We note thag strongly connected
components of the better response grapty@orrespond to the sink equilibria (under
sequential better-response play)@fand so Theorem 2.10 implies that the stochasti-
cally stable states under imitation dynamics corresporalgobset of the sinks of the
better response graph 6f and we get the following corollary:

Corollary 2.11. The price of stochastic anarchy of a gafeinder imitation dynamics
is at most the price of sinking ¢f.

3 Load Balancing: Game Definition and Price of Nash Anarchy

The load balancing game on unrelated machines models a sgeafs who wish to
schedule computing jobs on a set of machines. The machiwvesdifferent strengths
and weaknesses (for example, they may have different tyjp@®oessors or differing
amounts of memory), and so each job will take a different amhod time to run on
each machine. Jobs on a single machine are executed ingbaxath that all jobs on
any given machine finish at the same time. Thus, each agenselteaules his job on
machinel; endures théoad on machinél/;, where the load is defined to be the sum of
the running times of all jobs scheduled bfy. Agents wish to minimize the completion
time for their jobs, and social cost is defined to bertiakespanthe maximum load on
any machine.

Formally, an instance of the load balancing game on unigtlatgchines is defined
by a set ofn players andn machines\l = {M,, ..., M,,}. The action space for each
player isX; = M. Each player has some cost; ; on machinej. Denote the cost



of machinel; for action profileS by C;(S) = >, st.s,—; ¢i,;- Each player has
utility function 7;(S) = —Cs,(S). The social cost of an action profilg is v(S) =
max;cn C;(S). We defineOPT to be the action profile that minimizes social cost:
OPT = argming. x 7(5). Without loss of generality, we will always normalize so
thaty(OPT) = 1.

The coordination ratio of a game (also known as the price afary) was intro-
duced by Koutsoupias and Papadimitriou [18], and is intdridequantify the loss of
efficiency due to selfishness and the lack of coordinationraymational agents. Given
a game’ and a social cost function, it is simple to quantify th@©P'T game state:
OPT = argmin~y(5). Itis less clear how to model rational selfish agents. In rpast
work it has been assumed that selfish agents play accordabjésh equilibrium, and
the price of anarchy has been defined as the ratio of the cdst @forst (pure strategy)
Nash state t@P'T. In this paper, we refer to this measure as the price of Naafchy,
to distinguish it from the price of stochastic anarchy, whige defined in Sect. 2.2.

Definition 3.1. For a gameG with a set of Nash equilibrium stat€s the price of

(Nash) anarchis maxgcg %.

We show here that even with only two players and two machthedpad balancing
game on unrelated machines has a price of Nash anarchy thab@inded by any
function ofm andn. Consider the two-player, two-machine game with = c2 2 =1
ande; 2 = cg1 = 1/6, forsomed < § < 1. Then the play profil©PT = (M;, Ms)
is a Nash equilibrium with cost 1. However, observe that ttadile S* = (Ms, M)
is also a Nash equilibrium, with cosf§ (since by deviating, players can only increase
their cost from1/§ to 1/ 4+ 1). The price of anarchy of the load balancing game is
thereforel /§, which can be unboundedly large, although= n = 2.

4 Upper Bound on Price of Stochastic Anarchy

The load balancing game is an ordinal potential game [8] sarttie sinks of the better-

response graph correspond to the pure strategy Nash eguilitee therefore have by

Corollary 2.11 that the stochastically stable states avdbaet of the pure strategy Nash
equilibria of the game, and the price of stochastic anarchymost the price of anarchy.
We have noted that even in the two-person, two-machine lakhbing game, the price

of anarchy is unbounded (even for pure strategy equilibFiag¢refore, as a warmup, we
bound the price of stochastic anarchy of the two-player;twachine case.

4.1 Two Players, Two Machines

Theorem 4.1. In the two-player, two-machine load balancing game on watesl ma-
chines, the price of stochastic anarchy is 2.

Note that the two-player, two-machine load balancing gaaretave at most two
strict pure strategy Nash equilibria. (For brevity we cdesithe case of strict equilibria.
The argument for weak equilibria is similar). Note also thaher there is a unique
Nash equilibrium atM;, My) or (Ms, Ms), or there are two aV; = (M;, M>) and
Ny = (My, My).

An action profileN Pareto dominates” if for each playet, C, (V) < Cn:(N').



Lemma 4.2. If there are two Nash equilibria, andy; Pareto dominatesVs,, then only
N is stochastically stable (and vice versa).

Proof. Note that if N; Pareto dominated/,, then it also Pareto dominatés/;, M)
and (M, M), since each is a unilateral deviation from a Nash equiliarfor both
players. Consider the monomorphic stéd, . .., N»). If both players make simulta-
neous mistakes at timeto Ny, then by assumptionty; will be the action profile in
hit1 = (Na,..., Na, N71) with lowest cost for both players. Therefore, with positive
probability, both players will draw samples of their hisésrcontaining the action pro-
file N1, and therefore play it, until, . = (N, ..., N1). Therefore, there is an edge in
Gfromh ={Ny,...,No}toh’ = {Ny,..., N1} of resistanc@. However, there is no
edge fromh' to any other state ig with resistance< o. Recall our initial observation
that in fact,V; Pareto dominates all other action profiles. Therefore, hofsaistakes
will yield an action profile with higher payoff thai; for either player, and so to leave
stateh’ will require at leastr mistakes (so that some player may draw a sample from
their history that contains no instance of action prafg. Therefore, given any min-
imum spanning in-tree of rooted ath, we may add an edgg, h’) of weight 2, and
remove the outgoing edge from, which we have shown must have cost. Thisis a
minimum spanning tree rooted &t with strictly lower cost. We have therefore shown
thath’ has strictly lower stochastic potential thanand so by Theorem 2.7, is not
stochastically stable. Since at least one Nash equilibmurst be stochastically stable,
h' = (Ny,...,Np) is the unique stochastically stable state. a

Proof (of Theorem 4.1)f there is only one Nash equilibriuti\/;, M7) or (Ms, Ms),
then it must be the only stochastically stable state (singmtential games these are a
nonempty subset of the pure strategy Nash equilibria), amgt miso beDPT. In this
case, the price of anarchy is equal to the price of stochassticchy, and is 1. Therefore,
we may assume that there are two Nash equilibvigand N-. If N; Pareto dominates
Ns, thenN; must beOPT (since load balancing is a potential game), and by Lemma
4.2, N is the only stochastically stable state. In this case, the pif stochastic anarchy
is 1 (strictly less than the (possibly unbounded) price @frahy). A similar argument
holds if N, Pareto dominated’;. Therefore, we may assume that neitarnor N,
Pareto dominate the other.

Without loss of generality, assume thst is OPT, and that inN, = (M7, M),
Ms> is the maximally loaded machine. Suppose thitis also the maximally loaded
machine inN,. (The other case is similar.) Together with the fact thatdoes not
Pareto dominaté/s, this gives us the following:

c1,1 < cg2
c2,1 < a2

C1,2 = €22
From the fact that bottV; and N, are Nash equilibria, we get:

C1,1+C21 > Copo
1,1+ C21 > 10

In this case, the price of anarchy among pure strategy Nashlea is:

c c11+c¢ c11+c¢ c
12 - Gl 2,1 < 1,1 2,1 14+ 2,1

Coo C2.2 C1,1 c1,1




Similarly, we have:

c c c
12 11+ 2’1§ — 1

Coo C2.2 C2.1 C2.1

1,1+ C21 C1,1

Combining these two inequalities, we get that the price ofiNanarchy is at most
1+ min(ey1/e2,1,c2,1/c1.1) < 2. Since the price of stochastic anarchy is at most the
price of anarchy over pure strategies, this completes thefpr a

4.2 General Casen Players,m Machines

Theorem 4.3. The general load balancing game on unrelated machines hias pf
stochastic anarchy bounded by a functibrepending only on andm, and

U(n,m) <m- Fy(nm+ 1),
whereF|,, (i) denotes the'" n-step Fibonacci numbér.

To prove this upper bound, we show that any solution worse tha upper bound
cannot be stochastically stable. To show this impossibilie take any arbitrary solu-
tion worse than our upper bound and show that there must allvay minimum cost
in-tree inG rooted at a different solution that has strictly less coanhtthe minimum
cost in-tree rooted at that solution. We then apply Projms2.8 and Theorem 2.7. The
proof proceeds by a series of lemmas.

Definition 4.4. For any monomorphic Nash state= (5, ..., .5), let theNash Graph
of h be a directed graph with vertex skf and directed edge\/;, M;) if there is some
playeri with S; = M; andOPT; = M;. Let theclosurel; of machinel/;, be the set
of states reachable fro/; by following0 or more edges of the Nash graph.

Lemma 4.5. In any monomorphic Nash state= (S, ..., S), if there is a machiné/;
such thatC;(S) > m, then every machin&/; € M, has cosC;(S) > 1.

Proof. Suppose this were not the case, and there existd ag M; with C;(S) < 1.
SinceM; € M;, there exists a simple pat; = M, Mo, ..., M; = M;) with

k < m. SinceS is a Nash equilibrium, it must be the case thgt ;(S) < 2 because
by the definition of the Nash graph, the directed edge fidin ; to M}, implies that
there is some playerwith S; = Mj_;, butOPT; = Mj. Sincel = v(OPT) >
Cx(OPT) > ¢; 1, if playeri deviated from his action in Nash profifeto S, = Mj,
he would experience cost,(S) + ¢;x < 1+ 1 = 2. Since he cannot benefit from
deviating (by definition of Nash), it must be that his costSinC,—1(S) < 2. By the
same argument, it must be th@t_»(S) < 3, and by induction( (S) <k <m. O

Lemma 4.6. For any monomorphic Nash state= (.5,...,5) € G with y(S) > m,
there is an edge frorh to somey = (T, ...,T) wherev(T) < m with edge cosK n
ingG.

1 if 1 <mn; )
f Fny (1) = { =" P 2) f fixedn.
(n) (4) {Zl Fo(j) otherwise. ) (i) € o(2%) for any fixedn

j=i—mn



Proof. Let D = {M; : C;(S) > m}, and define the closure @, D = UMYEDJV[

Consider the successor stateof / that results when every playésuch thatS! € D
makes a mistake and plays on their OPT macmﬁé OPT;, and all other pIayers
do not make a mistake and continue to piy ' = S?. Note that by the definition of
D, for M; € D, for all playersi playing maching in S, OPT; € D. LetT = S'*1.
Then for allj such thatM; € D, C;(T) < 1, sinceC;(T) < C;(OPT) < 1. To see
this, note that for every playérsuch thatS! = M; € D, Si** = M; if and only if
OPT; = M;. Similarly, for every playei such thatS}™ = M; € D butS! # M;,
OPT; = MJ, and so for each maching; € D, the agents playlng oh/; in T are
a subset of those playing a; at OPT. Note that by Lemma 4.5, for aM € D,
C;(S) > 1. Therefore, for every agentwith S! € D, m(T) > m;(S), and so for
n' = (S,...,S,T,T) a successor af’, r(h’, h”) = 0. Reasoning in this way, there
is a path of zero resistance fromto g = (T,...,T). We have therefore exhibited
a path betweerk andg that involves only|{i : S! € D}| < n mistakes. Finally,
we observe that ifV/; € D thenC;(T) < 1, and by construction, if/; ¢ D, then
C;(T) = C;(S) < m, since as noted above; ¢ D implies that the players playing
M; in S are the same set playind; in 7. Thus we have/(T') < m, which completes
the proof. a

Lemma4.7.Leth = (S,...,S) € G be any monomorphic state with(S) < m.
Any path inG from h to a monomorphic state’ = (5’,...,5") € G wherey(h') >
m - F(,,)(mn 4 1) must contain an edge with cost o, whereF,, (i) denotes the*"
n-step Fibonacci number.

Proof. Suppose there were some directed pBtin G (b = hy,he,...,hy = }/)
such that all edge costs were less tharWe will imagine assigning costs to players
on machines adversarially: for a playieon machinel;, we will considerc; ; to be
undefined until play reaches a monomorphic statén which he occupies machine
J, at which point we will assigm; ; to be the highest value consistent with his path
from hj_1 to hy. Note that since initiallyy(S) < m, we must have for all € N,
Cig; Sm = mF(n) (n)

There arenn costsc; ; that we may assign, and we have observed that ourfirst
assignments have taken valuesnF,(n) = mF,)(1). We will assume inductively
that ourk'" assignment takes value at most-,,(k). Let hy = (T,...,T) be the
last monomorphic state i® such that onlyk cost assignments have been made, and
hx+1 = (T',...,T") be the monomorphic state at which the- 1t cost assignment
is made for some playéron machinel/;. Since by assumption, fewer thammistakes
are made in the transitidn, — hi41, it must be that; ; < Cr, (T); thatis,c; ; can be
no more than playei's experienced cost in stafe. If this were not so, playerwould
not have continued playing on machijie 7" without additional mistakes, since with
fewer thano mistakes, any sample of sizewould have contained an instanceBf
which would have yielded higher payoff than playing on maehji Note however that
the cost of any machin&/; in 7" is at most:

(HIN TS undeflned

where the inequality follows by our inductive assumptiore Wave therefore shown
that thek'" cost assigned is at mostF{,,) (k), and so the claim follows since there are
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at mosthm costse; ; that may be assigned, and the cost on any machiféigat most
the sum of the: highest costs. a

Proof (of Theorem 4.3)Given any statev = (S,...,S5) € G wherev(S) > m -
Fny(mn+1), we can exhibita statg¢ = (U, U, ..., U) with lower stochastic potential
thanh such thaty(U) < m - F(,)(nm + 1) as follows.

Consider the minimum weight spanning in-tr€g of G rooted ath. We will use
it to construct a spanning in-tréé rooted at a stat¢ as follows: We add an edge of
cost at most: from h to some statg = (7',...,T) such thaty(T)) < m (such an
edge is guaranteed to exist by Lemma 4.6). This induces & thipbughh andg. To
correct this, we remove an edge on the path frpto h in T}, of cost> o (such an
edge is guaranteed to exist by Lemma 4.7). Since this bréaksewly induced cycle,
we now have a spanning in-trd& with root f = (U,U,...,U) such thaty(U) <
m - F(,,y(mn + 1). Since the added edge has lower cost than the removedEdbas
lower cost thar?},, and sof has lower stochastic potential than

Since the stochastically stable states are those with miimistochastic potential by
Theorem 2.7 and Proposition 2.8, we have provenithsiot stochastically stable.0

5 Lower Bound on Price of Stochastic Anarchy

In this section, we show that the price of stochastic anaf@hipad balancing is at least
m, the price of strong anarchy. We show this by exhibiting astance for which the
worst stochastically stable solution coststimes the optimal solution. Our proof that
this bad solution is stochastically stable uses the fobhgWemma to show that the min
cost in-tree rooted at that solutionghhas cost as low as the min cost in-tree rooted at
any other solution. We then simply apply Theorem 2.7 and &sitipn 2.8.

Lemma 5.1. For two monomorphic statels and 2’ corresponding to play profile§
andS’, if S’ is a unilateral better response deviation frarby some playet, then the
resistance:(h, h') = 1.

Proof. Suppose player makes the mistake of playingf instead ofS;. Since this is a
better-response move, he experiences lower cost, andgasome samples an instance
of S’, he will continue to plays;. No other player will deviate without a mistake, and
so play will reach monomorphic staké after > turns. a

My My Mz M,y
1 1-6 oo )
2—-2 1 2-30 o0
3—46 o0 1 3-56
4—66 oo o0 1

B WN P

Fig. 1. A load-balancing game with price of stochastic anarehyor m = 4. The entry corre-
sponding to playei and machiné\/; represents the cost,;. Theds represent some sufficiently
small positive value and theos can be any sufficiently large value. The optimal solution is
(M1, M2, M3, My) and costs 1, bufM,, Ms, My, M) is also stochastically stable and costs
4 — 66. This example can be easily generalized to arbitrary
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Theorem 5.2. The price of stochastic anarchy of the load balancing gameroalated
machines is at least.

Proof. To aid in the illustration of this proof, refer to the instanof the load balanc-
ing game pictured in Fig. 1. Consider the instance of the lm@dncing game om
unrelated machines where= m and the costs are as follows. For each playeom
1ton, lete;; = 1. For each playet from 2 ton, letc;; = i — 2(¢i — 1)d, whered
is a diminishingly small positive integer. Finally, for daplayer: from 1 ton — 1, let
ciiv1 =t —(2i—1)d. Let all other costs beo or some sufficiently large positive value.

Note that in this instance the optimal solution is achievb@émveach playeiplays
on machineM; and thusy(OPT) = 1. Also note that the only pure-strategy Nash
states in this instance are the profilés = (M1, Ma, ..., M,,),

N2 = (N[21M11M37M41 .- -7Mm)1N3 = (M27M31M17M41 .- '7Mm)1 e '7Nm—1 =
(Mg, Ms, My, ... ,M,,_+1, M, Mm), N,, = (]\/[2, Ms, My, ..., M, ]\/[1) We ob-
serve thaty(N,,) = m — 2(m — 1) ~ m, and the monomorphic state corresponding
to IV, is stochastically stable:

Note that for the monomorphic state corresponding to eact leofile V;, there is
an edge of resistance 2 to any monomorphic gtéfe. . ., S;) wheresS; is on a better-
response path to Nash profil;, ;. This transition can occur with two simultaneous
mistakes as follows: At the same time stemplayer: plays on machiné//; ., and
playeri 4+ 1 plays on machind/;. Since for this turn, playerplays on machiné/;
alone, he experiences cost that iess than his best previous cost. Plaier 1 expe-
riences higher cost. Therefore, player 1 returns to machiné/; ; and continues to
play it (sinceN; continues to be the play profile in his history for which heesgnced
lowest cost). Playercontinues to sample the play profile from time stépr the nexto
rounds, and so continues to play dfj,, without further mistakes (even though player
i+1 has now returned). In this way, play proceeds timesteps to a new monomorphic
stateS; without any further mistakes. Note thatif, players: andi + 1 both occupy
machineM, 1, and soS; is one better-response move, and hence one mistake, away
from N;1 (by moving to machiné/,, player: + 1 can experiencé less cost).

Finally, we construct a minimum spanning in-tf€g, from the graphy rooted at
N,,,. For the monomorphic state corresponding to the Nash p@filé < <m — 1,
we include the resistance 2 edgedp All other monomorphic states correspond to
non-Nash profiles, and so are on better-response paths ®idash state (since this is
a potential game). When a state is on a better-responseqatio Nash stated’; and
N;, we consider only the stat¥; such thati > j. For each non-Nash monomorphic
state, we insert the edge corresponding to the first stepeitbéiter-response path to
N;, which by Lemma 5.1 has cost 1. Since non-Nash monomorpdttiessare part of
shortest-path in-trees to Nash monomorphic states, whieh bdges to Nash states of
higher index, this process produces no cycles, and so forspsuaning in-tree rooted
at N,,,. Moreover, no spanning tree gfcan have lower cost, since every edgéd’i,
is of minimal cost: the only edges ifly,, that have cost- 1 are those leaving strict
Nash states, binyedge leaving a strict Nash state must have o8t Therefore, by
definition of stochastic potential, Theorem 2.7, and Prijowos2.8, the monomorphic
state corresponding &y, is stochastically stable. a

Remark 5.3.More complicated examples than the one we provide here shatittie
price of stochastic anarchy is greater thanand so our lower bound is not tight. For
an example, see Figure 2.
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My My Ms My
1 1 oo 4-—36
2—96 1 2-§ o
3—203—-25 1 3-2§
4—-365—46 oo 1

A WNBE

Fig. 2. The optimal solution here is\, M2, M3, M4) and costs 1, but by similar reasoning as
in the proof of Theorem 5.2,M4, M3, M1, M>) is also stochastically stable and coSts 44.
This example can be easily generalized to arbitrary valéies.o

We note the exponential separation between our upper arat loounds. We conjec-
ture, however, that the true value of the price of stochastarchy falls closer to our
lower bound:

Conjecture 5.4.The price of stochastic anarchy in the load balancing gartie wvire-
lated machines i®(m).

If this conjecture is correct, then tlie(m) bound from the strong price of anarchy [1]
can be achieved without coordination.

6 Conclusion and Open Questions

In this paper, we propose the evolutionary game theory isolaioncept of stochastic
stability as a tool for quantifying the relative stability equilibria. We show that in
the load balancing game on unrelated machines, for whiclpiiice of Nash anarchy
is unbounded, the “bad” Nash equilibria are not stochdstistable, and so the price
of stochastic anarchy is bounded. We conjecture that theruppund given in this
paper is not tight and the cost of stochastic stability faddalancing i$)(m). If this
conjecture is correct, it implies that the fragility of thiedd” equilibria in this game is
attributable to their instability, not only in the face ofagkr coordination, but also to
minor uncoordinated perturbations in play. We expect thattechniques used in this
paper will also be useful in understanding the relative ibtalmf Nash equilibria in
other games for which the worst equilibria are brittle. Tirismise is evidenced by the
fact that the worst Nash in the worst-case instances in mameg (for example, the
Roughgarden and Tardos [22] lower bound showing an unbaliiee of anarchy for
routing unsplittable flow) are not stochastically stable.
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