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Abstract. Social choice theory and cooperative (coalitional) game theory have
become important foundations for the design and analysis of multiagent systems.
In this paper, we use cooperative game theory tools in order to explore the coali-
tion formation process in the coalitional manipulation problem. Unlike earlier
work on a cooperative-game-theoretic approach to the manipulation problem [2],
we consider a model where utilities are not transferable. We investigate the is-
sue of stability in coalitional manipulation voting games; we define two notions
of the core in these domains, the α-core and the β-core. For each type of core,
we investigate how hard it is to determine whether a given candidate is in the
core. We prove that for both types of core, this determination is at least as hard as
the coalitional manipulation problem. On the other hand, we show that for some
voting rules, the α- and the β-core problems are no harder than the coalitional
manipulation problem. We also show that some prominent voting rules, when ap-
plied to the truthful preferences of voters, may produce an outcome not in the
core, even when the core is not empty.

1 Introduction

Voting constitutes a natural methodology for a group of agents to make a joint decision
in spite of (possibly) conflicting preferences. Unfortunately, voting and elections are
not a universal, perfect solution to preference aggregation problems. For example, the
classic result of Gibbard and Satterthwaite [9, 13] says that in sufficiently general set-
tings, any reasonable voting rule may lead to a situation where some voter(s) are better
off by casting votes different from their true preferences (this is called manipulation or
strategic voting). One of the most influential ideas regarding the computational study
of elections, due to Bartholdi, Orlin, Tovey, and Trick [4, 3], was to study the compu-
tational complexity of computing manipulative votes. The rationale behind it was that
if planning a manipulation were computationally hard, then in practice voters would
not be able to vote strategically (see the surveys of Faliszewski, Hemaspaandra, and
Hemaspaandra [7] and of Faliszewski and Procaccia [8] for a detailed overview of this
approach and for two viewpoints regarding its applicability).

Formally, in the coalitional manipulation problem, introduced by Conitzer, Sand-
holm, and Lang [5], the voters are divided into two groups, the manipulators and the



nonmanipulators. The votes of the nonmanipulators are assumed to be known, and the
problem is to determine whether the manipulators can use their votes to achieve a given
goal. The goal is either to ensure that some preferred candidate wins (the construc-
tive variant) or to ensure that some despised candidate does not win (the destructive
variant). Further, we obtain different flavors of the problem depending on whether the
votes are weighted or not, which voting rule is used, etc. Some results on coalitional
manipulation can be found in [17, 15, 14, 16]; see also surveys [8, 7].

Let us focus on unweighted constructive coalitional manipulation. If all the manip-
ulators have identical preferences, this is exactly the problem that they want to be able
to solve—they would first try to ensure their most preferred candidate’s victory; then,
if that were impossible, they would try the second best one, third best one, and so on,
until they would either find a successful manipulation or determine that they cannot do
better than electing the truthful winner.

Nonetheless, generally manipulators do not have identical preferences. In this case,
the manipulators may still work together, but it is much less clear which candidate they
should try to promote (even ignoring computational considerations). While they may
all agree that they would prefer a different winner than the truthful one, deciding which
candidate to support is a whole new game that they need to play among themselves. (To
push our scenario to the limit, consider a situation where all the voters are manipula-
tors.)

In this paper, we take the viewpoint of cooperative game theory to solve such games
among the manipulators, and study computational aspects of the relevant solution con-
cepts. As in most of the literature on voting, we assume that the agents do not have the
ability to make or receive payments, so that we are in the nontransferable utility (NTU)
case of cooperative game theory. (Recently, Bachrach, Elkind, and Faliszewski [2] stud-
ied a similar problem in the transferable utility setting, and obtained results linking
coalitional manipulation [5] and bribery [6] problems with their cooperative game-
theoretic model.) Moreover, in this setting, what one (sub)coalition of manipulators
can achieve depends on the actions (votes) of the manipulators outside the coalition.
We consider two different ways of addressing this—via the standard notions of the α-
and the β-core [12].

2 Preliminaries

Let us now define the basic notions of (computational) social choice theory and coali-
tional game theory, as used in this paper.

An electionE is a triple (C, V,P), whereC = {c1, . . . , cm} is the set of candidates,
V = {1, . . . , n} is the set of voters, and P = (P1, . . . , Pn) is a preference profile of
voters in V . That is, each voter i, 1 ≤ i ≤ n, is associated with preference order Pi
fromP . A preference order is a linear order over the candidates inC. We will sometimes
write �i instead of Pi. We write L(C) to denote the set of all linear orders over C. Let
U be some subset of V . By PU we mean (Pi)i∈U and by P−U we mean (Pi)i 6∈U . Using
standard notational conventions, we have P = (PU ,P−U ).

A voting ruleR is a function that, given election E as input, returns one of the can-
didates, denotedR(E), as the election’s winner. (We assume ties are resolved by some



simple tie-breaking rule and that the manipulators, unwilling to rely on tie-breaking, al-
ways seek unique winners; we point the reader to the work of Obraztsova, Elkind, and
Hazon [11], and Obraztsova and Elkind [10] for a detailed discussion of tie-breaking in
voting manipulation.) We focus on the following (families of) voting rules:

Positional scoring rules. Let s = (s1, . . . , sm) be a vector of non-negative integers,
such that s1 ≥ s2 ≥ . . . ≥ sm. For each voter, a candidate receives s1 points if
it is ranked first by the voter, s2 points if it is ranked second, etc. The score of a
candidate is the total number of points the candidate receives. The winner is the
candidate with the maximum score. The scoring rules which we will consider here
are k-approval, where s = (1, . . . , 1, 0, . . . , 0) (s1 = . . . = sk = 1; sk+1 = . . . =
sm = 0), Plurality, where s = (1, 0, . . . , 0), and Borda, where s = (m − 1,m −
2, . . . , 0).

Plurality with Runoff. In this rule, a first round eliminates all candidates except the
two with the highest plurality scores. The second round determines the winner be-
tween these two by their pairwise election.

Simplified Bucklin. A candidate c’s Bucklin score is the smallest number k such that
more than half of the votes rank c among the top k candidates. The winner is the
candidate that has the smallest Bucklin score.4

We use the term (coalitional) manipulation to refer to a situation where a voter (a
group of voters) casts votes not according to his (their) true preferences, but rather to ob-
tain some goal. It is one of the best-studied forms of strategic behavior in elections (see
the surveys [8, 7]). The definition below is taken from the paper of Bachrach, Elkind,
and Faliszewski [2], which itself is inspired by the definition of Conitzer, Sandholm,
and Lang [5].

Definition 1. For any voting ruleR, an instance I = (E,S, c) of theR-COALITIONAL
MANIPULATION problem is given by an election E = (C, V,P), a set of manipulators
S, S ∩ V = ∅, and a distinguished candidate c ∈ C. It is a “yes”-instance if there is
a vector PS = (Pi)i∈S ∈ (L(C))|S| such that R(P,PS) = c, and a “no”-instance
otherwise.

Note that in the traditional definition of coalitional manipulation the manipulators, un-
like honest voters, do not have preferences over the candidates; they simply want to get
a particular candidate elected. Thus, this definition eliminates the problem of deciding
which candidates the manipulators should support by making it external to the setting.

3 Manipulation Model

The goal of this paper is to study the unweighted constructive coalitional manipulation
problem in the setting in which not all manipulators have identical preferences. Specif-
ically, our focus is on the computational complexity of deciding which candidates the
manipulators may support in a stable way, without breaking the coalition.

4 The Nonsimplified Bucklin rule additionally breaks ties by the number of votes that rank a
candidate among the top k candidates. In computational social choice it is common to focus
on Simplified Bucklin instead of its full variant.



Formally, we consider the following setting. We are given an electionE = (C, V,P)
where some of the voters are truthful and some are willing to manipulate. We denote
the set of possible manipulators by M and we will refer to them as colluders. In our
model the remaining voters, those inH = V \M , are honest voters who vote truthfully.
We assume that the manipulators have a way of communicating with one another (this
is a standard assumption, though typically it is not mentioned explicitly). We ask which
candidate the colluders should support. Naturally, the answer to this question depends
strongly on the attitudes that the colluders have towards one another, and on the way
they expect one another to behave. We consider two settings, depending on how the
colluders react to the breaking out of the coalition by some subset M ′ of M : (a) the
pessimistic model, where players in M ′ want to succeed irrespective of the reaction of
players inM \M ′, and (b) the adaptive model, where players inM ′ can pick their votes
depending on the votes of players in M \M ′.

Definition 2. LetR be a voting rule and letE = (C, V,P) be an election with colluder
set M . Fix a candidate c ∈ C and a coalition S ⊆M .

1. We say that c is feasible for S if there is a profile P ′S such thatR(P ′S ,P−S) = c.
2. We say that c is α-feasible for a coalition S if there is a preference profile P ′S such

that for all preference profiles P ′′M\S it holds thatR(P ′S ,P ′′M\S ,P−M ) = c.
3. We say that c ∈ C is β-feasible for a coalition S ⊆M if for all preference profiles
P ′M\S there exists a preference profile P ′′S such thatR(P ′′S ,P ′M\S ,P−M ) = c.

We denote the set of all candidates that are feasible (respectively, α-feasible, β-feasible)
for S by F (S) (respectively, Fα(S), Fβ(S)).

As a side remark, it is easy to see that F (S) is never empty as it always containsR(E);
but Fα(S) and Fβ(S) may be empty.

Using our feasibility notions, we can adapt the notions of α- and β-core to our
setting [12].

Definition 3. Let E = (C, V,P) be an election, M be a subset of V , R be a voting
rule, and c be a candidate. We say that c belongs to the α-core (respectively, β-core) if
c ∈ F (M) and there is no candidate c′ ∈ C and non-empty coalition W ′ ⊆ M such
that (a) c′ ∈ Fα(W ′) (respectively, c′ ∈ Fβ(W ′)), and (b) each voter in W ′ prefers c′

to c.

One can see that these notions are related to the notion of strong Nash equilibrium
(SNE) in the game played by the colluders. Recall that an SNE is a Nash equilibrium
in which no coalition, taking the actions of its complements as given, can cooperatively
deviate in a way that benefits all of its members [1]. In the context of SNE, we have
the following scenario: the colluders have agreed upon some voting profile. The devi-
ating coalition can privately communicate; when a coalition coordinates a deviation,
the remaining players are unaware of it, so they stick to their agreed-upon strategies.
In this model, it is relatively easy for a sub-coalition to break off since the deviating
colluders know in advance how the rest of the colluders will vote. On the other hand,
the α-core and the β-core model an election in which it is non-trivial for a subgroup of
manipulators to break off from the coalition. (Consider, e.g., an election on choosing



an acceptable debt level for a country and the manipulators being MPs from the ruling
party. Even if they personally disagreed with some particular proposed debt level, they
would need to obtain very strong support before breaking off from the coalition.) Here,
if a subcoalition breaks off then it has to be ready to face every possible reaction of the
colluders they abandon.

The difference between the α-core and the β-core is that in the case of the β-core
the splitting subcoalition knows that it will know the remaining colluders’ votes before
having to cast their own. (In the parliamentary example from the previous paragraph,
this means that MPs leaving the ruling party know they will be asked about their vote
on the debt issue only after the ruling party will be.)

The above intuitions are supported by the observation that, by definition, if P ′M is
SNE then c = R(PH ,P ′M ) ∈ β-core, and β-core ⊆ α-core. (To see this, note that if
for c′ ∈ C \ {c}, and W ′ ⊆M such that everybody in W ′ prefers c′ to c, c′ ∈ Fβ(W ′)
then W ′ can deviate from P ′M to make c′ a winner, and so P ′M is not a SNE; and if for
some candidate c′ and set W ′ ⊆M it holds that c′ ∈ Fα(W ′) then c′ ∈ Fβ(W ′).) That
is, settings where the α-core is an appropriate model are more stable than those where
colluders do not counteract deviations by other colluders.

It is interesting that there are prominent voting rules and preference profiles for
which the non-empty α-core/β-core does not contain the truthful winner.

Example 4. Consider a Borda election with candidate set C = {a, b, c, d, e, f}, and
the following preference profiles (the numbers in parentheses are the serial numbers
of the voters): (1) f � d � b � c � a � e, (2) a � f � b � c � d � e, (3)
b � f � d � c � a � e, and (4) d � b � f � a � e � c.

Here we have one honest voter (1), and the rest are the colluders. In the above
election, f wins. Now consider the set Wbf = {3, 4}. If (3) votes b � e � c �
a � d � f , and (4) votes b � a � e � c � d � f , then no matter how voter
(2) votes, b wins the election. Hence b ∈ Fα(Wbf ) ⇒ f /∈ α-core. We claim that
b ∈ β-core (and hence b ∈ α-core). Indeed, b is the Condorcet winner among the
colluders. Hence, if the two colluders who prefer b to some candidate x ∈ {a, c, d, e, f},
vote b � e � c � a � d � f and b � a � e � c � d � f , then no matter how the
third colluder votes, b wins the election. Hence, no other candidate is β-feasible for the
coalition that prefers him, which implies b is in the β-core.

We also have a similar example for Maximin, but we omit it due to space restrictions.5

To study our core notions computationally, we need to define an appropriate deci-
sion problem.

Definition 5. For a voting rule R, an instance I = (E,M, c) of the R-α-CORE (re-
spectively,R-β-Core) problem, is given by an electionE = (C, V,P), a set of colluders
M ⊆ V and a candidate c ∈ C. It is a “yes”-instance if c is in the α-core (respectively,
β-core) of the corresponding game among the manipulators, and a “no”-instance oth-
erwise.

5 See ftp://ftp.cs.huji.ac.il/users/jeff/wine11zuckermanfull.pdf
for a version of this paper containing the example.



4 Main Results

In this section we present our main computational results. Namely, we provide a com-
putational analysis of the notions of the α- and β-cores. We first provide a connection
between our notions of the core and the standard problem of coalitional manipulation.

Theorem 6. Given an election E = (C, V,P), a set M ⊆ V , a voting rule R and a
candidate c ∈ C, the problem of determining whether c is in the α- or β-core is at least
as hard as the corresponding coalitional manipulation problem.

Proof. We show a reduction from the coalitional manipulation problem. Given a voting
rule R and an instance I = (E,S, c), where E = (C, V,P), of the R-Coalitional
Manipulation problem, we construct the core problem in the following way. We set
E′ = (C, V ′,P ′) where V ′ = V ∪ S, P ′ = P ∪ P ′S , and P ′S is a profile of voters in S
where c is ranked first in all the ballots, and the rest of the candidates are ranked in some
arbitrary order. We set M = S. There exists a manipulation by voters in S making c
win in the coalitional manipulation problem if and only if c is in the core (either α or β)
of the core problem (which is defined by the instance (E′,M, c)), since here c is in the
core if and only if c is feasible for the coalition M (as there is no non-empty coalition
W ′ where the voters in W ′ prefer c′ to c). ut

However, could it be that the α- or the β-core problems are strictly harder than the
coalitional manipulation problem? We will see that for many voting rules, the answer
is ”no”. Due to Theorem 6, we focus on those voting rules for which the coalitional
manipulation problem is polynomial-time solvable.

Theorem 7. Let R be a positional scoring rule with scoring vector s = (s1, . . . , sm)
such that the R-Coalitional Manipulation problem is polynomial-time solvable. Then
there exists a polynomial-time algorithm solving the R-α-Core problem.

Proof. Suppose we are given an instance I = (E,M, c) of the R-α-Core problem,
whereE = (C, V,P). Suppose w.l.o.g. that sm = 0. The algorithm first checks whether
c ∈ F (M) by solving the R-Coalitional Manipulation problem. Then it goes over
all the other candidates. For each candidate x 6= c it checks what is the maximal set
Wxc ⊆M of the colluders who prefer x to c. IfWxc 6= ∅, it builds a “profile”6 QM\Wxc

for M \ Wxc s.t. the score of x is s(QM\Wxc
, x) = 0, and the score of any other

candidate y 6= x is s(QM\Wxc
, y) = s1 · |M \Wxc|. Finally, it solves the R-Coalitional

Manipulation problem (C, V \Wxc,PH ∪QM\Wxc
), x, |Wxc| to see whether the votes

in Wxc can be cast in order to make x win the election. Next we prove that we manage
to make x win if and only if x is α-feasible for Wxc.

Claim. Let QWxc
be a profile. x is the winner under PH ∪ QM\Wxc

∪ QWxc
(where

QM\Wxc
is as defined above) if and only if for any (real) profile P ′M\Wxc

x wins under
PH ∪ P ′M\Wxc

∪QWxc .

6 We used the double quotes for the word “profile” since it is not a real profile, but rather a score
specification. Nevertheless, we use the above notation for simplicity, as if it were a real profile.



Proof. We first prove the “only if” part. Suppose that x wins under PH ∪ QM\Wxc
∪

QWxc
. Let P ′M\Wxc

be any profile. For all y, y 6= x, it holds that s(P ′M\Wxc
, y) ≤

s1 · |M \ Wxc|. Also, s(P ′M\Wxc
, x) ≥ 0. Therefore, for each y, y 6= x, s(PH ∪

P ′M\Wxc
∪QWxc

, x) ≥ s(PH∪QM\Wxc
∪QWxc

, x) > s(PH∪QM\Wxc
∪QWxc

, y) =

s(PH ∪ QWxc , y) + s1 · |M \Wxc| ≥ s(PH ∪ P ′M\Wxc
∪ QWxc , y).

7 And so, x will
win under PH ∪ P ′M\Wxc

∪QWxc
.

Now we prove the “if” part. Suppose that for any profile P ′M\Wxc
, x is the winner

under PH ∪P ′M\Wxc
∪QWxc

. Let y, y 6= x be a candidate. By our assumption, x is the
winner under PH ∪ P ′M\Wxc

∪ QWxc
, where P ′M\Wxc

is built as follows: y is ranked
on top of each preference in P ′M\Wxc

, x is ranked at the bottom of each preference
in P ′M\Wxc

, and the other candidates are ranked arbitrarily. From this construction we
get: s(PH ∪ QM\Wxc

∪ QWxc , x) = s(PH , x) + s(QWxc , x) = s(PH ∪ P ′M\Wxc
∪

QWxc
, x) > s(PH ∪P ′M\Wxc

∪QWxc
, y) = s(PH , y)+s1 · |M \Wxc|+s(QWxc

, y) =

s(PH ∪ QM\Wxc
∪ QWxc , y). This is true for every y 6= x. Therefore, x is the winner

under PH ∪QM\Wxc
∪QWxc

. (End of proof of claim.) ut

If we find a candidate x 6= c and a non-empty coalitionWxc such that x is α-feasible
for Wxc, then c is not in the α-core. Otherwise, c is in the α-core. ut

Theorem 8. Let k ∈ N, 1 ≤ k ≤ |C| − 1 = m − 1. There is a polynomial-time
algorithm solving the k-approval-β-Core problem.

Due to space limitations, the proof of Theorem 8 is omitted.8

Theorem 9. There exists a polynomial-time algorithm solving the Simplified-Bucklin-
α-Core problem.

Proof. Suppose we are given an instance I = (E,M, c) of the Bucklin-α-Core prob-
lem, where E = (C, V,P). The algorithm first checks whether c ∈ F (M) by solving
the Bucklin-Coalitional Manipulation problem (see [15] for the algorithm for this). It
then goes over all the other candidates; for each candidate x 6= c it computes the max-
imal set Wxc ⊆ M of colluders who prefer x to c. If Wxc 6= ∅, we need to check
whether x is α-feasible for Wxc. We first introduce some new notation. Let B(a, k,Q)
denote the number of votes in the profile Q that rank the candidate a in the k first
places. Let d be the minimal integer such that B(x, d,PH) + |Wxc| > 1

2 · |V |. Let
P ′′M\Wxc

be a “profile” of M \Wxc such that B(x, d,P ′′M\Wxc
) = 0; and for all y 6= x,

B(y, 1,P ′′M\Wxc
) = |M \Wxc|.9 In the following claim we prove that it is enough to

check whether x can win vs. P ′′M\Wxc
to determine whether x is α-feasible for Wxc.

7 We use here a strong inequality as we prove our results for the unique winner model. However,
our results can be modified to work for the co-winner model as well.

8 Again, see ftp://ftp.cs.huji.ac.il/users/jeff/wine11zuckermanfull.pdf
for a version of this paper containing the proof.

9 Of course, ifm > 2 then P ′′
M\Wxc

cannot be a real profile; rather it is just a score specification.
As before, we use the notation as if it were a real profile, for simplicity.



Claim. x is the winner underPH∪P ′′M\Wxc
∪PxWxc

whereP ′′M\Wxc
is as defined above,

andPxWxc
is some fixed (real) profile forWxc which ranks x in the first position in all the

votes, if and only if for all profilesP ′M\Wxc
x is the winner underPH∪P ′M\Wxc

∪PxWxc
.

Proof. Suppose x is the winner under PH ∪ P ′′M\Wxc
∪ PxWxc

. Let P ′M\Wxc
be any

profile. Let d be as defined above. Since for all y 6= x, B(y, d,P ′M\Wxc
) ≤ |M \Wxc|,

we have that g′y := b 12 |V |c−B(y, d,PH ∪P ′M\Wxc
) ≥ b 12 |V |c−B(y, d,PH)− |M \

Wxc| = b 12 |V |c −B(y, d,PH ∪P ′′M\Wxc
) =: g′′y . Therefore, k′y := min{g′y, |Wxc|} ≥

min{g′′y , |Wxc|} =: k′′y . Since x is the winner under PH ∪P ′′M\Wxc
∪PxWxc

, we have for
all y 6= x, B(y, d,PxWxc

) ≤ k′′y ≤ k′y . So, by definition of k′y , B(y, d,PH ∪ P ′M\Wxc
∪

PxWxc
) ≤ b 12 |V |c. On the other hand, B(x, d,PH ∪P ′M\Wxc

∪PxWxc
) ≥ B(x, d,PH ∪

PxWxc
) = B(x, d,PH) + |Wxc| > 1

2 |V | (where the last inequality follows from the
definition of d). And so, x wins under PH ∪ P ′M\Wxc

∪ PxWxc
.

For the opposite direction, suppose that for every profile P ′M\Wxc
, x is the winner

under PH ∪ P ′M\Wxc
∪ PxWxc

, where PxWxc
is some fixed profile of Wxc with x ranked

at the top of each vote. Let y, y 6= x, be any candidate. PxWxc
makes x win also vs. the

profile Py,xM\Wxc
where y is ranked first and x is ranked last in all the preferences. Since

the score of x underPH∪Py,xM\Wxc
∪PxWxc

is d, it follows that the score of y underPH∪
Py,xM\Wxc

∪ PxWxc
is greater than d. Therefore, B(y, d,PxWxc

) ≤ min{|Wxc|, b 12 |V |c −
B(y, d,PH)− |M \Wxc|}. Hence, the score of y under PH ∪P ′′M\Wxc

∪PxWxc
is > d.

On the other hand, by definition of d and PxWxc
, B(x, d,PH ∪ P ′′M\Wxc

∪ PxWxc
) =

B(x, d,PH ∪ PxWxc
) = B(x, d,PH) + |Wxc| > 1

2 · |V |. So, the score of x under
PH ∪P ′′M\Wxc

∪PxWxc
is d. Hence, x is the winner under PH ∪P ′′M\Wxc

∪PxWxc
. (End

of proof of claim.) ut

We now resume the proof of Theorem 9. With the above claim in hand, we can
compute in polynomial time whether x is α-feasible for the coalition Wxc, in the fol-
lowing way. First compute d as the minimal integer such that B(x, d,PH) + |Wxc| >
1
2 |V |. Then define for each y 6= x, g′′y = b 12 |V |c − B(y, d,PH) − |M \ Wxc|, and
k′′y = min{g′′y , |Wxc|}. If

∑
y 6=x k

′′
y < (d− 1)|Wxc|, then there does not exist a profile

P ′′′Wxc
making xwin under PH∪P ′′M\Wxc

∪P ′′′Wxc
(see [15] for details of the algorithm).

Otherwise, we build the profile PxWxc
as follows. We first put x on top of all the prefer-

ences of PxWxc
. Then for all i = 1, . . . ,m − 1 we put the candidate ci in the next k′′ci

available places in the votes of PxWxc
, such that B(ci, d,PxWxc

) ≤ k′′ci , until we fill all
the critical places. By Claim 4, if we have found a manipulation, then it works for all
profiles P ′M\Wxc

, and if we have not found a manipulation, then there does not exist a
manipulation that works for all the profiles P ′M\Wxc

. That is, we have found a manip-
ulation if and only if x ∈ Fα(Wxc). If we have found some x 6= c such that Wxc 6= ∅
and x ∈ Fα(Wxc), then c is not in the α-core. Otherwise, c is in the α-core. ut

Theorem 10. There exists a polynomial-time algorithm solving the Simplified-Bucklin-
β-Core problem.



The proof of Theorem 10 is omitted due to space limitations.10

Theorem 11. LetR be the Plurality with Runoff voting rule. There exists a polynomial-
time algorithm solving the R-β-Core problem.

Proof. Suppose we are given an instance I = (E,M, c) of the R-β-Core problem,
where R is the Plurality with Runoff voting rule, and E = (C, V,P). The algorithm
first checks whether c ∈ F (M) by solving the R-Coalitional Manipulation problem
(see [17] for the algorithm for this). Then it goes over all the other candidates. For each
candidate x 6= c it computes the maximal set Wxc ⊆ M of the colluders who prefer x
to c. IfWxc 6= ∅, we need to check whether x is β-feasible forWxc. To do so, we iterate
over all candidates a 6= x, and for each a, we check whether Wxc can make x win vs.
the profile Pa,xM\Wxc

where everybody ranks a first, x last, and the other candidates in
some arbitrary order. Then we iterate over all pairs of candidates (a, b), and for each
pair (a, b) and for all i = 1, . . . , |M \Wxc| − 1, we check whether Wxc can make x
win vs. the profile Pi,a,b,xM\Wxc

where i voters in M \Wxc rank a first, the |M \Wxc| − i
remaining voters rank b first, all these voters rank x last, and the other candidates are
ranked in some arbitrary order. In the next claim we prove that it is enough to check
these profiles to determine whether x is β-feasible for Wxc.

Claim. If:

1. for each a 6= x, there exists a profile P ′′Wxc
such that x is the winner under PH ∪

Pa,xM\Wxc
∪ P ′′Wxc

, and
2. for each pair (a, b) (where x /∈ {a, b}) and for each i, 1 ≤ i ≤ |M \Wxc|−1, there

exists a profile P ′′′Wxc
such that x is the winner under PH ∪ Pi,a,b,xM\Wxc

∪ P ′′′Wxc
,

then x is β-feasible. Otherwise x is not β-feasible.

Proof. It is clear that if (1) there is a candidate a 6= x, such that for each profile P ′Wxc

x is not a winner under PH ∪ Pa,xM\Wxc
∪ P ′Wxc

, or (2) there is a pair of candidates
(a, b) and i, 1 ≤ i ≤ |M \Wxc| − 1, such that for each profile P ′Wxc

x is not a winner
under PH ∪ Pi,a,b,xM\Wxc

∪ P ′Wxc
, then by definition, x is not β-feasible for Wxc. For the

other direction, suppose that for each a 6= x, there exists a profile P ′′Wxc
such that x is

the winner under PH ∪Pa,xM\Wxc
∪P ′′Wxc

, and for each (a, b) and i there exists a profile

P ′′′Wxc
such that x is the winner underPH∪Pi,a,b,xM\Wxc

∪P ′′′Wxc
. LetP ′M\Wxc

be any profile
for M \Wxc. We will show that there exists a profile P ′Wxc

such that x is the winner
of the election under PH ∪ P ′M\Wxc

∪ P ′Wxc
. Let y, z ∈ C be the winners of the first

round under the partial profile PH ∪ P ′M\Wxc
. Denote by γ(P, b) the plurality score of

candidate b under the profile P . Suppose w.l.o.g. that

γ(PH ∪ P ′M\Wxc
, y) ≥ γ(PH ∪ P ′M\Wxc

, z). (1)

Denote by N(P, a, b) the number of votes in the profile P who prefer a over b. We
divide the proof into 3 cases:
10 See ftp://ftp.cs.huji.ac.il/users/jeff/wine11zuckermanfull.pdf

for a version of this paper containing the proof.



Case 1. x /∈ {y, z}. Let us consider the profile Pi,y,z,xM\Wxc
, where i = |M \Wxc| −

γ(P ′M\Wxc
, z). That is, we choose i such that γ(Pi,y,z,xM\Wxc

, z) = γ(P ′M\Wxc
, z). Let

P ′′′Wxc
be the profile such that x is the winner under PH ∪Pi,y,z,xM\Wxc

∪P ′′′Wxc
. Let x and b

be the two candidates who proceed to the second round under PH ∪ Pi,y,z,xM\Wxc
∪ P ′′′Wxc

.
Here we have 3 cases:

Case 1.a. b = y. We may assume that P ′′′Wxc
has in the first places only x’s and

y’s (if it does not, then we can change it appropriately, and the winners in the first
and the second round will not change). Then under PH ∪ P ′M\Wxc

∪ P ′′′Wxc
the only

possible winners of the first round are y, z and x. Denote for brevity, Q1 = PH ∪
P ′M\Wxc

∪ P ′′′Wxc
, and Q2 = PH ∪ Pi,y,z,xM\Wxc

∪ P ′′′Wxc
. Since x is ranked last by all the

voters in Pi,y,z,xM\Wxc
, we have γ(Q1, x) ≥ γ(Q2, x). Also, by the definition of Pi,y,z,xM\Wxc

,
we have γ(Q1, y) ≤ γ(Q2, y) and γ(Q1, z) = γ(Q2, z). As mentioned before, x is
one of the winners of the first round under Q2. It follows that also under the profile
Q1 x will be one of the winners of the first round. By assumption (1), and by the
inequality γ(P ′′′Wxc

, y) ≥ γ(P ′′′Wxc
, z), we have γ(Q1, y) ≥ γ(Q1, z), and so the second

winner of the first round is y. Now, N(P ′M\Wxc
, x, y) ≥ 0 = N(Pi,y,z,xM\Wxc

, x, y). So,
since x beats y in the second round under the profile Q2, x also beats y in the second
round under Q1. So, we found a profile (P ′′′Wxc

), such that x is the winner under Q1 =
PH ∪ P ′M\Wxc

∪ P ′′′Wxc
.

Case 1.b. b = z. Here we may assume that P ′′′Wxc
contains in the first places only

x’s and z’s. Here we also have that the only possible winners of the first round under
Q1 are x, y and z. Again, we have γ(Q1, x) ≥ γ(Q2, x), γ(Q1, y) ≤ γ(Q2, y) and
γ(Q1, z) = γ(Q2, z). So, since underQ2 the winners of the first round are x and z, we
have that under Q1 the winners are also x and z. x beats z in the second round under
Q2, and N(P ′M\Wxc

, x, z) ≥ 0 = N(Pi,y,z,xM\Wxc
, x, z). Hence, x beats z in the second

round under Q1 as well.
Case 1.c. b /∈ {y, z}. We may assume that P ′′′Wxc

contains in the first places only x’s
and b’s. The only possible winners of the first round underQ1 are y, z, x and b. We have
the following inequalities: γ(P ′M\Wxc

, x) ≥ 0 = γ(Pi,y,z,xM\Wxc
, x), γ(P ′M\Wxc

, b) ≥ 0 =

γ(Pi,y,z,xM\Wxc
, b), γ(P ′M\Wxc

, y) ≤ γ(Pi,y,z,xM\Wxc
, y), and γ(P ′M\Wxc

, z) = γ(Pi,y,z,xM\Wxc
, z).

And so, since x and b are the winners of the first round under Q2, they are also the
winners of the first round under Q1. In the second round, x beats b under the profile
Q2, and N(P ′M\Wxc

, x, b) ≥ 0 = N(Pi,y,z,xM\Wxc
, x, b). It follows that x beats b in the

second round under the profile Q1 as well.
Case 2. x = y. So x and z are the two winners of the first round under the partial

profile PH ∪ P ′M\Wxc
. Recall that Pz,xM\Wxc

is a profile where everybody in M \Wxc

ranks z first, x last, and the other candidates in some arbitrary order. Let P ′′Wxc
be the

profile such that x is the winner under PH ∪ Pz,xM\Wxc
∪ P ′′Wxc

. Denote, for shortness,
Q3 = PH ∪ P ′M\Wxc

∪ P ′′Wxc
and Q4 = PH ∪ Pz,xM\Wxc

∪ P ′′Wxc
. Let x and d be the

two candidates who are the winners of the first round under Q4.
Case 2.a. d = z. Here we can assume that P ′′Wxc

contains only x’s and z’s in the
first places. Hence, under Q3, x and z = d are the winners of the first round.



Case 2.b. d 6= z. We can assume that P ′′Wxc
contains only x’s and d’s in the first

places. Therefore, under Q3 the only possible winners of the first round are x, z and d.
Since underQ4 x and d proceed to the second round, and due to the fact that inPz,xM\Wxc

z is ranked on top of all the preferences, we have γ(Q3, d) ≥ γ(Q4, d) > γ(Q4, z) ≥
γ(Q3, z), and γ(Q3, x) ≥ γ(Q4, x) > γ(Q4, z) ≥ γ(Q3, z). Therefore, under Q3, x
and d are the winners of the first round.

Case 2 (continued). Now, as x is the winner of the second round under Q4, and
sinceN(P ′M\Wxc

, x, d) ≥ 0 = N(Pz,xM\Wxc
, x, d), we haveN(Q3, x, d) ≥ N(Q4, x, d) >

N(Q4, d, x) ≥ N(Q3, d, x). Hence, x beats d in the second round under Q3, and so x
wins the election.

Case 3. x = z. This case is handled similarly to Case 2. (End of proof of claim.)
ut

If we found x 6= c such that Wxc 6= ∅ and x ∈ Fβ(Wxc), then by definition c /∈ β-
core. Otherwise, c ∈ β-core. ut

5 Conclusions and Future Work

In this paper we have provided a computational analysis of the following question: given
a coalition of manipulative voters, which candidate should they manipulate in favor of,
given that they might not have identical preferences. To perform our analysis we have
used the notions of α- and β-core, which—under various assumptions—describe the
sets of candidates that the manipulators can support in a stable manner (i.e., without
running the risk of breaking the coalition).

Our main results are the following. The complexity of determining membership in
the α- and β-cores is at least as high as the complexity of the constructive coalitional
manipulation problem for the same rule. On the other hand, for the several prominent
voting rules for which coalitional manipulation is easy, we have also provided polyno-
mial time algorithms for determining membership in the α- and β-cores. One direction
for future work is to extend the above research to other voting rules. Another interest-
ing direction is to try to find voting rules that produce an outcome in the core, if the
core is non-empty, when applied to the truthful preferences of the voters. Yet another
direction is to investigate the computational complexity of finding a voting profile of
the colluders which is a strong Nash equilibrium, if one exists.
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