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PLAYING GAMES WITH APPROXIMATION ALGORITHMS∗

SHAM M. KAKADE† , ADAM TAUMAN KALAI‡ , AND KATRINA LIGETT§

Abstract. In an online linear optimization problem, on each period t, an online algorithm
chooses st ∈ S from a fixed (possibly infinite) set S of feasible decisions. Nature (who may be
adversarial) chooses a weight vector wt ∈ R

n, and the algorithm incurs cost c(st, wt), where c is a
fixed cost function that is linear in the weight vector. In the full-information setting, the vector wt

is then revealed to the algorithm, and in the bandit setting, only the cost experienced, c(st, wt), is
revealed. The goal of the online algorithm is to perform nearly as well as the best fixed s ∈ S in
hindsight. Many repeated decision-making problems with weights fit naturally into this framework,
such as online shortest-path, online traveling salesman problem (TSP), online clustering, and online
weighted set cover. Previously, it was shown how to convert any efficient exact offline optimization
algorithm for such a problem into an efficient online algorithm in both the full-information and
the bandit settings, with average cost nearly as good as that of the best fixed s ∈ S in hindsight.
However, in the case where the offline algorithm is an approximation algorithm with ratio α > 1,
the previous approach worked only for special types of approximation algorithms. We show how to
convert any offline approximation algorithm for a linear optimization problem into a corresponding
online approximation algorithm, with a polynomial blowup in runtime. If the offline algorithm has
an α-approximation guarantee, then the expected cost of the online algorithm on any sequence is
not much larger than α times that of the best s ∈ S, where the best is chosen with the benefit of
hindsight. Our main innovation is combining Zinkevich’s algorithm for convex optimization with a
geometric transformation that can be applied to any approximation algorithm. Standard techniques
generalize the above result to the bandit setting, except that a “barycentric spanner” for the problem
is also (provably) necessary as input. Our algorithm can also be viewed as a method for playing
large repeated games, where one can compute only approximate best responses, rather than best
responses.
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1. Introduction. In the 1950s, Hannan gave an algorithm for playing repeated
two-player games against an arbitrary opponent [12]. His was one of the earliest al-
gorithms with the no-regret property: against any opponent, his algorithm achieved
expected performance asymptotically near that of the best single action, where the
best is chosen with the benefit of hindsight. Put another way, after sufficiently many
rounds, someone using his algorithm would not benefit (significantly) by being able
to change his actions to any single action, even if this action could be chosen after ob-
serving the opponent’s play. Kalai and Vempala [13] showed that Hannan’s approach
can be used to efficiently solve online linear optimization problems as well. Hannan’s
algorithm relied on the ability to find best responses to an opponent’s play history.
Informally speaking, Kalai and Vempala replaced this best-reply computation with an
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efficient black-box optimization algorithm (the number of calls to that algorithm on
a sequence of length T was O(

√
T ) [13]). However, the above approach breaks down

when one can only approximately solve the offline optimization problem efficiently or
one can only compute approximate best responses. That is the focus of the present
paper.

In an offline optimization problem, one must select a single decision s from a
known set of decisions S, in order to minimize a known cost function. In an offline
linear optimization problem, a weight vector w ∈ R

n is given as input, and the cost
function c(s, w) is assumed to be linear in w. Many combinatorial optimization prob-
lems fit into this framework, including traveling salesman problems (TSPs) (where
S consists of a subset of paths in a graph), clustering (S is partitions of a graph),
weighted set cover (S is the set of covers), and knapsack (S is the set of feasible sets
of items and weights correspond to item valuations).

Each of these problems has an online sequential version, in which on every period
the player must select her decision without knowing that period’s cost function. That
is, there is an unknown sequence of weight vectors w1, w2, . . . ∈ R

n and for each
t = 1, 2, . . ., the player must select st ∈ S and pay c(st, wt). In the full-information
version, the player is then informed of wt, while in the bandit version she is only
informed of the value c(st, wt). (The name bandit refers to the similarity to the classic
multiarmed bandit problem [15]).

The player’s goal is to achieve low average cost. In particular, we compare her cost
with that of the best fixed decision: she would like her average cost to approach that
of the best single point in S, where the best is chosen with the benefit of hindsight.
This difference, 1

T

∑T
t=1 c(st, wt) − mins∈S 1

T

∑T
t=1 c(s, wt), is termed regret.

Prior work showed how to convert an exact algorithm for the offline problem
into an online algorithm with low regret, both in the full-information setting and in
the bandit setting. In particular, Kalai and Vempala showed [13] that using Hannan’s
approach [12], one can guarantee O(T−1/2) regret for any linear optimization problem,
in the full-information version, as the number of periods T increases. It was later
shown [2, 14, 7] how to convert exact algorithms to achieve O(T−1/3) regret in the
more difficult bandit setting.

This prior work was actually a reduction showing that one can solve the online
problem nearly as efficiently as one can solve the offline problem. (They used the
offline optimizer as a black box.) However, in many cases of interest, such as online
combinatorial auction problems [4], even the offline problem is NP-hard. Hannan’s
“follow-the-perturbed-leader” approach can also be applied to some special types of
approximation algorithms, but fails to work directly in general. Finding a reduction
that maintains good asymptotic performance using general approximation algorithms
was posed as an open problem [13]; we resolve this problem.

In this paper, we show how to convert any approximation algorithm for a linear op-
timization problem into an algorithm for the online sequential version of the problem,
both in the full-information setting and in the bandit setting. Our reduction main-
tains the asymptotic approximation guarantee of the original algorithm, relative to
the average performance of the best static decision in hindsight. Our new approach is
inspired by Zinkevich’s algorithm for the problem of minimizing convex functions over
a convex feasible set S ⊆ R

n [16]. However, the application is not direct and requires
a geometric transformation that can be applied to any approximation algorithm.

Example 1 (online metric TSP). Every day, a delivery company serves the same
n customers. The company must schedule its daily route without foreknowledge of
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the traffic on each street. The time on any street may vary unpredictably from day
to day due to traffic, construction, accidents, or even competing delivery companies.
In online metric TSP, we are given an undirected graph G, and on every period t,
we must output a tour that starts at a specified vertex, visits all the vertices at least
once, and then returns to the initial vertex. After we announce our tour, the traffic
patterns are revealed (in the full-information setting, the costs on all the edges; in the
bandit setting, just the cost of the tour) and we pay the cost of the tour.

Example 2 (online weighted set cover). Every financial quarter, our company
hires vendors from a fixed pool of subcontractors to cover a fixed set of tasks. Each
subcontractor can handle a known, fixed subset of the tasks, but their price is only
announced at the end of the quarter and varies from quarter to quarter. In online
weighted set cover, the vendors are fixed sets P1, . . . , Pn ⊆ [m]. Each period, we choose
a legal cover st ⊆ [n], that is,

⋃
i∈st

Pi = [m]. There is an unknown sequence of cost
vectors w1, w2, . . . ∈ [0, 1]n, indicating the quarterly vendor costs. Each quarter, our
total cost c(st, wt) is the sum of the costs of the vendors we chose for that quarter. In
the full-information setting, at the end of the quarter we find out the price charged by
each of the subcontractors; in the bandit setting, we receive a combined bill showing
only our total cost.

1.1. Hannan’s approach. In this section, we briefly describe the previous ap-
proach [13] for the case of exact optimization algorithms based on Hannan’s idea of
adding perturbations. We begin with the obvious “follow-the-leader” algorithm which,
on each period, picks the decision that is best against the total (equivalently, average)
of the previous weight vectors. This means, on period t, choosing st = A

(∑t−1
τ=1 wτ

)
,

where A is an algorithm that, given a cost vector w, produces the best s ∈ S.1 Han-
nan’s perturbation idea, in our context, suggests using st = A

(
pt +

∑t−1
τ=1 wτ

)
for

uniformly random perturbation pt ∈ [0,
√

t]n. One can bound the expected regret of
following-the-perturbed-leader to be O(T−1/2), disregarding other parameters of the
problem.

Kalai and Vempala [13] note that Hannan’s approach maintains an asymptotic
α-approximation guarantee when used with α-approximation algorithms with a special
property they call α-pointwise approximation, meaning that on any input, the solution
they find differs from the optimal solution by a factor of at most α in every coordinate.
They observe that a number of algorithms, such as the Goemans–Williamson max-
cut algorithm [11], have this property. Balcan and Blum [4] observe that the previous
approach applies to another type of approximation algorithm: one that uses an opti-
mal decision for another linear optimization problem, for example, using a minimum
spanning tree (MST) for TSP. It is also not difficult to see that an FPTAS (fully poly-
nomial time approximation scheme) can be used to get a (1 + ε)-competitive online
algorithm. We further note that the Hannan–Kalai–Vempala approach extends to
approximation algorithms that perform a simple type of randomized rounding where
the randomness does not depend on the input.

In the appendix, we use an explicit example based on the greedy set-cover ap-
proximation algorithm to illustrate how Hannan’s approach fails on more general
approximation algorithms.

1.2. Informal statement of results. The main result of this paper is a general
conversion from any approximate linear optimization algorithm to an approximate

1This approach fails even on a two-decision problem, where the costs of the two decisions are
(0.5,0) during the first period and then alternate (1, 0), (0, 1), (1, 0), . . . , thereafter.
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online version in the full-information setting (section 3). The extension to the bandit
setting (section 4) uses well-understood techniques, modulo one new issue that arises
in the case of approximation algorithms. We summarize the problem, our approach,
and our results here.

We assume there is a known compact convex set W ⊆ R
n of legal weight vec-

tors (in many cases W = [0, 1]n), and a cost function c : S × W → [0, 1] that
is linear in its second argument, that is, c(s, av + bw) = ac(s, v) + bc(s, v) for all
s ∈ S, a, b ∈ R, and v, w, av + bw ∈ W . The generalization to [0, M ]-bounded
cost functions for M > 0 is straightforward.2 We assume that we have a black-box
α-approximation algorithm, which we abstract as an oracle A such that, for all w ∈ W ,
c(A(w), w) ≤ α mins∈S c(s, w). That is, we do not assume that our approximation
oracle can optimize in every direction. In the full-information setting, we assume our
only access to S is via the approximation algorithm; in the bandit setting, we need
an additional assumption, which we describe below.

In this paper, we focus on the nonadaptive setting, in which the adversary’s choices
of wt can be arbitrary but must be chosen in advance. In the adaptive setting, on
period t, the adversary may choose wt based on s1, w1, . . . , st−1, wt−1. In the bandit
case, extension of these results to the adaptive setting and the conversion from results
in expectation to high probability results remain open questions.

For α-approximation algorithms, it is natural to consider the following notion
of α-regret, in both the full-information and the bandit settings. It is the difference
between the algorithm’s average cost and α times the cost of the best s ∈ S, that is,
1
T

∑T
t=1 c(st, wt) − α mins∈S 1

T

∑T
t=1 c(s, wt).3

1.2.1. Full-information results. Our approach to the full-information prob-
lem is inspired by Zinkevich’s algorithm (for a somewhat different problem) [16], which
uses an exact projection oracle to create an online algorithm with low regret. An ex-
act projection oracle ΠJ is an algorithm which can produce argminx∈J ||x − y|| for
all y ∈ R

n, where J is the “feasible region” (in Zinkevich’s setting, it is a compact
convex subset of R

n). The main algorithm presented in Zinkevich’s paper, Greedy

Projection, determines its decision xt at time t as xt = ΠJ (xt−1 − ηwt−1), where
η is a parameter called the learning rate and wt−1 is the cost vector at time (t − 1).
One can view the approach in this paper as providing a method to simulate a type of
“approximate” projection oracle using an approximation algorithm. In section 3 we
show the following result.

Result 1.1. Given any α-approximation oracle to an offline linear optimization
problem and any T, T0 ≥ 1, w1, w2, . . . ∈ W, our (full-information) algorithm outputs
s1, s2, . . . ∈ S achieving

E

[
1
T

T0+T∑
t=T0+1

c(st, wt)

]
− α min

s∈S
1
T

T0+T∑
t=T0+1

c(s, wt) =
O(αn)√

T
.

The algorithm makes poly(n, T ) calls to the approximation oracle.
Note that the above bound on expected α-regret holds simultaneously for every

window of T consecutive periods (T must be known by the algorithm). We easily
inherit this useful adaptation property of Zinkevich’s algorithm. It is not clear to us
whether one could elegantly achieve this property using the previous approach.

2In [13], the set W = {w ∈ R
n | |w|1 ≤ 1} was assumed.

3If there is a hardness of approximation result with ratio α for the offline version of a problem,
one cannot expect to obtain better than α-regret efficiently in the online setting.
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1.2.2. Bandit results. Previous work in the bandit setting constructs an “ex-
ploration basis” to allow the algorithm to discover better decisions [2, 14, 7]. In par-
ticular, Awerbuch and Kleinberg [2] introduce a so-called barycentric spanner (BS)
as their exploration basis and show how to construct one from an optimization oracle
A : R

n → S. However, in the case where the oracle (exact or approximate) accepts
inputs only in, say, the positive orthant, it may be impossible to extract an explo-
ration basis. Hence, we assume that we are given a β-BS (β ≥ 1 is an approximation
factor for the BS) for the problem at hand as part of the input. Note that the β-BS
needs only to be computed once for a particular problem and then can be reused for
all future instances of that problem. Given a β-BS, the standard reduction from the
bandit setting to the full-information setting gives the following result.

Result 1.2. For any β-BS and any α-approximation oracle to an offline linear
optimization problem and any T, T0 ≥ 1, w1, w2, . . . ∈ W, the (bandit) algorithm in
Figure 4.1 outputs s1, s2, . . . ∈ S achieving

E

[
1
T

T0+T∑
t=T0+1

c(st, wt)

]
− α min

s∈S
1
T

T0+T∑
t=T0+1

c(s, wt) =
O(n(αβ)2/3)

3
√

T
.

The algorithm makes poly(n, T ) calls to the approximation oracle.
We also show, in section 4.1, that the assumption of a BS is necessary.
Result 1.3. There is no polynomial-time black-box reduction from an

α-approximation algorithm for a general linear optimization problem (without addi-
tional input) to a bandit algorithm guaranteeing low α-regret.

We note that the above regret is suboptimal in terms of the T dependence. Fur-
thermore, recent work [8, 3, 1] presents algorithms for online linear optimization that
achieve the optimal

√
T regret even in the bandit setting (these results either do not

explicitly consider the computational issues or assume access to an exact optimization
oracle). Achieving improved regret for bandit algorithms using approximation oracles
remains an open problem.

2. Formal definitions. We formalize the natural notion of an n-dimensional
linear optimization problem.

Definition 2.1. An n-dimensional linear optimization problem consists of a
convex compact set of feasible weight vectors W ⊂ R

n, a set of feasible decisions S,
and a cost function c : S ×W → [0, 1] that is linear in its second argument.

Due to the linearity of c, there must exist a mapping Φ : S → R
n such that

c(s, w) = Φ(s) · w for all s ∈ S, w ∈ W . In the case where the standard basis is
contained in W , we have

Φ(s) =
(
c(s, (1, 0, . . . , 0)), . . . , c(s, (0, . . . , 0, 1))

)
.

More generally, the mapping Φ can be computed directly from c by evaluating c
at any set of vectors whose span includes W . We will assume that we have access to
Φ and c interchangeably. Note that previous work represented the problem directly
as a geometric problem in R

n, but in our case we hope that making the mapping Φ
explicit clarifies the algorithm.

An α-approximation algorithm A (α ≥ 1) for such a problem takes as input any
vector w ∈ W and outputs A(w) ∈ S such that c(A(w), w) ≤ α mins∈S c(s, w). To
ensure that the min is well defined, we also assume Φ(S) = {Φ(s) | s ∈ S} is compact.

Define a projection oracle ΠJ : R
n → J , where ΠJ(x) = argminz∈J ‖x− z‖ is the

unique projection of x to the closest point z in the set J .
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Define W+ = {aw|a ≥ 0, w ∈ W} ⊆ R
n. Note that W+ is convex, which follows

from the convexity of W . We assume that we have an exact projection oracle ΠW+ .
This is generally straightforward to compute. In many cases, W = [0, 1]n, in which
case W+ is the positive orthant and ΠW+(w)[i] is simply max(w[i], 0), where w[i]
denotes the ith component of vector w. More generally, given a membership oracle
to W (and a point w0 ∈ W and appropriate bounds on the radii of contained and
containing balls), one can approximate the projection to within any desired accuracy
ε > 0 in time poly(n, log(1/ε)).

We also assume, for convenience, that A : W+ → S because we know that A(w)
can be chosen to be equal to A(aw) for any a > 0, and finding a such that aw ∈ W
is a one-dimensional problem. (Again, given a membership oracle to W one can find
v ∈ W which is within ε of being a scaled version of w using time poly(n, 1/ε).)
However, the restriction on the approximation algorithm’s domain is important be-
cause many natural approximation algorithms apply only to restricted domains such
as nonnegative weight vectors.

In an online linear optimization problem, there is a sequence w1, w2, . . . ∈ W
of weight vectors. Due to the linearity of the problem, an offline optimum can be
computed using an exact optimizer, that is, mins∈S 1

T

∑T
t=1 Φ(s) ·wt = mins∈S Φ(s) ·(

1
T

∑T
t=1 wt

)
gives the average cost of the best single decision if one had to use a

single decision during all time periods t = 1, 2, . . . , T . Similarly, an α-approximation
algorithm, when applied to 1

T

∑T
t=1 wt, gives a decision whose average cost is not more

than a factor α larger than that of the offline optimum.
Definition 2.2. In a full-information online linear optimization problem, there

is an unknown sequence of weight vectors w1, w2, . . . ∈ W (possibly chosen by an
adversary). On each period, the decision maker chooses a decision st ∈ S based on
s1, w1, s2, w2, . . . , st−1, wt−1. Then wt is revealed and the decision maker incurs cost
c(st, wt).

Finally, we define the bandit version of the problem, in which the algorithm finds
out only the cost of its decision, c(st, wt), but not wt itself.

Definition 2.3. In a bandit online linear optimization problem, there is an
unknown sequence of weight vectors w1, w2, . . . ∈ W (possibly chosen by an adver-
sary). On each period, the decision maker chooses a decision st ∈ S based only upon
s1, c(w1, s1), . . . , st−1, c(wt−1, st−1). Then only the cost c(st, wt) is revealed.

The performance of an online algorithm is measured by comparing its cost on a
sequence of weight vectors with the cost of the best static decision for that sequence.

Definition 2.4. The α-regret of an algorithm that selects decisions s1, . . . , sT ∈
S is defined to be

α-regret(s1, w1, . . . , sT , wT ) =
1
T

T∑
t=1

c(st, wt) − α min
s∈S

1
T

T∑
t=1

c(s, wt).

The term regret by itself refers to 1-regret.
For x, y ∈ R

n and W ⊆ R
n, we say x dominates y if x · w ≤ y · w for all w ∈ W

(equivalently, for all w ∈ W+).4

Define K ⊆ R
n to be the convex hull of Φ(S),

K =
{∑n+1

i=1
λiΦ(si)

∣∣∣∣ si ∈ S, λi ≥ 0,
∑

i
λi = 1

}
.

4Note that this definition differs from the standard definition in R
n where x dominates y if

x[i] ≥ y[i] for all i but resembles the game-theoretic notion of dominant strategies.
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Note that minx∈K x · w = mins∈S c(s, w) for all w ∈ W . The cost of any point in K
can be achieved by choosing a randomized combination of decisions s ∈ S. However,
we must find such a combination of decisions and compute projections in our setting,
where our only access to S is via an approximation oracle.

3. Full-information algorithm. We now present our algorithm for the full-
information setting. Define zt = xt − ηwt. Intuitively, one might like to play zt on
period t + 1 because zt has less cost than xt against wt. Unfortunately, zt may not
be feasible. In the Greedy Projection algorithm of Zinkevich, the decision played
on period t + 1 is the projection of zt into the feasible set. Our basic approach is to
implement an approximate projection algorithm and play the approximate projection
of zt on step (t + 1).

There are a number of technical challenges to this approach. First, we only
have access to an α-approximation oracle with which to implement this. Due to the
multiplicative nature of this approximation, we proceed by attempting to project into
the set αK, where αK = {αx|x ∈ K}. Second, even if we could do this perfectly
(which is not possible), this would still not result in a feasible decision. We then must
find a way to play a feasible decision.

We can intuitively view our algorithm as follows. The algorithm keeps track of a
parameter xt, which we can think of as the attempt to project zt−1 into αK (though
this is not done exactly, as xt is not even in αK). We show that if the algorithm
actually were allowed to play xt, then it would have low α-regret. Our algorithm uses
this xt to find a randomized feasible decision st. We show that the expected cost of
this random feasible decision st is no larger than that of the infeasible xt.

Our algorithm for the full-information setting is based on the approximate pro-
jection routine defined in Figure 3.3.

Algorithm 3.1. The algorithm is given a learning parameter η. On period 1, we
choose an arbitrary s1 (which could be selected by running the approximation oracle
on any input) and let x1 = Φ(s1). On period t, we play st and let

(xt+1, st+1) = Approx-Proj(xt − ηwt, st, xt).

It may be helpful to the reader to note that the sequence xt is deterministically
determined (if the approximation oracle is deterministic) by the sequence of weights
w1, . . . , wt−1, while st is necessarily randomized.

In section 3.1, we show that if we had a particular kind of approximate projection
algorithm, then the xt values produced by that algorithm would have (hypothetical)
low α-regret. In section 3.2, we show how to extend the domain of any approximation
algorithm, which allows us to construct such an approximate projection algorithm:
the Approx-Proj algorithm used in Algorithm 3.1. We also show that the cost of the
(infeasible) decision xt it produces can only be larger than the expected cost incurred
by the feasible decision st it also generates. This will allow us to prove our main
theorem in the full-information setting.

Theorem 3.2. Consider an n-dimensional online linear optimization problem
with feasible set S and mapping Φ : S → R

n. Let A be an α-approximation algorithm
and take R, W ≥ 0 such that ‖Φ(A(w))‖ ≤ R and ‖w‖ ≤ W for all w ∈ W.

For any fixed w1, w2, . . . , wT ∈ W and any T ≥ 1, with learning parameter η =
(α+1)R

W
√

T
, approximate projection tolerance parameter δ = (α+1)R2

T , and learning rate
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Fig. 3.1. An approximate projection oracle, for convex set J ⊆ R
n and δ = 0, returns a point

Π0
J (z) ∈ R

n that is closer to any point y ∈ J than z is, that is, for all y ∈ J ‖Π0
J (z)− y‖ ≤ ‖z − y‖.

parameter λ = (α+1)
4(α+2)2T , Algorithm 3.1 achieves expected α-regret at most

E

[
1
T

T∑
t=1

c(st, wt)

]
− α min

s∈S
1
T

T∑
t=1

c(s, wt) ≤ (α + 2)RW√
T

.

On each period, the algorithm makes at most 4(α + 2)2T calls to A and Φ.
We present the proof of Theorem 3.2 in section 3.3. To get Result 1.1 in the

introduction, we note that it is possible to get a priori bounds on W and R by a
simple change of basis so that RW = O(n). It is possible to do this from the set
W alone. In particular, one can compute a 2-barycentric spanner (BS) e1, . . . , en for
W [2] and perform a change of basis so that Φ(e1), . . . , Φ(en) is the standard basis
(as we describe in more detail in section 4). By the definition of a 2-BS, this implies
that W ⊆ [−2, 2]n, and hence W = 2

√
n is a satisfactory upper bound. Since we

have assumed that all costs are in [0, 1] and the standard basis is in W , this implies
that Φ(S) ⊆ [0, 1]n, and hence R =

√
n is also a valid upper bound. The guarantees

with respect to every window of T consecutive periods hold because our algorithm’s
guarantees hold starting at arbitrary (st, xt) such that E[Φ(st)] dominates xt (recall
that st is necessarily randomized).

3.1. Approximate projection. We first define the notion of approximate pro-
jection. Because we only have access to an α-approximate oracle, given z ∈ R

n, we
cannot find the closest point to z in K or even in αK = {αx|x ∈ K}.

Note that for a closed convex set J ⊆ R
n, if ΠJ (z) = x, then

(x − z) · x ≤ min
y∈J

(x − z) · y.

This is essentially the separating hyperplane theorem (where x−z is the normal vector
to the separating hyperplane). Also note that ΠJ(x) = x if x ∈ J .

Our approximate projection property, illustrated in Figure 3.1, relaxes the above
condition. Due to the computational issues associated with optimizing over K even
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with access to an exact optimization oracle (α = 1),5 our projections will be
parametrized by an additional δ. Define the set of δ-approximate projections to be,
for δ ≥ 0 and any z ∈ R

n,

Πδ
J(z) =

{
x ∈ R

n | (x − z) · x ≤ min
y∈J

(x − z) · y + δ
}
.

It is important to note that we have not required an approximate projection to be
in J . However, note that in the case where the projection is in J , and δ = 0, it
is exactly the projection, that is, Πδ

J(z) ∩ J = {ΠJ(z)}. While we refer to it as
an approximate projection, it is also clearly related to a separation oracle. From a
hyperplane separating z from J , one can take the closest point on that hyperplane to
z as an approximate projection. The difficulty is in finding a feasible such point.

We now bound the α-regret of the hypothetical algorithm which projects with
Πδ

αK . The proof is essentially a straightforward extension of Zinkevich’s proof [16].
This lemma shows that indeed this hypothetical algorithm has a graceful degradation
in quality.

Lemma 3.3. Let K ⊆ R
n be a convex set such that for all x ∈ K, ‖x‖ ≤ R. Let

w1, . . . , wT ∈ R
n be an arbitrary sequence. Then, for any initial point x1 ∈ K and

any sequence x1, x2, . . . , xT such that xt+1 ∈ Πδ
αK(xt − ηwt),

1
T

T∑
t=1

xt · wt − α min
x∈K

1
T

T∑
t=1

x · wt ≤ (α + 1)2R2

2ηT
+

η

2T

T∑
t=1

w2
t +

δ

η
.

Proof. Let x∗ = α argminx∈K

∑T
t=1 x · wt, so x∗ ∈ αK. We will bound our

performance with respect to x∗. Define the sequence x′
t by x′

1 = x1 and x′
t+1 =

xt − ηwt, so that xt ∈ Πδ
αK(x′

t). We first claim that ‖xt − x∗‖2 ≤ ‖x′
t − x∗‖2 + 2δ;

that is, our attempt at setting xt to be an approximate projection of xt onto αK does
not increase the distance to x∗ significantly:

(x′
t − x∗)2 =

(
(x′

t − xt) + (xt − x∗)
)2

= (x′
t − xt)2 + (xt − x∗)2 + 2(x′

t − xt) · (xt − x∗)

≥ 0 + (xt − x∗)2 − 2δ.

The last line follows from the definition of approximate projection and the fact that
x∗ ∈ αK.

Hence, for any t ≥ 1, because x′
t+1 = xt − ηwt we have

(xt+1 − x∗)2 ≤ (xt − ηwt − x∗)2 + 2δ

= (xt − x∗)2 + η2w2
t − 2ηwt · (xt − x∗) + 2δ

and thus

wt · (xt − x∗) ≤ (xt − x∗)2 − (xt+1 − x∗)2 + η2w2
t + 2δ

2η
.

Using a telescoping sum of the above and the fact that

(x1 − x∗)2 ≤ (‖x1‖ + ‖x∗‖)2 ≤ (α + 1)2R2,

5We are not assuming that K is defined by a finite number of hyperplanes—it can be quite round.
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we get

T∑
t=1

xt · wt − α min
x∈K

T∑
t=1

x · wt ≤ (α + 1)2R2

2η
+

η

2

T∑
t=1

w2
t + T

δ

η

as desired.
Note that if we set η = 1/

√
T , the sum of the first two terms of this bound

would be O(1/
√

T ). However, the last term, δ
η , would be O(δ

√
T ). Hence, we need

to achieve an approximation quality of δ = O(1/T ) in order for the α-regret of our
(infeasible) xt values to be O(1/

√
T ).

3.2. Constructing the algorithm. One simple method to (approximately)
find a projection of z into a convex set J , given an exact optimization oracle for J , is
as follows. Start with a point in x ∈ J . Then choose the search direction v = x − z,
and find a minimal point x′ ∈ J in the direction of v, that is, x′ ∈ J such that
x′ · v ≤ miny∈J y · v (or, equivalently, such that (x′ − z) · v ≤ miny∈J(y− z) · v). It can
be seen that if x is not minimal in the direction of v, then there must be a point on the
segment joining x′ and z that is closer to z than x was. Then repeat this procedure
starting at x′. In the case where z ∈ J , this will still be useful in representing z nearly
as a combination of points output by the minimization algorithm.6

Note that in our case if v ∈ W+, then our approximation oracle is able to find a
feasible s ∈ S such that

Φ(s) · v ≤ α min
s′∈S

Φ(s′) · v = min
x∈αK

x · v.

Loosely speaking, our oracle is able to perform minimization with respect to the set
J = αK (or better). This is essentially how our algorithm will use the approxima-
tion oracle. However, as mentioned before, many approximation algorithms can only
handle nonnegative weight vectors or weight vectors from some other limited domain.
Hence, we must extend the domain of the oracle when v /∈ W+.

Extending the domain. We would like to find a feasible s ∈ S that satisfies the
search condition Φ(s) · v ≤ α mins′∈S Φ(s′) · v for a general v ∈ R

n, but this is not
possible given only an α-approximation oracle that runs on only a subset of R

n.
Instead, we attempt to find a (potentially infeasible) x ∈ R

n which does satisfy this
search condition, and we also attempt to find an s ∈ S which dominates x, meaning
that for all w ∈ W , c(s, w) ≤ x · w. More precisely, we will construct the following
oracle.

Definition 3.4. An extended approximation oracle B : R
n → S × R

n is a
function such that, for all v ∈ R

n, if B(v) = (s, x), then x · v ≤ α mins′∈S Φ(s′) · v
and Φ(s) dominates x.

Figure 3.2 depicts an extended approximation oracle. The following lemma demon-
strates that one can construct an extended approximation oracle from an approxima-
tion oracle.

Lemma 3.5. Let A : W+ → S be an α-approximation oracle and suppose
‖Φ(s′)‖ ≤ R for all s′ ∈ S. Then the following is an extended approximation

6Note that representing a given feasible point as a convex combination of feasible points is
similar to randomized metarounding [5]. It would be interesting to extend their approach, based on
the ellipsoid algorithm, to our problem and potentially achieve a more efficient algorithm. Related
but simpler issues arise in [6].
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Fig. 3.2. An approximation algorithm run on vector w ∈ W always returns a point s ∈ S
such that the set αK is contained in the half-space tangent to Φ(s) whose normal direction is w.
An extended approximation algorithm, as illustrated here, takes any w ∈ R

n as input and returns
a point x ∈ R

n such that αK is contained in the half-space tangent to x with normal vector w. In
addition, it returns an s ∈ S such that Φ(s) dominates x.

oracle: If v ∈ W+, then B(v) = (A(v), Φ(A(v))); else B(v) is

(
A(ΠW+(v)), Φ(A(ΠW+ (v))) + R(α + 1)

ΠW+(v) − v

||ΠW+(v) − v||
)

.

Proof. For the case where v ∈ W+, by definition, B(v) = (A(v), Φ(A(v))) suffices.
Hence, assume v /∈ W+. Let w = ΠW+(v), s = A(w), and x = Φ(s)+ (α+1)R w−v

||w−v|| .
Then we must show that (a) x · v ≤ α mins′∈S Φ(s′) · v and (b) Φ(s) dominates x.

We have assumed that A is an α-approximation oracle with domain W+, and
therefore it can accept input w. By the definition of α-approximation, we have w ·
Φ(s) ≤ αw · Φ(s′) for all s′ ∈ S. By the bound R, we also have that −α‖v − w‖R ≤
α(v − w) · Φ(s′) for all s′ ∈ S. Adding these two gives, for all s′ ∈ S,

αv · Φ(s′) ≥ w · Φ(s) − α‖v − w‖R

= v · x + (w − v) · Φ(s) − (α + 1)R
(w − v)
‖w − v‖ · v − α‖v − w‖R

≥ v · x − ‖w − v‖R − (α + 1)R
(w − v)
‖w − v‖ · (v − w) − α‖v − w‖R

= v · x.

This is what we need for part (a) of the lemma. The second-to-last line follows from
the fact that (v−w) ·w = 0. To see this, note that since w is the projection of v onto
W+, we have (v − w) · (w′ − w) ≤ 0 for any w′ ∈ W+. Since 0 ∈ W+, this implies
that (v −w) · (−w) ≤ 0. Since 2w ∈ W+, this implies that (v −w) ·w ≤ 0, and hence
(v − w) · w = 0.

This also means that (v −w) · (w′ −w) = (v −w) ·w′ ≤ 0 for all w′ ∈ W+, which
directly implies (b), that is, (x − Φ(s)) · w′ ≥ 0 for all w′ ∈ W .

Note that the magnitude of the output x is at most ‖Φ(s)‖+(α+1)R ≤ (α+2)R;
this bound will be useful for bounding the runtime of our algorithm.
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Input: x, z ∈ R
n, s ∈ S, and an α-approximation algorithm A (and parameters δ > 0,

λ ∈ [0, 1]).
Output: (x′, s′) ∈ Πδ

αK × S
Define B to be the extended approximation oracle obtained from A using Lemma 3.5.
Approx-Proj(z, s, x)
1 Let (t, y) := B(x − z)
2 if x · (x − z) ≤ δ + y · (x − z)
3 then return (x, s)

4 else q =

{
s with probability 1 − λ

t with probability λ

5 return Approx-Proj(z, q, λy + (1 − λ)x)

Fig. 3.3. A recursive algorithm for computing approximate projections.

The approximate projection algorithm. Using this extended approximation ora-
cle, we can define our Approx-Proj algorithm, which we present in Figure 3.3. The
following lemma shows that the algorithm returns both a valid approximate projec-
tion (which could be infeasible) and a random feasible decision that dominates the
approximate projection (assuming that Φ of the algorithm’s input s dominated the
algorithm’s input x).

Lemma 3.6. Suppose Approx-Proj(z, s, x) returns (x′, s′). Then x′ ∈ Πδ
αK(z).

If s is a random variable such that E[Φ(s)] dominates x, then E[Φ(s′)] will domi-
nate x′.

It is straightforward to see that the x returned by Approx-Proj satisfies the
approximate projection condition. The subtlety is in obtaining a feasible solution
with the desired properties. It turns out that t returned by B in line 1 does not
suffice, as this t dominates only y, but not necessarily x. However, our randomized
scheme does suffice.

Proof of Lemma 3.6. The return condition of Approx-Proj states that x′ · (x′ −
z) ≤ δ + y · (x′ − z). Using the definition of an extended approximation oracle, we
then get

x′ · (x′ − z) ≤ δ + α min
s′∈S

Φ(s′) · (x′ − z)

≤ δ + min
y′∈αK

y′ · (x′ − z)

as desired.
The proof of the second property proceeds by induction on the number of recursive

calls made by Approx-Proj. The base case holds trivially. Now suppose the induc-
tive hypothesis holds (E[Φ(s)] dominates x). We will show that if (t, y) = B(x − z),
the resulting E[λΦ(t) + (1 − λ)Φ(s)] dominates λy + (1 − λ)x.

We observe that

x′ · w = (λy + (1 − λ)x) · w
= λy · w + (1 − λ)x · w
≥ λΦ(t) · w + (1 − λ)x · w
≥ λΦ(t) · w + (1 − λ)E[Φ(s)] · w
= E[λΦ(t) + (1 − λ)Φ(s)] · w
= E[Φ(s′)] · w.

Thus, if Approx-Proj terminates, the desired conditions will hold.



1100 S. M. KAKADE, A. T. KALAI, AND K. LIGETT

3.3. Analysis. Our next lemma allows us to bound the number of calls Algo-
rithm 3.1 makes to A and Φ on each period.

Lemma 3.7. Suppose that λ, δ > 0 and the magnitudes of all vectors output by
the extended approximation oracle are ≤ 1

2

√
δ/λ and ‖x‖ ≤ 1

2

√
δ/λ. Then Approx-

Proj(z, s, x) terminates after at most ‖x−z‖2

δλ iterations.
Proof. The analysis is reminiscent of that of the perceptron algorithm (see, e.g.,

Dunagan and Vempala [9]). Let H = 1
2

√
δ/λ. To bound the number of recursive

calls to Approx-Proj, it suffices to show that the nonnegative quantity ‖x − z‖2

decreases by at least an additive λδ on each call and that ‖x‖ remains below H on
successive calls. The latter condition holds because ‖x‖, ‖y‖ ≤ H , so ‖λy+(1−λ)x‖ ≤
λH + (1 − λ)H = H .

Notice that if the procedure does not terminate on a particular call, then

(x − y) · (x − z) > δ.

This means that the decrease in (x − z)2 in a single recursive call is

(x − z)2 − (λy + (1 − λ)x − z)2 = (x − z)2 − (λ(y − x) + (x − z))2

= 2λ(x − y) · (x − z) − λ2(y − x)2

> 2λδ − λ2(y − x)2.

Also, ‖y − x‖ ≤ 2H . Combining this with the previous observation gives

(x − z)2 − (λy + (1 − λ)x − z)2 > 2λδ − λ24H2 = λδ.

Hence the total number of iterations of Approx-Proj on each period is at most
‖x − z‖2/(λδ).

This lemma gives us a means of choosing λ. We are now ready to prove our main
theorem about full-information online optimization.

Proof of Theorem 3.2. Take η = (α+1)R

W
√

T
, δ = (α+1)R2

T , and λ = (α+1)
4(α+2)2T . Since

x1 = Φ(s1), by induction and by Lemma 3.6, we have that E[Φ(st)] dominates xt for
all t. Hence, it suffices to upper-bound

∑T
t=1 xt · wt. By Lemma 3.6, we have that

xt ∈ Πδ
αK(zt−1) on each period, so by Lemma 3.3 we get

E[α-regret] ≤ 1
T

(
(α + 1)2R2

2η
+ T

δ

η
+

η

2
TW 2

)
.

Applying our chosen values of η and δ, this gives an α-regret bound of

1
T

((α + 1)RW
√

T + RW
√

T ) =
(α + 2)RW√

T

as desired.
Now, as mentioned, the extended approximation oracle from Lemma 3.5 has the

property that it returns vectors of magnitude at most H = 1
2

√
δ/λ = (α + 2)R.

Furthermore, it is easy to see that all vectors xt have ‖xt‖ ≤ H , by induction on t.
Then by Lemma 3.7, the total number of iterations of Approx-Proj on period t is
at most (2H‖x − z‖/δ)2 ≤ (2(α + 2)RηW/δ)2 = 4(α + 2)2T .
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4. Bandit algorithm. We now describe how to extend Algorithm 3.1 to the
partial-information model, where the only feedback we receive is the cost we incur at
each period. Flaxman, Kalai, and McMahan [10] also used a gradient descent style
algorithm for online optimization in the bandit setting, but the details of their ap-
proach differ significantly from ours. The algorithm we describe here requires access
to an exploration basis e1, . . . , en ∈ S, which is simply a set of n decisions such that
Φ(e1), . . . , Φ(en) span R

n. (If no such decisions exist, one can reduce the problem
to a lower-dimensional problem.) Following previous approaches, we will (probabilis-
tically) try each of these decisions from time to time. As in the work of Dani and
Hayes [7], we will assume that Φ(ei) is the standard ith basis vector, that is, ei[i] = 1
and ei[j] = 0 for j �= i. This assumption makes the algorithm cleaner to present,
and is without loss of generality, because we can always use Φ(ei) as our basis for
representing R

n.
Definition 4.1. A set {x1, x2, . . . , xm} ⊆ S is a β-BS for S ⊂ R

n if, for every
x ∈ S, x can be written as x = β1x1 + · · · + βmxm for some β1, . . . , βm ∈ [−β, β].

Note that we need only construct a BS once for any problem, and then we can
reuse it for all future instances of the problem.

Awerbuch and Kleinberg [2] proved that every compact S has a 1-BS of size n, and,
moreover, they gave an algorithm for finding a size-n (1+ε)-BS using poly(n, log(1/ε))
calls to an exact minimization oracle M : R

n → S, where M(v) ∈ argmins∈S Φ(s) · v.
Unfortunately, as we show in section 4.1, one cannot find such a BS using a minimizer
(exact or approximate) whose domain is not all of R

n. Moreover, we show that one
cannot guarantee low regret for the bandit problem using just a black-box optimization
algorithm A : W+ → S.

Hence, we assume that we are given a β-BS for the problem at hand as part of
the input. We feel that this is a reasonable assumption. For example, note that it is
easy to find such a basis for TSP and set cover with β =poly(n): In the case of set
cover, one can take the n covers consisting of all sets but one.7 In the case of TSP,
we can start with any tour σ that visits all the edges at least once and consider σe

for each edge e which is the same as σ but traverses e an additional two times.
We present the algorithm for the bandit setting in Figure 4.1. We remark that our

approach is essentially the same as previous approaches and can be used as a generic
conversion from a black-box full-information online algorithm to a bandit algorithm.
Previous approaches also worked in this manner, but the analysis depended on the
specific bounds of the black-box algorithm in a way that, unfortunately, we cannot
simply reference.

Theorem 4.2. For α, β ≥ 1, integer T ≥ 0, and any w1, . . . , wT , given an
α-approximation oracle and a β-BS, the algorithm in Figure 4.1 with η = (α+1)R

D
√

T
,

δ = ηnT−1/3, and γ = (4αβ)2/3nT−1/3 achieves an expected α-regret bound in the
bandit setting of

E[α-regret] ≤ 7n(αβ)2/3T−1/3.

The conversion from full-information to bandit is similar to other conversions
[2, 14, 7]. Note that in the description of the algorithm, st is what is played at step
t. Also note that x̂t+1 may be viewed as an approximate projection of x̂t when it is

7If any of these is not a cover, that set must be mandatory in any cover and we can simplify the
problem. If this set of covers is not linearly independent, then we can reduce the dimensionality of
the problem and use the fact that if T is a (possibly linearly dependent) β-BS for S and R is a γ-BS
for T , then R is a (γβ|T |)-BS for S.
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Given δ, η, γ > 0 and an initial point ŝ1 as input, set x̂1 = Φ(ŝ1). Perform a change
of basis so that Φ(e1), . . . , Φ(en) is the standard basis.
for t = 1, 2, . . .:

With probability γ, � exploration step
Choose i ∈ {1, . . . , n} uniformly at random.
st := ei; xt := Φ(ei).
Play(st).
Observe 
t = c(st, wt).
ŵt := (n
t/γ)Φ(ei).
(x̂t+1, ŝt+1) := Approx-Proj(x̂t − ηŵt, ŝt, x̂t).

else, with probability 1 − γ, � exploitation step
st := ŝt; xt := x̂t.
Play(st).
Observe 
t = c(st, wt).
ŵt := 0.
(x̂t+1, ŝt+1) := (x̂t, ŝt).

Fig. 4.1. Algorithm for the bandit setting.

generated in exploitation steps as well as in exploration steps, since x̂t ∈ Πδ
αJ (x̂t−ηŵt)

for ŵt = 0. We first prove the following lemma.
Lemma 4.3. Let J ⊆ R

n be a convex set such that for all x̂ ∈ J, ‖x̂‖ ≤ R. Let
w1, . . . , wT ∈ R

n be an arbitrary sequence and let ŵ1, . . . , ŵT be a sequence of random
variables such that E[ŵt|x̂1, ŵ1, . . . , x̂t−1, ŵt−1, x̂t] = wt and E[ŵ2

t ] ≤ D2. Then, for
any initial point x̂1 ∈ J and any sequence x̂1, x̂2, . . . such that x̂t+1 ∈ Πδ

αJ (x̂t − ηŵt),

E

[
T∑

t=1

x̂t · wt

]
− α min

x∈J

T∑
t=1

x · wt ≤ (α + 1)2R2

2η
+ T

δ

η
+

η

2
D2T + 2αRD

√
T .

Proof. By Lemma 3.3, we have that
T∑

t=1

x̂t · ŵt − α min
x∈J

T∑
t=1

x · ŵt ≤ (α + 1)2R2

2η
+ T

δ

η
+

η

2

T∑
t=1

ŵ2
t .

Taking expectations of both sides gives
T∑

t=1

x̂t · wt − αE

[
min
x∈J

T∑
t=1

x · ŵt

]
≤ (α + 1)2R2

2η
+ T

δ

η
+

η

2
D2T.

It thus suffices to show that

(4.1) E

[
min
x∈J

T∑
t=1

x · ŵt

]
≥ min

x∈J

T∑
t=1

x · wt − 2RD
√

T .

Now, for any x ∈ J , ∣∣∣∣∣
T∑

t=1

x · (ŵt − wt)

∣∣∣∣∣ ≤ |x|
∣∣∣∣∣

T∑
t=1

ŵt − wt

∣∣∣∣∣
≤ R

∣∣∣∣∣
T∑

t=1

ŵt − wt

∣∣∣∣∣ .(4.2)
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This gives us a means of upper-bounding the difference between the minima. Namely,

E

[ ∣∣∣∣∣
T∑

t=1

ŵt − wt

∣∣∣∣∣
]2

≤ E

⎡
⎣( T∑

t=1

ŵt − wt

)2
⎤
⎦

=
T∑

t=1

E
[
(ŵt − wt)2

]
.(4.3)

The last equality follows from the fact that

E[(ŵt1 − wt1)(ŵt2 − wt2 )] = 0

for t1 < t2, which follows from the martingale-like assumption that E[ŵt2 − wt2 |
ŵt1 , wt1 ] = 0. Finally,

E[(ŵt − wt)2] ≤ E[ŵ2
t + 2‖ŵt‖‖wt‖ + w2

t ]

≤ D2 + 2D2 + D2

= 4D2.

In the above we have used the facts that E[|ŵt|]2 ≤ E[ŵ2
t ] ≤ D2 and ‖wt‖2 = E[ŵt]2 ≤

E[ŵ2
t ] ≤ D2. Hence, we have that the quantity in (4.3) is upper-bounded by 4TD2,

which, together with (4.2), establishes (4.1).
Proof of Theorem 4.2. We remark that the parameter γ in the statement of the

theorem may be larger than 1, but in this case the regret bound is greater than 1 and
hence holds for any algorithm.

Note that in the conversion algorithm the expected value of ŵt is wt, and this is
true conditioned on all previous information as well as x̂t. Since Lemma 3.6 implies
x̂t+1 ∈ Πδ

αJ (x̂t − ηŵt), we can apply Lemma 4.3 to the sequence x̂t. This gives

T∑
t=1

E[x̂t · wt] − α min
x∈J

T∑
t=1

x · wt ≤ (α + 1)2R2

2η
+ T

δ

η
+

η

2
D2T + 2αRD

√
T .

To apply the lemma, we use the bound D = nγ−1/2. This holds because 
t ∈ [0, 1],
so E[ŵ2

t ] ≤ γ(n
t/γ)2 + (1− γ)0 ≤ n2/γ. Also, we use the bound of R = β
√

n. Hence
we choose η = (α+1)R

D
√

T
and δ = ηnT−1/3, which simplifies the above equation to

T∑
t=1

E[x̂t · wt] − α min
x∈J

T∑
t=1

x · wt ≤ (α + 1)RD
√

T + nT 2/3 + 2αRD
√

T

≤ 4αRD
√

T + nT 2/3.

Substituting the values of D and R gives an upper bound of 4αβn3/2γ−1/2
√

T + T δ
η .

Next, as in the analysis of the full-information algorithm, E[Φ(ŝt)] dominates
E[x̂t] by Lemma 3.6. Thus,

T∑
t=1

E[c(ŝt, ·wt)] − α min
x∈J

T∑
t=1

x · wt ≤ 4αβn3/2γ−1/2
√

T + nT 2/3.
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Finally, we have that E[c(st, wt)] ≤ E[c(ŝt, wt)] + γ because with probability 1 − γ,
ŝt = st and in the remaining case the cost is in [0, 1]. Putting these together implies

T∑
t=1

E[c(st, ·wt)] − α min
x∈J

T∑
t=1

x · wt ≤ 4αβn3/2γ−1/2
√

T + nT 2/3 + γT.

Choosing γ = (4αβ)2/3nT−1/3 (note that if this quantity is larger than 1, then the
regret bound in the theorem is trivial) gives a bound of 2n(4αβT )2/3 + nT 2/3 ≤
7n(αβT )2/3 as in the theorem.

4.1. Difficulty of the black-box reduction. We now point out that it is
impossible to solve the bandit problem with general algorithms (approximation or
exact) without an exploration basis (that is, if our only access to S is through a
black-box optimization oracle). The counterexample is randomized. We will take

W = {w ∈ R
n | w[1] ∈ [0, 1] and ‖w‖2 ≤ 2(w[1])2}.

The set S will consist of two points: s = (1/2, 0, . . . , 0) as well as a second point s′ =
(1, 0, . . . , 0)−u, where ‖u‖ = 1 and u[1] = 0. The mapping Φ is the identity mapping.
The cost sequence will be constant wt = (1, 0, . . . , 0) + u. Hence c(s, wt) = 1/2 while
c(s′, wt) = 0. Now, suppose we, as algorithm designers, know that this is the setup
but u is chosen uniformly at random from the set of unit vectors with u[1] = 0.

Observation 4.4. For any bandit algorithm that makes k calls to black-box
optimization oracle A, and for any α ≥ 0, with probability 1 − ke−0.1n over u, the
algorithm has α-regret 1/2 on a sequence of arbitrary length.

Proof. No information is conveyed by the costs returned in the bandit setup of our
example—they are always 1/2 if s′ has not been discovered, while the minimal cost
is 0. Thus the algorithm must find some w ∈ W such that c(s, w) > c(s′, w) (whence
an exact optimization algorithm must return s′). Without loss of generality, we can
scale w so that w[1] = 1 and ‖w‖ ≤ 2. Hence, we can write w = (1, 0, 0, . . . , 0) + v,
where v[1] = 0 and ‖v‖ ≤ 1. In this case, w · s = 1/2, while w · s′ = 1 − u · v. For
u a random unit vector and any fixed ‖v‖ ≤ 1, it is known that Pr[u · v ≥ 1/2] is
exponentially small in n. A very loose bound can be seen directly, since for a ball of
dimension n, this probability is∫ 1

1/2
(
√

(1 − x2))n−2dx∫ 1

−1
(
√

(1 − x2))n−2dx
≤

∫ 1

1/2
(3/4)

n−2
2 dx∫ 1/

√
n

−1/
√

n
(1 − n−1)

n−2
2 dx

≤
√

ne

2

(
3
4

)n
2 −1

,

which is O(e−0.1n).

5. Conclusions and open problems. We present a reduction converting ap-
proximate offline linear optimization problems into approximate online sequential lin-
ear optimization problems that hold for any approximation algorithm, in both the
full-information setting and the bandit setting.

Our algorithm can be viewed as an analogue to Hannan’s algorithm for playing
repeated games against an unknown opponent. In our case, however, we cannot
compute best responses but only approximately best responses.

The problem of obtaining similar results for interesting classes of nonlinear opti-
mization problems remains open.
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Appendix. Example where “follow-the-leader” fails. First consider the set
S = {1, 2, . . . , n} and the cost sequence (1, 1, . . . , 1) (repeated T/n times), (1, 0, . . . , 0)
(repeated T/n times), (0, 1, 0, . . . , 0) (repeated T/n times),. . . , (0, . . . , 0, 1) (repeated
T/n times). Notice that a selection of decision, each period, which costs 1 is always
a valid (α = 2)-approximation to the leader on the previous examples. Moreover, its
cost is T while the cost of the best (in fact every) s ∈ S is 2T/n, hence giving large
α-regret. Unfortunately, adding perturbations of O(

√
T ) as in “follow-the-leader” will

not significantly improve matters. When T/n � √
T , a choice of decision which costs

1 each period is still an α-approximation for, say, α = 3.
Of course, one may be suspicious that no common approximation algorithms

would have such peculiar behavior. We now give a similar example based on the
standard greedy set cover approximation algorithm A (α = log m) applied to the
online set cover problem described earlier. The example has n/2 covers of size 2:
Si = S\Sn+1−i for i = 1, 2, . . . , n. Furthermore, suppose the sets are of increasing size
|Si| =

(
0.4+0.2 i−1

n−1

)
m and |Si ∪Sj | ≤ 0.9 m for all 1 ≤ i, j ≤ n, where i �= n+1− j.8

The sequence of costs (weight) vectors is divided into n/2 phases j = 0, 1, . . . , n/2−1,
each consisting of 2T/n identical cost vectors. In phase j = 0, all sets have cost 1.
For phase j = 1, . . . , n/2− 1 the following hold: the cost of the 2j − 1 sets S1, . . . , Sj

and Sn−j+1, . . . , Sn are all 1, while the costs of the remaining sets are all 0.
In this example, following the leader with greedy set cover will have an average

per-period cost of at least 0.1. In particular, during the first 10% of any phase j ≥ 1,
either greedy algorithm’s first choice will be Sn−j , in which case its second choice will
be Sj (because any other set covers at most 90% of the remaining items, and Sj ’s
cost so far is at most 10% more than that of any other set), or greedy’s first choice
will be one of Sn−j+1, . . . , Sn; in either case it pays at least 1 during that period.
Hence, “following-the-leader” pays at least 0.1+ 19

5 n in expectation on average, while
the cover Sn/2 ∪ Sn/2+1 has an average cost of only 4/n, which is far from matching
greedy’s α = log m approximation ratio (for n = θ(m)).

Also note that perturbations on the order of O(
√

T ) will not solve this problem.
It would be very interesting to adapt Hannan’s approach to work for approximation
algorithms, especially because it is more efficient than our approach. However, we
have not found a solution that works across problems.
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