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Abstract—We present a gradient-based method for rigid regis-
tration of a patient preoperative computed tomography (CT) to its
intraoperative situation with a few fluoroscopic X-ray images ob-
tained with a tracked C-arm. The method is noninvasive, anatomy-
based, requires simple user interaction, and includes validation. It
is generic and easily customizable for a variety of routine clinical
uses in orthopaedic surgery. Gradient-based registration consists
of three steps: 1) initial pose estimation; 2) coarse geometry-based
registration on bone contours, and; 3) fine gradient projection reg-
istration (GPR) on edge pixels. It optimizes speed, accuracy, and
robustness. Its novelty resides in using volume gradients to elimi-
nate outliers and foreign objects in the fluoroscopic X-ray images,
in speeding up computation, and in achieving higher accuracy. It
overcomes the drawbacks of intensity-based methods, which are
slow and have a limited convergence range, and of geometry-based
methods, which depend on the image segmentation quality. Our
simulated, in vitro, and cadaver experiments on a human pelvis
CT, dry vertebra, dry femur, fresh lamb hip, and human pelvis
under realistic conditions show a mean 0.5–1.7 mm (0.5–2.6 mm
maximum) target registration accuracy.

Index Terms—Fluoroscopic X-ray to CT registration, gradient
based, image registration, 2D/3D rigid registration.

I. INTRODUCTION

REGISTRATION is the task of finding a transformation
from the coordinate system of one data set to another

so that all features that appear in both data sets are aligned.
Registration is an essential step in most computer-aided surgery
(CAS) systems, since it is necessary to match information
from different data modalities obtained at different times. In
image-guided surgery, it is required to match the preoperative
images and plans to the intraoperative situation, and to deter-
mine the relative positions of surgical tools and anatomical
structures. Examples of deployed CAS systems include preop-
erative planning, intraoperative navigation and robotics systems
for orthopaedic surgery [1]–[4], for neurosurgery [5], [6], and
for radiosurgery [7], among many others. Practical, accurate,
and robust registration has emerged as one of the key technical
challenges of CAS.
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One of the most sought after methods is anatomy image-
based rigid registration between preoperative and intraopera-
tive data sets. The goal is to enable surgeons to use preopera-
tive plans and computed tomography (CT) and magnetic res-
onance imaging (MRI) data in the operating room for image-
guided navigation and robot positioning. The registration can
be performed with a few intraoperative fluoroscopic X-ray or
ultrasound images, which are ubiquitous, noninvasive, and easy
to acquire. Current CAS systems rely on implanted fiducials,
which require an additional surgical procedure, or on points ob-
tained by direct contact from the anatomy surface, which re-
quire additional exposure of the anatomy and can be time-con-
suming and error-prone. The alternative is to use the imaged
bone shapes, which are rigid, to perform the registration. This al-
lows for less invasive procedures, is faster and less human-error
prone, and does not require surgeon training.

Anatomy image-based rigid registration is technically much
harder than fiducial or contact-based registration because it
requires analyzing the intraoperative images. The images may
include foreign objects such as surgical tools and implants not
present in the preoperative data. Fluoroscopic X-ray images
have a small field of view, limited resolution, and orienta-
tion-dependent geometric and intensity distortions. Research
on anatomy image-based registration started in 1994 [8], [9]
and is very active [10]–[20]. However, with the exception of
the Cyberknife radiosurgery system [7], none of these methods
is in routine clinical use. The main obstacles are robustness,
accuracy, computation time, and lack of integration.

In this paper, we present a new gradient-based method for
rigid registration of a patient preoperative CT to its intraoper-
ative situation with a few fluoroscopic X-ray images acquired
by a tracked C-arm [21]. The method is noninvasive, requires
simple user interaction, and includes validation. It is generic and
easily customizable for a variety of routine orthopaedic proce-
dures. It consists of three steps: 1) initial pose estimation; 2)
coarse geometry-based registration using bone contours; and 3)
fine gradient projection registration (GPR) using edge pixels.

This hybrid method optimizes speed, accuracy, and robust-
ness. Its novelty resides in using the relationship between CT
and fluoroscopic X-ray image gradients instead of geometric or
intensity information. Volume gradients and their projections
help eliminate foreign objects present in fluoroscopic X-ray
images and achieve higher accuracy. Our method overcomes
the drawbacks of intensity-based methods, which are slow and
have a narrow convergence range, and those of geometry-based
methods, which depend on the contour segmentation quality of
the fluoroscopic X-ray and CT images.
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Fig. 1. Classification of rigid registration methods.

II. PREVIOUS WORK

For a comprehensive survey of medical image registration
methods, see [22]. We classify rigid registration algorithms
along a line, based on how much of the original data is used
to compute the transformation (Fig. 1). On one side are ge-
ometry-based algorithms, which use a few selected points or
features. On the other are intensity-based algorithms, which
use most of the intensity information in both data sets.

Geometry-based registration algorithms match selected geo-
metric features from each data set by finding the transformation
that minimizes the sum of distances between paired features.
Features can be implanted fiducials, anatomical landmarks,
or surface contour features. The algorithms can be classified
into four categories: 1)point/point: contact or image landmark
points on anatomy surface to CT landmark points (5–10 points
in each) [4]; 2)point/surface: contact “cloud of points” on
anatomy surface to CT surface (10–30 points versus–
surface points) [23]–[25]; 3)contour/surface: contours in flu-
oroscopic X-ray or ultrasound images to CT surface (–
points or 1–10 splines versus – surface points) [9], [11],
[13], [26]; 4) surface/surface: CT or skin surface data from
scanning laser to CT ( – points, – ridges/surfaces)
[27].

Geometry-based registration consists of four steps: 1) feature
extraction: choosing the features of interest in each data set;
2) feature pairing: establishing correspondences between fea-
tures of each data set; 3) dissimilarity formulation and outliers
removal: quantifying the dissimilarity between paired features,
e.g., the sum of pairwise distances; and 4) dissimilarity reduc-
tion: finding the transformation that optimally minimizes the
dissimilarity. Steps 2)–4) are repeated until convergence. Fea-
ture extraction requires segmenting the CT and fluoroscopic
X-ray images. Features are paired by finding for each feature
in one data set, the closest (distance-wise) feature on the other
data set [23], [24]. Removal of outliers can be either explicit
[24] or implicit by weighing the paired features [25]. Algorithms
for geometry-based point to CT registration include the iterative
closest point (ICP) algorithm [23], [24] and its variations [25],
[28]–[30]. X-ray contours to CT surface mesh algorithms have
been developed by Hamadehet al. [9], [11] and Guéziecet al.
[13], [26]. Fitzpatricket al. [31] show how to estimate the reg-
istration error of point-based rigid registration.

The key characteristic of geometry-based methods is that they
use a small fraction of the image data, usually fiducial centers
and anatomy surface points, whose location is assumed to be

known very accurately. Geometry-based registration works best
with a high quality segmentation, an efficient feature pairing
scheme, and a good outlier removal. For point/point registra-
tion, an initial position independent, closed-form solution that
minimizes the sum of distances is known [32]. In practice, ro-
bustness is achieved by first performing coarse registration with
landmarks followed by fine registration with surfaces. Com-
mercial systems rely on implanted fiducials and on “cloud of
points” to perform the registration. Geometry-based registra-
tion between fluoroscopic X-ray images and CT has not yet
reached the market, most likely because robustly segmenting
fluoroscopic X-ray images is technically challenging.

Intensity-based algorithms match the intensities of one image
data set with the intensity of the other by minimizing a measure
of difference between them, such as histogram difference, nor-
malized cross-correlation, or mutual information [33]–[35]. The
matching can be restricted to regions of interest (ROIs) in the
image, such as regions around bone surfaces in CT and fluoro-
scopic X-ray images. In this case, the matching is closer to ge-
ometry-based registration. Algorithms can be classified into two
categories: 1)ROIs/ROIs: ROIs in both data sets, usually in the
vicinity of the anatomy surface ( - pixels/voxels) for each
data set [10], [12], [14], [36], [16]–[18], and 2)image/image:
the entire CT or X-ray image is used ( - for CT data sets,
2–10 images, each about pixels for X-ray images) [8].

Intensity-based registration consists of three steps: 1) gen-
eration of digitally reconstructed radiographs (DRRs) for each
camera pose; 2) measurement of the pose difference by com-
paring the DRRs with the real fluoroscopic X-ray images; and 3)
computation of a pose that reduces the difference. The first step
requires precomputation and fast DRR generation [15], [36].
The second step requires computing a similarity measure which
is not guaranteed to lead to an optimal solution [37]. Algorithms
for intensity-based registration between X-rays and CT started
with Lemieuxet al. [8], which was followed by many others
[10], [12], [14], [16], [17], [36], [37]. The Cyberknife radio-
surgery system [7] is the only commercial system in routine
clinical use that uses this registration method.

The key characteristic of intensity-based registration is that
it does not require segmentation. The rationale is that using as
much information as available and “averaging it out” reduces
the influence of outliers and is, thus, more robust. However, this
approach is computationally expensive since it requires gener-
ating high-quality DRRs and searching a six-dimensional (6-D)
space with local minima which depend on the similarity mea-
sure employed. It requires an initial pose guess close to the final
pose and the definition of ROIs.

Very recent work, conducted independently to ours, describes
gradient-based registration between X-rays and CT or MR im-
ages [20], [38]. The idea is to compute projections of the vol-
umetric data gradients, compare them with X-ray image gradi-
ents, and adjust the volumetric data set pose accordingly. The
gradients need not be computed on all rays, but rather on se-
lected rays in the vicinity of the anatomy contours, as proposed
in [39]. While the idea of using gradients to establish the cor-
respondence is similar to ours, the algorithm described in [20]
relies on the pairing between rays emanating from the camera
focal point and passing through image pixels and points on the
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Fig. 2. (a) Registration chain between the actual bone and its preoperative CT and (b) 2-D/3-D image registration geometry between X-ray and CT.

bone surface. This pairing is very sensitive to discontinuities on
both data sets and can produce outliers, which degrade the ac-
curacy of the computed transformation. The experimental re-
sults reported in [20] assume distortion-less X-ray images, ini-
tial pose guesses near the final pose, and do not account for
tracking errors, as our experiments do.

III. GOALS AND SPECIFICATIONS

Our goal is to develop a practical anatomical image-based
rigid registration protocol and algorithm for preoperative CT
to intraoperative fluoroscopic X-ray registration. The method
should be generic and easily customizable to a variety of rigid
anatomical structures (pelvis, vertebra, femur, tibia) and condi-
tions (healthy, fractured, with tumors). Following a careful anal-
ysis of the most common orthopaedic procedures, we compiled
the following specifications.

The system requirements are: 1) accuracy: a target registra-
tion error of 1–1.5 mm on average (2- to 3-mm worst case) mea-
sured on the bone surface; 2) robustness: the registration suc-
ceeds on the first try at least 95% of the time with an error of
at most 2 mm; 3) speed: the registration process takes at most 1
min; 4) user interaction: simple and minimal preoperative and
intraoperative user interaction; and 5) validation: both qualita-
tive and quantitative after the registration.

The data characteristics are: 1) a CT data set with 0.5- to
1.5-mm-thick slices 1–3 mm apart, 12-bit gray-scale, and pixel
size of 0.5 mm or less; 2) two to five fluoroscopic X-ray
images 800 600 pixels, 8-bit gray-scale and pixel size of
0.5 mm or less, possibly including anatomy and surgical
objects not present in the CT; and 3) C-arm position and orien-
tation are computed using an optically tracked target which is
rigidly attached to the C-arm image intensifier. Target position
is known to an accuracy of 0.3–0.5 mm at a distance of 1–2 m
(the current performance of commercial optical trackers).

The system consists of: 1) a PC with a monitor; 2) a video
frame grabber; 3) a position sensor for the C-arm (e.g., an op-
tical tracker); and 4) a calibration and distortion correction grid
mounted on the C-arm.

IV. PROBLEM DEFINITION

The problem consists of finding the rigid transformation
that relates the preoperative CT bone model to the

intraoperative bone coordinate frame. This transformation can
be obtained with a location tracker and a fluoroscopic X-ray
imaging system by constructing the transformations chain
shown in Fig. 2(a). The C-arm is modeled as a pinhole camera,
with the camera focal point at the X-ray source and the image
plane at the image intensifier. Since the imaging characteristics
of the C-arm are orientation dependent, this calibration is
computed anew for every orientation [40]. Fig. 2(b) illustrates
the registration geometry.

The transformation chain consists of five transformations

where indicates the C-arm viewpoint. and
are given directly by the tracker. is the

orientation-dependent calibration transformation, which is
computed as described in [40]. are the desired
transformations relating the camera poses with the bone model
as shown in Fig. 2(b). is the initial bone pose esti-
mate, which is successively refined with the two-dimensional
(2-D)/three-dimensional (3-D) rigid registration algorithm
described in Section V until convergence.

V. REGISTRATION PROTOCOL AND ALGORITHM

The registration protocol is as follows. Preoperatively, we ob-
tain the CT data and automatically compute off-line from it three
data structures: a bone surface mesh, a bounding sphere octree,
and a volume gradient vector field. Intraoperatively, before the
surgery starts, the tracking system is set up and the calibration
grid is mounted on the C-arm. Then, the patient is prepared,
and 2–5 fluoroscopic X-ray images from various orientations
are taken. The fluoroscopic X-ray images are corrected for dis-
tortion and the camera parameters are computed for each pose
[40]. The transformation is then computed with the al-
gorithm described below. For validation, the algorithm shows
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a projection of the volume gradients projected onto the fluoro-
scopic X-ray images. When there is close correspondence, the
CT data set pose is very close to the actual patient pose.

The algorithm consists of three steps: 1) initial pose estima-
tion; 2) coarse geometry-based registration on the bone con-
tours; and 3). fine GPR on edge pixels. Each step has a fun-
nelling effect: it brings the data sets closer, has a narrower con-
vergence range, uses more information, and is more accurate
than its predecessor. The first two steps, which we describe first,
are based on previous work.

VI. V OLUME GRADIENT PROJECTIONS

The initial pose can be obtained in several ways, depending
on the type of surgery and data available: 1) from the clinical
setup, which usually indicates the position of the patient on the
operating table (e.g., supine, on the side) and the C-arm imaging
views (e.g., anterior-posterior, lateral); 2) intraoperatively, by
having the surgeon touch implanted fiducials or by acquiring
landmark points on the anatomy surface with a tracked pointer;
3) by placing skin markers prior to the CT scan and having the
surgeon touch them with a tracked pointer intraoperatively; and
4) intraoperatively by having the user identify a few matching
landmarks on X-ray images, estimating their actual location as
the intersection of rays, and performing weighted point-based
registration as described in [25]. Options 1, 3, and 4 are appro-
priate for percutaneous procedures. Regardless of the method
employed, the initial pose estimate is usually within 10–20 mm
and 5 –15 of the final pose.

Coarse registration further reduces the distance between the
bone surface mesh and sampled points on the fluoroscopic
X-ray bone contours with the ICP method [23], [24]. It yields
the best transformation that can be obtained from the segmented
images, which provide an estimate of the real contour location
and have occlusions and may contain foreign objects. GPR
further reduces the difference by incorporating contour pixel
and volume gradient data. It eliminates foreign objects which
appear in the X-ray images and not in the CT data. It is more
efficient than intensity-based registration with predefined ROIs,
although it has a narrow convergence range.

Coarse geometry-based registration computes a transforma-
tion that positions the bone surface mesh such that the rays em-
anating from the camera focal point passing through the bone
contours on the fluoroscopic X-ray images are tangent to it. It
optimizes the distances between the rays and apparent bone sur-
face mesh contour. The bone contour is extracted from the fluo-
roscopic X-ray images using a livewire segmentation algorithm
[41]. Then, 100–500 contour points are sampled and matched to
the corresponding bone surface mesh points with the 2-D/3-D
ICP registration method [13]. The basic operation is to find for
each ray the closest point on the bone apparent contour.

To speed up the search for the nearest point on the ap-
parent contour, we construct a hierarchical structure, called the
bounding sphere octree, in which we place the bone surface
mesh edges (Fig. 3). Each edge holds the normal information
of its coincident faces. The tree is recursively constructed as
follows: initially, the entire bone surface mesh is enclosed in
the smallest bounding sphere [42], [43]. The sphere’s bounding

Fig. 3. Successive smallest bounding sphere approximations of a proximal
femur surface mesh.

Fig. 4. The integral gradient projection property.

box is decomposed into eight cells and the edges are placed
in the containing cells. Mesh edges which belong to several
cells are split into segments, with each segment placed in its
corresponding cell. The minimal bounding sphere for the edges
in each cell is computed and is recursively subdivided until the
sphere size is below a predefined threshold. The closest point
to a ray is found by traversing the tree and using a priority
queue according to the ray sphere distance, considering only
the edges which are part of the apparent contour.

We now present the gradient projection property, which is the
basis of the GPR step. We define the following entities:

region of space containing the imaged
anatomy;
CT image of the anatomy in region;
X-ray image of the anatomy in region;
point in region ;
CT density value of point ;
X-ray intensity value of the image point cor-
responding to ;
3-D gradient field of ;
2-D gradient field of .

We model the imaging process as follows (Fig. 4). The pin-
hole camera is defined by its focal length positioned at focal
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point and oriented in viewing direction. The image plane
of camera is , where is the image
principle point and and are the horizontal and vertical di-
rections of the image plane ( ). We denote by the
projection of a point on the image plane . The ray

emanates from the camera focal pointand passes through
point . A point on this ray is given by the line equation

where and . The
distance between the pointand the camera focal point is

.
Gradient Projection Theorem:The image gradient of a point
in the image plane is linearly proportional to the integral of

the weighted volume gradients of points along the ray em-
anating from the camera focal point and passing through the
point

(1)

Proof: Following the physical model of X-ray propaga-
tion presented in [44], the ratio between the number of photons
that enter and exit the imaged object for a given ray is

where and are number of exiting and entering pho-
tons, is the material attenuation coefficient, andis an
element of length along the ray.

In our context, the number of exiting photons logarithmically
corresponds to the pixel intensity value of an image point. The
number of photons entering the imaged object corresponds to
the initial intensity of the ray, which is constant and equal for
all rays. The attenuation coefficient per element of length along
the ray corresponds to the intensity value of the CT voxels along
the ray, , where is a point on the ray. Substituting into the
above equation, we obtain

(2)

Let be the distance between the camera focal
point and a point along the ray.can be written as

differentiating, we get

Substituting into (2) and omitting the constant we get

Assuming a standard logarithmic sensor response, the above
equation becomes

where is the pixel intensity value of image point. For
every point along the projection ray, .
Thus

The image gradient is defined as the vector of partial image
derivatives in the horizontal and vertical directions

The partial derivative of the X-ray image in directionis de-
fined as

Substituting, we obtain

Similarly, the partial derivative of the X-ray image in direc-
tion is

Combining the two expressions we obtain

The X-ray image gradient is equal to the integral over the
weighted projections of the volume gradient onto the image
plane, where the weight is the relative distance of the 3-D point
from the focal point. Note that the weight increases as the 3-D
point is further away from the focal point because variations
in the 2-D image are a result of larger variations in the 3-D
volume.

VII. FINE GRADIENT PROJECTIONREGISTRATION(GPR)

We perform fine registration based on the gradient projec-
tion property. This step is based on the following observation:
when the CT is aligned with the anatomy in the world, the rays
emanating from the camera focal point that pass through con-
tour pixels in the fluoroscopic X-ray images are tangent to the
bone surface, as illustrated in Fig. 2(b). In this case, these rays
pass through local magnitude maxima of the 3-D gradient vector
field, since they are tangent to the surface. The desired transfor-
mation is, thus, the one that maximizes the sum of 3-D gradient
magnitudes which are incident on these rays.

Formally, let be a 6-D pose transformation matrix,and
the horizontal and vertical directions of the image plane

(Fig. 4). Let be a point on a ray emanating from the
camera focal point and passing through an edge pixel, in the
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Fig. 5. Experimental setup:in vitro (left) and cadaver study (right). The insert on the upper right corner shows the implanted aluminum sphere.

fluoroscopic X-ray image. The expected fluoroscopic X-ray
gradient, , at edge pixel for a given pose is,
according to (1)

(3)

(we omit and to speed up the computation since their
influence on the optimization is minor).

The goal is to find the transformation that maximizes the
sum of gradient projections over all image edges, that is

(4)

The fine GPR step is as follows. Preoperatively, we compute
the CT volume gradient by convolving it with a Gaussian deriva-
tive kernel and up-sample it to a 0.5 mmresolution to obtain
a fast, high-quality nearest neighbor ray sampling. Intraoper-
atively, we extract edge pixels from each fluoroscopic X-ray
image with the Canny edge detector [45] and construct the set of
rays emanating from the camera focal point and passing through
the pixels. We then apply the Downhill Simplex method [46] on
the function defined in (4). The value of is computed
by sampling each ray in 1 millimeter intervals.

To achieve high accuracy, it is essential to filter out outlier
edge pixels from the fluoroscopic X-ray images. Outlier edges
are edges from foreign objects or from other anatomical struc-
tures. Outlier edges that are far from the anatomy of interest
will be automatically filtered out: the gradient projection value
of their rays will be small because there is no corresponding ob-
ject in the CT. Outliers that are close to the anatomy of interest
are eliminated by comparing the direction of the gradient pro-
jection and the actual gradient. When the directions diverge, the
magnitude of the gradient projection is set to zero.

GPR combines the advantages of both geometry and inten-
sity-based registration while overcoming their deficiencies.
Like the geometry-based approach, it uses only edge pixels
(from both the inner and outer bone contours). These pixels
are only a small fraction of all pixels, so the computation
time is significantly reduced. Unlike it, it does not rely on

segmentation. Like the intensity-based approach, it selectively
uses all the CT information, without relying on segmentation
or pairing between fluoroscopic X-ray pixels and CT voxels.
Unlike it, it automatically defines focused ROIs, which speeds
up the computation.

VIII. E XPERIMENTAL RESULTS

We have implemented the gradient based algorithm and have
validated it with the proposed protocol on three types of sit-
uations: 1) simulation experiments with clinical CT data and
simulated fluoroscopic X-rays; 2)in vitro experiments with dry
bones; and 3) two cadaver experiments. The simulation experi-
ments establish a lower bound on the error for ideal fluoroscopic
X-ray imaging and tracking conditions and show how the algo-
rithm copes with soft tissue and partial occlusions. Thein vitro
experiments establish a lower bound on the error for real CT
and fluoroscopic X-ray images for ideal conditions. The cadaver
experiments emulate the surgical situation and establish the ex-
pected error for intraoperative navigation with CT images. To
demonstrate the generality of our method, we applied it to four
different structures: human femur, spine, pelvis, and lamb hip.

We used a CT scanner, a 9 in BV29 C-arm (Phillips, The
Netherlands), a Polaris optical tracking camera (NDI, Calgary,
AB, Canada), a FluoroTrax C-arm calibration ring and active
optical trackers (Traxtal, Toronto, ON, Canada), and a Matrox
Meteor II digital frame grabber. Processing was on a 2.4-GHz,
1-GB RAM PC running Windows XP. Fig. 5 shows the experi-
mental setup.

A. Registration Error Measurement and Validation

To quantify the registration error, we use the target regis-
tration error (TRE) as defined in [31]. The target registration
error is defined as the distance between the actual and the com-
puted position of selected target features, which can be land-
mark points or the bone surface itself. The difficulty in esti-
mating the TRE lies in determining the actual position of the tar-
gets, which itself is prone to measurement errors. The most ac-
curate but expensive and cumbersome method is to use a custom
mechanical device which allows controlled precise positioning
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of the anatomy. The next best option is to use implanted fidu-
cials (spheres) and perform point-to-point registration between
their centers on the CT images and their actual centers as mea-
sured by direct contact with a tracked pointer. This establishes a
ground-truth transformation to which the computed transforma-
tion can then be compared. We opted, as many others, for this
option in our experiments.

The fiducials TRE ( ) is defined as the distance between
the actual and computed position of the fiducials [31]

where is a fiducial point in space, are its coordinates in
the CT image coordinate frame, are its coordinates
as measured by the tracking system, and is the com-
puted transformation. The accuracy of the measurement
depends on the accuracies of the tracking device, of the fidu-
cial center localization on the CT, and on the computed trans-
formation. Its advantages are that it can be computed with one
or more fiducials with no restrictions on their relative positions
and that it does not require the computation of a ground-truth
transformation. Its disadvantages are that it requires fiducials,
that it depends on very few points and their spatial distribution,
and that it is only an indirect estimate of the error that the sur-
geon will observe when using the CT images for intraoperative
navigation.

We propose an alternative measure, the surface TRE ( ),
which we define as the distance between the actual and the com-
puted position of points on the bone surface identified on the CT
image

where is the ground-truth (gold) rigid transformation com-
puted by fiducial contact-based registration.

Although the is relative to the ground-truth reg-
istration, it does not require additional implanted fiducials,
including instead many points uniformly distributed over
the entire anatomy surface which do not require individual
actual measurement. We quantify the expected error of the
ground-truth registration with the method described in Fitz-
patricket al.[31] for all points on the bone surface. Although in
the worst case this error should be added to the results,
the error will be smaller in most cases since it also depends on
the same optical tracker inaccuracies.

The includes all the errors in the registration chain,
thus providing a faithful estimate of tool positioning errors
during intraoperative navigation based on CT images. In our
experiments, the ground-truth bone position for thein vitro and
cadaver experiments are obtained from implanted fiducials by
contact-based registration. The ground-truth transformation for
the simulation experiments is known in advance. Note that the

can also be used to quantify how far the initial guess is
from the final one by substituting the initial guess transforma-
tion instead of the computed transformation .

For validation, we show the bone model position with respect
to the actual bone position by overlaying the gradient projec-
tions magnitude directly onto the fluoroscopic X-ray images
[Fig. 6(b) and (c)]. This shows how far the bone model is from

where it should be. The overlaid edges are computed as follows.
For each pixel in the fluoroscopic X-ray image, we create a ray
starting at the camera focal point and passing through the pixel.
For each such ray, we compute its gradient projection using the
CT volume gradient, which is the expected 2-D gradient di-
rection and magnitude for the pixel. Nonmaxima suppression
and thresholding on these pixels leave the expected edge pixels
which are overlaid on the original fluoroscopic X-ray image.
Note that this approach yields more accurate results than gen-
erating DRRs from the CT at the computed position and then
extracting bone contours from them, since edges in the DRR
are usually more blurred than actual fluoroscopic images [47].

B. Experiments

We performed a simulation experiment on a real clinical
pelvis CT. We first generated DRRs at known poses and input
these as fluoroscopic X-ray images, together with an initial
guess transformation with a realistic of 9.5 mm, to the
algorithm. We then computed the final error as described
above. The first entry in Tables I and II shows the results
averaged over ten runs. The mean measured error is 0.5 mm,
about the size of X-ray image pixel.

Since the reported for all other cases depends on the
accuracy of the ground-truth registration, we performed fidu-
cial point-based registration and applied the method described
in Fitzpatricket al. [31] to compute the expected error over the
entire imaged anatomy. We obtained an expected average accu-
racy of 0.3-0.5 mm (0.4-mm to 0.7-mm maximum) for all the
points on the bone surface.

We performedin vitro experiments on a single vertebra of
a dry spine and on a dry proximal femur. First, we implanted
seven 6-mm aluminum spheres (Fig. 5 top right insert) and CT
scanned them at 0.6-mm slice interval. We extracted from each
data set the sphere centers at a resolution of 0.1 mm. In the op-
erating room, we acquired two sets of three fluoroscopic X-ray
images at various C-arm orientations, one with, and one without
anatomy for optimal camera calibration. The fluoroscopic X-ray
images were 800 600 pixels, 8-bit gray-scale with pixel size of
0.45 mm . We performed C-arm calibration to mean accuracy of
0.3 mm (0.6-mm maximum), as described in our previous work
[40]. We performed fiducial contact-based registration on the
spheres and established the ground-truth registration. We then
performed image-based registration with the gradient based al-
gorithm and compared the resulting transformations.

The second and third entries in Tables I and II show the re-
sults. The 20-s to 50-s computation time for the ideal case in-
creased to 60–270 s for the worst case when foreign objects
and surrounding anatomy appeared in the fluoroscopic X-ray
images. However, the accuracy error is still acceptable. We ob-
served a small decrease in error when using three fluoroscopic
X-ray images instead of two, and no further significant decrease
beyond three. We observed little or no influence when foreign
objects were present in the fluoroscopic X-ray images.

We performed cadaver experiments on a fresh lamb hip and
a human pelvis following the same protocol as in thein vitro
experiment, except that we implanted four spheres instead of
seven. The last entries in Tables I and II show the results. For the
lamb hip, the decrease in accuracy as compared to thein vitro
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Fig. 6. Registration experiments: real pelvis with simulated fluoroscopic X-ray images (DRRs),in vitro dry vertebra and dry femur with surgical instruments,
and cadaver lamb hip. The first column shows the CT model. The second and third column show one fluoroscopic X-ray image with contours at (b) initial and(c)
final pose superimposed on them (white lines).
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TABLE I
SUMMARY OF EXPERIMENTAL RESULTS. EACH SCENARIO (IDEAL, REALISTIC,

AND BAD) IS DEFINED BY THE CT SLICE SPACING�h (MM) AND THE

PRESENCE OFFOREIGN OBJECTS IN THEFLUOROSCOPICX-RAY IMAGES

(NONE, SOME). EACH ENTRY SHOWS THEMEAN (MAXIMUM ) SURFACETRE IN

MILLIMETERS. COMPUTATION TIMES ARE 20–370 s

TABLE II
DETAILED EXPERIMENTAL RESULTS FOR THERREALISTIC CASES(CT SLICE

SPACING OF2.4 MM, SOME FOREIGNOBJECTS IN THEFLUOROSCOPICX-RAY

IMAGES), WITH THE NUMBER OF IMAGES AS SHOWN IN TABLE I

For each data set, three rows of results are shown, one after the initial guess registration step
(first row), one after the coarse geometry-based registration step (second row) following it,
and one after the fine gradient-projection registration step following it (third row). Each
row of results shows the average over ten runs error at the end of the step, the
individual position ( ) and orientation parameters ( ) and the
running time in seconds. The real pelvis, dry femur, and lamb hip have a success rate of
100% and the dry vertebra and human pelvis have a success rate of 70%. Note that a small
angular deviation from the correct transformation can yield a large , depending on
the location of the origin. The origins of the dynamic reference frames are at a distance of
80–150 mm from the surface of the anatomy.

case is most likely due to a less accurate ground-truth registra-
tion and the fact that the lamb femur has fewer salient features
than the other anatomical structures. For the human pelvis, the
decrease in accuracy is due to the larger size of the pelvic bone
as compared to the other structures.

To better understand and quantify the various aspects of the
proposed method, we conducted an extensive series of experi-
ments on the dry femur data set. To determine the influence of

the initial pose guess on the coarse and fine registration steps,
we applied the gradient based algorithm on many initial pose
guesses between 1 and 85 mm from the ground-truth reg-
istration. For each 1-mm interval, we randomly generated 50
initial positions and performed the registration. To isolate regis-
tration error from the ground-truth error, we also computed the

for 5–7 representative implanted fiducials. Fig. 7 sum-
marizes the results of the 4250 runs. We conclude that the mean
registration accuracy is nearly independent of the initial guess,
but that the percentage of failures (registrations with

mm) increases as the initial guess is further away. A mean
failure rate of 5% occurs at 72-mm (16-mm maximum).

To better understand the characteristics of the fine gra-
dient-based projection registration search space, we recorded
the value of the optimization function as the search
converges toward the final transformation. Fig. 8 shows the
results for the human pelvis cadaver study (the other cases
are very similar). The plots show a unique minimum near the
ground-truth value, an appropriate convergence range, and rela-
tively smooth, monotonically decreasing values. This validates
our choice of optimization function and search method.

IX. CONCLUSION

We have presented the GPR algorithm, a new method for rigid
registration of a patient preoperative CT to its intraoperative
situation with a few fluoroscopic X-ray images obtained with
a tracked C-arm. The three-step hybrid method progressively
brings the data sets closer with landmark point-based registra-
tion, coarse geometry-based registration on the bone contours,
and fine GPR on edge pixels. Each step uses more informa-
tion than its predecessor, has a narrower convergence range, is
slower than its predecessor, but adds accuracy. The last step,
GPR, which exploits the volume gradient projection property
achieves good accuracy even in the presence of other anatom-
ical structures and foreign objects, such as implants and surgical
tools in the fluoroscopic X-ray images. It does not rely on the ac-
curacy of segmentation, as do geometry-based approaches, and
is more efficient than intensity-based registration, although it
has a narrow convergence range.

We conclude from our experimental results that the desired
goal, e.g., 1- to 1.5-mm mean target registration error (2- to
3-mm maximum), obtained within 60 s 95% of the time with
simple and minimal user interaction, including validation, with
standard imaging and tracking equipment in clinical conditions
is within reach. We achieved on the cadaver studies, for the
lamb hip 1.4 mm (2.5-mm maximum) in 60–120 s 100% of the
time and for the human pelvis 1.7 mm (2.6-mm maximum) in
200–270 s 70% of the time with some user interaction (CT pro-
cessing, initial pose estimation and livewire bone contour seg-
mentation on fluoroscopic X-ray images). For validation, we
show how far the bone model is from where it should be by
overlaying the bone edge contours directly onto the fluoroscopic
X-ray images.

We plan to further reduce the GPR algorithm computation
time with space leaping techniques adapted from volume ren-
dering. We also plan to improve the robustness of the GPR al-
gorithm by implementing genetic or simulated annealing tech-
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Fig. 7. Detailed results ofin vitro dry femur experiments. The horizontal axis indicates the initial surface TRE from the ground-truth transformation. The vertical
axes indicate (a) the final fiducial TRE; (b) the final surface TRE; (c) the cumulative percentage TRE failures (sTRE > 2mm), and; (d) the average running time.

Fig. 8. Optimization function values (vertical axis) for individual pose parameters as a function of their deviation from the ground truth value, (zero for all
parameters). Translational deviations are in millimeters, rotational deviations are in degrees. The lower dark curves correspond to the values forideal conditions,
the upper light curves correspond to the values for realistic conditions.
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TABLE III
MAIN PARAMETERS AND THEIR SETTINGSUSED IN THEEXPERIMENTS

niques to help avoid local minima. We plan to embed the al-
gorithm in navigation and positioning systems for minimally
invasive and percutaneous orthopaedic procedures, including
the FRACAS system for long bone fracture reduction [3], the
MARS robot for percutaneous spinal pedicle screw insertion
[48], and a new system for percutaneous pelvic fraction reduc-
tion.

APPENDIX

MAIN PARAMETERS AND THEIR SETTINGS

The proposed algorithm, as any of its kind, relies on tens of
parameters with preset values. Table III lists the most important
ones and their values. The parameters are classified in six cat-
egories, with the first four used in coarse geometry-based reg-
istration [Step 2)] and the last three used in fine gradient-based
projection registration [Step 3)]. No parameters are used for the
initial registration.

The 3-D model parameters include the iso-value threshold
used by the Marching Cubes algorithm to segment out the bone
surface and the maximum depth of the hierarchical sphere tree
described at the end of Section V. The Livewire parameters
include the number of points input by the user on each fluoro-
scopic X-ray image and the number of points sampled on the
segmented bone contours. The ICP parameter is the maximum
number of iterations. For processing the fluoroscopic X-ray
image parameters, we use the Canny edge detector. As input to
the edge detector we specify a Gaussian mask which is used
for computing the image gradient and two thresholds which
are defined relative to the gradient magnitude data. As a post
processing step to the edge detection we discard edges which
are shorter than 30 pixels. For computing the gradient of the CT
image, we use a Gaussian filter and sample the image with rays

at 1-mm intervals. Finally, in the gradient based registration
step we use the downhill simplex optimization algorithm.
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