Rather listen to the sad story of mankind, who like children
lived until I gave them understanding and a portion of reason.
... Numbers I invented for them, the chiefest of all discoveries;
I taught them the grouping of letters, to be a memorial and
record of the past, the mistress of the arts and mother of the
Muses.
~ Aeschylus

Prometheus Bound,

translated by Paul Elmer More,

Complete Greek Drama,

Random House, 1938

THE TEX USERS GROUP NEWSLETTER
EDITOR ROBERT WELLAND

VOLUME 2, NUMBER 3 NOVEMBER 1981
PROVIDENCE RHODE ISLAND USA.

BEETON, Barbara

Americen Msthematicel Society

P.0. Box 6248

Providence, RI 02040
401-272-9500

BLAIR, John

CALMA

Resserch and Development

212 Gibralter Orive

Sunnyvele, CA 94085
408-744-1950

CARNES, Lence

163 Linden Lane

M Volley, CA 94941
415-398-0053

COLE, J. M.

17 St Mory's Mount

Leyourn

North Yorkshirs DL8 58, Englend

CRAIG, Jorry

Morgantown Energy Technology Center

81-30

Colins Ferry Road

Morgentown, WV 26506
304-599-7178

OfAZ, Max
TIMAS-UNAM

Apartado 20-726
Maxico, (20, D.F.} Meuco

DOHERTY, Berry

Amercan Mathemabesl Socrety

P.0. Bou 6248

Previdence, R1 02940
401-272-9500

FRISCH, Michast J.
rversity Computing G

415-497-1646

GOUCHER, Reymond E.
Amencen Mathematical Socety
P.0. Box 6248

HODGE, Thea D.
Unwersity Computng Center
208 Urwon St SE.
University of Mwnesota
Mnneapolis, MN 55455
612-373-4599

HOWERTON, Cherles P.

Nationsl Bureau of Standards

Boulder Labs, room 3562

325 South Broadway

Boulder, CO 80303
303-499-1000 ext. 4433

INCERPI, Janet

Computer Science Depertoment
a Row

Box 1910

Providence, R1 02912
401-863-342

JACKSON, Calvia W.
Comguter Science Departrment
Californie Inet of Tech

256-80
Pasadens, CA 91125
213-356.6245

KNUTH, Doneld E.
Department of Computer Sciencs
Stanford University

Stanford, CA 94305

McCOURT, Scott

Burroughs Corporstion

BCD Proyect

Corporate Drive, Conwnerce Park

Danbury, CT 06810
203-794-6191

McKAY, Brenden .

Vanderbilt University

Computer Scieace Department

Box 70, Staton B

Nashvile, TN 37235
615-322-6517

MILLIGAN, Patrick

Boston, MA 02125
617-207-1900, axt. 2545

MURPHY, Timothy

Dubhe 772041, at. 1983

NICHOLS, Monts C.

Expioratory Chemistry Divesion

Sandia Nations! Laborstories 8313

Livermore, CA 94550
415-422-2906

PALAIS, Richerd S.
Dupartment of Moethemetics
Brandeis Uneversity
Waltham, MA 02154

{On lsave through June 1962)

Center for Information Technology
Stanford University
Stanford, CA 94305

415-497-1322

PRICE, Lynne A.

CALMA

Retsarch and Development

212 Gdraltar Drive

Sunnyvale, CA 94066
408-744-1950

RODGERS, Devid L.

¢/o Unwersty of Michigen Computing Center
1075 Bosl Avenve

Ann Arbor, MI 48109

ROSENSCHEIN, Joffrey S.
Computer Science Department
Stenford Usiversity

Stenford, CA 94305
SAMUEL, Arther L.
Computer Science Depertment
Stanford University

Mergaret Jacks Hall 436A
Stanford, CA 94305

SANNELLA, Michesl
Xerou PARC

3333 Coyots Ht Road
Palo Alto, CA 94304

SAUTER, John

801128 Bates Road

Meerimack, NH 03054
603-424-7637

SHERRQD, Phil
Box 1577, Station 8

Vanderbilt Uneversity
Nasiwille, TN 37235
615-322-2951

SIEGMAN, Anthony
Ginzton Lab 35
Stenford Univarsity
Stanford, CA 94305
415-497-0222

TUGboat, Volume 2, No. 3

ADDRESSES OF OFFICERS, AUTHORS AND OTHERS

SMITH, Berry
Oragon Softwere
2340 SW Canyon Rond
Portiend, OR 97201
$03-226-T760

SPIVAK, Michael

WELLAND, Robert
Department of Methemetics
Northwestera University
2033 Sheriden Roed
Evenston, I 60201
312-964-2090

TUGboat, the newsletter of the TEX Users Group (TUG), is published irregularly for TUG by the American
Mathematical Society, P.O. Box 6248, Providence, RI 02940. Annual dues for individual members of TUG, $15.00
for 1982, include one subseription to TUGboat. Applications for membership in TUG should be addressed to the TEX
Users Group, ¢/o American Mathematical Society, P.O. Box 1571, Annex Station, Providence, RI 02901; applications
must be accompanied by payment.

Manuscripts should be submitted to the TUGboat Editor, Robert Welland, Department of Mathematics, North-
western University, 2033 Sheridan Road, Evanston, IL. 60201; submissions to the macros and problems columns
should be sent to Lynne Price, CALMA, Research & Development, 212 Gibraltar Drive, Sunnyvale, CA 940886; items
submitted on magnetic tape should be addressed to Barbara Beeton, American Mathematical Society, P.O. Box 6248,

Providence, RI 02940.

Submissions to TUGboat are for the most part reproduced with minimal editing. Any questions regarding the
content or accuracy of particular items should be directed to the authors.

TUGboat, Volume 2, No. 3

OFFICIAL ANNOUNCEMENTS
TUG Meeting, January 11-12, 1982, Cincinnati, Ohio

A general meeting of the TEX Users Group will be held at Stouffer’s Cincinnati
Towers on Monday and Tuesday, January 11-12, 1982. All members are urged to attend.
For more details, see the article by Tom Pierce on page 7.

Individual Membership Dues and Privileges

1982 dues for individual members of TUG will be $15. Membership privileges will
include all issues of TUGboat published during the membership (calendar) year. All new
members and other persons inquiring about TUG will be sent TUGboat Vol. 1, No. 1,
but after January 1, 1982, Volume 2 (1981) will be available only as a complete volume,
at $10. Beginning in 1982, foreign members will be able, on payment of a supplementary
fee of $12 per subscription, to have TUGboat air mailed to them.

TUGboat Schedule

The deadtine for submitting items for Vol. 8, No. 1, will be February 12, 1982, a month
after the Cincinnati meeting; the mailing date will be March 15. Contributions on magnetic
tape or in manuscript form are encouraged; editorial addresses are given ot the bottom of
page 2, and a form containing instructions for submitting items on tape is bound into the
back of this issue. '

It is TUG’s policy to keep all issues of TUGboat in print. Each member is entitled
to receive all issues which appear during the membership year, as well as Vol. 1, No. 1.
Domestic subscriptions are mailed third class bulk, which may take up to six weeks to
reach its destination; foreign shipments are surface printed matter, unless the air mail
option is elected. If you have not received an issue to which you are entitled, write to

TUG at the address given on the order form for general correspondence.

* % % * Xx Xx * x % * ¥*

General Delivery

* % & % & & x & $ X *

MESSAGE FROM THE CHAIRMAN
Michael Spivak

This message is both brief and urgent. I hope
that as many people as possible will be able to at~
tend the January meeting of TUG. In the first place,
there should be a great deal to report concerning
progress in bringing TEX up at various installations,
and in solving related problems. But even more
crucial is the inescapable fact that, as Lynne Price
has consistently and eloquently urged, we are clearly
going to be led, almost against our wills, to adopt
a more formal structure; TUG clearly cannot con-
tinue to enjoy the happy anarchistic structure of
the past. To a large extent this just means that a
lot of us are going to have to work harder, within

committees, to draft proposals that can then be con-
sidered by the entire membership. (You say you’d
like to volunteer? Why how nice!) But it also means
that clearer ways of reaching decisions will have to
be agreed upon. This is undoubtedly the most im-
portant (meta-)decision of all, since it will eventually
affect everyone connected with TUG, and we cer-
tainly want to hear all viewpoints. If you can’t come,
but have any strong feelings about how TUG should
function, please write to me, or any one else on the
Steering Committee, so your views will be known.
But if you can, please come.

* * % %X *x ¥ %x % % * %X

Editor’s note: There have been some new volunteers
for Site Coordinators, as one can see from looking at
the Steering Committee list. If you are installing TEX
on a computer which is not yet represented, and would
tike to volunteer, please get in touch with any member
of the Steering Committee; if your computer is aready

4

listed, and you feel that you cen offer additional sup-
port, the Site Coordinator is the person to call. It is
not necessary that the Site Coordinator be the actual
nstaller—in fact, there is considerable merit in hav-
ing a Site Coordinator who 1is technically knowledge-
able, but not actively involved in maindenance of a TEX
system, since answering the questions of a large user
population (potential or actual) can take quite a lot of
time. To those who have already volunteered as Site
Coordinators, and to those who will come forwerd as
the TEX community grows, thanks.

Your aitention is also called to another matter of
general interest: the compilation of o reference file of
output devices compatible with TEX, giving their physi-
cal characteristics, where they may be obtained, and
other features of interest to sites instaling TEX. A
questionnaire on this subject has already been mailed
to all members; for more details, refer to the question-
naire and to the article by Rilla Thedford on page 14.

* X% ¥ ¥ ¥ %x x %X ¥ *x X

TUG TREASURER'S REPORT
October 31, 1981

Beginning balance, January 1, 1981: $(419)
Income: 1981 Membership! $ 3,180

1982 Membership? 645

1982 Foreign postage? 72

Tape leasing 1,400

Tape sales 800

Workshop® 7,695 13,792

Current expenses*:

TUGboat Vol. 2, No. 1: 500 copies
Printing/mailing $ 1,392

TUGbosat Vol. 2, No. 2: 800 copies
Printing 81,234
Postage 575
Clerical 66

Reprinting TUGboat:
Vol. 1, No. 1: 300 copies 195
Vol. 2, No. 1: 300 copies 655

1,875

Microfiche TUGboat:

Vol. 1, No. 1;

Vol. 2, No. 1 109
Miscellaneous postage,

express charges 489
Steering Committee luncheon

meeting, San Francisco,

January '81 170
Workshop expenses® 346
Support for Stanford

TEX Coordinator® 3,600 (8,831)

TUGbocat, Volume 2, No. 3

Estimate of future 1981 expenses:
TUGboat Vol. 2, No. 3: 800 copies
Printing $1,100
Postage 500
Clerical 70 $ 1,670
Questionnaire/membership renewal
Printing $§ 100

Mailing _150 250
Reserve for 1981 expenses for
Cincinnati meeting,
January 1982 1,000 (2,920)

Anticipated receipts during the rest of 1981

against 1982 individual memberships® 4,000
Balance (estimate to December 31, 1981) $ 5,622
Notes:

1. 1981 memberships number 565, of which 22 are
complimentary; of the total, 406 members are
domestic and 159 foreign.

2. 1982 memberships to date number 65, of which
22 are complimentary. Six members have sub-
scribed to the $12 foreign air mail postage op-
tion.

3. The TEX Implementors’ Workshop held at
Stanford, May 14-15, 1981, was attended by 92
participants.

4. Not included in these figures are costs for ser-
vices provided by AMS profesgional staff, in-
cluding programming, reviewing and editing,
answering telephone inquiries, maintaining the
mailing list, and other administrative/clerical
services.

5. Professor Arthur Samuel is acting for Luis
Trabb-Pardo as TEX coordinator, answering
questions, distributing tapes, and fixing bugs
in the TEX source code. Luis has asked, and
the finance committee has agreed, that TUG
contribute to Professor Samuel’s support dur-
ing 1981.

Respectfully submitted,
Samuel B. Whidden, Treasurer

* % %k x % X %x % % *x %

Editor's note: Progress continues at Stanford
towerd the “definitive” Pascal TEX, which we now
kmow will be knoun as TEXS2. The documentation
system developed for the first implementation of TEX-
-Pascal, DOC, 13 about to be replaced by something
newer and better. We've received permission from
Don Knuth to publish his “internal” status report,
which we do for information only. The software
described here will undoubtedly be announced formally
at the Cincirmati meeting.

TUGboat, Volume 2, No. 3 . 5

STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305-2085

DONALD E. KNUTH

Fletcher Jones Professor Telephone:
Department of Computer Science (415) 497-4367

October 13, 1981

To: Coordinators of TEX implementations
From: Donald Knuth
Subject: Current state of things

For somne reason I woke up this morning with the feeling that some of you were wondering what
I have been up to recently. So I decided to write a short note about present and future plans for
=X :

I'm going to be releasing the “definitive” TEX early next year. The manual will be rewritten,
and all the code will also be rewritten, although of course the existing manual and programs will
be pretty close to the finished product. A hardcover book will be published containing both the
manual and the complete program documentation. The manual by itself will also be published
separately in paperback.

Naturally I want to make sure that no bugs are present in either the manual or the system, so I

will be distributing numerous preprints of all the matrial for comments and testing, until a high
level of confidence has been reached.

The present implementations of TEX in SAIL and in PASCAL seem to be quite stable. With
thoysands of users, many of whom are quite sophisticated, no bugs have been reported for several
months. The new implementation will make the present ones obsolete, of course, but we are still
distributing copies of the current implementations to new users.

At the moment | am completing the development of a new documentation system call WEB. This is
a greatly improved version of the 1979 DOC/UNDOC/TEXDOC system used for the first implementation
of TiX in PASCAL; the new namcs are WEB/TANGLE/WEAVE. Basically, the WEB language describes
a program’s structure, using a mixture of TEX and PASCAL that can be considered as an extension
of both languages to do much morc than either language can do separately. The TANGLE program
inputs a WEB description and rearranges everything so that a syntactically correct PASCAL program
is obtained as output. The WEAVE program combines the TJsX and PASCAL portions of WEB
deseription with TEX formatting macros, so that the resulting TEX file will generate a structured
documentation. :

The “definitive” TEX, which will be officially known as TEX82, will of course be defined as a web. At
present I'm finished with the “hardest” 20 per cent of this revision. There will be no “SYSDEP”
module as in the present implementation; the system dependent parts will, however, be much

simpler than they are now and their TEX-specific features will be moved to system-independent
parts of the implementation.

The best way to speed up the process of TEX82 installation seems to be to prepare for it in advance,
by installing the WEB system. Thercfore I plan to distribute preliminary copies of the following in
mid-November:

(1) WEB User Manual (hardcopy)
(2) WEAVE .WEB (thc WEAVE program, in WEB language)

6 TUGboat, Volume 2, No. 3

(3) TANGLE.WEB (the TANGLE program, in WEB language)
(4) TANGLE.PAS (the PASCAL program that TANGLE outputs when you apply it to itself)
(5) WEBHDR. TEX (macros used to print the output of WEAVE)

You need (4) for bootstrapping, after which you can change TANGLE and WEAVE as nceded for your
system. A few system-dependent subroutines are present in TANGLE and WEAVE, but the necessary
changes are trivial compared to those in the existing TEX, so I doubt if it will take long to install
this system.

(The bootstrapping process is a little interesting: First you change the system-dependent parts
of TANGLE.PAS and TANGLE.WEB, until you can get TANGLE to reproduce itsell. Then you make
the same changes to the system-dcpendent parts of WEAVE.WEB. Then you can use TANGLE to
create a working program WEAVE.PAS. Then you can use WEAVE to create the files WEAVE. TEX and
TANGLE.TEX, from which the TEX compiler that you now have will generate beautiful documenta-
tion listing. Next year when you get TEX.WEB, your job will be to make similar changes to its
system-depcndent parts, after which WEAVE and TANGLE will produce the TEX.TEX and TEX.PAS
files you need to get TEX82 going.)

Our preliminary experiments with software generation using WEB have proved to be quite successful,
so you may in fact get some use out of this before TEX82 arrives. Of course, the WEB system will
only be a few wecks old in mid-November, so you will also be able to help us diagnose any bugs
that it may contain, if you are interested.

I hope to have TEX.WEB ready for testing by the end of this year and to have a draft of the new
manual done by the end of January. After TgX is finished, the same will be done for METAFONT,
but that will take some time.

Now I have a question for you: Do you want to be one of the guinea pigs who reccive the first WEB
system in November? If so, please send a letter as soon as possible to Dr. Arthur Samuel, Dept. of
Computer Scicnce, Stanford Universily, Stanford CA 94305, telling (a) where to send the material,
(b) if you can get it over the ARPANET or if a tape should be sent. And please enclose $25.00 if
you can, since that will defray our expenses.of making and sending the tape.

DEK/pw

TUGboat, Volume 2, No. 3

TEX USERS GROUP 1982 WINTER MEETING

Monday and Tuesday, January 11-12, 1982
Stouffer’s Cincinnati Towers, Cincinpati, Ohio

A TEX Users Group meeting will be held to dis-
cuss TEX issues of general interest. The Steering
Committee will also meet with the membership to
discuss dues and the future development of the Users
Group.

The meeting will cover three areas of interest:

- -in-Pascal, with demonstrations of TEX on

the Canon Laser Beam Printer,

— macro packages (both development and ex-

change methods), and

- output devices and interfaces.

Manufacturers of phototypesetters are invited to dis-
cuss their equipment and its TEX compatibilities.
Seminars for the different computer architecture
groups will be mediated by the Site Coordinators.

Donald Knuth will speak on a subject yet to be
decided. Other members of the Stanford group will
also be present, both as speakers and to participate
in computer and output device sessions.

The first copies of “version 0” of The Joy of TEX
(the AMS-TEX manual), are expected to be available
for sale. ‘

Pre-register early as the hotel reservation dead-
line is December 15, 1981. A meeting registration
form is included with this issue. For additional in-
formation, contact

Thomas Pierce

’82 Winter Meeting Coordinator
Rohm and Haas Research Laboratories
727 Norristown Road

Spring House, PA 19477

* * ¥ * ¥ % * % *x % %

Software

* * * * *x x *x *x * x =%

PASCAL-CODED TgX ERRATA

Arthur L. Samuel
Stanford University

The rate at which errors are being reported for
the “PASCAL-coded version of TEX” has slowed
down to the point that we seem to be approaching
that famous last bug. All known errors have been
corrected in the DOC and PASCAL files available
from Stanford and an August 1981 revision of the
descriptive documents has been printed. There are a
few instances where suggested changes (for example,

7

a8 in the naming of variables) have not yet been
made.

One correction, made since August, is reported
below. Also reported is a suggested improvement to
procedure PrintOctal

37. The following procedure should work on both
36-bit and 32-bit machines and specifically on those
machines where the previous PrintQOctal procedure
caused overflow problems. This may be used to
replace procedure PrintOctal; in section 37 on page
18 of the SYSDEP module.
procedure PrintOctal (n : integer); { Prints the
rightmost 32 bits of an integer in octal }
var i,k : integer;
s : array [0..10] of asciiCode;
masb, mbb : boolean ;
begin msb := false; mbb := false;
if n < 0 then .
begin n := —n; msh := true
end;
for k := 10 downto 0 do
begin ¢ := n mod 8;

if £ = 0 then
begin if msb then
begin if 1 > 3 then i := T —1
{ it was a 36-bit word }
else begin if ({ mod2) = 0 then £ := 3
$i=2
end
end
else ¢ := ({ mod4)
end

else begin if msb = true then
begin if mbb = true then ¢ ;== 7 — ¢
{ a borrow has propagated }
else begin if ¢ > 0 then
begin ¢ := 8 — i ; mbb := true;

{ a borrow required }
end
end
end;

end;

case ¢ of
0 : slk] := zero;
1: o[k] := one;
2 : sik] := two;
3 : alk]| := three;
4 : slk} := four;
5 : slk] := five;
6 : s[k] ;= siz;
7 : sfk] := seven
end;

n = n div §;

end;

Print(“’”); k :== 0,

while (k < 10) and (s[k] == zero) do
Increment(k);

fol:i k := k to 10 do Print(s{k])

end;

453. An error has been found and fixed in the main
operating module of the PASCAL-coded version of

TEX as described in section 453 on page 157 of the
August 1981 revision. This error affected the use of
legno. The correction involves replacing the word
ling with link and adding a missing line of shift :=
0.0; as shown below:

453. (Attach equation number 453) =
begin ¢ := getnode (gluenodesize);
typ(q) := gluenode; gluelink (q) := fillglue;
if legno then
begin link (q) := b; link (egnoboz) := g;
b := hpack (eqnoboz, dw — shift, false);
{ egno will be left-justified }
shift .= 0.0;
end -
else begin link () := eqnobox; link(b) := ¢;
b := hpack (b, dw — shift, false)
{ eqno will be right-justified }
en
end
This code is used in section 444.

* ¥ ¥ * * ¥ *x * % *x ¥

THE FORMAT OF PXL FILES
David Fuchs

A PXL file is a raster description of a single
font at a particular resolution. These files are used
by driver programs for dot matrix devices; TEX it-
self knows nothing about PXL files. Let's say a
user creates a file called FOO.MF, which is the
METAFONT language description of a new font,
called FOO. In order for everyone to be able to run
TEX jobs that use this font and get their output
on our 200-dot-per-inch proof device, we must first
run the METAFONT program on FOO.MF, and ask
it to make both a TFM file and a PXL file for it.
These files (called FOO.TFM and FOO.PXL) are
then put in a public directory so that anyone using
TEX may access them. Now, whenever a TEX job
is run that refers to FOO (\font A=F00), the TEX
program reads in FOO.TFM to get all the width,
height, depth, kerning, ligature, and other informa-
tion it needs about any font. To get output on the
proof device, the DVI file produced by TEX must
now be processed by a device-driver program. This
program reads the postamble of the DVI file to find
out the names of all the fonts referred to in the job,
and for each font, it opens the corresponding PXL
file. In our example, the driver would find the file
FOO.PXL, which it would then use along with the
main body of the DVI file to produce the actual out-
put. The DVI file tells where to put all the charac-
ters on each page, while the PXL file(s) tell which
pixels to turn ‘on’ in order to make each character.

In fact, there is a little lie in the preceding
paragraph. The actual name of the PXL file would

TUGboat, Volume 2, No. 3

be something like FOO8.1000PXL. This means that
the PXL file represents the font FOO in an 8-
point face for a 200-dot-per-inch device with a
magnification of 1. (If you don’t fully understand
the term ‘magnification’ as it is used in the TEX
world, the rest of this paragraph might not make 2
lot of sense. The end of this document contains more
information on magnified fonts.) If we also had a
100-dot-per-inch device, we would also want to have
the file FOOB8.0500PXL (which we can get by asking
METAFONT nicely). This PXL file could also be
used by the higher resolution device’s driver for any
TEX job that asked for \font B=FOD8 at 4pt; or
one that used \font C=F008, but then got TEXed
with magnification 500; or one that used \font
C=F008, but then got spooled with magnification
500. Note that we are assuming that the font FOO is
like the CM family in that it does not scale propor~
tionately in different point sizes—we are only talking
about the 8-point face. If it turns out that 8-point
FOO magnified by 1.5 is exactly the same as 12-
point FOO, then we can also use FO012.1000PXL
in place of FOO8.1500PXL, and so forth. For
fonts that scale proportionately like this, a point-size
should not be included as part of the font name, and
FOO.1000PXL is by convention the 10-point size of
FOO for a 200-dot-per-inch machine.

Now for an explanation of where the bits go.
A PXL file is considered to be a series of 32-bit
words (on 36-bit machines, the four low-order bits of
each word are always zero). In the discussion below,
“left half word” means the highest-order 16 bits in
a word, and “right half word” means the 16 next-
highest-order bits in the word (which are exactly the
lowest-order 16 bits on 32-bit machines).

Both the first and last word of a PXL file con-
tain the PXL ID, which is currently equal to 1001
(decimal). The second-to-last word is a pointer to
the first word of the Font Directory. (All pointers
are relative to the first word in the file, which is word
zero.)

The general layout of a PX1. file looks like this:

PXL ID [1 word long -

First word of the PXL file]

RASTER INFO [many words long -

begins at second word]
FONT DIRECTORY [512 words - 517th-to-last
_ through 6th-to-last word)
CHECKSUM (1 word - fifth-to-last word]
MAGNIFICATION
[1 word - fourth-to-last word]

DESIGNSIZE (1 word - third-to-last word)]

DIRECTORY POINTER

[t word - second-to-last word]
PXL D {1 word -

Last word of the PXL file}

TUGboat, Volume 2, No. 3

The Font Directory is 512 words long, and con-
tains the Directory Information for all the 128
possible characters.
Font Directory have Directory Information about
the character with ascii value of zero, the next four
words are for the character with ascii value of one,
etc. Any character not present in the font will have
all four of its Directory Information words set to
zero, so the Directory Information for the character
with ascii value X will always be in words 4 * X
through 4 * X + 3 of the Font Directory. For ex-
ample, if the second-to-last word in a PXL file con-
tained the value 12000, then words 12324 through
12327 of the PXL file contain information about
the ascii character “Q”, since ascii “Q” = 121
octal = 81 decimal, and 481 = 324. The meanings
of a character’s four Directory words are described
below.

The first word of a character’s Directory
Information has the character’s Pixel Width in the
left half-word, and its Pixel Height in the right half-
word. These numbers have no connection with the
‘height’ and ‘width’ that TEX thinks the character
has (from the TFM file); rather, they are the size
of the smallest bounding-box that fits around the
black pixels that form the character’s raster repre-
sentation, i.e. the number of pixels wide and high
that the character is. For example, here is a letter
“Q" from some PXL file:

00%k%kxkx%x
01 ...%kkkkkdkiok, |
02 ..%%kx, &xxx
03 .*%xx__ _. ... qokk
04 »»*x_, *kkk
05 *%, dokk
06 *x%,........ KK

07 *%kx. *kkkkk k%
08 Fkkkkkkkkk hkk
00 . kdkakdkk | sokkekkk
10 .. kmiek, | kkeks |

11 ... okkksdkokokkk |,
12 . X, kxxxkkk, %%
13 Rk | KoKk
14 ARk
15, ERRRk

000000000011111

012345678901234

(The rows and columns are numbered, and the ref-
erence point of the character is marked with an “X’,
but only the stars and dots are actually part of
the character—stars represent black pixels, and dots
represent white pixels.)

Note that the Pixel Width is just large enough to
encompass the leftmost and rightmost black pixels
in the character. Likewise, the Pixel Height is just

The first four words of the

9

large enough to encompass the topmost and bottom-
most black pixels. So, this ‘Q’s Pixel Width is 15
and its Pixel Height is 16, so word 12324 in the ex-
ample PXL file contains 15 * 21€ 4 16.

The second word of a character’s Directory
Information contains the offset of the character’s ref-
erence point from its upper-left-hand corner of the
bounding box; the X-Offset in the left half-word, Y-
Offset in the right half-word. These numbers may
be negative, and two’s complement representation is
used. Remember that the positive z direction means
‘rightward’ and positive y is ‘downward’ on the page.
The offsets are in units of pixels. In our ‘Q’ example,
the X-Offset is 2 and the Y-Offset is 12, so word
12325 of the example PXL file contains 2 + 216 +12.

The third word of a character’s Directory
Information contains the number of the word in
this PXL. file where the Raster Description for this
character begins. This number is relative to the
beginning of the PXL file, the first word of which is
numbered zero. The layout of Raster Descriptions
is explained below. The Raster Descriptions of
consecutive characters need not be in order within
a PXL file—for instance the Raster Description
for character ‘Q’ might be followed by the Raster
Description of the character ‘A’. Of course, & single
character’s Raster Description is always contained
in consecutive words.

If a character is ‘totally white’ then the third
word contains a zero. (The Pixel Width, Pixel
Height, X-Offset and Y-Offset of a ‘totally white’
character must be zero too, although the TFM
Width may be non-zero. A non-zero TFM Width
would mean that the character is a fixed width
space. TEX's standard CM fonts do not contain any
such characters.) For the “Q” example, word 12326
might contain any number from 0 thru 12000 — 16
(since Q’s Raster Description is 16 words long), let’s
say it is 600.

The fourth word contains the TFM Width of the
character. That is the width that TEX thinks the
character is (exactly as in the TFM file). The width
is expressed in FIXes, which are 1/(220)th of the
design size. The TFM Width does not take into ac-
count the magnification at which the PXL file was
prepared. Thus, if “Q” had a width of 7 points in a
12-point font, word 327 in the PXL file would con-
tain trunc((7/12) » 22°). See the TFM documenta-
tion for more information on FI¥Xes.

After the 512 words of Directory Information
come 3 words of font information:

First, the checksum, which should match the
checksum in any DVI file that refers to this font
(otherwise TEX prepared the DVI file under the

10

wrong assumptions—it got the checksum from
a TFM file that doesn't match this PXL file).
However, if this word is zero, no validity check will
be made. In general, this number will appear to
contain 32 bits of nonsense.

Next is an integer representing 1000 times
the magnification factor at which this font was
produced. If the magnification factor is XXXX, the
extension to the name of this PXL file should be
XOXOXXPXL.

Next comes the design size (just as in the TFM
file), in units of FIXes (2—2° unmagnified points;
remember that there are 72.27 points in an inch).
The design size should also be indicated by the last
characters of the PXL’s file name. The design size
is not affected by the magnification. For instance, if
the example font is CMR5 at 1.5 times regular size,
then the PXL file would be called CMR5.1500PXL,
word 12513 would contain 1500, and word 12514
would contain 5 « 229,

The word after the design size should be the
pointer to the Directory Information, and the word
after that should be the final PXL ID word. Thus,
if the number of words in the PXL file is p (i.e.
word numbers zero through p—1) then the Directory
Information Pointer should equal p — 512 — 5.

All of the PXL file from word 1 up to the Font
Directory contains Raster-Descriptions. The Raster
Description of a character is contained in consecu-
tive words. Bits containing a ‘1’ correspond to
‘black’ pixels. The leftmost pixel of the top row of a
character’s pixel representation corresponds to the
most significant bit in the first word of its Raster
Description. The next most significant bit in the
first word corresponds to the next-to-leftmost pixel
in its top row, and so on. If the character’s Pixel
Width is greater than 32, the 33rd bit in the top
row corresponds to the most significant bit in the
second word of its Raster Description. Each new
raster row begins in a new word, so the final word for
each row probably will not be “full” (unless the Pixel
Width of the character is evenly divisible by 32).
The most significant bits are the ones that are valid,
and the unused low order bits will be zero. From this
information, it can be seen that a character with
Pixel Width W and Pixel Height H requires exactly
(cetling(W/32))* H words for its Raster Description.

In our “Q” example, words 600 through 615
would have the binary velues shown here (high order

TUGboat, Volume 2, No. 3

bit on the left):
600 00001111111000000000000000000000
601 00011111111100000000000000000000
602 00111100011110000000000000000000
603 0111000000011 10C0000000000000000
604 11110000000111100000000000000000
605 1110000000001 1100000000000000000
606 11100000000011100000000000000000
607 11100111110011100000000000000000
608 11111111110111100000000000000000
609 01111100111111000000000000000000
610 00111100011110000000000000000000
611 00011111111100000000000000000000
612 00001111111001110000000000000000
613 00000000111011100000000000000000
614 00000000011111100000000000000000
615 00000000001111100000000000000000

As an example of the case where the Pixel Width
is greater than 32, consider a character with Pixel
Width = 40 and Pixel Height = 30. The first word
of its Raster Description contains the the leftmost
32 pixels of the top row in the character. The
next word of the Raster Description contains the
remaining 8 pixels of the first row of the character
in its most significant 8 bits, with all remaining bits
zero. The third word contains the left 32 pixels of
the second row of the character, etc. So, each row
takes 2 words, and there are 30 rows, so the Raster
Description of this character requires 60 words.

Finally, some implementation notes and advice
for DVI-to-device program writers: First, please note
that PXL files supersede our older raster description
(VNT) files. One notable difference is that VNT files
claimed to have two representations for each charac-
ter, one being the 90 degree rotation of the other.
While a rotated copy of every character is useful in
many circumstances, there is no reason that installa-
tions using only one character orientation should be
burdened with so much wasted space. METAFONT
outputs PXL files as described above, and there is a
separate utility that can read a PXL file and write
a rotated version into a new PXL file. Naming con-
ventions to keep various rotations of the same font
straight are currently under consideration.

Another item still under consideration is alternate
packing schemes. You may have noticed that the
current way that rasters are stored is fairly waste-
ful of space: Why should a new raster row begin
in the next word rather than the next byte of the
raster description? The answer is that this is for
the sake of the poor people who are doing page-
painting for their Versatec/Varian on their 32-bit
mainframe computer. All the extra zeros help them
write a faster paint program. An alternate, as yet
unimplemented, PXL format would pack the rasters

TUGboat, Volume 2, No. 3

tighter for the sake of those who have a minicom-
puter dedicated to doing the painting process. Such
byte-packed PXL files will be identified by a PXL
ID of 1002. A straightforward utility program can
convert between word-packed and byte-packed PXL
files.

For those of you still in a fog about character
widths, here’s more prose: The intent is that a DVI-
to-device program should look like DVITYP, always
keeping track of the current-position-on-the-page in
RSU-coordinates. DVITYP looks at TFM files in
order to get the character width info necessary to
interpret a DVI file in this way. The DVI-to-device
program shouldn’t have to open a lot of TFM files in
addition to the PXL files it will be needing, so the
system has redundant width information for each
character—a PXL file has all of the character widths
exactly as they appear in the TFM file (in units
of FIXes). Thus, the DVI-to-device program can
completely interpret a DVI file by getting charac-
ter widths from PXL files rather than TFM files.
The purpose of the CHECKSUM is to ensure that
the TFM files used by TEX when writing the DVI
4le are compatible with the PXL files the DVI-to-
device program sees (so if someone changes a font
and makes new TFMs but not new PXL files, you'll
have some way of knowing other than seeing ragged
right margins).

In the places where DVITYP would print a mes-
sage indicating that “Character C in Font F should
be placed at location (H,V) on the page” (where
H and V are in RSUs), the DVI-to-device program
should cause character C to be put on the paper at
the point closest to (H, V') that the resolution of the
device allows. The important point is that the DVI-
to-device program should not attempt to keep track
of the current-position-on-the-page in device-units,
since this will lead to big roundoff problems that will
show up as ragged right margins.

Note again that the character widths are different
things than pixel-widths: The width of the character
“A” in CMR10 is (say) 6.7123 points, independent of
the representation of that character on the page. For
a 100-dot-per-inch device, the raster representation
of “A” might be 18 pixels wide, while for a 200-dot-
per-inch device, the best representation might be 33
pixels wide.

Here is some more information to help clear
up misunderstandings concerning magnification.
{Much of this is taken from TEX's errata list, and
is destined to be included in the next TEX manual.)
One point to keep in mind is that the character
widths in a PXL file are exactly as in the TFM file.
Since the magnification factor is not taken into ac-

11

count, a DVI-to-device program should multiply the
widths by the product
(font design size) X (overall job magnification)
X (font magnification) X (254000 RSU/inch)
X (1/22° point/FIX) X (1/72.27 inch/point)
to get the effective character width in RSUs. (Of
course, this multiplication should only be done once
per character per job!)

It is sometimes valuable to be able to control
the magnification factor at which documents are
printed. For example, when preparing document
masters that will be scaled down by some factor at
a later step in the printing process, it is helpful to
be able to specify that they be printed blown up by
the reciprocal factor. There are several new features
in TEX to allow for greater ease in the production of
such magnified intermediate output.

TEX should be thought of as producing as out-
put a “design document”: a specification of what
the final result of the printing process should look
like. In the best of worlds, this “design document”
would be constructed as a print file in a general and
device-independent format. Printing a magnified
copy of this document for later reduction should be
viewed as the task of the printer and its controlling
software, and not something that TEX should worry
about. But real world constraints may force us to
deviate from this model somewhat.

First, consider the plight of a8 TEX user who plans
to print a document magnified by a factor of two on
2 printer that only handles 8.5" by 11” paper. In or-
der to determine an appropriate \hsize and \vsize,
this user will have to divide the paper dimensions by
the planned magnification factor. Since computers
are so good at dividing, TEX offers this user the
option of setting the “magnification” parameter to
2000, warning TEX of the anticipated factor of 2
blow up, and then specifying \hsize and \vsize
in units of “truein” instead of “in”. When input-
ting a “true” distance, TEX divides by the scale fac-
tor that “magnification” implies, so as to cancel the
effect of the anticipated scaling. Normal units refer
to distances in the “design document”, while “true”
units refer to distances in the magnified printer out-
put.

Secondly, some existing print file format and
printer combinations have no current provision for
magnified printing. This is not generally the case
for DVI files, but a Press file, for example, uses
absolute distances internally in all positioning com-
mands, and Press printers treat these distances as
concrete instructions without any provision for scal-
ing. There is a program that takes a Press file
and a scale factor as input and produces as output

12

a new Press file in which all distances have been
appropriately scaled. But it is inconvenient to be
forced to use this scaling program on a regular basis.
Instead, the Press output module of TEX chooses
to scale up all distances by the “magnification” fac-
tor when writing the output Press file. Thus, the
Press files that TEX writes are not representations of
TEX's abstract “design document”, but rather repre-
sentations of the result of magnifying it by the fac-
tor (\parvali2)/1000. On the other hand, the DVI
files written by other versions of TEX contain nor-
mal units of distances, and the software that trans-
lates DVI files to instructions that drive various out-
put devices will do the magnification by themselves,
perhaps even using a magnification that was not
specified in the TEX source program; if the user has
not specified “true” dimensions, his or her DVI out-
put file will represent the design document regard-
less of magnification.

Caveat: Due to the manner in which the current
implementation of TEX writes Press files, it is not
permissible to change the value of parameter 12 in
the middle of a TEX run. If you want to produce
magnified output, you should reset parameter 12
once very early in your document by using the
\chpar12 control sequence, and from then on leave
it alone. Another caveat below discusses the situa-
tion in more detail.

The magnification mechanism has been extended
to include font specifications as well: in or-
der to print a document that is photographically
magnified, it is essential to use magnified fonts. A
font is specified by the “\font” control sequence,
which now has the syntax

\font (fontcode)=(filename) at (dimen).

The “at” clause is optional. If present, the dimen-
sion specified is taken as the desired size of the
font, with the assumption that the font should be
photographically expanded or shrunk as necessary
to scale it to that size times the magnification fac-
tor specified by parameter 12. For example, the two
fonts requested by the control sequences

\font a~CMR10 at 5pt
and

\font b=CMRS at 5pt
will look somewhat different. Font a will be CMR10
photographically reduced by a factor of two, while

font b will be CMRS5 at its normal size (so it should -

be easier to read, assuming that it has been designed
well).

The dimension in a font specification can use any
units, either standard or “true”. The interpretation
of “true” here is identical to its interpretation in the
specification of any other distance: asking for a font

TUGboat, Volume 2, No. 3

“at 5pt” requests that the font be 5 points in size
in TEX's “design document”, while asking for a font
“at Struept” requests that the font be 5 points in
size after the scaling implied by the “magnification”
factor.

If the “at (dimen)” clause is omitted, TEX
defaults the requested size to the design size of
the font, interpreted as a design (non-“true”) dis-
tance. Thus, the control sequence “\font a=CMR10"
is equivalent to the sequence “\font a=CMR10 at
10pt”, assuming that the designer of CMR10 has
indeed told TEX that CMR10 is a 10-point font.

Caveat: This extension allows the TEX user to
request any magnification of any font. In general,
only certain standard magnifications of fonts will be
available at most raster printers, while most high-
resolution devices have scalable fonts. The user of
TEX at any particular site must be careful to request
only those fonts that the printer can handle.

Caveat: As mentioned above, you shouldn’t
change the value of parameter 12 in the middle of
a run. TEX uses the value of parameter 12 in the
following three ways:

(1) Whenever the scanner sees a “true” distance,
it divides by the current magnification.

(i) At the end of every page, TEX's output
module may scale all distances by the current
magnification while converting this page to for-
mat for an output device (this doesn’t happen
with DVI output).

(iii) At the very end of the TEX run, the output
module uses the current magnification to scale
the requested sizes of all fonts. Given this state
of affairs, it is best not to change parameter 12
once any “true” distance has been scanned and
once any page has been output.

Some device-drivers give the user the option of
overriding the magnification at which the TEX job
was run. Note that running a given TEX job with
\magnify{2000} is not the same as running it with
\magnify{1000} and then asking the driver to over-
ride the magnification to 2000. The difference will
be in the dimensions of the pages; in the first case,
the output will be, say, 8.5” by 11” pages filled with
double size fonts, while in the second case the output
will be 17” by 22" pages with double size fonts.

This is a new document, so it is bound to con-
tain outright errors along with the portions that are
merely misleading. I would certainly be glad to hear
of any errors, but I am also interested in which parts
of the explanation need clearing up, either by add-
ing to or changing the text.

TUGboat, Volume 2, No. 3 13
30 mine is driven through a 300 kit per second terminal

‘line and my APPLE II. I have constructed a protocol to
compress the page image for transmission the way a FAX
‘machine would (during a previous weekend) but even so
it takes about half an hour to print a moderately complex
‘pége.

I made one change to SYSDEP and LVSPOOL for
the sake of convenience. Ichanged all referencesto [TEX]
to be instead TEXS$:. I did this because I didn’t want the
administrative hassle of setting up [TEX] as a top-level
;.directory, so instead I put TEX into a sub-directory and
defined the logical name TEXS$ to point to it. I recom-

mend this to all users of TEX on VMRS, since it makes using

TEX more convenient.

I had one problem with TgX: I compiled SYSDEP
with /CHECK, and sometimes when loading a font I get
a subrange error in MAKEPTS.

I am looking forward to the “final” version of TEX
for the VA}C-ll, which will let me run the fancy macro
packages published in TUGboat, and let me build font
tables for my low-resolution printer. Keep up the good

work, TEX fans, and., from now on, count me in!

John Sauter Sample of IDS-460 output - see next page

14

* % % ¥ x *x % x ¥%

Output Devices

* %* ¥ % ¥ *x * x ¥

* ¥

* *

Editor’s note: Not every TEX user has a jast, high-
resohution output device ot his elbow; it is surprising
how modest is some of the equipment that has been
made to produce usable, if limited, TEX output. The
preceding page is reproduced from output on an IDS-
460, an impact printer with o resolution of 84 dots per
mch, driven by an Apple II. [ts most severe present
limitation is a lack of fonts, certainly not the ingenuity
of its oumer, John Sauter, who describes a Tecent
weekend’s work on page 34.

¥ %x * % * * % *x * *x ¥

DIRECTORY OF OUTPUT DEVICES
Rilla J. Thedford
Mathematical Reviews

To further the development of TEX, TUG is com-
piling a directory of TEX output devices. We hope
this will be a useful tool.

The directory will identify manufacturers for TEX
output devices and required software and hardware
for TEX interfaces. It will also include information
about fonts, device specifications, contact people,
and installation sites.

The membership renewal form will have addi-
tional questions for ACTIVE TEX users. Please com-
plete and return it to the American Mathematical
Society, with your renewal fee. Please feel free to
include additional information you feel will help in
the purchase and/or installation of a particular out-
put device.

* ¥ * *x ¥ *x x * %X ¥ %
A VARIAN OUTPUT DRIVER
IN VAX/VMS FORTRAN

Jim Mooney
September 8, 1981

A summer project at the Morgantown Energy
Technology Center (METC), Morgantown, WV, has
resulted in experimental installation of the Oregon
Software version of VAX/VMS TEX. As part of this
project I have written a DVI file converter to drive
a Benson-Varian 200 dot/inch matrix plotter. Since
METC lacks a Pascal compiler, this program was
written in FORTRAN 77.

We acquired Oregon Software’s TEX in July
through the efforts of Tom Pierce who was then at

TUGDboat, Volume 2, No. 3

METC. As deseribed by Barry Smith, this version
is an interim one which still uses (a kind of) TFX
font files and produces version 0 DVI files. Also sup-
plied was a pair of conversion programs LVSPOOL
and LHSPOOL for a Versatec 200 dot/inch plotter.
Fortunately this was very similar to the Varian. A
set of character files with extension VRT were in-
cluded containing the raster character descriptions
for the Versatec.

The executable module supplied for TEX ran im-
mediately and we were shortly producing DVI files.
However, it was disturbing that the program seems
to take between one and five minutes to initialize.
(We have a VAX 11/780 with typically 30-35 inter-
active users.) I sometimes despaired of ever seeing
that starting asterisk. I suspect that much of this
time is spent in routinely loading the “standard”
fonts, and since many of these fonts are often not
used I hope the decision to always load them can be
repealed.

An inconvenience we encountered here was caused
by the OS-TEX SYSDEP module which referred to
the directory “[TEX]” explicitly. This prevented us-
ing any other name; far worse, it made it impossible
to run TEX while the default directory was on a2
different disk than the [TEX] directory. This could
easily be fixed by switching to a logical name such
as TEX$DIR, which we would have done if we had a
Pascal compiler.

There was also a tendency for the program to
abort with “Fatal errors” when it should have
known better, e.g., when the installation limit for
distinet versions of TEXOUT.DVI was reached.

The Pascal driver program LVSPOOL was sup-
plied in a form which can be linked to a separate
assembly language module to issue the actual driver
calls. Thus we could have substituted appropriate
QIO’s for the Varian driver and obtained out-
put. However, there were several advantages to
rewriting the driver in FORTRAN. It could be lo-
cally maintained, and adapted for other output
devices. Moreover, some inefficiencies found in
LVSPOOL could be eliminated. For these reasons
we wrote a new conversion program, based closely
on LVSPOOL, in FORTRAN 77.

The Varian conversion program is called
DVITOVAR. It currently translates only version 0
DVI files, but conversion to the newly announced
version 1 would be straightforward. Currently at
METC, the Varian interface and the [TEX] sys-
tem are on two different VAX mainframes. For
this reason, DVITOVAR actually creates a rather
large file (1100 blocks per output page) contain-
ing raw raster data, which is transmitted to the

TUGboat, Volume 2, No. 3

other VAX over DECNET and converted to QIO’s
by the separate program OUTTOVAR. At an in-

stallation with everything on the same machine, -

this headache can be eliminated by inserting the
QIO’s directly in DVITOVAR in place of OPEN and
WRITE statements. (The peculiar structure of the
Varian-supplied driver program does not allow raster
plot files to be spooled.)

LVSPOOL set aside almost a full megabyte to
hold character raster data, far more than needed.
FORTRAN does not allow the preferred solution of
dynamic allocation, but we reduced the buffer to
200K bytes which is probably still lots too much.
DVITOVAR also defers font loading until a font is
actually needed; thus many fonts are never loaded
although they are defined in the macros and thus
appear in the postamble. This is a considerable
timesaver, and reduces even further the buffer size
needed.

DVITOVAR is rather verbose in announcing the
processing phases it is going through. These mes-
sages can be removed if desired. The program has
not been adapted to an equivalent of LHSPOOL
which produces output horizontally on the page, but
such a project should present no difficulties.

DVITOVAR was also adapted into a similar pro-
gram DVITOLP to drive lineprinter class devices
(Yes, many users do need such primitive output). To
get this to work I had to construct with trepidation,
understanding little of the format, a new TFX file
to represent line printer fonts. (Font CMTT which
simulates such a font was not satisfactory.) All
widths in this font are set to 7.2 points (ten pitch);
there is no kerning or ligatures; wordspace is set to
7.2 points with zero shrink, and several parameters
I didn’t understand were left alone. But this font
geems to serve the purpose as long as all spacing
parameters in the text are appropriately restricted.

Anyone interested in obtaining the programs
cited above should contact

Jerry Craig
Morgantown Energy Technology Center
B1-330
Collins Ferry Road
Morgantown, WV 26505
304-599-7178
Technical guestions can be addressed to me at
Dept. of Statistics and
Computer Science
West Virginia University
Morgantown, WV 26506
304-293-3607
Meanwhile, I await word of a TEX version which may
be adapted to run on our PDP-11/34, which has

15

UNIX v6 and the rather strict ISO standard Pascal
from Vrije University, Amsterdam.

* ok X Kk K X X ¥ % ¥ *
DIABOLIC TgX
Timothy Murphy
Trinity College Dublin
Preamble

Before TEX can be run with a given output device,
2 modules must be provided: an input module,
consisting of a set of font tables; and an output
module, or driver, which will translate the “.DVI"
file produced by the main TEX program into instrue-
tions for the output device.

Even for a Diablo, writing these modules can
prove a time-consuming occupation, at least for
amateurs of the computing art like ourselves. Since
our only output device was a Diablo—Versatecs and
Varians being as remote from us as Neptune and
Pluto—we wrote to all those in the TUG member-
ship list under the Diablo heading. The response
was disheartening; the few replies we received being
from groups in much the same position as ourselves,
viz Waiting for Godot.

This brief account of our own efforts may there-
fore not be out of place. At the very least it
may shame some of the TEXperts who have well-
developed Diablo drivers to share their secrets with
us beginners.

The Diablo as printer

One can envisage 3 very different ways in which
the Diablo might be used as an output device.

(1) The output could be run through the Diablo 2
or more times, with different daisy-wheels installed
on each iteration, e.g. first with roman, then italic,
then symbol, etc. The driver would of course have
to be designed so that only those characters in the
appropriate font were printed on each run.

(2) The output might be sent through the Diablo
Jjust once, with a single daisy-wheel, those characters
not sppearing on this wheel being “made up” by
superposition of existing characters (moved up, to
the right, etc, so as to give the required facsimile).

(3) All characters and symbols might be made up
out of dots, using the graphics mode on the Diablo.
In effect this would make the Diablo analogous to &
digitalised type-setter, albeit one of very low resolu-
tion.

Our calculations seemed to show that the third
solution would be impracticably time-consuming,
each page taking more than half-an-hour to put out.
We hope to implement the first solution shortly.

16

This could presumably give output of quite good
quality. But we began by writing a driver to the

second specification; and that is what is described

here.

Minimal font requirements for TEX

TEX can be run with only 1 font (presumably
roman) provided the text does not include mathe-
matical formulae. If full mathematical mode is re-
quired (so that all the control sequences in the TEX
manual can be used) then 10 fonts must be supplied,
namely: 3 roman fonts for ordinary size, script size
and script-script size; 3 italic and 3 symbol fonts
similarly; and 1 font for outsize characters (including
those built up from smaller parts). However, the
fonts for different sizes need not really be different,
e.g. roman script and roman script-script may well
be the same. (But roman and italic cannot coin-
cide, since entirely different characters occur in cor-
responding places on the 2 fonts.) Thus the minimal
number of fonts needed is 4: roman, italic, symbol
and “ex” for extra large characters.

We provide these 4, plus a “typewriter” font
which allows us to print files, e.g. of macros, exactly
as they are written.

Our solution: an overview ...

As remarked above, TEX requires information
about the particular output device in use both on
input (the widths, heights, etc of the characters) and
on output (how to interpret the DVI bytes).

We keep all the information required in a
single file, DIABLO.TBL. This helps to ensure
that the input and output modules match: any
changes made in one being accompanied by ap-
propriate modifications to the other. Two programs,
MKTFM.PAS and MKFNT.PAS, then construct the
input and output information from this in the re-
quired format.

More precisely, MKTFM.PAS constructs from
DIABLO.TBL the 4 font tables needed for
mathematical work, DIARM.TFM, DIAIT.TFM,
DIASY.TFM and DIAEX.TFM, together with the
“typewriter font” DIATT.TFM. These are written
in the format (FILE OF integer) required by TEX.

Meanwhile, at the “front end”, MKFNT.PAS
constructs from DIABLO.TBL a file DIABLO.FNT,
which our output driver DVIDIA.PAS takes as
auxiliary input in addition to the DVI file produced
by TEX.

... and some details

The account above is somewhat simplified. In
practice we have found it useful to split both the
input and the output modules, so that we have a
“readable” account of what is going on at each stage.

TUGboat, Volume 2, No. 3

Thus for the input module we first produce &
single large file containing all 4 fonts in hexadecimal
form. A second program then converts this “. TFH"
file into the 5 requisite “.TFM” files.

Similarly, at output we first unpack the “.DVI”
file into bytes, before translating these into Diablo
instructions.

We also found it convenient to split off
the “constant” part of DIABLO.TBL (containing
the prefaces and epilogues to the .TFM files)
into an auxiliary file DIABLO.AUX. This leaves
DIABLO.TBL to concentrate on the actual con-
gtruction of the 640 characters in the 51 fonts.

To summarise: all font information is kept in
the 2 files DIABLO.TBL and DIABLO.AUX. The
program MKTFH.PAS constructs a readable file
DIABLO.TFH from these; and MKTFM.PAS then
converts this into the 5 .TFM files corresponding to
the 5 fonts.

With these font files in place we csn run
TEXPRE. We are then ready to put our manuscript
file, say MS.TEX, through TEX.

The program DVIBYT.PAS unpacks the file
MS.DVI produced by TEX into its constituent bytes,
in the readable file MS.BYT.

Meanwhile MKFNT.PAS has constructed from
DIABLO.TBL a file DIABLO.FNT for our output
driver BYTDIA.PAS. This driver converts the file
MS.BYT into a file MS.DIA ready-—at last—to be
sent to the Diablo.

Command files

It would be tedious to go through the above rig-
marole every time we had a file to TEX. So we make
free use of command files to cut the slog.

We find the DEC-20 (TOPS-20) .MIC (Macro
Interpreted Commands) file format particularly con-
venient, since it allows us to pass parameters—the
name of the file to be TgXed, and the directory in
which the TEXing is to be done.

With .MIC’s help, we need only type in 2 com-
mands. On first setting up TEX we type

0do texpre <scratch>
This installs TEX in our “public” directory
<scratch>. To TEX a file, say MATHS.TEX
(supposing both ourselves and this file resident in
the directory <scratch>), we give the command
: 0do tex maths

The output for the Diablo is written in the file-
MATHS.DIA.

These 2 .MIC files are listed in Appendix A, since
they provide a good summary of the relations be-
tween our numerous programs. ‘

1t is not necessary to study MICology in order to
understand these files. Suffice to say that lines start-

TUGboat, Volume 2, No. 3

ing with O represent commands normally entered at
the terminal; while lines starting with * correspond
to entries made in response to requests from within
programs.
The Diablo table

Most of our time and effort has gome into 2
modules, the Diablo table and the driver.

Looking first at the table, DIABLO.TBL takes
the form of a textfile, with 1 line for each of the
5 X 128 = 640 characters in our 5 fonts. The first

2 lines should make the pattern clear:
0000B w=9 "\h3\bj\v3\u-\d \r* \Gamma
0001B w=10 "\h2/\v3\d---\u\\\r" \Delta

The figure following “w=" is the width of the
character. At present we take all characters to have
the same height 6 vu, and the same depth 0 vu. (For
the meaning of “vu”, see the next section.) It will
be easy enough to allow varying heights, etc, later, if
that proves necessary. The string in quotes following
the width contains the instructions for printing the
character on the Diablo. The backslash introduces
control sequences with the following meanings:

\bn set HMI to n (i.e. n/120 inch)

\r reset HMI to standard setting (n = 10)
\vn set VMI to » (i.e. n/48 inch)

\u move up

\d move down

\ move forward

\b move back

\"\\ print " or \

Some of the more interesting characters in
DIABLO.TBL are listed in Appendix B.

Diabelic peints

The horizontal resolution of the Diablo is 1/120
inch, and the vertical resolution 1/48 inch. All
movements are through multiples of these. We
therefore found it convenient to introduce a horizon-
tal unit “hu”, equal to 1/120 inch, and a vertical
unit “vu”, equal to 1/48 inch.

For the moment we have actually re-defined
“point” to have these 2 meanings, according as they
refer to horizontal or vertical measure. This en-
sures that actual movements all take integer values,
simplifying the arithmetic of width tables, etc.
However, the machinery to implement proper points
is all in place.

The Diablo driver

Given the format of .DVI files, the driver for a
particular device almost writes itself; and indeed
most of our driver is actually device-independent.

A very abbreviated version of the driver may
be found in Appendix C. All PROCEDURE head-
ings are given; but where there are several similar

17

PROCEDURES, only 1 body is listed. Also horizon-
tal and vertical movements are treated in much the
same way; so only one of these is detailed.

Our PASCAL compiler PASC20 allows the inelu-
gion of header files containing CONST and TYPE
declarations. This useful feature greatly reduces
the risk of incompatible modifications being made
to different modules. Qur header file TEXDIA.H is
listed in Appendix C after the driver BYTDIA.PAS.

Our only real design decision was to accumulate
movements. TEX puts out a large number of redun-
dant movements, e.g. successive DVI instructions
might order an upward movement of 2 points, fol-
lowed by a downward movement of 10 points. To
prevent the Diablo from doing a St Vitus dance,
we accumulate all movements until printing is im-
minent. Thus a record is kept of the point (realH,
realV) on the page where the “cursor” actually is,
as well as the point (H, V) where it should be, if all
movements to date had been implemented.

The actual position is only updated—by
making the appropriate horizontal and vertical
movements—when a print instruction is received.

Appendix A. The 2 command files
TEXPRE.MIC

Odefine s: <scratch>

QGcopy sysdep.pas, texpre.pas, tex.pas s:
Ocopy ascii.tbl s:

Qcopy sysdep.str, texpre.str, tex.str s:
Ocopy texdia.h, mktfh.pas, mktim.pas 6:
Ocopy mkfnt.pas, dvibyt.pas, bytdia.pas 8:
Ocopy disblo.aux, diablo.tbl s:

Qcopy diablo.tex, basic.tex s:

Gcopy tex.mic s:

Oconnect 8:

Opasc20

*gysdep=sysdep

*texpre=texpre

*tox=tex

smktih=mktih

mktim-nktin

smkfnt=skfnt

*dvibyt=dvibyt

*bytdia=bytdia

*1Z

O0load texpre, sysdep

Osave

0load tex, sysdep

Qsave

Qdelete sysdep.pas, texpre.pas, tex.pas
Odelete sysdep.rel, texpre.rel, tex.rel
O0delete strinmi.tbl

Qappend sysdep.str, texpre.str strini.tbl
QGexe mktfh '

*diablo.aux

*diablo.tbl

s*diablo.tfh

QGexe mktim

18

#diablo.tth
sdiarm.tfa
sdiait.tin
sdiasy.tin
sdiaex.tin
*diatt.tin

Qexe mkint
=diablo.thl
sdiablo.fnt

Orun texpre

*\igput diadblo \end
Odelete strini.tbl
Oappend sysdep.str, tex.str strini.tbl

TEX.MIC

Oconnect <scratch>

Orun tex

*\input 'A \end

Orun dvibyt

*’A.dvi

Ayt

Orun bytdia

*'A.byt

*'A.dia

Appendix B. Excerpts from DIABLO.TBL
00008 w=9 *\h3\bl\v3\u-\d \r* \Gamma
0001B w=10 *\h2/\v3\d---\u\\\r* \Delta
00028 w=10 *\hS\b{(\b--)\h2 \r* \Theta
00038 wz12 °\B4\b/ \\ \r* \Lanbda
0004B w=12 "\hO/\r\\" i
00058 w=12 *"\bh3|\v8\u_\d{ \r* \Pi
00088 w=10 "\hO>\vS\u-\d\d-\u\r * \Sigm
00078 w=10 *Y* \Upsilon
00108 w=10 "\hOo]({\r * \Phi
0011B w=10 “U\b|" \Psi
0012B ws10 *\hoO\v2\u\r_\d* \Onega
0080B w=10 "O®]

01018 w=10 “A* A

01328 w=10 *2° 4

01378 w=12 *\h8-\r-* -
01418 w=10 "a* s

01728 w=10 “=°]

0200B w=9 “\h3\bj\vS\u-\d \r* \Gammait
02138 w=12 "\hde(\r* \alpha
0214B w=10 *\h3{\hOo\v3\uo\d\A7 \r* \beta
02158 w=0 b

02168 w=1i0 *\hOo\v2\u\r<\d* \delta
0217B w=10 "\hO<\r~* \epsilon
0220B w=10 *\hOc\v3\uc\d\r * \seta
02218 w=10 "\h2n\v2\d/\hé \r* \eta
02228 w=10 “\hOO\r-* \theta
02238 w=10 "i* \iota
02248 w=10 °“k°*

02258 w=12 *\vS\d\h1'\vi\u’\vd\u\r\\" \lambda
02268 w=10 *\h3\b,\rv* \mu
02278 w=13 *"\h3(\r/* \nu
0230 w=9 '\hﬂc\vﬁ\uc\v:\d\hi\b\ho'Q;:\d\r.\vi\u'
0231B w=10 "\hO\vi\u-\v3\d\vi\d\r\"\v3\u\"* \pi
02328 w=12 "\h3\b\v2\di\u\ro* \rho
02338 w=i2 *\h2o\wvi\d\r}\u" \sigma
02348 w=13 "\wi\d\hi}\u\h2t\d\rH\u" \tau
023SB w=10 “v* \upsilon
02360 w=10 "\hOo\r/" \pht
02378 w=10 *x* \chi
02458 w=10 “\hOo\r\vi\d'\u" \partial
0260B w=10 0% 0

03018
03728
08788

03748
04008
04018
04028
04038

04078
04108
04118
04128
04138
04148
04158

04168
04178
04208
04218

04228
04238
04248
04258
04268
04278

0431B
04328
04338

0435D
04378

04418
04438

04458

04478
04508
0451B
04578

0461B

04858
04708
04718
04728

04738
04748
04758
04768
0500B
05018

05418

=10
=12

w13
=10
=10
=10

=10
=10
=10

w=10
w=10
=10

w=10
=14

w=10
=10
w=10
w14

w=10

w=10

=12
w=14

w=9
=10

w=10

=10
=16
=18
w=18
=16

TUGboat, Volume 2, No. 3

npw

A
]

\bO/\h2-\h0\v2\d’ \vé\u\r “\v2\a

"\h8u\ru*

.8

"\v2\u.\d"*

-xi

"\vi\de\u*

l\\-

*\vi\uo\d"
*\ho+\v3\r\d-\u"
*\ho+\v3\r\u-\d"
L] o\b‘ []

g\b~

-x\boc

*\hi\vi\u, \d0\v3\u\r\d"®

*\hoo\vi\u\r.\a"

\psi
\onegs

\cdot
\times
\ast
\rslash
\cire
\pa

\mp
\oplus
\ominus
\otimes
\odiv
\odot

*\h2 \hO.\v3\u.\vil\u_\vd4\d\h2 \r *

"\hO|\r\v3\u-\d*
*\ho\r\vi\u.\d"
"\hol\r\vi\u_\d*

\div
\interc
\bullet
\

porp
"\b2 \ho\v3\u_\vi\u_\u_\vS\d\bé \r*

*\ho<\r\vd\d-\u"
*\ho>\r\v4\d-\u"
"\ho<\r\vd\d-\u"
\h0>\r\v4\d-\u
*\ho<\r\v4\d-\u®
"\ho>\r\vd\d~\u"
"\v2\d}\u*

*\bO\v1\d}\r\v2\d}\v3\u" \

new
I) »

\ho=\r/
*\ho=\r\vd\u.\d"
a <l

'>l

"\h3<¢-~\r*
\h3-->\r
\ho!\rt
*\ho|\r\vi\dv\u"
um(_..\r)-
.\”(“(»
Im,“,u
"\ho-\r\vi\d}\u*
*\h8<=\r"

~ *\hB=>\r"*

\h6|~\r>
ere
*\h8o\ro"
"\hOC\r-*
\hoC-\z/
“\hOQ\r/*"

*\B4\\-/\r"

"\hO\v3\u-\d-\d\bd-\u\r|*

"\h3\v3\d’\\’\r*
e
\ho]\r\v7T\u_\d
\ho/\r"

DAI

*\h8\\/\r"
"\h8/\\\z*
*\h8/\\\r"
\h8\\/\r
\h3{-\r-
“\u3--\r|*

\egqv
\subset
\supset
{\char*034}
{\char 035}
\preceq
\succeq
{\char’082)

approx
{\char’030}
{\char’021)
{\char’039)
\doteq
\prec
\suce
{\char’137}
{\char’'031)
\up
\down
{\char'027}
\lsls
\grgr
\sineq
{\char’137}
{\char'031)
\mapsto
\prime
\infty
\in
\notin
\emptyset
{\char’'024)
{\char’028)

char’s
not implemented

\alepd

\real

\imag

\top

\not

\Ascr

{\char'028)

{\char’022}

{\char'004)

{\char*087)

\vdash

\dashv

TUGboat, Volume 2, No. 3

05426 w=10 *|" \1floor

05430 w=30 *|* \rfloor
0544p w=10 " \lceil
05468 w=10 *|" - \reeil
05468 w=10 "{" \{
0547B w=10 "} \}
0550B w=10 <" \langle
0551B w=10 *>" \rangle
05626 w=10 *|* \relv
05538 w=6 "\hs||" \lettvy
05548 w=8 *\n2(l \r* \dlezt
05558 w=8 *\h2[] \r* \dright
0560B w=12 *\v4\d\h8'/\r" \surd
0561B w=10 "#" \#

05628 w=9 *\ho\\\b1\b\v3\u\h2--~-\d/\r* \nabla
05638 w=9 *\h3\v2\u(\d\d) \u\r" \ssallint

05648 w=12 *\hS\bl\vi\u \d|\r" \lud

0665B w=12 "\h&\bI\v7\u_\d|* \glb
0571B w=10 *\hO|\r\vi\u-\d* \dag
0572B w=10 *\bOJ\vi\u-\v2\d\r-\vi\u®* \ddag
0574B w=10 "o \¢

O576B w=0 " \copyright
06768 w=12 "\b2-\rL* \sterling
0577TB w=10 "$" \$

Appendix C. The Diablo driver
(much abbreviated) -

PROGRAM bytdia (imput, output);
INCLUDE 'TEXDIA.H’

VAR
fnt_file: Iat_store;
stack: ARRAY [stack_rsnge] OF pts;
tont_mem: ARRAY [mem_range] OF byte;
char_width: ARRAY

{font_range,0..127] OF byte;

char_base: ARRAY

[tont_range,0..127] OF mem_range;

b, ¢: byte;

H, V, x, §. 2, v: pts;

true_H, true_V, p, q: pts:

page_mo, SP, i: integer;

BS, HT, LF, VT, FF, ESC, RS, US: char;
1: font_range;

printing, overprinting: boolean;

FUNCTION hu_from_pts (p: pts): integer;
BEGIN hu_from_pts := round (p) END;

FUNCTION vu_from_pts (p: pts): imteger;

FUNCTION hu_to_pts (hh: integer): pts;
BEGIN hu_to_pts := hh END;

FUNCTION vu_to_pts (vv: integer): pts;

PROCEDURE hmi_set (b: byte);
BEGIN write (ESC, US, chr (b+1)) END;

PROCEDURE wmi_set (b: byte);

PROCEDURE hmi_reset;
BEGIN bmi_set ¢hor_spacing) END;

PROCEDURE wmi_reset;

PROCEDURE hor_tab (b: byte):
BEGIN write (ESC, HT, chr (b+1)) END;

PROCEDURE vert_tab (b: byte);
PROCEDURE initialise;

BEGIN ‘
BS := chr(8); HT := chr(9);
LF := chr(10); VT := chr(11);
FF := chr(13): ESC := chr(27);
RS := chr(30); US := chr(81);
page_no := 0; 8P :=0;
hmi_reset; wmi_reset

END;

PROCEDURE read_2_bytes (VAR p: pts);
PROCEDURE read_3_bytes (VAR p: pts):
PROCEDURE read_4_bytes (VAR p: pts);
VAR ¢, d, o, £: Dyte; '

BEGIN
read (c, d, e, 1);
P := c*256 + d + (e + £/258)/256;
IF (c >= 128)
THEN p := p - 2564256
END;

PROCEDURE move_to (H, V: pts);.

VAR xx, hb, hhq, hhr, yy, vv, vvq, vvr:

integer;

:= hu_from_pts (H ~ true_H);
<> 0)
THEN IF (abs(xx) < 127)
THEX BEGIN
hmi_set (abs(xx));
IF (xx > 0)
THEN write (* ')
ELSE write (BS);
true_H :=

true_H + hu_to_pts (n);

bhmi_reset

ELSE BEGIN
hh := hu_from _pts (H);

hmi_reset;
true_H := hu_to_pts (hh)

[. |
=

20

PROCEDURE hor_line_length (p: pte);
PROCEDURE vert_line_length (p: pts):
VAR yy. yyq. yyT. i: Ainteger;

BEGIN
yy := vu_from_pts (V + p - true V);
yyq :=yy DIV 4; yyr := yy MOD 4;
bmi_sst (0); wai_set (yyr);
write (*|°, LF); wai_set (4);
FOR 1 := 1 T0 yyq DO write ("|’, LF);
V:i=Ve+p;
true_V := true_V + wu_to_pts (yy):
hmi_reset; wvmi_reset

END;

PROCEDURE push_stack;
PROCEDURE pop_stack;

BEGIN
IF (SP < 6)
THEN writeln (tty, °Stack exhausted’);
w := gtack[SPl; SP := 8P - 1;
z := stack[SP]; SP :=S8P - 1;
y := stack([SP); SP := 8P - 1;
x := evack(SP]; 8P := 8P - 1;
V := stack([SP}; SP :=§P - 1;
H := stack(SP}; SP :=SP -1
END;

PROCEDURE new_page;

BEGIN

write (FF):

B::=0; V :=0;

true H := O0; true V :=0;
page_no := page_no + i
END;

PROCEDURE store_font (VAR fnt_file: fat_store):

VAR i: integer; b: byte; f: font_range;
BEGIN
1i:=0; b :=0; f:=1;
WHILE NOT eof (fny_file) DO
BEGIN
char_width [f,b] := fnt_filet;
get (fat_tile);
char_base [f,b] :=1;
REPEAT
font_mem {i] := fnt_file?;
get (fat_tile);
1 :=1+1
UNTIL (font_mea {1-1} = 0);
b := (b + 1) MOD 128; .
IF (b = 0) AND NOT eof (fnt_file)
THEN £ =2 + |
END
EMD;

PROCEDURE change_font
(VAR £: font_range; ch: char);

TUGboat, Volume 2, No. 3

BEGIN
IF (ch IR [‘r°, *1’, °s*, 'e’, 't'D
THEN CASE ch OF

i f :=1;
i A ft:=5
END
ELSE writeln (tty, ‘Undefined font °’,
t, * used’)
END;
BEGIN (* main »)
initialise;

reset (Int_file, "DIABLO.FNT’);
store_font (fnt_file);
WHILE NOT eof AND (b <> 131) DO
BEGIN
read (b);
IF (b <= 127)
THEN
- BEGIN
- IF NOT printing
THEN BEGIN
move_to (H, V);
printing := true
END;
i := char_base [f, b];
WHILE (font_mea [i] <> 0) DO
BEGIN
write (chr (font_mem{i]));
- it
END;
IF overprinting
“THEN . BEGIN
- printing := false;
overprinting := false

END
ELSE H := H + char_width {f,b];
true_H := true_H + char_width [f,b]
END
ELSE IF ((128 <= b) AND (b <= 153}))
THEN
BEGIN
printing := false;
CASE b OF
128: : (» NOP »)
129: BEGIN (s BOP #)
FOR 1 := 0 TO 10
DO resad_4_bytes (p):
_bew_page
130: H
131: ; .
(« start of postamble *)
132: push_stack;
133: pop_stack;

(= EOP 9)

134: BEGIN
(* vertrule %)
135: BEGIN

(* horzrule *)
read_4_bytes (p):
read_4_bytes (q);

TUGboat, Volume 2, No. 3

hor_line_length (q);
H:=H-q
END;
136: BEGIN
overprinting := true
END
137: BEGIN (s fomt %)
END;
138: BEGIN
read_4_bytes (w);
H:=H+w
END;
END
ELSE IF ((154 <= b) AMD (b <= 217))
THEN change_font (f, chr(b-90))
END
END.

The header file TEXDIA.-H

CONST
hor_spacing = 10:
vert_spacing = 8;
stack_size = 125;
mema_size = 3000;
max_font no = 5;

(» standard HMI #)
(+ standard VMI *)

TYPE
byte = 0..255;
half_word = 0..65535;
oneoftwo = 1..2;
oneoffour = 1..4;
balves2 = PACKED RECORD
lhword: balf_word;
CASE oneoftwo OF
1:(rhword: half_word);

2: (byte2: byte; byte3: byte)

PACKED RECORD
byteO: byte;
bytel: byte;
CASE oneottwo OF
1:(rhword: half_word);
2: (byte2: byte; byte3: byte)
m-

memoryword = PACKED RECORD
CASE onecffour OF
1:(pte: real);
2:(int: integer);
3: (twohalves: halves2);
4: (fourbytes: bytesd)

END;
bytes4 =

END;
pts = real;
stack_range = 0..stack_size;
mem_range = 0..mem_sgize;
font_range = 1..max_font_no;
Int_store = PACKED FILE OF byte;
font_type = (rm, it, sy, ex, tt);
fontfile = FILE OF memoryword;

21

* % ¥ % %x % *x % *x * %

Site Reports

* ¥ %X * x ¥ %X X *x * X

NEWS FROM THE HOME FRONT
David Fuchs
Stanford University

Here’s what’s going on TEX-wise at the CS
Department at Stanford. Professor Knuth has a
working version of the UNDOC macro processor
written in its own language (DOC). UNDOC com-
piles itself into a Pascal program, thus UNDOC
is now available in Pascal. DOC is being used as
the source language for new versions of TEXDOC
and TEX82. All three programs (both DOC and
Pascal sources) are expected to be available for port-
ing to new machines in early 1982. TgEX82 is a
complete rewrite of TEX based on the experience
gained from Ignacio Zabala’s translation of Sail-
TEX. Portability has been improved by removing all
floating point operations. Another sticky portability
problem with the current Pascal TEX is initializa-
tion. Recall that installing a new TEX involves run-
ning the program TEXPRE, which makes a large
file (called TEXINI.TBL) that represents the initial
state of TEX's data structures (about 36K words in
size). On TOPS20, we then run TEX, which reads
in TEXINLTBL, at which point we interrupt the
process and save the current core image. When our
usgers ask for “TEX”, they get a copy of this core
image, which continues execution from where we in-
terrupted the first TEX run. Thus, our users are
saved the not-insignificant overhead of data struc-
ture initialization. The resulting core image is also
smaller and faster than if the initialization func-
tions of TEXPRE were to be incorporated into TEX.
Unfortunately, we have found that the facility of
“gaving an interrupted job’s core image for later con-
tinuation” is not available in many environments,
including VAX VMS, UNIX, and IBM timesharing
gystems. Consequently, TEX users outside of the
DEC 36-bit world have TEX re-read TEXINLTBL
each time it is run, which is a significant time
handicap. To help rectify the situation, TEX82's
data structures will change to require less initializa-
tion. We also plan to make a program available
that can read TEXINI.TBL and produce Pascal-
language initialization code to be inserted into the
TEX Pascal source before compiling. Unfortunately,
variable initialization is not standard Pascal, so
there must be different versions of this program for
the Hedrick compiler, Pascal/VS, VMS Pascal, etc.

22

Of course, the option of reading in a significantly
smaller TEXINI.TBL each time TEX is run will still
be a possibility, and will only use standard features

of Pascal.

Scott Kim's INVERSIONS has appesred in
bookstores. The text was typeset with TEX, using
fonts leased from the Alphatype Corporation.

A few people in our department spent some
of their summers porting Pascal TEX to a num-
ber of new machines. Joe Weening has a version
working on the Cray, with output to a Versatec.
Jeff Rosenschein brought up TEX in Israel on an
IBM processor running VM/CMS, with output on
a Versatec. I spent some time writing Pascal drivers
for the Autologic APS-5 and Mergenthaler Linotron
202. In fact, it’s a single program that compiles
under either IBM’s Pascal/VS or Hedrick’s Pascal

for DECSystem 10/20, and will convert DVI files -

to APS-5 DCRTU Input Command Language for-
mat, or Linotron CORA-V format, or Linotron
Binary Byte format, depending on the setting of
some compile time switches. The first version of
this program is up and running at two IBM and one
DEC?20 sites. Each of these installations is running
its typesetter with the native fonts (suxiliary pro-
grams serve to convert font width information as
supplied by Autologic and Mergenthaler into TEX-
compatible TFM format). This restricts the number
of TEX's features that can be used, however, since
information about ‘height’ and ‘depth’ of characters
is not provided by either company, and can only be
guessed at heuristically, and changed manually if the
need arises. Also, much of math mode is crippled,
since the TEX math fonts are not available. There
is still some hope for the future, though. There has
been some interest expressed by individuals both at
Autologic in LA and Linotype-Paul in England in
Knuth’s Computer Modern fonts. Similarly, at the
instigation of the folks in Wisconsin, Compugraphic
seems interested in the possibility of providing the
CM fonts to 8600 users.

One other thing I worked on over the summer
was PXL files. A PXL file is the raster descrip-
tion of a font at a given size and resolution (such as
CMRI10 at 200 dots per inch). The documentation
for PXL format is contained elsewhere in this issue
(p. 8). Our spooling software for Varians/Versatecs
has been updated to use PXLs. PXL files supersede
the older VNT format and have the following ad-
vantages:

(1) They include sufficient information to be used
with TEX’s magnification features.

TUGboat, Volume 2, No. 3

(2) I have added a PXL mode to METAFONT,
so that PXL files can be made directly for
METAFONT f{onts.

* (3) The internal layout of PXL files has been im-

proved to allow for more efficient operation of
spoolers that must deal with them.

(4) The layout is also such that PXL files can be
written sequentially from METAFONT, which
will aid in writing a transportable version of
METAFONT.

¥ %X ¥ x ¥ *x ¥ ¥ * x ¥k

TEX UNDER THE NORTH STAR

Michael J. Frisch
University of Minnesota

I have made some progress on the CDC Cyber
TEX at the University of Minnesota since the last
TUGDboat, but at this writing (October 1) it is not
ready for distribution. There are a few known bugs
in my version of TEX and a possibility that more
bugs will show up during further testing. (I believe
that most of the bugs are in my implementation
rather than in the original Stanford version.) As a
result, I can’t give an estimated release date.

I have a working—though probably not debugged
—device driver program for our Varian plotter.
The device driver is written in machine-dependent
FORTRAN since I can write and debug code much
faster in FORTRAN. The driver translates the DVI
file into line segments. Each segment has the same
baseline and the same size font. At the end of each
page, the driver sorts the segments by vertical posi-
tion and then outputs scan lines to the plotter one
at a time. This allows multiple column text input
to be processed.

The driver is small enough to run in interactive
mode though my version of TEX will not. Luis
Trabb-Pardo pointed out that if I can get TEX to
run in a large memory area, then I could make a
large driver keep an entire page of plotter bits in
memory and vastly simplify the driver. For lack of
time, I haven’t tried this idea. The driver I wrote
works and could be improved or rewritten later. My
thanks to David Fuchs for his Pascal DVI file print-
ing program which explained a lot of mysteries to
me about the file.

My version -of TEX now accepts almost all of
the standard BASIC file. This is & great improve-
ment over the TEX version I mentioned in the last
TUGboat. My TgX doesn’t read all the font in-
formation files correctly, because some were not
properly converted from PDP-10 36-bit floating

TUGboat, Volume 2, No. 3

point to CDC 60-bit. Despite this, and with some
temporary changes, I have made a very short TEX
input file run and have produced a plot so I have
hopes that I will make more progress.

Though my version of TEX is not totally func-
tional, the University of Aarhus in Denmark has one
they built that works quite well. Erik Bertelson and
I recently made an oral agreement that Minnesota
will distribute their version in the U.S. With code
modifications and decreased memory size, their ver-
sion runs in about 38K words. They have printed a
couple of books using it so it is quite well debugged.
They have a Pascal version of UNDQOC which has
made it a lot easier to change TEX. When I receive
a copy of their TEX, I will install it and then decide
on distribution details.

* k% ok k* k * %k k Xk X ¥

A TUGboat TOUR:
EXCERPTS FROM THE TEXNICIAN’S LOG

Barbara Beeton
American Mathematical Society

The morning mail is very exciting around the
TUGboat deadline. In it appear manuscripts and
mag tapes from all over, bearing who knows what
news, but certainly containing something unex-
pected and interesting. Putting together an issue
is also fun; the readers get to see only the printed
pages, but I get to grub around in the mud that
seeps into all the cracks.

During this tour I'll be referring to various ar-
ticles that have appeared in TUGboat, so you might
went to get out your back issues. In particular, I'll
be making a few changes to the previous TUGboat
guidebook: How to Prepare a File for Publication in
TUGboat, vol. 2, no. 1, pp. 53-54.

Although this How to ... guide states that
basic.tex and all the features of AMS-TEX are
available, as well as some formatting macros espe-
cially for TUGboat, some authors build their own
macro set from scratch, including formatting details.
This may be required by local font and device limita-
tions (see the article by John Sauter, p. 34, and the
excerpt from his output, p. 13), or the author may
simply have his own idea (different from mine) of
how his article should look in print.

Whenever possible, I try to accommodate the
author’s ideas, so long as they do no violence to
the articles which will follow when the issue is put
together. Often this can be accomplished very
simply: quarantine an article from the rest of the
issue by putting { braces } at the beginning and
end. (This was necessary for Brendan McKay's ar-

23

ticle in vol. 2, no. 2, pp. 46—49; any attempt to revise
the format would have taken too long, and would
certainly have resulted in unfortunate errors.)

Another technique is to lay out the pages in such
a way that the “singular” item begins on a new page,
and deal with it separately, adjusting page numbers
as required. This is obviously necessary for material
received as camera copy, but another reason would
be that, between the standard TUGboat set and the
author’s, there are too many control sequences to
fit in the hashtable. (Mike Plass’ article on syntax
chart macros, p. 39, is an example of this condition.)

While 'm on the subject of the hashtable, I
should note that, here at the Math Society, we've
found it necessary to change several of the size
values that show up in the error message

! TEX capacity exceeded
(TEX manual, p. 144). The most important are
the following: hashsize=1009, memsize=32768,
varsize=11500. (One or more of these changes may
by now have been made in the “official” SAIL ver-
sion at Stanford.)

In the SAIL implementation of TEX, memsize is
restricted to a maximum of 2!%; this will be lifted
in Pascal TEX, but we won’t be using that un-
til the “definitive” version is published. varsize
is effectively a subset of memsize, and therefore
the actual capacity of memsize is really only about
21,200. (All these values represent 36-bit words on
our DECSystem 2060.) The original value of var-
size was 17,000, but much of our work involves
large pages of small type and, being unable to in- -
crease the absolute value of memsize to avoid ex-
ceeding it, we had to increase its capacity by reduc-
ing varsize.

hashsize can be no larger than 2!°, and Don
Knuth recommended that its assigned value be a
prime (it used to be 797); he suggested 1,009, equal
to roman MIX, of which he is particularly fond
since he finished TEXing Volume 2 of The Art of
Computer Programming (TEX manual, Appendix E,
pp- 161 ff). These changes must be made in the
SAIL (or Pascal) source, and the modules recom-
piled.

To provide more facts on just how much of
hashize, varsize and memsize are required by
troublesome jobs, we've also created a “diagnostic”
version of TEX, which reports at the end of each
completed (output) page and at each occurrence of
\ddt the current and maximum (so far) demands on
varsize and memsize. It also, if requested, prints
each control sequence name as it is loaded into the
hashtable, counting down as it goes from the ini-
tial value of hashsize (1,009 less however many

24

control sequences were preloaded). Some of this
reporting facility already existed in the SAIL source
code obtained from Stanford, requiring only that
a switch, MSTAT, be turned on before compilation;
we've suggested that a similar facility be included
in the “definitive” Pascal TEX.

As TEX comes into being on more different kinds
of computers, these computers generate tapes con-
taining input files to be processed somewhere else.
TUGboat gets a good sampling. We've success-
fully read tapes from the following computers: VAX
(running under both VMS and UNIX), IBM 370,
PDP-11 (TEX was not running on this machine; it
was used only to prepare the tape), Univac 1100,
and DECSystems 10 and 20. The DECSystem tape
utilities, of course, generate tapes that are “native”
to our 2060. Finding a common format for exchang-
ing tapes with other machines has been more of a
challenge.

The tape format we have settled on works quite
well, although it is limited to the standard AscCH
character set, one character per tape character (§
bits), which does not accommodate font files in in-
ternal form. This format is simply a variation on the
old “card-image” format, with 80-character records,
100 records per block (8,000 characters per block).
When reading one of these tapes, we assume that no
carriage return/line feeds are present, and that all
terminal spaces can be stripped from each record.
We therefore recommend that input lines not end
with the \|J control sequence, since it cannot be dis-
tinguished from \(cr) after stripping; in practice,
this has occurred only rarely, and was easy to cor-
rect, although inconvenient.

Another tape problem is what to do about labels.
The utility program we use to read “foreign” tapes
isn’t very clear about label formats, so the easiest
thing to do is omit labels. We have just successfully
read a IBM 370-generated tape with “ANSI standard
labels” (which are not among those defined in the
utility manual, and for which Susan Plass had to try
long and hard to find a description, and make several
attempts before a good tape was actually written);
we finally treated the labels as a separate file, which
was discarded once the real file was safely on disc.
Suggestion: forget about labels. (They're probably
really necessary only for multi-volume tapes, and
no single TEX file should be that big anyhow—it
would probably be big enough to contain the entire
Encyclopedia Britannica.)

Finally, there is the matter of identifying what
is on the tape. It would be appreciated if every
tape were accompanied by a transmittal form (one
is bound into every issue of TUGboat), and by 8 list

TUGboat, Volume 2, No. 3

of what files the tape contains. And, just to be sure,
% (file name)
as the first line of each file will msake it easier to

- check the disc copy.

Once files are safely on dise, properly identified,
they undergo some editing (as little as possible) to
ensure that they conform to TUGboat requirements.
Of particular importance for compatibility is the use
of a “standard” font set. For TUGboat (in fact, for
all the Society’s TEX work), our standard set is based
on the one used for the “book format” (TEX manual,
Appendix E, p. 152) except for \font ?=cmtil0 as
in basic.tex. Only font codes G through Z are free
to be used for job-specific fonts, so if a TUGboat
author has special font requirements he should note
them in comment lines at the beginning of his file
and if possible identify them by letters G-Z.

To permit automatic cross-referencing and inser-
tion of page numbers in the Table of Contents, a ref-
erence is added just following the title which allows
page numbers to be sent to a separate file. An error
in the second T-of-C page in vol. 2, no. 2, should give
you an idea how this works (when it’s done right),
but here are the details anyhow. In each file, a line
is inserted:

\pagexref{filnam}

which invokes the definition:

\def\pagexref#1{\send9{ det " #1{\curpage}}}
At the beginning of a TUGboat run the page number
file from the previous run is read in (~ is \chcoded
to type O for the duration, so that these definitions
really do become control sequences, then back to
type 12="other”). Then a new version of the file
is opened for output, to record new page numbers
should any changes have taken place. Actually, two
different, file names are used so that the old file is
available after the run for comparison to the new
version; also, some items don’t ever get run through
TEX, and their references are added to the page
number file manually. When the page numbers con-
verge, and a final scan of Varian copy turns up no
obvious blunders, the .DVI file is shipped off to the -
Alphatype for camera copy.

The main TUGboat header file is used to for-
mat the one- and two-column pages. At present,
the two-column routine uses the \save5\page ...
\box5\hfil\page technique. I would really like to
be able to write out each column as a separate page,
but the output drivers require that each “sheet” con-
tain the same number of “pages”, and I haven’t been
able to figure out how to output two “pages” for a
single-column page. Suggestions are welcome; I'll
submit this as a problem for the next issue if no
solution has been found by then.

TUGboat, Volume 2, No. 3

The address list uses a different header file, which
does output each \page (i.e. column) separately to
the .DVI file, putting the running heads and footers
out as part of the last column. The width of each
partial page is the distance from the left boundary
of column 1 to the right boundary of the current
column. This width is recalculated for every \page;
\xcol is the column number, \xcolmax is the total
number of columns per page, \xcolwd is the number
of points each column is wide, and \intercol is
the number of points skipped between two adjacent
columns:

\def \howwide{\setcount8\xcol -
\setcount3 0
\sowide)

\def \sowide{\advcount8 by -1
\adveount3 by \xcolwd
\ifpos8{\advcount3 by \intercol

\sowide}
\else{\xdef\thiswide{\count3 pt}}}

\output{ . . .
\howwide
\i? \xcolmax\xcol{{output headers)}
\vbox to size{
\hbox to \thiswide{\hfil\page}}
\if \xcolmax\xcol{{output footers)
\gdef\xcol{1}}
\else{(add 1 to \xcol)}}
I even use this to calculate the total page width
(needed for, e.g., running heads; TEX's arithmetic
is more reliable than mine):
\def \xcol{\xcolmax}
\howwide
\xdef \pagewd{\thiswide pt}
I've used this technique to put together pages of up
to 6 columns; if \xcolmax gets much larger, Mike
Spivak’s \result trick (vol. 2, no. 2, p. 50) has to
be used to avoid a nesting level error on \sowide.

The .DVI file now contains \xcolmax pieces
for each publishable page, each of which has the
same reference point (upper left corner). It merely
remains for them to be overlaid by the output
device driver, which is assumed to have “pasteup”
capability.

Yet another header file is used to prepare the
Errata list. You may already have noticed that
the current one has been TpXed, unlike those sent
out with previous issues. There's a good reason
for the delay: all the previous schemes for encod-
ing “typewriter-style input” have been rather cum-
bersome, and I've been waiting for one that’s really
easy to use. Mike Spivak has made up one for his
AMS-TEX manual (The Joy of TEX) that makes input
strings look just like ordinary math coding; the only
difference is that *...* goes around in-line state-
ments, and

25

ok

Aok

goes around displayed material. This will even-

tually become available for use in the main part

of TUGboat, and Mike has promised to publish his
macro.

I said I'd be changing the instructions for using
some of the TUGboat control sequences described in
the old How to ... guide. Here are the changes.

A new control sequence, \hpar will give you an in-
dented paragraph like this one. Unlike the other
hanging indented paragraphs listed, it doesn’t
have to be \ended.

~ The control sequence \endhpar turns out to be
unnecessary, since hanging indentation is tran-
sient, disappearing at the end of the current
paragraph.

— The line breaks in \textaddr can now be indi-
cated by \\; I got tired of misspelling \1brk
and made life easier (inspired laziness must be
the greatest source of creativity known to man).

Actually, there have been lots more changes to the

header files as I've learned more about TEX, but

most of these changes are entirely transparent to the
casual TUGboat author. When I’'m entirely pleased
with the package, I'll submit it for publication in the

Macros column. (It does depend on the AMS-TEX

macros, and is distributed with them on tape.)

In a later issue I'll report on the timing statis-
tics for TUGboat. There have been many questions
regarding how much computer time is required to
run TEX and prepare output on various devices.
Although TUGboat is probably atypical, it's one
publication that is reddily available to all TEX users,
and thus suitable for an example.

So keep those tapes and letters coming—this is
your newsletter, and only your participation will
keep it afloat.

* % ¥ % Kk *x *x ¥ *x ¥ X

TgX FOR THE HP3000
Lance Carnes

Amazingly enough, the mighty TEX-in-Pascal
system runs on the modest Hewlett-Packard mini-
computer.

The TEX-in-Pascal tape was received from
Stanford in May 1981 and it took approximately
two person-months to do the comversion. There
were no problems of significant magnitude compil-
ing the Pascal sources. As with every conversion
the sources had to be edited to weed out the “non-

26

standard” features (e.g. OTHERS:) and many of
the SYSDEP modules had to be rewritten. The
.TFM font files converted nicely from the FIX rep-
resentation of reals.

By far the most diffieult task was shoe-horning
TEX into a 16-bit word, 32K address space, non-
virtual memory machine. Accessing the 49152
records of MEM (takes 200K 16-bit words) and the
other large arrays was accomplished through liberal
use of software-implemented virtual memory. A ver-
sion of the Pascal P4 compiler was modified so that
when a large array is referenced, code is generated
to bring in chunks of the array from disc storage.

Naturally, a heavy performance penalty is paid
with this implementation. Currently it takes two
to three minutes to compile a single, simple page of
text. Additional optimizations will be implemented
before distributing this version, sometime in the
next month (November 1981). Anyone with ideas
and/or experience optimizing such an implementa-
tion is welcome to write to the address below.

This author has agreed to be the site coordinator
for the HP3000. If you are interested in obtaining a
copy of TEX for the HP3000, please write to the ad-
dress below. Indicate which model and MPE release
you have, and any output device(s) at your site. The
initial release is scheduled for December 1, 1981.

Lance Carnes
163 Linden Lane
Mill Valley, California 94941

TEX FOR THE IBM 370
Susan Plass
Stanford Center
for Information Technology

It's finally up and running—Pascal TEX for the
IBM 370 running in the MVS batch. We have suc-
cessfully produced device independent (DVI) out-
put files which have been correctly printed on
the Stanford Computer Science Department Dover
printer. We do not have output drivers for printing
these files from an IBM 370—we hope to write those
soon.

What we do have, however, is a version of PTEX
which runs on our 3033 under MVS and under
ORVYL, Stanford’s timesharing system. The fol-
lowing is a brief outline of the changes we have made
to PTEX in order to compile under Pascal/VS, to
run on an IBM processor under MVS, and to fix a
few known CSD version bugs. We have made no
changes to TEX specifically to run under ORVYL;

TUGboat, Volume 2, No. 3

that was achieved merely by compiling TiX with an
interactive version of Pascal/VS.

1. TgX
" a) All integer subsets were changed to PACKED in-
teger subsets.
b) All REALs were changed to SHORTREAL.
¢) EXTERN was changed to EXTERNAL throughout.
d) OTHERS: was changed to OTHERWISE throughout.
€) INITPROCEDURE was changed to PROCEDURE
INIT and a call to INIT was added as the first
executed statement.
f) In DEFINEFONT, the label 0 on the statement
LABEL 50, 31, O
is never referenced, causing a warning from
Pascal /VS; this label was removed.
g) In the loop from N+1 to 30 within
LEXICALORER, the initialization of
TRUNCWORD [I] : =0 was added to the existing in-
itialization of HYPHENATIONWOQRD.

2. TEXPRE
Changes (a) through (e) of TEX above are iden-
tical for the TEXPRE module.

f) There are a few lines longer than 72 characters.
These were broken up rather than expand the
MARGINS option to 80.

g) At the start of XENT the statement SWORD :=
NULWORD was added.

h) The following were added to INITSUF:

VAR I : INTEGER;
FOR I:=0 TO 115
DO SUFFIX[I].ALPHASET:=[];
i) The following were added to INITPREF:
VAR I : INTEGER;
FOR I:=0 TO 108
DO PREFIX{I1].ALPHASET:=(];

3. SYSDEP
Changes (a) through (d) of TEX and TEXPRE
are identical for SYSDEP; there is no
INITPROCEDURE, so CONSTANT VALUE variables
were changed to STATIC data.

e) The TYPE CHAR9 was changed to STRING (9).

f) All files were changed to type TEXT.

g) ASCII translation in and out and to and from
EBCDIC was added via the chrX and ordX ar-
rays.

h) Terminal I/O was modified so that files would
not be RESET for each reference (necessary for
a BATCH environment).

i) RESET and REWRITE statements were modified
for PASCAL/VS.

j) The routine INTOUT was replaced with an al-
gorithin more suitable for HEXadecimal arith-
metic.

TUGboat, Volume 2, No. 3

k) Octal computations and constants were changed
to HEX.

1) A POSTAMBLE file called PST is created in
CLOSEOUT to make this information easier to ac-
cess using standard IBM access methods.

m) The DVI file is always named DVI so that the
same DDname may be used in bateh JCL.

n) Code relating to DIRECTORY references was com-
mented out; it is not needed in PASCAL/VS.

o) The FONT file directory was changed to a VS
partitioned data set.

A tape containing the source for our version of
PTEX, TEX/370, will be available soon. For details
on obtaining a copy write to:

Susan Plass

C.I.T. Systems

Polya Hall, Room 203

Stanford University

Stanford, CA 94305
When available, TEX/370 will be supplied on an IBM
standard-labeled 1600 bpi tape—please don't send
us a tape.

We plan to fix bugs, implement new releases, and
incorporate comments and criticisms into TEX/370
and will publish those changes periodically to users
who have ordered TEX/370. No promises are made
or implied about responses outside of such newlet-
ters, but we do welcome feedback and will try to act
on it. We also plan to implement output drivers for
several output devices attached to our 3033/3081.
These will be announced as they are implemented.

TEX IN ISRAEL

Jeffrey S. Rosenschein
Stanford University

Over the past summer, TEX was brought up at the
Weizmann Institute of Science in Rehovot, Israel.
It is running there on an IBM 4341 under CMS,
with the Imperial College Pascal P4 compiler, and
producing output on a Versatec 1200-A.

Many of the issues addressed in this implemen-
tation of TEX have been treated (repeatedly) in
previous issues of TUGboat, with regard to other
machines and other versions of Pascal; neverthe-
less, for the sake of completeness, I will briefly
outline the major points of interest. It should be
noted, however, that this was an old version of TEX,
received from Stanford in January 1981.

Editor’s note: David Fuchs comments, “R is un-
Jortunate that Jeff had to use an old version of TEX-
Pascal. Most of the jollowing poinis had dlready

27

been cleared up by Ignacio Zabala and Eagle Berns
while Eagle wos working on compiling TEX under
Pascal/VS. Because Pascal/VS packs records and has
an OTHERS construct, it seems more suitable for the
current TEX than the Pj compiler. TEX82 i3 cur-
rently planned to require OTHERS, but even the cwr-
vent TEX makes no assumptions regarding packing.
The routine READFONTINFO is system-dependent,
and the documentation in TEX82 will be more explicit
about exactly which bits go where.

(1) In Imperial College Pascal, there is no default
case for CASE statements; instead, an IF-
THEN-ELSE construction was used to perform
its function.

(2) CASE statement selector variables being out of
range caused a Pascal crash (this is not the case
in Stanford’s Pascal). An IF-THEN construc-
tion made sure CASE statements were accessed
only when the selector variable was in range.

(3) Labels that were declared but not used had to
be removed.

(4) The INITPROCEDURE construct does not ex-
ist in Imperial College Pascal; instead, a proce-
dure called INITIALIZE was introduced in its
place. .

(5) Overly large procedures had to be split for
compilation to succeed. In the TEXPRE
module, these procedures were INITIALIZE,
INITMATHCODES, INITFONTCODES,
INITSUF and INITPREF. In the TEX
module, the procedures JUSTIFICATION and
MLISTTOHLIST had to be split.

(6) Imperial College Pascal does not allow assign-
ment between variables of differently named
(though identically defined) types. Thus,
the TYPE declarations of PCKDHYPHBITS,
PCKDCONSPAIR and TBLREADOUTTYPE
in the TEX and TEXPRE modules were
changed, respectively, to declarations of
PACKEDHYPHENBITS,
PACKEDCONSONANTPAIRENTRY and
TABLEREADOUTTYPE so as to be com-
patible with the corresponding SYSDEP decla-
rations.

(7) The name INPUTFILE was used in TEX both
a3 a procedure name and as an identifier of an
enumerated type. To allow compilation, the
identifier name was changed.

(8) FILES OF ASCH had to be changed to FILES
OF CHAR. .

(9) The ORD and CHR functions in Imperial
College Pascal map to and from the EBCDIC
character encoding scheme. This conflicted
with TEX’s expectations of an internal ASCH

28

encoding of all characters. Two translation ar-
rays were utilized to convert characters to and
from ASCII, thus satisfying TEX's needs.

(10) PRINTOCTAL was altered so as to work on a
32 bit machine.

(11) The procedure CONNECT was used to link
internal Pascal file names to real-world files,
replacing TEX's multiple parameter RESET
and REWRITE procedures.

(12) All code that looked for an “end-of-line” charac-
ter (usually a carriage return) was changed to
utilize the EOLN function. This was neces-
sary due to the record-oriented structure of IBM
files. Likewise, instead of writing a carriage
return onto a file to signify an end-of-line, the
procedure WRITELN was used to finish off a
record and transfer it to a file.

(13) Imperial College does not pack records as ex-
pected in the SYSDEP module code. To
overcome this, the PTEXINLTBL file was
changed from a file of INTEGER to a file of
MEMORYWORD, extra routines were intro-
duced to build correct font data structures, and
bytes were explicitly packed into integers for
the DVI file.

(14) The SCANNUMBER routine in TEX and

TEXPRE makes no check for overflow as it -

reads in a number from the user’s TEX input
file. If the hapless user includes too large a
number, Pascal crashes, and there is no way
of knowing that the overflow was not internal
to TEX (i.e. some previously undiscovered bug).
A check was introduced in the SCANNUMBER
routine so that if overflow is about to occur, the
ERROR procedure is called. This gives a stan-
dard dump of the buffer and allows the user a
graceful recovery.

Due mainly to Imperial College Pascal’s
lack of record packing facilities (which causes
MEMORYWORDs to each occupy 4 words of
memory), it is necessary to have a runtime storage
allocation of approximately 2000K to run TgX.
Production of raster files for the Versatec takes
about 700K. As of this writing, the system has been
put through a series of relatively small tests, and (so
far) seems to be working without difficulty.

As with all those who have brought TEX up at
various installations, I have several suggestions for
changes to the code; these are intended solely to
aid portability, and increases in portability may, of
course, be purchased at a cost to some other impor-
tant consideration (such as efficiency). Nevertheless,
if TEX-in-Pascal is really intended to be a portable
program, there ought to be more consideration of

TUGboat, Volume 2, No. 3

standard Pascal features, and sensitivity to differing
machines. The two main suggestions are:

(1) The OTHERS construct should be removed
once and for all; it has no place in code that
is advertised as portable, especially not in the
actual TEXPRE and TEX modules (a8 opposed
to the SYSDEP module). Its removal was
time consuming, and it should not have to be
carried out repeatedly at various installations.
At times, finding the correct values to use in the
IF-THEN construct was non-trivial due to nest-
ing of CASE statements and the appearance of
labels within procedures. In addition, there was
an abnormally high chance of an error creeping
into the code; such an error would be extremely
difficult to track down.

(2) Assumptions about packing should be removed
from the code; experience has shown that
this restructuring is quite feasible. Although
this will result in slight degradation of TEX's
efficiency at some installations, it will cause
TEX itself to be implemented with much
greater ease. This is especially crucial in the
READFONTINFO routine, where insufficiently
explained assumptions about packing led, ini-
tially, to a serious implementation error. To
help increase efficiency at those installations
with “correctly” packing compilers, helpful
hints on how to convert certain code should be
included with the documentation; the default,
however, ought to be code that will run even in
a non-packing environment.

¥ ¥ & X % * *x * *x * %

TEX AT THE UNIVERSITY OF MICHIGAN
SUMMARY OF PROGRESS

David Rodgers

The University of Michigan Computing Center
has installed TEX on an IBM 370/148 running un-
der VM(CMS). Work continues on converting the
system-dependent module to run under the MTS
operating system on an Amdahl machine. The in-
stallation process would have gone unhindered, ex-
cept for our inexperience with Pascal, the VM/CMS
operating system, and the system editor. The en-
tire installation process required about three weeks
of full-time effort (spread over six weeks) and prob-
ably could have been done in half the time by an
experienced Pascal/VM/CMS programmer.

A device driver has been installed for a Linotron
202 phototypesetter in the Ann Arbor area and we
are evaluating options for supporting other proof-

TUGDboat, Volume 2, No. 3

and final-quality output devices available in the
University community or through local vendors.
We are especially interested in exploring the

feasibility of using intelligent terminals (e.g.,
ONTEL) as a source of local intelligence for driving
printing devices. If anyone has had any experience
with this sort of output configuration or wants to ex-
press a prejucide, we would welcome an opportunity
to discuss them. Please write

David L. Rodgers

University of Michigan

Computing Center
1075 Beal Avenue
Ann Arbor, MI 48109

VAX ON UNIX
Bob Morris
UMASS/Boston

The Computer Science Department at Cal Tech
has succeeded in running TEX compiled under the
Berkeley VAX UNIX Pascal Compiler. By the time
you read this, I hope we will have CIT’s work at test
sites and be working toward a clean public distribu-
tion through one or another traditional UNIX dis-
tribution arrangement. The work at CIT was done
by Calvin Jackson, whose report I have included
below, slightly edited. Following Calvin’s report is
one on device driver work at Brown University.

TEX AT CALTECH
Calvin Jackson

We have PTEX running on the VAX/780 at the
Computer Science Department of CalTech. The
operating system is Berkeley UNIX Version 4.0. We
have compiled with Version 4.1 and corrected a
minor problem—an octal constant > maxint.

We acquired a version of PTEX via the
ARPANET in May 1981 after the TEX workshop
at Stanford. In July we had DVI output consistent
with Stanford test cases. A new version of TEX was
retrieved from Stanford in July, and approximately
6 hours was required to make the local modifications
and produce acceptable test results.

The Department has a DEC-20 and a VAX/780.
Output devices are a Trilog C-100 (100bpi, VAX),
XGP (200bpi, DEC-20), Applicon plotter (125bpi,
tape), and various HP plotters. Some specialized
graphics terminals are also available.

29

Our experiences with PTEX are similiar to those
reported in previous issues of TUGboat. We agree
with many published suggestions regarding better
tutorial information about SYSDEP concepts. We
found that most of our problems were due to lack of
experience with Pascal and machine dependencies in
Pascal data representation. The DOC listings were
essential; we are impressed with their quality and
completeness.

Compilation Problems, Source Configuration
After reviewing the DOC listing and some code
samples in the UNDOC version we performed some
tests to determine how some potential problem areas
are handled by the Berkeley compiler. After this
analysis we made some basic decisions. A preproces-
sor would be developed to perform some desired
source transformations, separate compilation units
were desired, and the SYSDEP program would be
divided into smaller compilation units. A simple
“lex” program was prepared to do the source trans-
formations; it is referred to as “pedit” in the fol-
lowing discussion. The decision to use a preproces-
sor was strongly influenced by the regularity of
the UNDOC version; if some. other source form
is used the preprocessor might not be so simple.
The separate compilation-unit decision was based on
compilation time and the expectation that we would
be doing a lot of compilations of areas of SYSDEP.
Following are the observations and the approach
adopted to cope.
The type allocation model used by Berkeley is the
following:
char: 8bits. This type will perform as expected as
long as the value range used is 0..127.

real: 64bits.

integer: 8, 16, or 32bits. Integers are signed (as
stated in the Report). The signed attribute
means that a subrange of 0..255 requires 16
bits.

Variant records are optimal within this definition.

This model allocates 64bits for the type
MEMORYWORD. Note that 64bits would be re-
quired if reals were shorter. Storage economy re-
quires short reals and signed subrange types (or the
treatment of certain integers as unsigned).

The DVI file is byte oriented and is defined as the
subrange type 0..255. We changed this definition to
be —128..127. The DVI output routine and other
routines that interface to a DVI file convert values
> 127 to value —256 on output and convert values
< 0 to value 4256 on input. TFM files are handled
on a similar basis.

In case-statements, if none of the case-constants
is equal to the case-index, a runtime error is some-

30

times reported. My experience is that the results are

unpredictable.
PTEX uses a compiler specific feature for default

(OTHERS) case-constants. We decided to use the

following construct. .
if expression in set-comstructor then

case case-index of

end else begin
{ ... OTHERS code follows}

end

This process is performed semi-automatically by

pedit. A program scans the source for case-
statements, inserts the skeleton if statements, and
generates the set-constructor on a auxiliary listing.
We then manually edit in the set-constructor, the
program also provides a line number directory of all
case-statements.
We did some after the fact timing studies and
determined that the preferred transformation is
CASEARG :=case-index;
if not (CASEINDEX in
[LOWERLIMIT,UPPERLIMIT])
then CASEARG:=LOWERLIMIT-t;
case CASEARG of

LOWERLIMIT-1,otherslist:
{OTHERS code}
end

This provides acceptable efficiency, does not make
an exception of the case-index being a function call,
may require a few extra editing keystrokes, and is
compatible with the program that scans and alters
the source.

One procedure (VARSYMBOL) contained some
inaccessible code due to the omission of a case-
constant. The instance was reported by the com-
piler. We edited in the appropriate case constant.
This condition did not exist in the second set of
sources we retrieved (July 1981).

Equivalence of type requires that each variable
be defined by the same type declaration. This
was significant because of our decision to use the
separate compilation feature. We manually reviewed
the programs for common type declarations and
placed them on an “include” file. Our first copy of
PTEX (May 1981) contained instances of the same
types with different spellings. A subsequent copy
(July 1981) had resolved these problems. It was in-
teresting that we had guessed wrong on the eventual
spellings. This process was not very time consum-
ing, there are surprisingly few type definitions and
the lexical order of the program simplifies the task.

TUGboat, Volume 2, No. 3

The empty-statement is incorrectly handled in
the following construct:
.if boolean-expression then empty-statement

-glse statement

A diagnostic is provoked. A “begin end” or system
procedure “null” in place of the empty-statement
will satisfy the compiler. This task was assigned to
the program “pedit”.
Labels that occur in the label-declaration-part
must occur in the statement-part. Labels that did
not occur in the statement-part were edited out
of the statement-declaration-part. The diagnostics
provided by the compiler were the cues.
The standard compilation mode treats upper-case
as different from lower-case. In the standard mode
keywords are lower-case. A compile option permits
this treatment to be suppressed; the option specifies
that warnings should be produced for non-standard
Pascal. However, we could not use the separate com-
pilation capability if the “standard” Pascal option
was selected. We assigned the task of converting
keywords and standard identifiers to pedit.
Separate compilation units are supported by the
compiler. The compile system rigidly enforces the
concept that the fragmented program be equiv-
alent to its composite model. This enforcement is
primarily at the compilation and linkage stages.
We manually reviewed the compilation text and
constructed the following compilation units. The
choice was primarily based on the DOC version,
experience has suggested better fragmentation.
texpre.p: Vanilla TEXPRE.PAS except for the dele-
tion of common subroutines and types.

tex.p: Vanilla TEX.pas except for the deletion of
common subroutines and types.

sysdep.p: SYSDEP.PAS (DOC) Section 16, 64 - max,
min and output routines.

basicio.p: SYSDEP.PAS Section 23 - Basic I/O pro-
cedures.

string.p: SYSDEP.PAS Section 17 - The String
Handler.

filename.p: SYSDEP.PAS Section 51 - Scanning File
Names.

infont.p: SYSDEP.PAS Section 57 - Reading Font
Information.

. fetchdata.p: SYSDEP.PAS Section 71 ~ Retrieving

‘Data Structures.

storedata.p: SYSDEP.PAS Section 69 — Storing Data
Structures.

globsysdep.h: SYSDEP.PAS Global variable and pro-
cedure declarations for SYSDEP.

globeonst.h: SYSDEP.PAS Global constant-definition-
part.

TUGboat, Volume 2, No. 3

globtype.h: SYSDEPPAS Global type-definition-
part.

globexternal: SYSDEP.PAS Global -procedure and
function definitions. .

The program-declaration must include the file
“output”.

Program declarations were edited to conform to
the Report.

Variables declared to be structured types that
require more than 64,536bytes of allocated space
provoke a diagnostic. Berkeley was contacted
regarding the limitation on the size of structured-
types. My understanding is that the limitation
should only apply to the use of those variables, not
to their allocation. The diagnostic was not present
in Version 4.1; we were provided-a fix for Version
4.0. The fix required the deletion of the diagnostic
and rebuild of the compiler.

PTEX uses the compiler-specific initialization
feature INITPROCEDURE not supported by
the Berkeley compiler. INITPROCEDURE was
changed to a proper procedure and a call placed in
the statement-part of the program.

Goto-statements in procedures ERROR and
QUIT provoked a diagnostic during the assembly
~ phase. The statements were sufficiently displaced

from their target that the preferred instruction
could not be used (its displacement field is too
short). An assembly option is available that requests
the longer jump. We decided to move procedure
QUIT adjacent to the program—statemenb-part and
change the goto-statement i in ERROR to an invoca-
" tion of QUIT.

Support Tools

Stanford and Berkeley were extremely helpful
when support was requested. We particularly ap-
preciate the efforts of I. Zabala (Stanford) and P.
Kessler (Berkeley).

We used a screen editor based on EMACS and
many of the standard UNIX tools. A “lex” pro-
gram was invaluable for performing simple source
analysis and transformation. The Stanford pro-
grams DVITYP, PLTOTF, and TFTOPL were also
invaluable for understanding the interfaces and as
roots for other programs. Following is a list of
auxiliary programs and their function.

DVITYP: Stanford program that provides a for-
matted dump of a DVI file. Converted to VAX
without the random access feature. Essentially
no program changes required.

DVIDEC: Stanford program that provndes a raw
dump of a DVI file. No program changes re-

quired.

31

tfmdec: Program based on TFTOPL but lacking the
robustness and elegance of output. Produces a
raw dump of a TFM. Operates on the DEC-20
and VAX; primarily used to prepare TFM files
for transfer to the VAX.

tfmbin: Program based on PLTOTF but lacking the
robustness. Produces a TFM flle from the out-
put produced by tfmdec.

tfmprt: Program based on TFTOPL but lacking the
robustness and elegance of output. Produces a
satisfactory dump of a TFM file.

textoueb: Converts a VNT file to the Berkeley
“vfont” format.

ucbtfm: Generates a partial TFM file from a
Berkeley “vfont” file.

dvitriplot: Converts a DVI file to the format requn‘ed
for plot mode printing on the Trilog printer.
Font files are in the Berkeley “vfont” format. A
page of text is set and output to the standard
printer spooler (raw mode option).

dvitrilog: Converts a DVI file to the format required
for standard printing on the Trilog. The font
used must be a typewriter style defined for the
Trilog. This program is unsatisfactory.

pedit: Lex program that scans a .PAS source and dis-
cards blank lines. Inserts code to assist editing
of case-statements with QTHERS. Transforms
certain empty statements to “begin end”.
Changes keywords and standard identifiers
to lower case. Produces a directory of
case-statements with a complementary set-
constructor. Produces a directory of procedure
and function declarations. This program makes
significant assumptions about the nature of the
input, i.e., it is not general purpose. If there
are significant changes in the format of the
distributed version, the program would be dis-
carded or changed.

Plans

We are thoroughly dissatisfied with what we have
for user interface with respect to file specification.
Better user control of the name of the output DVI
file is desired. This work is local to two of the
SYSDEP compilation units.

The system response to error conditions is not
satisfactory. I believe some of this is due to the
response to runtime language violations. Some is
due to the way the system is designed. Experience
and experimentation will, hopefully, provide some
guidance.

The Versatec prmter is being interfaced to the
VAX. Scan conversion will occur on the VAX
Software has to be found or developed for this
device. Some from Brown is reported elsewhere in

32

this issue...ram A similar condition exists for our
Applicon plotter. The Applicon is off line, data is
transferred via magnetic tape.

The device interfaces are not very efficient or
robust. Improvements in these areas will be pursued.

Currently, there are a number of pieces that must
be used to perform the typesetting task. They have
not been integrated into a reasonable user oriented
capability. This has to be corrected.

Various macro packages look interesting and
should be available to our users. Acquisition and
installation will be pursued. (We do not yet have
any TEX users.) The system is still in a pre-release
state. Release and user support/encouragement are
key items.

We desire to have equivalent facilities on the
DEC-20, an effort has been started to host PTEX
on that machine.

We plan to retrieve METAFONT and attempt to
host it on the DEC-20.

* % % ¥ %X *x *x * %x * %

THE STATUS OF VAX/TEX AT BROWN
Janet Incerpi

We received a tape from Calvin Jackson contain-
ing some TFM files and the TEX source and binary.
We were able to get TEX running simply by read-
ing the tape and putting the files in the directories
specified. Since we had already installed VNT files
and debugged software to take DVI files and send
output to the Benson Varian (see TUGboat vol. 2
no. 1 p. 49) we were able to print papers within
a few days. (It was necessary to change the pro-
grams DVIVER and VERSER to handle the new
DVI file format.) We have not recompiled TEX, we
are just running the binary we received but don’t
expect recompiling to be a problem.

VAX/VMS SITE REPORT

M. C. Nichols
Sandia National Laboratories

There are now 40 sites that have received the
Oregon Software VAX/VMS version of TEX. The
VMS group is presently in a holding pattern while
deciding whether to bring up an intermediate ver-
sion of TEX (the current VMS version is the one
which existed at Stanford as of 11/80; it uses tfx
fonts rather than tfm ones) or to wait for the most
recent Pascal version. Rumor has it that the most

TUGboat, Volume 2, No. 3

recent version will go a long way toward eliminating
the 15-20 sec. delay now experienced at the start of

every TEX user’s run.
Until now, the Versatec was the only output

device for TEX on the VMS system, but an aceom-

panying article by Jim Mooney (see p. 13) discusses
the birth of a Varian driver written for the VAX
in FORTRAN 77 (FORTRAN STRIKES AGAIN!).
It is hoped that the Varian driver will appear on
the VAX/TEX distribution tape soon along with any
other drivers etc. that have yet to be publicized.
Several people have called expressing interest in
spoolers for the Linotron 202 and APS-5 for the
VAX.

The current version of TEX for the VAX is still
available from Oregon Software for a $50 reproduc-
tion charge (see TUGboat vol. 2 no. 2, page 33).
Their address is

Oregon Software

2340 SW Canyon Road

Portland, OR 97201
You are to be encouraged to share this tape with
other VAX users in your area, but please contact
Barbara Beeton (AMS) or myself if you obtain a
VMS version in this manner so others in your area
will be able to find out that you have TEX up and
running.

I would like to solicit news specific to VAX/VMS
for possible inclusion in a TEX/VAX/VMS memo
to be sent to VAX/VMS users early next year.
Especially welcome would be problems, comments,
programs, or macros that bring to light or solve any
of the difficulties with TEX that are peculiar to the
VAX/VMS system.

ENHANCEMENTS TO
VAX/VMS TEX
AT CALMA
John Blair
Calma

Calma has had TEX running on its VAX for about
four months now, using a Versatec V-80 as an out-
put device. While we were happy to have TEX in-
house, there were a few inconveniences to the VAX
version of TEX which prompted me to rework some
of the VAX-dependent code in Barry Smith’s latest
release of the VAX Pascal version of TEX.

The biggest problem was the fact that DEC
Pascal can only open files for exclusive use, while
TEX requires shared, read-only access for the in-
itialization and font files, as well a3 common source
files such as basic.tex. Thus if two people tried

TUGboat, Volume 2, No. 3

to run at the same time, the second (and third ...)
were informed that the initialization file TEXINI. TBL
was locked by another user. The quick and dirty
fix for this problem (well, it wasn’t really that
quick, and all-in-all isn’t really that dirty, con-
gidering the alternatives) was to write a set of
FORTRAN subroutines and functions: FOPEN,
FCLOSE, FRESET, FGET, ... to simulate the
Pascal I/O calls for all input files. Since DEC
FORTRAN supports shared, read-only access, the
problem was solved. The only negative factor in
the conversion is that initialization now takes 30
seconds elapsed time on an otherwise idle system,
rather than the previous 20 seconds. I feel that this
time could be shortened dramatically if I could find
8 free week to re-write the entire initialization pro-

cedure (using an assembler routine to block-load the -

data directly into the program arrays).

Previous to doing this rewrite, we worked around
the problem of not being able to run concurrent
images of TEX by creating a batch job queue which
ran TEX jobs one at a time. To do this we changed
TaX to scan the command line and automatically
\input the file name found there. For example,

TEX foo ’
is equivalent to running TEX and then entering
\input foo as the first command. For the batch
system to run properly, foo.tex should contain
everything from the \input basic to the \end.

A side effect of this organization is that once the
TEX job is submitted (a command file handles all of
the details), the terminal can immediately be used
for other work, rather than having to wait for TEX
to linish.

When the background job has finished, a mes-
sage is broadcast to the user’s terminal, and, if TEX
exited normally, the .DVI file is automatically sent
to the spooler. (Note that any TEX error which
prompts the user for terminal input will cause TEX
to exit abnormally, since the batch SYS$INPUT will
indicate an end-of-file condition to the program).

The names TEXOUT.DVI and ERRORS.TMP which
were hard-coded into the source were changed to
DVIFILE and ERRFILE so that the command proce-
dure could set the name through

assign/user foo.dvi DVIFILE
assign/user foo.err ERRFILE
which gives the output files the same name (but
different extensions) as the input file.

Now that multiple images of TEX can run con-
currently, we no longer need the batch system, but,
in fact, most people still use it instead of the inter-
active version due to the savings in time. We could
also use subprocesses to run TEX, but the batch sys-

33

tem allows us the flexibility of specifying how many
jobs can run concurrently (three or four TEX jobs
running together tend to slow the system down a
bit).

We had a problem using the Versatec printer due
to the fact that normal print jobs and TEX jobs
would both try to write to the device at the same
time. This was solved without writing a symbiont
manager by running both types of jobs in a single
batch job queue which only let one job at a time
have access to the device.

The file name parsing routines contained the er-
ror of assuming that the first period “.” encountered
was the delimiter between the file name and the ex-
tension. This resulted in the inability to use sub-
directories in file name specifications. Fixing this
allowed us to organize the [TEX] directory a bit by
moving all of the fonts to [TEX.FONTS], and using
[TEX.INPUT] as the default directory to try if an
input file is not found in the user’s directory.

As an aid to the interactive user, I put in the
hooks to the VAX help utility. If the user enters
Control-H in his input line, the user is passed to
the help routine. When the user exits help, the
command line is automatically reinstated up to the
Control-H, and the user can continue the line. The
usefulness of this can be appreciated by anyone who
has tried to look up the syntax for a control sequence
in the TgX manual. Trying to find the right page
can be frustrating. Though we have the hooks for
help, we currently lack the content. If anyone has a
machine-readable base of information on TEX syn-
tax and usage, I would certainly appreciate hearing
from you. .

Another problem which I rectified was the fact
that all fonts which were defined were written into
the postamble, whether they were actually used
or not. Since basic.tex defines about a dozen
fonts, the spooler spent a very long time loading
in fonts which were not used. This was easily cor-
rected, and was the only modification which en-
volved TEX.PAS itself, all other changes being con-
tained in SYSDEP.PAS.

Barry’s programs LVSPOOL (which I renamed
TEXSPOOL) and READDVI were also modified
to open “DVIFILE” rather than “TEXOUT.DVI®.
TEXSPOOL was changed to refer to the Versatec as
“LVAO:” rather than “LPAO:” since we had already
assigned LPAO: to our line printer. TEXSPOOL had
a minor error in that it would crash if you tried to
print an undefined character from a font. In general
this doesn’t really matter, but it makes the produe-
tion of a font book quite difficult. A trivial fix took
care of the problem.

34

Future work involves speeding up TEX initializa-
tion (perhaps I'll just wait for the new Pascal version
from Stanford, which supposedly will eliminate the
need for much of the initialization), as well as using
Calma’s interactive graphics systems to dump raster
images in the form of a font so that we can incor-
porate drawings and shaded images directly into the
TEX output for our internal documentation needs.

I'm sending off a tape of my modifications to
Barry Smith so that he can implement those that
he feels are worthwhile into his future releases.
Anyone interested should also feel free to contact
me directly.

x x % % ¥ * * *x % * *x

“POOR MAN'S” TEX
John Sauter

Greetings to all of you in TEX-land, from grand
wizard to humble worker in the field. I have joined
your ranks, I have become a TEX user!

1 am running what must surely be characterized
as a “poor-man’s” TEX system. Although my host
machine is a VAX-11/780, my printer is an IDS-460
with the graphics option, which provides me with
84 dots per inch. The printer was tax-deductible
because I also use it to help in the preparation of
W2 forms on mag tape (but that’s another story).
After buying the printer I couldn’t afford the $50
for Pascal TEX from Barry Smith, so I convinced a
department at DEC that they should order it. They
did and, through the magic of DECnet, I got it from
them.

Putting up TEX was a real nostalgia trip. My first
computer job was with the Stanford A. L. Project in
the late 1960's, and when I was there I felt that any
project could be completed in 6 weeks, and anything
short of a major compiler could be done in a single
weekend if one were sufficiently dedicated. Since
leaving Stanford I have learned that even a trivial
change to a text editor can take a year to get into
customer’s hands.

It was with great joy, therefore, that I spent
last weekend making TEX work on my IDS-460.
Actually, TEX itself worked with few problems.
The struggle was with the post-processor to send
the .dvi file to the printer. Even though I had
LVSPOOL before me as an example getting everything
straightened out wasn’t simple. Here are the most
critical things I learned, in case somebody should
face a similar problem in the future:

First, TEX seems to believe that the printer oper-
ates from high bit to low bit, left to right acroes

TUGboat, Volume 2, No. 3

the page. This is the PDP-10 convention. The PDP-
11 convention is to operate from low bit to high
bit. The Versatec seems to follow neither of these

- conventions, operating from low byte to high byte,

but within a byte operating from high bit to low
bit. There is some code at INSERTLV to scramble a
bit string from PDP-10 format to Versatec format,
and my statements above about what the Versatec
expects are based on it (I have never seen a Versatec
manual).

My printer follows the PDP-11 convention. I con-
sidered modifying INSERTLV to convert from PDP-10
format bit strings to PDP-11 format, but decided
not to, since it would involve reversing the whole
string, one bit at a time. Instead I just ORed the
bit string into the scan line using the VAX-11 in-
structions EXTZV and INSV to operate on all 32 bits
at once, and arranged to scan the string in reverse
order when sending it to the printer. My code for
INSERTLV ended up looking like this:

.ENTRY INSERTLV, “M<R2>

SUBL3 @HORIZ (AP) ,#2080,R2

EXTZV R2,#32, GSCAN(AP) ,RO

BISL @BITS(AP),RO

INSV RO,R2,#32,@SCAN(AP)

RET

Since I don’t have Metafont I was unable to con-
vert the fonts for an 84 by 84 resolution printer,
so [must pretend that my printer has 200 by 200
resolution and a small page. After some experiment-
ing I found that a design size of 2.5 inches wide by
3 inches high works. Using the ten-point fonts I
can print posters, so I have made some copies of
“The Typographical Error” and am beginning to
distribute them among the writers to try to generate
interest in TEX. Maybe I can find someone who is
willing to invest-in a real printer!

I hear someone asking, “I didn’t know you could
interface an IDS~460 to a VAX-11." The IDS-460
is certainly not supported by DEC as a printer on
the VAX-11 so mine is driven through a 300 bit per
second terminal line and my APPLE II. I have con-
structed a protocol to compress the page image for
transmission the way a FAX machine would (during
a previous weekend) but even so it takes about half
an hour to print a moderately complex page.

I made one change to SYSDEP and LVSPOOL for
the sake of convenience. I changed all references
to [TEX] to be instead TEX$:. I did this because I
didn’t want the administrative hassle of setting up
[TEX] as a top-level directory, so instead I put TEX
into a sub-directory and defined the logical name
TEX$ to point to it. I recommend this to all users

TUGboat, Volume 2, No. 3

of TEX on VMS, since it makes using TEX more con-
venient.

I had one problem with TEX: I compiled SYSDEP

with /CHECK, and sometimes when loa.dmg a font [
get a subrange error in MAKEPTS.

I am looking forward to the “final” version of
TEX for the VAX-11, which will let me run the fancy
macro packages published in TUGboat, and let me
build font tables for my low-resolution printer. Keep
up the good work, TEX fans, and, from now on,
count me in!

John Sauter

801128 Bates Road

Merrimack, NH 03054
603-424-7637

Computer: VAX-11

Output Device: IDS-460

Application: TEX posters

Editor’s note: The hard copy of this report, printed
on the aforementioned IDS-460, is too appeaking not
to share with the readership. Ome page (of 43) is
reprinted as an exhibit on page 18.

* % * ¥ % % %

Fonts

* % & ¥ % ¥

FONT UPDATE
Ronald Whitney

Probably the most important development con-
cerning fonts since the last issue of TUGboat is
the limited access that TEX users now have to the
Autologic and Mergenthaler fonts (see the article by
Fuchs, page 21). While this is very good news to
those with APS-5's and Linotron 202’s and at least
a point of leverage to others, progress is still limited
with regard to establishing a library of device in-
dependent font descriptions. Work on Euler at
Stanford and a Cyrillic alphabet at the AMS is con-
tinuing, and other sites (including Autologic) have
expressed an interest in METAFONT. Of course,
not only alphabets but also other special fonts need
our attention (see the article by Murphy, page 37).
We hope that further developments and other on-
going research concerning fonts and METAFONT
will be reported to the TEX community via TUGboat
and TUG meetings.

35

* * k % 2 % ¥ % ¥k F X

Warnings & Limitations

* ® * X %X ¥ x ¥ x X *

Don’t Just \let TEX Hang—\raise or \lower K

Beware of repeating a \let statement; TEX may
hang, leaving you no alternative but to kill the run,
leaving you with no error file to help in your disg-
nosis.

These four lines cause TEX to hang:
\let\oldsize=\size
\def\size{\oldsize}
\let\oldsize=\size
\size

These don’t:
\let\oldsize=\gize
\def\size{\oldgize)}
\size

Nor do these:
\let\oldsize=\size
\xdef\gize{\oldsize}
\let\oldsize=\size
\size

The above results were originally reported by
Mike Spivak using the SAIL version of TEX. They
have been duplicated by Lynne Price using the
Pascal version on a VAX. An especially insidious
variation has just occurred at the Math Society: A
job \input a header file wherein

\let\italcorr=\/
\def\/{\unskip\italeorr}

was lurking. A second header file, essentially a
copy of the first, was also \input, and somewhere
much later on in the data, an italic correction (\/)
was applied. After questioning whether the system
had crashed (not an impossible occurrence), the user
came to the local wizards for help. Diagnosis took a
considerable length of time, and would have taken
even longer had we not been familiar with the prob-
lem from Mike’s experience.

Not that anyone would try it, but \raiseing and
\lowering boxes by negative amounts (in the SAIL
version, at any rate), has no different effect from
using the same positive amounts. The following
example says exactly what it’s trying to do.

baselinerise 3pthagelineraise —3pthgseline
baselinejower 3ptbaselinejgwer _3ptbaseline
Barbara Beeton

36

*¥ % * % ¥ ¥ % %2 % % %

MACRO

ZZcro

Send Submissions to:
Lynne A. Price

TUG Macro Coordinator
Calma R8D

212 Gibraltar Dr.
Sunnyvale, CA 94086

The macro column is off to a good start. Readers
are commenting on published macros as well as
sending in descriptions of problems they have en-
countered. However, no one has yet submitted solu-
tions to posed questions

Errata

There are two minor corrections to macros pub-
lished in TUGboat, Vol. 2, No. 2.

(1) Mike Spivak notes a subtle error in McKay’s
definitions for t and 4. Since the macros classify
these characters as type 13, spaces after them are
not ignored, even in math mode. As a result

2t x
gives
2z
because the superscript is the space. For AMS-TEX,
Mike has fixed this problem by having t first check
whether #1 is a space, using \compares {#1}.

(2) When used in horizontal mode, Patrick
Milligan’s \Apply macro may cause extra space to
be inserted. The carriage return after the opening
left brace, and the space after #1 in the redefinition
of \Func are significant.

Tk * %x %X x x & *x & X %

TUGBOAT MACRO INDEX

The following list catalogues macros that have
appeared in earlier issues of TUGboat. Entries
are listed by volume, number, and page as well as
author’s name. [Items that could not be catego-
rized by an obvious headword have been listed under
“miscellaneous”. Many items refer to parts of large
macro packages; users of other packages may find
them valuable models for macros of their own.

Readers’ comments on the format as well as the
contents of this index are welcome.

ACM style
Addrasses

. Appendicss
Baseling, set to top of box

Bibliography
Branching, see If
Capital lottars

~ @t bagmning of peragraph

Contering & sequence of lines
Chapters and Sections

Charecters, mecros to produce speciel

Columns, multiple

Comparison of integral values .

Counters, pseudo
Deforred output .
Divisi

Figures
Font

dndmngfmdmdopukuhr

Muu

svoiding “Argument of
(Mm)h

snexira }.*

conditionsl svalustion ol macros

\input within \¥

E

Equality of integrel veluss

TUGboat, Volume 2, No. 3

i1 61,8283 A Keller

11 54 B. Beston
2 A3 M. Disz
o2 A2 M. Déaz
11 80, 77 A. Kellor
02 A-25 M. Diez

Il 89,73 A. Keller

I:1 60, 78 A, Koller
;2 A-16 M. Diaz
1 120-121 P. Milligen, L. Price
2 A13 M. Dfez

0:1 60-61, 79-81 A. Keller
1 111-118 L. Price
12 A-8-9,20-22 M. Disz

1 57, 67-70 A Keller
12 A-38-40 M. Diaz

01 119120 P. Miligen, L Price
11 60, 77 A. Keller
1 120 P. Miligan, L. Prics
I:1 60,8686 A. Keller
2 f B. McKay
1 119120 P. Miligen, L. Price

:2 A-25-21 M. Diaz

Il 56-57, 85-86 A. Keler
n:2 A1 M. Diaz

i1 119 P. Milligen, L. Prics
1:2 4445 P. Milligen

{1 58, 71-72 A, Keller
12 A-24-25 M. Dlaz

12 A2 M. Dez
1:2 4849 B. McKay
2 A23-4 M. Déaz

1 119-120 P. Milligan, L. Prics
12 46 B. McKey
n2 & 8. McKey
1 Appendix A T. Winograd,
W. Paxton
12 A28 M. Dlez
122 A-32-35 M. Disz
2 A3 M. Diez

01 §9,72-T2 A Keller
1:1 98-110 . L. Price

2 A1 M. Disz
02 A-19 M. Diaz
1:2 A-30 M. Diaz

L2 A-32-35 M. Dfez

12 M. Spivek
Ir2 5¢ M. Spivek
02 M. Spivek
2 82 M. Spivek
n2a B. MeKay

TUGboat, Volume 2, No. 3

NoM
macros
program (SAIL)
program (Pascel)

murm(SlandPaud)

Notes

pmtdl(udddnwum
Nult string, testing for
Numbaring, page .
Output routines
Ovrlining .
Page numbering

Paragraphs

baginning with large capite tettrs

cl'l l'
Parentheses, sssorted sizes

Paint, declering font femilies of & par-

ticuler ~ size

Tables
Tasting

math-style (dicplay, script or

scriptscript) .

intogral valves .
Theorems e e
Top, beseline set to ~ of box
TUGbost submissions .
Undarlining

Uppercese lstters

targe ~ st baginning of paragraph

Roman numerals
Verbstim

mode .

wmm‘(S*il-) '

program (Pascal)

output to the wriler on & ssperste .

Il 50-50, 74-T6 A. Kelter
1:2 A-16-16,36 M. Diaz

ni e1-93 L. Prics, P. Milligsn ~
i1 9497 L. Price, P. Milligen

0:2 43-44

IE1 60,76,65 A. Keller
n2 AB M. Dfsz
1 60,77 A. Kollor
I:2 51-52 M. Spivak

1 S7,70-T1 A, Keller
11 57-50, 60-62, A. KeMler

71, 82-85
12 A18,40 M. Dim
12 A13 M. Dfaz

0 S7,70-T1 A, Keller
02 A16,23 M. Dia

11 60, 78 A. Koller
112 A16 M. Disz
11 58, 72 A, Koller

02 A-13-15 M. Disz

n2 AN M. Dlez
12 48-49 B. McKay

11 56-57, 65-66 A. Kelier

E2 AN M. Dfez
2 A3 M. Dfex
11:2 4848 0. McKey
m2 5 M. Spivek
2 AS M. Dinz

n1 120-121 P. Milligan, L. Price

o2 Al2 M. Dinz

111 60,62,85 A. Keller
11 111-118 L. Price

L2 A-21-28 M. Disz

12 A-25-27 M. Disz

n:2 4 B. McKay

1 119-120 P. Milligen, L. Price

2 A-31-32 M. Diaz

nien A. Ketler
1 53-54 B. Beston
i1 69,73 A. Keller
2 A-13 M. Dfez

i1 60,78 A. Koller
Ir2 A-16 . M. Diaz

1 120-121 P. Milgan, L. Price

Il 59-50, 74-76 A. Koller
Ii:2 A-16-18,36 M. Dfax

It 67-93 L. Price, P. Midigan
11 497 L. Prics, P. Milligan

37

BUBBLES:
A TEXTENSION IN SEARCH OF A TgXPERT
Timothy Murphy
Trinity College Dublin

Preamble

The bubble notation used in partlcle physics is
identical in format with a notation for tensors due
to the relativist Roger Penrose. This “language”
is strictly formalised, with the possible diagrams
governed by a few simple rules. In effect, a diagram
consists of a number of “boxes”, joined together by
lines. A TEX extension is proposed, in which Penrose
or bubble diagrams can be displayed in exactly the
same way as mathematical formulae.

Analysis of the notation

There are 2 elements in the diagrams.

First, there are the tensors or bubbles. Each of
these consists of a “container” of some kind, usually
a rectangle or a circle. Inside there may be an iden-
tifying name or symbol.

Emerging from the perimeters of these containers
are the second element of the diagrams, the arms.
An arm may join 2 tensors; or it may extend to the
edge of the diagram.

The relative positions of the arms on a tensor are
significant, e.g. if the tensor T is represented by a
rectangle, with 2 upper arms and 1 lower, then the
left upper arm must be distinguished from the right
upper arm; and both are quite different from the
lower arm.

(¥f only that sought-for TEXpert could tell me how
to replace this pedantic description of a box by a
magical control sequence ... !)

Meaning of the Penrose notation

Although not strictly necessary, it may help if
1 explain, very briefly, the interpretation of the
Penrose notation for tensors.

In the classical (Einstein) notation, a tensor T of
type (1,2) (for example) is denoted by

T
Bere 7, j and k are “dummy suffixes”, so that e.g.
be
represents exactly the same tensor.

In the Penrose notation, T is incarcerated in a
box, with 1 upper arm (corresponding to the upper
index 7) rising from the top of the box, and 2 lower
arms (corresponding to the lower indices j and k)
descending from the bottom of the box.

The joining of arms on 2 tensors (or on the same
tensor) in a Penrose diagram corresponds to the con-
traction of the corresponding indices—denoted in

38

the Einstein notation simply by repetition of the in-
dex. For example, the tensor

SiTE,
obtained by contracting the upper index of S with
an upper index of 7, is represented by a diagram
with 2 boxes, one for § with a single upper and a
single lower arm, and one for T as above. The upper
arm of S is joined to the lefi-hand lower arm of T,
to represent the contraction. The remaining arms
extend upwards or downwards (as the case may be)
to the edge of the diagram. Thus the resulting tensor
is of type (1, 2), with 1 upper arm, corresponding to
k, and 2 lower arms, corresponding to j and !.

The relative positions of S and T are immaterial.
They may be side-by-side; or S may be above T,
or vice versa. The choice is made by the author
on aesthetic or other grounds, e.g. to minimise the
entanglement of arms. In this case, for example, the
natural solution would be to place S above T.

Proposed macro definition

We shall use the control sequence \T for rectan-
gular tensors with upper and lower arms.

The control sequence \T has 3 parameters: First,
the name or symbol (possibly null) of the tensor.
Next the upper arms, followed by a comma, and
then the lower arms, e.g.

\TSi,j \TTi,jk.
In other words, the definition starts
\.def\T#1#2,#3 {...}.

Turning to the 2°9and 3"9parameters, each of
these consists of an ‘hlist’. But the members of each
list are in a strange new font, having the property
that all letters in this font are represented by dots,
of width (say) 1 em. The dots are positioned on the
top and bottom edges of the box, and serve

(1) to determine the width of the box,

(2) to define the ends of the arms, and

{3) to label these arms.

Finally—and this is the difficult part—wherever a
letter occurs twice in the parameter hlists of ten-
sors, the corresponding points must be joined by
lines. These joining arms must leave each tensor at
right angles to the box—their paths being defined
thereafter by cubic splines, a la METAFONT.

Other tensor shapes

We would like at least 2 other tensor formats.

First we should like to allow arms to emerge from
all 4 edges of a rectangular box. This might be
described by a control sequence

\q#1#2, #3, 84,85

with the hlists corresponding to parameters 2 to 5
describing the arms emerging from the top, bottom,
left and right of the box.

TUGboat, Volume 2, No. 3

And we would also like to have circular tensors (or
bubbles), with the property that arms could emerge
in any radial direction, provided the cyclic ordsr
around the tensor was maintained. In general the
arms would try to reach their destination as directly
as possible. The control sequence for such tensors
might be

\C#1#2
where #1 is the name of the tensor, as usual, while
#2 is a single hlist giving the arms in (say) anti-
clockwise order.

Implementation

The first part of the construction, drawing the
boxes, can be accomplished simply enough within
TEX. We have not specified the horizontal or vertical
spacing between boxes, but that is a mere detail.

The main problem arises, of course, when it
comes to drawing the arms that link the boxes.
Clearly that cannot be accommodated within stan-
dard TEX. However, the basic idea—joining 2 given
points by a curve leaving the end-points in specified
directions—is the very stuff of METAFONT.

The arms might need a gentle nudge, certainly,
to circumnavigate the boxes, e.g. to determine on
which side of a box to go when joining an upper
arm to a lower on the same box.

But these are minor details. The essential ques-
tion is: how can we save the hlists of “indices” ap-
pearing in the tensor parameter lists, and then join
repeated indices by curved lines?

In conclusion

There have been several suggestions—some
implemented—for interspersing TEX output with
computerised graphics. It should be emphasised
that our proposal is rather different from these.

We are asking for both more and less. More,
in that we would like our bubbles to be device-
independent in the same sense as TEX itself. Less,
in that our graphical requirement is modesty itself—
merely the ability to draw the crudest of boxes, and
to join them with the simplest of curves.

Yet it may be that this kind of extension—the
incorporation of graphical elements into the ac-
tual text—will prove more significant in the long
run than the ability to draw the most beautiful of
diagrams.
£ * 5 ¥ 3

* ¥ ¥ ¥ ¥ ¥

TUGboat, Volume 2, No. 3

CHARTING YOUR GRAMMAR WITH TEX

Michael F. Plass
Xerox Corporation .

Are you one of those people who would rather
look at a syntax chart than a BNF grammar? Do
you avoid making a syntax chart for your language
because it is too hard to draw or too hard to typeset?
If so, this is the article for you. Pay attention, and
you will learn how to use the macros below to create
your own syntax charts with TEX.

First some basics. Every component of the syntax
chart is enclosed in a TEX box, with the entry and
exit points on the left and right sides of the box,
aligned with the baseline. Usually the entry point is
on the left end and the exit is on the right, but not
always, as we shall see.

The simplest components are the boxes that rep-
resent the terminals and the nonterminals of the lan-
guage. The terminals are the lowest level pieces of
the language that the description deals with, for ex-
ample, keywords, special characters, letters, digits,
and so forth. Nonterminals are the names for the
building blocks of the language. Some examples of
nonterminal symbols might be number, identifier,
expression, statement, program. If you are familiar
with BNF, the nonterminals are the things in the
angle brackets.

The terminals in a syntax chart are enclosed
in boxes with rounded ends, and nonterminals are
enclosed in rectangular boxes. This is how you
use the syntax chart macros to make both kinds of
elementary boxes:

\Terminal{procedure} = procedure

\Nonterminal{statement} = statement

(Keep in mind that the case of the first letter
in a TEX control sequence is significant.) You
can control what fonts are used inside these boxes
by defining the control sequences \TerminalFont and
\NonterminalFont to be the appropriate font selectors.
Notice each of these basic boxes have ‘stems’ on the
left and right sides, one of them being an arrow and
the other one just a line. TEX will determine which
direction to point the arrow in on the basis of how
the box is nested inside of other constructions.

The definition of a nonterminal is specified like
this:

\DeZine{Letter A}\Terminal{A}\EndDef

= Letter A—(A)—>

More complicated charts are built up by means
of sequencing, alternation, and repetition of simpler

39

charts. To illustrate the way these work, we will as-
sume that the control sequence \one has been defined
to be \Nonterminal{one}, and so forth.

Sequencing is easy to do; just put the subcharts
together:

\me\mociree =

Alternation is a bit more complicated to specify.
Here is an example:

\Alternatives
{\Upper{\one}
\liddle{\two} =%
\Lower{\three}
\Lower{\tour}}

There may be any positive number of choices listed
as the argument to \Alternatives, and each choice is
marked by enclosing it in braces and preceding it
with \Upper, \Middle, or \Lower. Things marked with
\Upper go above the baseline, things marked with
\Lower go below the baseline, and something marked
with \Middle goes on the baseline. It is permitted to
omit any one of these three kinds of tags:

\Alternatives
{\iiddie{\one} =
\Lower{\two}
\Lowar{\three}}

\Alternatives
{\Upper{\one} -
\Upper{\two}
\Lower{\three}}

\Alternatives [one]
{\Upper{\cne}

\Upper{\two} L3

\Middle{\three}} =

-

Sometimes a stack of alternatives can get very
tall; in this case it might be better to spread them
out horizontally:

\HorzAlternatives{\Alternative{\one}
\Alternative{\two}\Alternative{\three}}

» La\le e

This one is especially appropriate for a long list of
short choices.

40

Repetition is specified in almost exactly the same
way as alternatives:

\Repeat{\Upper{\one}
\Niddle{\two} *© =

\Lower{\three}}

The same rules apply as before, except that you are
not allowed to leave out the \uiddie. This is not the
same as specifing an empty middle, which you might
often want to do: '

N a—s
\Repeat{\Upper{\one}\Niddle(}} =
\Ropeat{\Middle{\one}\Lover(}} =

Sometimes a chart gets too wide for the page, and
TEX breaks it up into lines as if it were a paragraph.
If this is want you want, fine—but if you are in
unrestricted horizontal mode, you can make a nicer
transition to a new line by using \NewLine. Look at
Appendix B for examples of this.

Now you know about all of the constructions.
They can be nested in any way you please, up to
a depth of four. One way to get around this limit is
to save away the innermost parts of the diagram in
a box and call it in when you need it. You can say
\AllocBox\cntrlseq to define \catrlseq to be a digit
indicating a box that you can use; this way your
box usage won't conflict with that of the syntax
chart macros. Remember to use braces to enclose
the section in which you use \AllocBox, so that the
box number can be used again. If you exceed TEX's
varsize limit, the usual solution is to force a page
eject so TEX does not have to keep so much stuff in
its memory.

To use the macros, say

\input SynChart

near the beginning of your file. When you actually
want to make a chart, say \SyntaxChart to set up the
baselineskip, lineskip, and some other stuff. If you
are mixing syntax charts with other text, you will
want to enclose the \Syntaxthart along with the chart
definition in braces, so all the funny definitions go
away at the end of the group and don’t mess up the
rest of your document. You will probably also want
to say \parindent Opt to eliminate the paragraph in-
dentation.

The call on \syntaxchart also tells TEX to ignore
tabs and carriage returns so you can format your
more easily. Just be careful where you add spaces—
after a control sequence is OK, but not between or
after the parameters to a macro. The reason for not

TUGboat, Volume 2, No. 3

ignoring spaces is so terminals and nonterminals can
have embedded spaces; if you prefer, you can say
\IgnoreWhiteSpace {0 cause spaces to be ignored too,
and then put in a control-space where you really
want a space.

Now would be a good time to go try making your
own simple syntax chart, using the macro definitions
in Appendix A. When defining a complex diagram,
it is often helpful to first define pieces of it as TEX
macros. This makes the source much easier to read,
and keeps the nesting of braces down to a reasonable
level. This device is used extensively in the example
in Appendix B.

Finally, some fine points about spacing. The
horizontal lines are actually composed of fixed-width
rules and leaders filled with rules. The coatrol se-
quence \QLine defines a fairly short fixed-width line,
and \@qLine defines one twice as long. \ri1 defines
a line that stretches like glue, with a normal width
of zero and the same stretchability as \nr11; \Fi1d
is similar, but with the stretchability of an \ht111.
Each component of a repetition or (vertical) alter-
nation construction implicitly has \F11 on each side,
80 if the components are not all the same width, the
available space in each of the shorter ones will be
distributed evenly between the embedded \ri1s and
the ends of the component. By using these macros
in various combinations, you can get any kind of
horizontal spacing you want. .

When a terminal box contains only. special
character or only upper case letters, the result looks
best when the contents are centered vertically in the
box; this is the default. However, if the same thing
is done for lower case letters, the baselines of the
words in different boxes may not line up due to the
pattern of ascenders and descenders. The way to
fix this is by using a strut, which is a zero-width
box whose height and depth match the extremes of
the font. If the keywords in your language are in
lower case, say \struv after the keyword in the ter-
minal box—or, better yet, define a macro that does
this, as in Appendix B. Struts are already included
in nonterminal boxes, because these contain mostly
lower-case letters.

Sometimes two rows would look better if they
were moved a little bit closer together. You can do
this by using \TriaTop or \Trimbet; these macros take
an hlist as a parameter, box it, and then take a little
off of the top or the bottom. Look at Appendix B
to see how these can be used.

TUGboat, Volume 2, No. 3 41

Appendix A. Listing of SynChart. TEX

KXXXH% Beginning of SynChart..TEX

¥ editor’s note - fonts have been adjusted to comform to TUGboat usage;
% the original values are retained, commented out

\font G=dragon10 % \font >=MANFNT
% \font U=CMTTS
% \font c=CMR8

% The following macros declare how white space is treated.
\def\IgnoreLinebreaks{\chcode’15=9\chcode'11=9}
\def\Ignore¥hiteSpace{\chcode’15=9\cheode’ 11=9\chcodes ' 40=0}
\def\DontIgnoreWhiteSpace{\chcode’15=5\chcode’11=10\chcode '40=10}

\Ignore¥hiteSpace % so the macro definitions may be freely formatted.

\def\NonteraminalFont{\:c} % font to use for nomnterminal symbols
\def\TerminalFont{\:U} ' % font to use for terminal ‘symbols
% \dez\GraphicFont{\:>} % font to get quarter circles from;
\def\GraphicFont{\:G} % font to get quarter circles from;

% should have characters a, b, ¢, and d like
X the DRAGON font in the metafont manual.

% The \LeftArrow, \RightArrow, and \ArrowlLine macros define the stems
% that get put on each terminal or monterminal box. The appropriate arrow
% is put on the entry side of each box, and \ArrowLine is put on the exit side
% to balance out the arrow. These definitions supply a rather small arrow
% with a long stem, using characters from the standard CMSY10 font. Users
% that have good arrowheads available in other fonts should redefine these
X macros to take advantage of them.
\def\Lof tArrow {\hskip 1.2pt

\Strikeout{\vbox to 1.8pt{\hbox{\hekip-2pt\:u\char’40\hskip-0.5pt}\ves}}}
\def\RightArrow

{\strikeout{\vbox to 1. 9pt{\hbox{\hakip-0.5pt\:u\char’41\hakip-2pt}

\ves}}\hskip 1.2pt}

\def \ArrowLine{\Strikeout{\hskip 8.7pt}}

% The next two macros define big arrowheads.
\def\BigLef tArrow{\Strikeout{\Centersink{\hbox{\hskip-2vu\b2<}}}}
\def\BigRightArrow{\Strikeout{\CentersSink{\hbox{\b2>\hekip-2vu}}}} -

% The next few macros describe the dimensions of the quarter-circle fomt.
\det\QThickness{1i.1pt} % Thickness of strokes

\def\QSize{5pt) ¥ Height and width of the quarter circles
\def\QQSize{10pt} ¥ Twice \QSize

\varunit\QThickness ¥ ivu iz the stroke thickness.

% The next two groups of macros may need editing if a font other than the
% dragon font is used to get the quarter circles.

% \I, \ITI, \III, \IV are the quarter circles in the first, second, third and

% fourth quadrante, numbered counterclockwise starting with the upper-right one.
\def\I{\lower \QSize \hbox{\GraphicFont a\BackQ}}

\def\II{\lower \QSize \hbox{\BackQ\GraphicFont d}}

\def\III{\lower \QSize \hdox{\BackQ\GraphicFont ¢c}}

\def\1v{\lower \@Size \hbox{\GraphicFont b\PackQ}}

% \LeftRound and \RightRound are the end caps for Terminal boxes

\def\LeftRound {\BackQ\hbox{\GraphicFont d}\BackQ\BackQ
\lower\QQSize\hbox{\GraphicFont c}}

\daf \RightRound{\hbox{\GraphicFont a}\Backq\BackQ
\lower\QQSize\hbox{\GraphicFont b}\BackQ}

% editor ‘s note - page break for TUGboat publication

42

% \LettSquare and \RightSquare are the end caps for Konterminal boxes
\def\LeftSquare

{\vrule height\QQSize depth\QQSize width Opt

\vrule height\QSize depth\@Size width tvu \hskip -1vu}
\def\RightSquare :

{\hskip -ivu \vrule height\QSize depth\QSize width ivu}

% These macros are for moving forward and backward in Q units.
\def\BackQ{\hskip-\QSize}

\def\BackQQ{\hskip-\QQsize}

\def\ForwQ{\hskip \QSize}

\dez\ForwQQ{\bskip \QQSize}

% Macros in this group are meant to be used directly by the user.
\def\Empty{\vrule height\QSize depth\QSize width Opt}
\def\Strut{\saveO\bbox{Bg}\vrule height 1ht0 depth 1dp0 width Opt}
\def\QLine{\vrule height 0.5vu depth 0.Svu width \QSize}
\def\QQLine{\vrule height 0.5vu depth O.5vu width \QQSize}
\def\Fil{\leaders\HorzLine\hf11}
\def\Fill{\leaders\HorzLine\hfill} ¥ use this to swamp & \Fil
\def\FollowedBy{\Fil} ¥ use to separate symbols in a sequence
\def\TrinTop#1{\vbox expand -\Qsize{\vss\hbox{#1}}}
\def\TrimBot#1{\hbox{$\vtop{\hbox{#1}\vekip-\QiSize}$}}

% Some useful formatting primitives, used internally.
\def\HorzLine{\hrule height 0.5vu depth 0.5vu}
\def\Strikeout
#1{\gave0\hbox{#1}\hbox to 1wdo
{\vrule height 0.5vu depth 0.5vu width 1wd0\hss\unbox0}}

\def\CenterSink#1{\lower\@Size\vbox to \QGSize{\vss\hbox{#1}\vee\null))
\def\Sandwch#1{\lower\QSize

\vbox to \QQSize

{\vskip-0.5vu\HorzLine\vss

\hbox{#1}\ves

\HorzLine\vskip-0.5vu\null}}
\def\VertLine#1{\hskip -0.5vu \vrule #1 width ivu \hskip -0.Swu}
\def\LinetoTop{\VertLine{depth-\Q8ize}}
\def\LinetoBot{\VertLine{height-\QSize}}
\dez\FilVertLine{\hskip -0.5vu \vrule width ivu \bekip -0.Swu}

% These define some common bits and pieces of the diagrams.
\def\SwitchUp{\IV\BackQ\QQLine}
\def\SwitchDn{\I\BackQq\QqLine}
\def\MergeUp{\QQLine\BackQ\II}
\def\MergeDn{\QQLine\BackQ\III}

% Use \Define to start a section of the syntax diagram.

\def\Define#i{\par${}$\ConterSink
{\NonterminalFont\Strut#1}\hskip 2vu plus 300pt
\penalty 0\QQLine}

% And use \EndDef to end it.
\def\EndDef{\QLine\BigRightArrow\par}

% I? a gsection gets too wide, \NewLine will continue the chart on a new line.
\def\NewLine
{\Fil\I\LinetoBot\ForwQQ\1inebreak
\bbox{\ForwQQ\ForwQq}\LinetoBot\II
\Fil\vrule height \QQSize depth \QQSize width Opt\BigLeftArrow\Fil
\IV\LinetoTop\ForwQQ\linebreak
\hbox{\ForwqQ\ForwQd}\LinetoTop\ITI\Fil}

% editor’'s note - page break for TUGboat publication

TUGboat, Volume 2, No. 3

TUGboat, Volume 2, No. 3

% The macros \LeftToRight, \RightToLeZt, and \SwitchDirection control the
% way arrows are pasted onto tho low-level boxes of the chart.
\def\LeftToRight ‘

{\def\LeftSideArrow{\RightArrow}

\def\Right§ideArrow{\Arrowiine}

\det\SvitchDirection{\RightTol.eft}}
\def\RightToLett

{\de?\Left8ideArrow{\ArrovLine}

\det\RightSideArrow{\LeltArrow}

\def\SwitchDiraection{\LettToRight}}

% The next two macros are used for creating terminal and nonterminal boxes.
\def\Nonterminal
#1{\LeftSideArrow\LeftSquare\Sandwch
{\NonterzinalFont
\ #1\Strut\ }\RightSquare\RightSideArrow}
\def\Terainal
#1{\LeftSideArrow\lLeftRound\Sandwch
{\TerminalFont
#1)\RightRound\RightSideArrow}

% The next group of macros are used for allocating digits for referring to
% counters and boxes. These are needed only because counters and boxes in TEX
% do not nest in the nice way that macro definitions do. The macros are a
% bit oo the tricky side, but are short enough that you can figure out how
% they work if you understend the way TEX expands macros. If you are using
% cther packages that use some of these boxes or counters, you may have to
% change some of the numbers in these macros.
\def\Alloc#1#2{\def#2{#1}}
\def\AllocBox
{\def\AllocBox{\de?\AllocBox{\def\AllocBox{\de2\AllocBox
{\def\AllocBox{\det\AllocBox{\def\AllocBox{\def\AllocBox
{\def\AllocBox{\Overflow
F\Alloc9}\Alloc8}\Alloc7T}\Alloc6}\Alloc5}\Alloc4}\Alloc3}\Alloc2}\Allocl)
\def\AllocCtr
{\def\AllocCtr{\def\AllocCtr{\der\AllocCtr{\def\AllocCtr
{\Overflow}\Alloc8}\Alloc7}\Alloc6}\Alloc5)

% Here’'re the ones you've been waiting for. Both \Altermatives and
% \Repeat. work in roughly the same fashion, so this description applies
% tc them both. The single argument is composed of the subcomponents,
% each one enclosed in braces and preceded by a control sequence. These
% control sequences get defined as local macros, and grab the subcomponents
% as parameters. Actually, this happens twice: the first time the argument
% is interpreted, the local macros just ignore their parameter, and the
% second time through, the real work is done. The first pass is used to
% count the subcomponents, since the last one has to be treated specially,
% and also does some validation of the arguments.
%
% There are places in these macros where a \gdef or \xdef is used to get some
% information out of a local scope or to force expansion of a count; since
% the value is used before any other macros are expanded, there is no dsnger
% of nested macro calls messing things up.
%
% If vhe structure of the macro isn’t tricky enough for you, you can tIy to
% understand the way the result is built up out of boxes. Here is the basic
% idea: while the stuff in the middle is being built up in an \balign, the
% connectors on the side are built up in two boxes, one for the left and the
% other on the right. The baselines of the boxes on the sides are maintained
% to be correct for the final result by doing a \vbox above and at the middle
% and a \vtop after the middle. The baseline of the stuff in the middle is
% ignored, and when it is all built, it is boxed and forced to line up with
% the boxes on either side. The \halign is needed since each row has to be
% expanded to the maximum width of everything in the middle.
\def\Alternatives

#1{{\AllocCtr\AltCtr

\setcount\AltCer O

\det\state(T) :

\def\Upper#s1{\if L\state{\BadUseOtUpper}\else{}

\advcount\AltCtr\def \state{U}}
\def\¥iddle##1{\if L\state{\BadUseOfMiddle}\elsd(}
\sdvcount\AltCtr\def\state{L}}

\def\Lowerssi{\advcount\AltCtr\det \state{L})

#1

\if L\state{}\else{\NoMiddle}

\def\state{T}

\def\Upper{\advcount\AltCtr by -1
\UpperAlternasive}

\def\Middle{\advecount\AltCtr by -1
\MiddleAlternative}

\def\Lower{\if L\state {\gdef\OMA{}}
\olse {\gdef\ONA{\OmittedliiddleAlternative}}
\OMA ¥ Needed bacause of scoping in the if statement
\advcount\AltCtr by -1
\LowerAlternative}

\AllocBox\L\save\L\null

\AllocBox\R\save\R\null

\saveO\hbox{$\vtop{\null\halign{##\cr#1\null\cr)}$}

\bbox{\ForwQ\box\L\raigse 1ht\R\boxO\box\R\ForwQ})})}

% One extra tricky thing about \Repeat is that the scope of \SwitchDirection
% is terainated by the \cr at the end of the slternatives. Maybe you didn't
% kuow sbout this scoping rule; it was sure news to me.
\def\Repeat
#1{{\AllocCtr\AltCer
\setcount\AltCtr O
\def\state{T}
\def\Upper
s81{\i? L\state{\BadUseOtUpper}\eslse{}
\advcount\AltCtr\def\state{V}}
\def\Middle
#81{\i2 L\stave{\BadUseOfNiddle}\else{}
\advcount\AltCtr\def\state{L)}
\def\Lower
#81{\11 L\state{}\else{\BadUseOtLower}
\advcount\AltCtr\def\state{L}}
#1
\iz L\state{}\else{\NoMiddle)}
\det\state(T}
\def\Upper{\SwitchDirection\advcount\AltCtr by -1
\Upperilternative}
\def\Middle{\advcount\AltCtr by -1
\RepeatBody) .
\def\Lower{\SwitchDirection\advcount\AltCtr by -1
\LowerAlternative}
\AllocBox\L\save\L\null
" \AllecBox\R\save\R\null
\saveO\hbox{$\vtop{\null\balign{##\cr#i\nuil\cr}}$) -
\bboz{\box\L\raise 1ht\R\boxO\box\R}}}

% editor's note — page break for TUGboat publication

TUGboat, Volume 2, No. 3

TUGboat, Volume 2, No. 3

\def\UpperAlternative
#1{\save0\hbox{#1\Empty}
\save\L\vbox{\box\L\hbox{\vrule hoi.ght. 1hto dopth 1dp0 width Opt
\if U\state{\FilVertLine}\else{\LinetoBot}\II}}
\save\R\vbox{\box\R\hbox{\vrule height 1ht0 depth 1dp0 width Opt
\I\if Nstate{\FilVertLine}\else{\LinetoBot}}}
\F11\unbox0\F11\cr\def\state{U}}

\def\MiddleAlternative
#1{\saveO\bhbox{#1\Empty)}
\xzdef\RowsToGo{\count\A1tCtr}
\save\L\vbox{\box\L\hbox{\vrule height 1ht0 depth 1dp0 width Opt
\i?z U\state{\BackQ\IV\LinetoTop}\else(}
\i? O\RowsToGo{}\else{\BackQ\I\LinetoBot}
\BackQ\QQLine}}
\snvo\R\vbox{\box\n\hbox{\vrulo height 1ht0 depth 1dp0 width Opt
\QQLine\BackQ
\if U\state{\LinetoTop\III\BackQ}\else{}
\1f O\RowsToGo{}\else{\LinetoBot\II\Back@}}}
\Fil\unboxO\Fil\cr\def\state{L}}

\def\OmitteddiddleAlternative

{\saveO\hbox{\Empty}

\zdef\RowgToGo{\count\A1tCtr}

\save\L\vbox{\box\L\hbox{\vrule height 1ht0 dopt.h 1dp0 width Opt
\i? U\state{\BackQ\IV\LinetoTop}\else{}
\if O\RowsToGo{}\else{\BackQ\I\LinetoBot)
\Forw@}}

\save\R\vbox{\box\R\hbox{\vrule height 1ht0 depth 1dp0 width Opt
\Forwg
\1f Wstate{\LinetoTop\IIT\BackQ}\else{}
\1if O\RowsToGo{}\else{\LinetoBot\II\BackQ}}}

\nti1\Empty\cr\def\state{L}}

\def\Repeat-Body
#1{\save0\hbox{#1\Empty}
\xdef\RowsToGo{\count\A1tCtr}
\save\L\vbox{\box\L\hbox{\vrule height 1ht0 depth 1dp0 width Opt
\ifz U\state{\LinetoTop\III\BackQ}\else{}
\1i? O\RowsToGo{}\else{\LinetoBot\II\BackQ}
\QLine}}
\save\R\vbox{\box\R\bbox{\vrule height 1ht0 depth 1dp0 width Opt
\QLine
\i? U\state{\BackQ\IV\LinetoTop}\else{}
\if O\RowsToGo{}\else{\BackQ\I\LinetoBot}}}
\Fil\unboxO\Fil\cr\def\state{L}}

\def\LowerAlternative
#1{\save0\hbox{#1}
\xdef\RowsToGo{\count\AltCtr}
\save\L \hbox{$\vtop{\box\L\hbox{\vrule height 1ht0 depth 1dp0 width Opt
\if O\RowsToGo {\LinetoTop}\else{\FilVertLine}\III}}$}
\save\R\hbox{$\vtop{\box\R\hbox{\vrule height 1ht0 depth 1dp0 width Opt
\IV\if O\RowsToGo{\LinetoTop}\else{\FilVertLine}}}$}
\F1l\unbox0\Fil\Empty\cr\dot\state{L}}

X editor’s note - page break for TUGboat pubiication

46

% Horizontal alternatives work in much the same way as the others,
% but are a little simpler bocause we don‘'t have to worry about a \Middle
% and we can just use an \hbox instead of \vboxzing an \hnng: and fooling
% around with the position of the baseline.
\def\HorzAlternatives
#1{{\AllocCtr\AltCtr \setcount\AltCtr 0

\def\Alternative#si{\advcount\AltCtr)

#1% count the number of alternatives

\def\Alternative

{\advcount\AltCtr by -1\xdef\AlteToGo{\count\AltCtr}
\if O\AltsToGo{\gdef\HAlt{\LastHorzAlternative}}\else
{\gdef \HALt{\HorzAlternstive}}
\HALt}
\def\HorzAlternative
{\def\HorzAlternative
{\MiddleHorzAlternative}\FirstHorzAlternative)

\AllocBox\TopTrack

\AllocBox\BotTrack

\save\TopTrack\null

\save\BotTrack\null

\saveO\hbox{#1}

\vbox{\box\TopTrack\hbox{$\vtop{\box0\box\BotTrack}$}}}}

\def\FirstHorzAlternative

81{\saveO\hbox{\QLines1\I}
\ssve\TopTrack\hbox{\box\TopTrack\ForwQ\hbox to 1wdO{\II\Fil))
\save\BotTrack\bbox{\box\BotTrack\ForwQ\hskip 1wd0}
\IV\BackQ\Ql1ine\LinetoTop\boxO\LinetoBot}

\def\MiddleHorzAlternative
#1{\saveO\hbox{\III#1\I}
\save\TopTrack\hbox{\box\TopTrack\I\hbox to 1wdO{\BackQ\Fil})}
\save\BotTrack\hbox{\box\BotTrack\III\hbox to twdO{\Fil\BackQ}}

\ForvQ\LinetoTop\box0\LinetoBot}

\def\LastHorzAlternative

#1{\saveO\hbox{\I11#1\QQLine\BackQ}
\save\TopTrack\hbox{\box\TopTrack\I}
\save\BotTrack\hbox{\box\BotTrack\III\hbox to 1wd0{\Fil\IV)}

\FormQ\LinetoTop\box0\LinetoBot\11)

\def\SyntaxChart

{\par
\varunit\QThickness
\lineskipOpt
\baselineskip-1pt
\parfillskip Opt plus 3000pt
\parskip \QQsize plus \Qeize
\Ignorel.inebreaks

" \LeftToRight}

\DontlgnoreWhiteSpace % so the user can space significantly

KXX%%% End of SynChart.TEX

TUGboat, Volume 2, No. 3

TUGboat, Volume 2, No. 3

Appendix B. Here is a non-trivial example of the use of the syntax chart macros.

X%X%%% Boginning of PascalSyntax.TEX
\font XK=CMSS8 ¥ for the keywords in the chart.

{\SyntaxChart -
\AllocBox\subchartbox ¥ for saving pieces of the diagrams

\parindent. Opt

%\def\LeftArrow{\vrule height 0.5vau depth 0.5vu width 2.5vu}

% Turn off the right arrows because they make the charts too wide.
\def\RightArrow{\vrule height 0.5vu depth 0.5vu width 2.5vu}
\det\ArrowLine{\vrule height 0.5vu depth 0.5vu width 2.5va)
\def\NoArrows{\def\Lef tArrow{}\def\RightArrow{}\def\ArrosLine{}}

% \T{<char>} yields a circular terminal node with the character
% aensthetically placed, assuming CNTT8 is used. The 4.5417pt is the
% height of plus and minus, and 4.2pt is the character width.
% Colons and periods should be followed by a \CommaStrut to make
%X them line up with semicolons and coxmas. For parens, brackets,
% and braces, put an extra \hse on the outer side to center thes better.
% This macro may be used for multi-character terminal sysbols, but
% \KW should be used for keywords.
\def\T#1{\Terminal
{\vbox to 4.5417pt{\ves\hbox expand -4.2pt{\bss#1\hss}\ves\viilneg}})

\def\CommaStrut{\eave0\hbox{,}\lower 1dpO\null}
\def \KW#1{\Terninal{\:K \hskip-2pt#1\Strut\bskip-2pt}} ¥ Use this for keywords.
\def\N{\Nonterminal) % just an abbreviation.

\def\Optional#1{\Alternatives{\Niddle{#1}\Lower{\Empty))}

\def\Rept#1{\Repeat{\Upper{\BiglLeftArrow}\Widdle{#1}}}

\def\Star#1{\Repeat{\Upper{#1}\Niddle{\Empty}}}

\dez\LongStar#1{\Optional{\Rept{#1}}}

\def\TwoAlts[#1!#2] {\Alternatives
{\Upper{\TrimBot{#1}}\Lower{\TrinTop{(#2}}}}

\def \RAN#1#2{\Repeat{\Upper{#1}\Midd1e{(82}}} % Repeat Above With

\def\RBW#1#2{\Repeat{\Middle{#2}\Lower{#1}}} % Repeat Below With

\def\\{\F11}

\dv£\~-{\QQL.ine}

\def\goodbreak{\vf11\nul1\vfilaeg} : .
\def\singiequote{\char’177} % symmetric single quote in tty foat.

\def\lpar{\T{\bas (}} \def\rpar{\T{)\bee)}
\def\1brak{\T{\has{)} \der\rbrak{\T{J\hss)}
\def\comma{\T{, }}
\def\colon{\T{: \CommaStrut}}
\dot\eq{\T{=}}
\def\seatcolon{\T{;}}
\def\period{\T{.\CommaStrut}}
\det\gots{\ T{\saveO\bbox{>}\vbox
{\hbox{\Centersink(:}\Centersink{\vbox to 1ht0{}=}}\nul1})}

% editor’s note - page dreak for TUGboat publication

47

\def\constant{\N{constant)}
\def\type(\W{type}}
\def\stateseat{\N{statement})
\dot\id{\N{identifier}}
\def\idlist{\RAW\comma\1d} -
\det\expression{\N{expression}}
\def\variable{\¥{variable}}
\def\cbharacter
{\Alternatives
{\Middle{\N{character}}
\Lower{\T{\singlequote\singlequote}}}}
\def\digits{\Rept{\N{digit}}}
\daf\blockbody{\K¥{begin}\\\RAW\senicolon\statensnt\\\KWend})}
\def\sign
{\Alternatives
{(\Upper{\T1{+}}
\Middle{(}
\Lower{\T{-}}}}

\Define{Progran}
\K¥{progras}\\\id\\\1par\\\RAM\comma\id\\\rpar\\\seatcolon\\\N{block)\\\period
\Fil\EndDef

{ % Block
\def\labelpart
{\Optionsl (\KW{label}\\\RAW\comma{\W{unsigned integer}}\\\semicolon})

\def\constpart
{\Optional{\K¥{const}\\\Rept{\1d\\\eq\\\constant\\\semicolon}}}

\def\typepart
{\Optiocnal (\KW{type}\\\Rept{\1d\\\eq\\\type\\\semicolon}}}

\def\varpart)
{\Optional {(\KW{var}\\\Rept{\idlist\\\colon\\\type\\\semicolon)}}}

\def\prochead{\¥{procedure head})
\def\funchead{\N{tuaction head}}
\det\pthead{\Alternatives{\Niddle{\prochead)}\Lower {\funcheed}}}

\def\ptdeclpart{\LongStar{\pfhesd\\\semicolon\\\I{block}\\\semicolon}}
\Detine{Block)

\Fil\labelpart\\\constpart\Fil\NewLine
\Fil\typepart\\\varpart\Fil\Newline
\F11\pfdeclpart\\\blockbody\Fil1\Fil\EndDef

} % ond of Block

\vtil\eject
% editor’s note - page break for TUGboat publication

TUGboat, Volume 2, No. 3

TUGhoat, Volume 2, No. 3

{ % Declaration Extras
\def\gimpletype{\N{siaple type}}
\dot\t.ypnm.{\nmk\\\uw\con.(\\\u-plotypo\\}\\\rbnk}
\Define{Type}\Fil
\Alternatives
{\Middle{\Fil\einpletype}
\Lower{\F11\T{\char *138}\\\¥{type 1dont.:lﬁ.or}}
\x.mr{\npuonu{\xv(pachod})\\\n{arrar)\\\tmu-t\\\lﬂot)\\\tm}
\Lower{\KW{f1le}\\\KW{oZ }\\\type\\}
\Lower {\KW{set}\\\KW{of}\\\simpletype\\}
\Lower{\KW{record}\\\¥{field list}\\\KW{end}\\}}
\F{1\Fil\EndDe?

\Detine{Simple type}\Fil

\Alternatives
{\Middie{\Fil\N{type identitier}}
\Lower{\Fil\lpar\\\idlist\\\rpar}
\Lower{\Fil\constant\\\T{. .\CommaStrut}\\\constant}}

\Ft1\Fil\EndDef

% \vfil\eject

\def\varianthead{\K¥{case}\\\1d\\\colon\\\N{type identifier}\\\XK¥{of}}
\def\variant{\RAW\commsa\constant\\\colon\\\lpar\\\N{field 1list}\\\rpar}
\Define{Field list}\Fil

\LongStar {\Optional{\idlist\\\colon\\\type}\\\semicolon}\NewLine
\#ave\subchartbox\hbox{\Optional{\variant}}\!% this gots too complicated
\Optional{\varianthead\\\LongStar{\box\subchartbox\\\seaicolon}}
\Fii\EndDef

\vril\eject

\def\funorvar{\TwoAlts [(\KW{function} | \KW{var}}]}
\def\formalparmgroup
{\Alternatives
{\Middle{\funorvar\\\idlist\\\colon\\\N{type identifier}}
\Lower {\K¥{procedure}\\\RBW\comma\1d}}}
\Pefine{Parameter list}
\save\subchartbox\hbox{\formalparmgroup}\ !X again too complicated
\Optional{\lpar\\\RAW\genicolon{\box\subchartbox}\\\rpar) '
\Fil\EndDet

} % end of Declaration Extras
% \vtil\eject

{ % Statement
\def\varorfunid{\TwoAlte {\N{variable} | \N{function identifier}]}
\def\assignment{\varorfunid\\\gets\\\expression)

\def\procid{\K{procedure identifier}}
\def\actualarglist
{\1par\\\RAW\comma
{\Alternatives
{\Middle{\expression}
\Lower{\procid}}}\\\rpar)
\det\proccall{\procid\\\Optional{\actualarglist}}

\dof\ifstatement{\KW{1if }\\\expression\\\KW{then}\\\statement
\\\Optional{\KW{else}\\\statement}}

\def\casepart{\RBW\comma\constant\\\colon\\\statement)
\dez\cases{\Optional{\RAW\semicolon\casepart})
\det\casestatement{\KW{case}\\\expression\\\KW{o2)\\\cases\\\XW{snd}}
\def\whilestatement{\KW{while}\\\expression\\\KW{do}\\\statement)

\def\repeatstatement{\KW{repeat}\\\RAW\senicolon\statement

49

50

\\\KW{until}\\\expression}

\def\toordownto{\TwoAlts {\KW(to}| \KW{downto}])}
\def\torstatement{\KW{for\\\N{variable identifier}\\\gete\\\expression
\\\toordamnto\\\expression\\\K¥{do}\\\statenent)

\def\withstatenent {\K¥{with}\\\RAW\comma\variable\\\K¥{do)}\\\statenent)

\def\gotostatement{\KW{goto}\\\N{unsigned integer})}

\Define{Statewment}\Fil
\Optional{\N{unsigned integer}\\\colon}\\\NewLine
\Alternatives
{\Middle{\agsignment\\}
\Lower{\proccall\\}
\Lower{\blockbody\\\Fil}
\Lower{\1fstatement}
\Lower{\casestatement)}
\Lower{\whilestatement\\}
\Lower{\repeatstatemsent\\}
\Lower{\forstatement\\}
\Lower{\withstatement\\}
\Lower{\gotostatement\\\F4i1\Fil)
\Lower{\Empty}}
\Fil\EndDef
} % end of Statement

\vtil\eject

{ ¥ Expression
\det\relop{{\Fil\NoArrows
\HorzAlternatives
{\Alternative{\T{=}}
\Alternative{\T{<}}
\Alternative{\T{>}}
\Alternative{\T{<>}}
\Alternative{\T{<=}}
\Alternative{\T{>=}}
\Alternative{\X¥{in}}}}}
\Degine{Expression}
\N{sizple expression}\\ :
\Optional{\relop\\\N{simple expressioun}}
\Fil\EndDet

\Define{Sinple expression}\Fil
\Alternatives{\Upper{\T{+}}\Middle{\Eapty}\Lower{\T{-}}}\\
\Repeat{\Upper{\T{+}}
\Upper{\T{-}}
- \Middle(\N{term}}
\Lower{\KW{or}}}
\F11\Fil\Fil\Fil\EndDet

\def \mulop{{\NoArrows
\HorzAlternatives
{\Alternative{\T{*}}
\Alternstive{\T{/}}
\Alternative{\KW{div}}
\Alterpative{\KW{mod}}
\Alternative{\KW{and}}}}}
\Detine{Term}\Fil
\i{ractor}\\\LongStar{\mulop\N{factor}}
\Fi1\Fi1\Fil\Fil\EndDeft

% editor’s note - page break for TUGboat publicaticn

TUGboat, Volume 2, No. 3

TUGboat, Volume 2, No. 3

\def\actualarglist
{\1par\\\RAW\comma\expression\\\rpar}
\gave\subchartbox\hbox
{\lbrak
\\\Optiocnal {\RAW\comma
{\expression
\Optional{\T{..\CommaStrut)\\\!
\ezpression}}\\\!
\rbrak} :
\Define{Factor}\Fil
\Alternatives
{\Middle{\N{unsigned constant}}
\Lower{\variable}
\Lower{\N{function identifier}\\\Optional\actualarglist}
\Lower{\1lpar\\\expressicn\\\rpar}
\Lower (\KW{not \\\N{factor}}
\Lower{\box\subchartbox}}
\Fi1\Fil\EndDef

\Detine{Variable}\Fil
\TwoAlts [\N{variable identifier}|\N{field identifier}]\\
\Repeat{\Upper{\T{\char°136}}
\Middle{\Empty}
\Lower{\N{selector}})
\F11\Fil\EndDef

\':efine{S8elactor}\Fil
\Alternatives
{\Upper{\period\\\N{f1eld identifier}}
\Lower{\1brak\\\RBW\comma\expression\\\rbrak)}
\Fi1\Fil\EndDef
} % end of Expression

\vtil\eject

\Detine{Constant}\Fil

\TwoAlte [{\eign\\\TwoAlts{\N{constent identifier}(\N(unsigned number}]}
I\T{\singlequote}\\\Rept{\character\\\T{\singlequote}]

\F11\Fil\EndDef

\Define{Unsigned constant}\Fil
\A.ternatives
{\Middle{\N{constant identifier})
\Lower{\N{unsigned number}}
\Lower{\KW{ni1}}
\Lower{\T{\singlequote}\\\Rept{\character \\\T{\singlequote}})}
\Fi1\Fi1\EndDet

\Define{Unsigned number}\Fil
\digits\\\Optional {\period\\\digits}\\\Optional (\T{E}\\\sign\-\digits}
\Ft1\Fi1\EndDet

\Define{Unsigned integer}\Fil
\digits
\Fi1\Fi1\BadDef

\Define{Identiter}\Fil

\N{letter}\\

\Repeat{\Upper{\N{letter}}
\Middle{)
\Lower{\N{digit}}}

\Fi1\Fil\EndDef

}

\vfil\eject

¥X%XX% End of PascalSyntax.TEX

51

52

TUGboat, Volume 2, No. 3

Editor’s note: As you may have noticed on the first
two pages of this peper, there are some problems with
the font used to drow the quarter-circles. The paper
copy which Mike Plass sent in with kis tape looks quite
o bit better, and the remainder of his diagrams are
veproduced from that copy, which was prepared on one
of Xeroz's printers. '

TUGboat, Volume 2, No. 3

[prpmermy pegr weomy |

53

Type

1ﬂmple type}

t.ype 1dent| er

ﬂ(ﬁrray © -unple type }<(1)~(o)-{wpe]

lt e'

ypef

6N q
5ot \o_ff simple type

- vy J
record field list {end)

‘I type identifier 'r

Simple type

Field list

\ 4

N

A

eld list

)

case)-Jidentifier |-O-lt—ype identiﬂer constant B

Parameter list

v

54 TUGboat, Volume 2, No. 3

Statement e e HO7
— T

I —(:2)- 1' expression 'L . o
\{funcl.ion ident.iﬁu]-f
')
. A\
N [procedure identifier} Q)
procedure identifier

(O-{statement |4

@]
. o ' -

(repest,) statement {until) ~{expression }-————rrt
B @ ‘
N@-lvuiabh identifier F@-{expnui expression |-{do){statement |1

D @ (]

TUGboat, Volume 2, No. 3 : 55

Simple expression .]J Lr [

T e e

Factor junsigned constant}

v

v

- ll variable L'

(2)
N function identifier (O O)

f-[variable identifier I-\ >

Variable

(O)—{Feld identilier
Selector : >

.'
0

56 TUGboast, Volume 2, No. 3

constant identifier

umigned nuﬁxbu

Constant >
Unsigned constant | tant identifier fo- —
h——{unsigned number Joewe”g
“ nil)~
Unsigned number >
Unsigned integer >

Identifer

TUGDboat, Volume 2, No. 3

CHEMICAL NOTATION USING TgX

Monte Nichols
Barbara Beeton

The article below, from a mineralogy handbook,
illustrates the fact that publishing in disciplines
other than mathematics and computer science can
benefit from the use of TEX. A few changes were
necessary to fit the copy into TUGboat’s narrow
colummns: the bar chart was truncated at 7.5em
(10cm in the original), and some line breaks and
spacing were indicated manually where the ap-
pesrance of the copy would otherwise have been less
than desirable (the original column width was 3.5in,
the TUGboat column width, 18.75p¢ = 3.125in,
just enough of a difference to be troublesome).

The tables are built with ordinary \halign cod-
ing; especially attractive is the centering of headings
aver multiple columns in the table following Powd.
Pat. The most, interesting control sequences defined
for this document are for the chemical formulas and
the bar chart:

Chemical formula:

\def \F#1 {\if A\whatptsize
{{\mathsy uzz\mathit adf ${#¥1}$}}
\else{\if 9\whatptsize
{{\mathsy vzz\mathit bef ${#1}$}}
\else{\if 8\whatptsize
{{\mathsy wzz\mathit cef 3{31}3}}
\else{}}}}

This macro depends on the definition within the
\...point macros (cf. basic.tex) of a control se-
quence \whatptsize which allows the current size
to be tested; single-digit sizes are represented by
one digit, and larger sizes follow the example of
hexadecimal notation (A = 10, etc.). Notice that
subscripts are defined to be the same size, regard-
less of level, and roman fonts are substituted for the
usual math italic to simplify typing. Double braces
ensure locality of these substitutions.

Bar chart:

\dez\1{\bbox to Sma

{\hfill\vrule depth 3pt}}
\def\2{\hbox to 5mm

{\hfill\vrule depth Ept}}
\def\e#1 #2 {\hbox to #imm

{\n£111\vrule height #2pt}}

All dimensions in the original were true, but since
the AMS version of TEX doesn’t yet support that
feature, they were replaced by ordinary dimensions.

57

The input looks like this:

\vbox{\bbox to 7.5cm{\vrule height 5pt

\e 10.09 4

\e 1.74 3

\e 4.25 9

\e 0.38 3

} %end of hbox

\hrule

\hbox to 7.5cm{\vrule depth 8pt

APAVAPAVARAVALAVASAV AT AV LV AV 1K1

\kss} f%end of hbox

\vskip 1pt

\hbox to 7.5cm{{\eightpoint

American Mineralogist {\b2 55}, 1100,
(1970) }\hfil1$2\theta\toright$}

} %end of vbox

The \hss following the \1\2. . . line is used to avoid
an overfull box exactly the width of the last \vrule.

And finally, here is the article we've been talking
about.

HEMIHEDRITE ZoF, {Pbs(Cr04)sSi04]2

‘Morph. Triclinic-Pedial, 1; C;

Habit. Well-formed doubly-terminated ecrystals
from 0.2 to 10 mm in length. Elongated parallel
to [001] with 80 forms reported. Twins most com-
monly by reflection in 223 as penetrations of crystals
of opposite hand to form an X, V, or Y shape with ¢
inclined at B°. Less commonly by reflection in 010;
also by reflection in 072.

Phys. H = 3; pmeas = 6.42; peaic = 6.50;
poor cleavage on {110}. Color bright orange to
henna brown to almost black. Streak saffron yellow
(Munsell 5Y8/10).

Struct.? The structure is similar to those of the
tsumebite series and contains a Zn coordinated by
four O and two F; the Pb environments are quite
varied. Cr and 8i are regularly four-coordinated by
O.

Occur. In a secondary oxide vein assemblage sug-
gestive of alkaline solutions of relatively low Eh.
Associated with cerussite, wulfenite, vauquelinite,
willemite, and mimetite. Primary minerals include
galena, pyrite, and tennantite.

Distr. Known only from two Arizona localities. The
type locality is the Florenece Lead-Silver Mine, Pinal
County; also at the Rat Tail Claims, near Wicken-
berg, Maricopa County.

Name. For its distinct hemihedral morphology.

Ref.
1. Williams, S. A. and Anthony, J. W. (1970), Hemihedrite,
A New Mineral From Arizona, Am. Min. 55, 1088-1102.

2. McLean, W. J. and Anthony, J. W. (1970), The Crystal
Structure of Hemihedrite, Am. Min. 55, 1103-1114.

il

;7' | L] l L] I T T ¥ ' L] I'
American Mineralogist 55, 1100, (1970) 20 —

Powd. Pat. Debye-Scherrer (114.6 mm; Cuk,;
Visual I). :

STRONGEST LARGEST d SPACINGS

3.301 100 8765 4 4.364 80 3.478 30
1512 %0 7481 3 413 3 339 20
4364 80 5512 9 3909 20 3.301 100
3164 80 5384 3 3820 4 3234 10
3102 80 4872 90 3676 20 3.164 80
2924 55 4675 30 3584 3 3.02_ 80

Struct. Cell. P1 —C}; Z=1;

a = 9.497(1), b=11.443(2), c = 10.841(2)
a=120°30(1)’, B = 92°06(1)’, + = 55°50(1)'
a:b:c =0.830:1:0.947

Chem. Substitution of Zn for Pb noted in some samples.

1 2
Zn0O 2.7 3.93
PbO 73.0 70.5
Cra03 19.7 19.5
Si0z 39 3.2
F 1.2 5.1
—0=F —0.5 —2.1
Total 100.0 100.0

1. ZoF3|Pbs(Cr04)aSiOa)a.
2. Average of several partial analyses.

Opt. Thin section shows feeble pleochroism with Z >
Y > X. Relief extreme; dispersion resembles horisontal
dispersion.
a = 2.105(5) yellow
B =232 (2) yellow
v = 2.65 (2) orange

(2V2)meas = 92°(—)
(2‘/3)c¢l¢ = 88°(+)

TUGboat, Volume 2, No. 3

* ¥ ¥ ¥ ¥ % Xx % & * *

Problems

* x ¥ % ¥ ¥ £ ¥ * % ¥

Send Submissions to:
Lynne A. Price

TUG Macro Coordinator
Calma R&D

212 Gibraeltar Dr.
Sunnyvale, CA 94086

Balancing Columns of Text and Translation

In the last issue, Johnny Stovall asked about a
macro that could adjust the width of each column
of two-column output so that the lengths of the
two columns will be equal. His application involves
typesetting original texts in parallel with transla-
tions. As long as reliable estimates of the relative
length of the two segments are available, a simple
technique can be used. \varunit can be set to the
width available for text in both columns (excluding
margins), and the actual width of each column can
then be set in terms of a percentage of vu.

The following macro illustrates this approach us-
ing \hbox par:

\imput basic
\varunit 6in % Space available for both
% columns, exclusive of mergins
\def\intercolumnspacing{\hskip .5in}
% Arguments to \trans are percentages
% of total width for first column,
% contents of first column, percentage
% of total width for second column, and
% contents of second column, respectively.
% The two numbers should sum to 100.
\def\trans#1#2#3#84{
\hbox{\hbox par O.#ivu
{#2}\intercolumnspacing
\hbox par O.#3vu{#4}}
}

Here is a simple example:

Now is the time for all good tnen
to come to the aid of their party.
Now is the time for all good men
to come to the aid of their party.
Now is the time for all good men
to come to the aid of their party.
Now ie the time for all good men
to come to the aid of their party.
Now ia the time for all good men
to come to the aid of their party.
Now is the time for all good men
to come to the aid of their party.

And continue ...

Here, it is assumed that there is text extending
across the full page width above or below the trans-
lations. This macro must be modified if the text seg-
ments include multiple paragraphs. A similar maero

Now is the time for all
good men to come to
the aid of their party.
Now is the time for all
good men to come to
the aid of their party.
Now is the time for all
good men to come to
the aid of their party.
Now is the time for all
good men to come to
the aid of their party.

TUGboat, Volume 2, No. 3

could be used to redefine \hsize if the entire text
has this form.

Input-Dependent Macro Redefinition

Also in the last issue, Mike Spivak asked about a
pair of macros \data and \1list. Successive calls to
\data would save text that could later be retrieved
by calling \1ist, so that \1ist{1} would produce
the parameter passed on the first call to \data,
\1ist{2} would produce the parameter passed on
the second call to \data, and so on.

Macros to solve this problem are fairly straight-
forward—\data can concatenate its successive ar-
guments on a single string, separating them with
some delimiter, and then \list can pick off the
necessary text string. The concatenation of the
passed strings, however, is created with \xdef and
a problem arises when some of the arguments them-
selves contain \xdefs that the user does not want
evaluated until \1ist is invoked.

A solution is possible using the technique illus-
trated by Patrick Milligan’s \DefineFont macro
published in TUGboat, Vol. 2, No. 2. The macro
\macrolist is defined to contain a sequence of
otherwise unused macro names (e.g., \aa, \bb,
\¢¢ ...). Each time \data is called, it removes
the first item from \macrolist, saves it on a
list \listitems, and then defines the specified
macro to invoke the argument text. Thus, if
\macrolist starts \aa\bb\cc..., the first call to
\data sets \listitems to \aa, sets \macrolist
to \bb\ce\dd. .., and defines \aa to be whatever
the argument to \data was. The \xdef to modify
\1li stitems does not cause \aa to be expanded, be-
cause \listitens is redefined before \aa is defined.
To retrieve the stored macros, \1ist must pick off
the appropriate token from \listitems and execute
it.

The algorithm just sketched is the heart of the
macros shown here. The situation is somewhat
more complicated, however. \1ist works by using
\xdefs applied to \listitems. To prevent \list
from expanding any \xdefs that might be contained
in the argument text \data has so far received,
\listitems is constructed with the undefined mac-
ros \a, \b, \c, ete. After \list has selected
the appropriate item, \a is locally defined (i.e.,
defined within a group) to invoke \as, \b to in-
voke \bb, and so on through the ugly macro
\equivalences. The selected macro is then invoked
within the group that defines these equivalences. To
allow all this, \macrolist is really initialized to
\aala\bb\b\cec\c\dd\d.. ..

These macros also use the \Apply, \First, and
\Rest macros used by Patrick in \DefineFont.

59

\1ist uses the recursion macros Brendan McKay
described in the same issue of TUGboat. The ob-
vious restriction that these macros are limited to
26 calls to \data can, of course, be extended by
reinitializing \macrolist. A less obvious restriction
comes from the local equivalence of \a and \aa, ete.
A macro defined with \def within an argument text
is usable only from within the same argument, since
the argument is invoked within a group. \gdef and
\xdef, of course, have more permanent effects. This
restriction can be surmounted by redefining \1ist
to explicitly test its argument and to call \aa if the
argument is 1, \bb if it iz 2, etc. Unaesthetic as such
an approach may be, it is not much worse than the
current definition of \equivalences. Note that a
“groupless if” such as McKay and Spivak also dis-
cuss in the last issue must be used to avoid the same
problem.

\xdef\listitems{}

\def\data#1{
\it !\macrolist!{
\send9{Error: Maximum number of
data items exceeded})}
\else{
\Apply {\First} to {\macrolist!} ->
{\macro} ¥ Get macro name
\Apply {\Rest)} to {\macrolist!} ->
{\macrolist} % Remove code from 1list
\Apply {\First} to {\macrolist!} ->
{\macroprime} ¥ Get macro name
\Apply {\Rest} to {\macrolist!} ->
{\macrolist} ¥ Remove code from list
\xdef\1istitems{\1l1istitems\macroprime}
\define\macro{#1}
}
}

\def\dofine#1#2{
\let \Gdef=\let
\xdef\Define{\Gdes #1}
\let \Gdef=\gdef
\Define{#2}
}

\def\list#1{{
\zdef\temp{\1istitems)
\repeat #1i\times
\if !\temp! {\setcount9 O\gdef\macro{}}
\else{\Apply {\First} to {\temp!} ->
{\macro}
\Apply {\Rest} to {\temp!} ->
{\temp}}\endrepeat
\equivalences
\macro}}

% The macro \macrolist describes the set of
% macro names available to \1list and \data.
% These macros should never be explicitly
% iovoked by the user.

60

\def\macrolist{\aa\a\bb\b\cc\c\dd\d\ee\e
\22\2\gg\g\hh\h\1i\i\§§\j\kk\k\11\1
\nn\m\nn\n\oo\o\pp\p\ga\q\rri\r\ss\s
\tt\t\uu\u\vv\v\ww\w\xx\x\yy\y\zz\z}

% \equivalences equates pairs of consecutive
% macros declared in \macrolist

\def\equivalences{\def\a{\aa}\de? \b{\bb}\def
\ce{\ec\det\d{\dd}\def\e{\ee}\det\2{\12}\det
\g{\gg}\def\h{\hh}\def\i{\ii}\def\j{\jjI\det
\k{\kk}\def\1{\11}\de?f \n{\ma}\def\n{\nn}\det
\o{\oo}\def\p{\pp}\def\q{\aq}t\deZ\r{\rr}\det
\s{\ssI\desf\t(\tt}\def\u{\uvur\def\v{\vv}\des
\w{\wwi\def \x{\xx}\def\y{\yy>\det\z{\zz}}

A Macro That Prints Its Name

Anthony Siegman asks whether it is possible to
devise 2 TEX macro that will process a one-word
argument as both a word of text and a control se-
quence.

Suppose the argument is entered as {name}, or al-
ternatively as {\name} (one or the other, not both).
He wants a macro that will:

(a) Accomplish the result \xdef\name{\count 4}

(b) Put both the numerical value of \name and the
word “name” into the output text.

{c) Send both the numerical value of \name and the
word “name” to an external file.

Mike Spivak has written the following sequence
\def\findname{\chcode’134 12 \findit}
\def\findit #1{\finditt#1\endd}
\def\finditt #1#2\endd{\gdef

\thename{#2}\chcode’134=0 }

which allows the input
\findname{\foo)}

to define \thename to be “foo”. However, despite
appearances, \findname has no parameters; {\foo}
is the text following \findname. This technique il-
lustrates that TEX can be made to treat what ap-
pears to be a control sequence as two tokens: the text
character \ followed by a word of text. It can not be
extended to solve the complete problem presented
by Siegman, since once TEX has determined the
character class of a symbol, the character cannot be
reinterpreted. Thus, any one occurrence of the four
characters “\f0o” can be interpreted either as four
text characters or as one control sequence, but can
not sequentially be interpreted both ways.

Nevertheless, macros approximating what has
been asked for can be written. Instead of defining
a macro \foo, the following \setname macro, given
the argument “fo0”, allows another macro to return
the value of \count4 at the time \setname{foo}
was called. This new macro is invoked by a single
character, @, so, in effect, the control sequence
defined by \setname is @foo rather than \foo. Of

TUGboat, Volume 2, No. 3

course, “@foo” is not really a control sequence, but
it may be used as such. Actually, “200” is an argu-
ment to the macro @. @ expects its parameters to

- be terminated by a space, the user must remember

to include such a space even in situations (e.g., be-
fore punctuation) where it would not be required for
an actual control sequence.

The \setname macro defined below defines a list
of its arguments on successive calls, separated by
semicolons and a similar list of the values of \count4
each time it was called. The macro @ then looks
through the list of names until it finds the one
matching its argument and returns the correspond-
ing \count4 value.

% Used to put a space between the number
% and name output by \sead
\def\space{ }

% Initialize lists
\def\namelist{}
\def\numberliist{}

% Define a new "name"
\def\setname#1{
\xdef\nemelist{\namelist #1;}
\xdef\numberlist{\numberlist\count4;}
\xdef\number X Number followed by
{\count4 } ¥ space #1; Put numerical
\number\ #1 ¥ value & word into text
\send9{\number\space #1}% Send number
} % & name to external file

% Retrieve a previously saved value
\def\name#1 {\xdef\nametemp{\namelist}
\def\nunbertemp{\numberlist}
\xdef\looktor{#1}
\gdef\action{\next}
\next
}

% Test if next name on temporary list is ome
%X needed. Note, if the name is not on the list,
% an error message will be generated since
% \nosuchname has not been defined
\def\next{\if !\nametemp!{\gdef\action
{}\nosuchname}\else{}
\pply {\first} to {\nametemp!} —->
{\nextname}
\Mpply {\first} to {\numbertemp!} ->
{\nextnoumber}
\Apply {\rest} to {\nametemp!} ->
{\nanetemp}
\Apply {\rest} to {\numbertemp!'} ->
{\numbertemp}
\stringeq{\nextname}{\lookfor}
\if T\stringeqv {\nextnumber
\gdef\action{}}\else{}
\action

}
\def\2irst #1:#2!1{#1}

TUGboat, Volume 2, No. 3

% Returns first tokea from list
\def\rest #1;#2!{#2)
% Returns list with first token removed

% Allow \pame to be invoked by the
% single character @

\def\ {\name}

\chcode "100=13

Testing the Equivalence of Strings

To test the equivalence of strings, the macro
\stringeq is called. Shown below, this macro uses
the “groupless if” techiques described independently
by McKay and Spivak in Vol. 2, No. 2.

% String equivalence--evaluates to T
% if first argument is same string
% as second, F otherwise

% \stringeq returns its anawer by
% setting \stringeqv
\def\true{\gdef \stringeqv{T}}
\def\talse{\gdet\stringeqv{F}}

% Main “routine" Save srguments im \stringa
% and \stringb and start testing
\def\stringeq#1#2{\xdef\stringa{#i}

\xdez\stringb{#2}

\gdef\endap{\enda}

\gdef\endbp{\endb}

\gdef\compcharp{\compchar}

\ends

}

% Test if at end of first string
\def\enda{\if !\stringa!{\gdef\endbp
{\nulltest}}\else{}\endbp}

% Test if at end of second string
\def\endb{\if !\stringb!{\false
\gdet\compcharp{}}\else{}\compcharp}

% Compare next characters

\def\compchar{\Apply {\First} to {\stringa!} ->
{\tirsta}\Apply {\First} to {\stringb!} —>
{\tirstb}\ir \firsta\firstb

{\Apply {\Rest} to {\stringa!} -> {\stringa
RNapply {\Rest} to {\stringb!} -> {\stringb}}
\else{\false\gdef\endap{}}

\endap} v

% When at end of first string,

% test if also at end of second

\def\nulltest{\if !\stringb!{\true}\else
{\talse}}

61

PROBLEMS FROM THE TEXARCANA CLASS:
ANSWERS, AND ANOTHER PROBLEM

These probleme are from the videotaped
TEXarcana Class taught by Don Knuth last March.
The solutions given here are based on the ones dis-
tributed in class. Some parts of the solutions may
depend on features which, although installed in the
current version of TEX at Stanford, may not yet have
been implemented elsewhere; an attempt has been
made to note such features.

Problem no. 1:

Type:
\vskip 12pt
\noindent\hide{--}Allan Temko

\vskip 2pt
\noindent Architecture Critic

To get:

-Allan Temko
Architecture Critic

\def \hide#i{\hbox to Opt{\hss #1}}

62 : TUGboat, Volume 2, No. 3

Problem no: 2:

Type:
\fancy Senator and Mrs.\Stanford had reserved to themselves control of the
University’'s affairs during their lifetimes, including the parceling
out of "~"all the money that could be wisely used. - Mrs.\Stanford had remained in
her husband’s shadow---on opening day she could not bring herself to deliver
the short speech she had written out. But following the death of the Senator
she, at age 65, took on full responsibility for the University with
unsuspected strength.

To get:

Senator and Mrs. Stanford had reserved to

themselves control of the University’s affairs
during their lifetimes, including the parceling out
of “all the money that could be wisely used.”
Mrs. Stanford had remained in her husband’s
shadow—on opening day she could not bring her-
self to deliver the short speech she had written
out. But following the death of the Semator
she, at age 65, took on full responsibility for-the
University with unsuspected strength.

- \font H=cmr1i0 at 30pt

\def \fancy#1{{\:H\saveO\hbox{\chop to Opt{\hbox{\lower 12pt
\hbox{#1}\hekip .lem}}}\hangindent iwd0 for 2\noindent
\hide\boxO\hskip -.iem}}

The font specified here requires that magnification be implemented; it is also possible to use car30, if
that is available. (At the AMS, neither is available for the Alphatype, on which this page was prepared, and
the large “S” has been obtained from another source and pasted in.)

Note the use of \hide in the last line of this solution; alternatively, this line might begin
“\hskip -1wd0 ...".

Problem no. 3:

Type:
\hsize 25em
‘\noindent This is a case where the name and address fit in nicely
with the review.\signed{A. Reviewer}{Ann Arbor, Mich.}

\vskip 8pt
\noindent But sometimes an extra line must be added.\signed{N. Bourbaki}{Paris}

~ To get:
This is a case where the name and address fit in nicely
with the review. A. Reviewer (Ann Arbor, Mich.)

But sometimes an extra line must be added.
N. Bourbaki (Paris)

\def \signed#1#2{\parfillskip Opt{\unskip\penalty 1000\hfil\penalty 200
\hskip 2em\hbox{}\penalty 1000\hfil{\s1#1\/} (#2)\par}}

TUGboat, Volume 2, No. 3

Problem no. 4:

Type:
\point 0 0
\point & 2
\point 2 1
\point .§ 5
\point -1 -1

To get:

o(.5,5)

*(1,2)
o(2,1)
¢{0,0)

o(—1,-1)

\lineskip Opt
\baselineskip Opt
\varunit .5in

\topspace 8vu \def \point#1#2 {\vbox to Opt

{\vas\vbox to #2wvu{
\hbox{\hskip 2vu\hskip #ivu
$\bullet\, (#1,822)$)\vas)))

63
Problem no. 5:
Type:
\hsize 20ea
End of a parsgraph.\par
\rightjustifythefollowing
This is the first lime
{\it This is the second line.}
{\sl The third.}
{\b? The last.}
\endrightjustity
Beginning of another paragraph.
To get:
End of a paragraph.
. This is the first line.
This is the second line.
The third.
The last.
Beginning of another paragraph.

\de? \rightjustifythefollowing{\par
\chcode “15=12\penalty1000
\vskip-12pt\let\rjn=\rj\ri}

\chcode "15=12

\det \rj#1

{\rjustline{#1}\rjn}\chcode 15=56 %

\def \endrightjustify{\gdef\rjn{\endrj}}

\det \endrj{\chcode 15=5\penalty1000\vskip-12pt}

64

Problem no. 6:

Type:
How do you do this?
$$\lineskip 2pt
\baselineskip 1.3ex
\vcenter{\halign{\hfil#\hfil\cr
\linedown{Look at this {strange} pile.}}}\qquad
\vcenter{\halign{\hfil#\cr
\lineup{And at this {stranger} one.}}}$$

To get:
How do you do this?

0. Per ab'—.ng oo,

[1
. @_u.ﬁg @l er crf0 KOO

\chcode "44=12

\def\linedown#1{\gdef\ans{}\Linedown#1$}

\def\Linedown#1{\1if $#1{\gdef\next{\ans}}
\else{\xdef\ans{\ans#1\cr}\gdef \next{\Linedown}}
\next}

\def\lineup#1{\gdef\ans{}\Lineup#18}

\def\Lineup#1{\if $#1{\gdef\next{\ans}}
\else{\xdef\ans{#1\cr\ans}\gdet\next{\Lineup}}
\next}

\chcode “44=3

How do you do it faster?
$$\vcentor{\halign{\hfil#\hfil\cr
\linedn{Look at this {strange}pile.}}}$$

\def\linedn#1{\gdef\ans{}\Linedn#1$)}

\def\Linedn#1{\if $#1{\gdef\next{\ans}}
\else{\gdef\nans{\#1\cr}\gdef\next{\sns\Lndn}}
\next}

\def\Lndn#1{\if $#1{\gdef\next{\nans}}
\else{\gdef\ans{\#1\cr}\gdef \next{\nans\Linedn}}
\next}

TUGboat, Volume 2, No. 3

On the next page appears the “Challenge problem” presented to the TEXArcana attendees. The solution

will appear in the next issue.

TU.Gboat, voume2,N0.3 C hallen ge Problewn 65

Fnk prr of owtput :
oIf I have all the eloquence of men or of angels, but speak without love, I am 1
simply a gong booming or a cymbal clashing. eIf I have the gift of prophecy, 2
understanding all the mysteries there are, and knowing everything, and if I have
faith in all its fulness, to move mountains, but without love, then I am nothing at
all. If I give away all that I possess, piece by piece, and if I even let them take »
my body to burn it, but am without love, it will do me no good whatever.
eLove is always patient and kind; it is never jealous; love is never boastful or
conceited; eit is never rude or selfish; it does not take offence, and is not resentful.
eLove takes mo pleasure in other people’s sins but delights in the truth; eit is always
ready to excuse, to trust, to hope, and to endure whatever comes.
eLove does not come to an end. But if there are gilis of prophecy, the time s
will come when they must fail; or the gift of languages, it will not continue for

~No:m »

Seands mc. of Ouf,d':

ever; and knowledge—for this, too, the time will come when it must fail. eFor our ¢
knowledge is imperfect and our prophesying is imperfect; ebut once perfection 10
comes, all imperfect things will disappear. sWhen I was a child, I used to talk 11
like a child, and think like a child, and argue like a child, but now I am a man,
all childish ways are put behind me. eNow we are seeing a dim reflection in a 12
mirror; but then we shall be seeing face to face. The knowledge that [have now is
imperfect; but then I shall know as fully as I am known.

eIn short, there are three things that last: faith, hope and love; and the greatest 18

of these is love.

Yau shaald use Hhis

Jext ﬁle, > 3 Mar 1981 21:86 LOVE.TEX[1,DEK) PAGE 2-}
@ IT I have all the eloquence of men or aof

angels, but speak withoot 1
ange c;rmba'l e ove, I am simply & gong booming

® If I have the gift of prophecy, under@standing all the mysteries

T L G e R e o Ratnins, e i o+ 0
. thi all.
NSk NTE. 8 £ Gnce Berteut burn 17 But oa oftut Tower e
When T
£ S’Qcﬂ.{‘ c.oole. o do) °h:,;3's :?'2 ;zgugema%m;:;f lectiou-do;lous;
s reatig 7 o Mottt T TN o e T

erfect; bu -
- ' things that last: faith, her

\seheoutd L T shorhiy bt e @ In short, ther® are HECL ¢ these 1s love.

\‘\'«f\l',f Iwe [1,4‘%'(] love; and the ore
N\ead . \f1ushpage

66
* % *¥ * X ¥ % x %X ¥ *
Letters et alia
* * *x * * * * ¥ * L .
To the Editor:

I wonder how much serious interest there is
amongst TUGboat readers in radically simplify-
ing and speeding up the capture and presen-
tation of complex mathematical text. I have
designed an unexpected ‘mutation’ of the stan-
dard Qwerty keyboard which, in mock-up form,
allowed—with generous allowance for making and
correcting mistakes—simulating the capture of a
standard book page full of equations with double
levels sub/super-scripts, fractions, differentials and
integrals, etc., in a few seconds over twelve minutes.
Commercial typesetters estimate at least thirty
minutes would be needed even on the most sophis-
ticated equipment presently available. 1 have
also found new and unexpected principles for dis-
playing several typesizes and typefaces in an im-
mediately and exactly recognisable way (without
using graphics) that help increase error awareness.
The speed of the keyboard comes from its physical
design, rather than other ‘tricks’; people quite in-
experienced in typesetting have remarked how easy
it is to use and set complex work that would have
completely puzzled them beforehand-—it is good for
use by relatively unskilled people.

I would like to set up production for several
kinds of units if there is sufficient interest of a
serious nature. However, until the advent of TEX
the worldwide interest in special maths terminals
has been minuscule; it is now uncertain, but prob-
ably greater. That is why I would like to hear of
interest from TUGboat readers.

There are several useful units in mind. An “Idiot
Keyboard” for those well versed in TEX, that merely
generates editable code and/or TEX code as a direct
output; a “Semi-Intelligent Keyboard”, basically an
‘Idiot Keyboard’ with a video output and able to in-
teract with a host; an “Intelligent Keyboard”, with a
monitor and two floppy discs, able to read editable
code and generate TEX code from that, and assis-
tance facilities (e.g., spelling as well), also interacting
with a host; a “Realistic Display Maths Terminal”,
having the performance of an ‘Intelligent Keyboard’,
but giving realistic display of maths, that is also
fully editable on screen (no coding shown) and show-
ing typefaces and sizes in an immediately recognis-
able way, also assistance facilities and interaction
with a host; a “T&M Host” also having a “Realistic
Position Maths Display” (graphics) and a proofing
printer. A ‘Realistic Position Maths Display’ ter-

TUGboat, Volume 2, No. 3

minal would allow any maths office typist (or per-
haps any other) easily to set the most complex
material and automatically generate and edit TEX
-code, for example.

I would very much like to hear from people who
have a real interest in such units and/or systems.
The nature of the response to this enquiry will very
much determine whether there is signiticant interest.
Items would be expected to give substantial savings
in salaries of dedicated programmers, and compare
well with currently available equipment.

J. M. Cole

17 St Mary’s Mount

Leyburn

North Yorkshire DL8 5JB, England

¥ % ¥ ¥ * *k * ¥ % * %

FORMATTING A BOOK WITH TgX:
EXPERIENCES AND OBSERVATIONS
Michael Sannella
MIT Laboratory for Computer Science

In January of 1980 I was hired by Professors
Harold Abelson and Andrea diSessa of MIT to for-
mat a book they had written: Turtle Geometry,
The Computer as a Medium for Exploring Mathe-
matics. They had used a computer to write and edit
the book—the text was stored on-line—and they
wanted me to use TEX to produce the final formatted
copy. In part, they hoped that using a computer for-
matter would be cheaper than traditional typeset-
ting. However, they were also interested in the ex-
periment of publishing a computer-formatted book,
and curious about the ways that computer format-
ting systems could change the relationship between
authors and publishers, giving an author more con-
trol over a book.

When I was hired, I didn’t know anything about
TEX, or about book publishing. In the process
of formatting the book (which took more than a
year) 1 learned a lot about TEX, about the prob-
lems associated with book-quality formatting, and
about the interaction of computer formatters with
the world of book publishing. This article is an at-
tempt to record my experiences formatting Turtle
Geometry and some thoughts I have had concerning
computer formatters in general. I hope that infor-
‘mation will be useful to other people who are try-
ing to format large documents, such as books, us-
ing computer formatters. I will try to tatk about
general problems I encountered rather than about
the details of how I fixed each problem. Also, I will
try to be as simple as possible—you won't need to
know anything about TEX to read this article.

TUGboat, Volume 2, No. 3

The first part of this article deals with the ex-
periences | had formatting Turtle Geometry. Inter-

acting with the people at MIT Press, learning TEX, -

- and using TEX to format the book all presented
problems. Many problems stemmed from the fact
that I was using TiX, an extremely complex format-
ting program. However, all of my problems couldn’t
be blamed on TEX. Turtle Geometry was a very
large, very complex document, with innumerable
difficult figures, equations, etc. It would have been
difficult to format this book using any method.
Eventually, I dealt with all of these difficulties, and
produced an extremely good-looking book. (Turtle
Geometry, The Computer as a Medium for Explor-
ing Mathematics, MIT Press, June 1981)

Since I finished formatting Turtle Geometry I
have been thinking about computer text formatters.
In the second part of this article, I discuss some of
my ideas on the design of text formatting systems.
My experiences formatting Turtle Geometry give me
an interesting perspective for looking at this area.
First, I talk about the probleni of designing format-
ting languages which give the user the correct level
of control over the formatting process. Then, I dis-
cuss the problem of integrating high-level aesthetic
formatting goals into a computer formatting system.
I don’t claim to have any great answers to these
problems—I just want to point out some problems
that future text formatters will have to deal with.

I would appreciate receiving any comments that
anyone may have concerning this article. I can be
contacted be sending U.S. mail to:

Michael Sannella

Xerox PARC

3333 Coyote Hill Road

Palo Alto, CA 94304
Or (for those of you with access to the ARPAnet) by
sending computer mail to MJS at net site MIT-AL

Formatting Turtle Geometry

I worked on this project part-time from January,
1980, through March, 1981. My job was defined
very simply: to produce a camera-ready copy of the
book, using TEX. Aside from that, nothing was
specified. I was confident that this goal was achiev-
able, since Knuth had designed TEX specifically to
format his books. However, I knew that 1 had a lot
to learn about producing book-quality copy. During
the fifteen months I worked on this project, I had a
good opportunity to observe the interaction between
the two worlds of computer text formatting and
book publishing. Computer formatters are being
used increasingly for large commercial formatting
projects, so it is necessary to investigate how they

67

can be used most effectively. I hope that this record
of my experiences formatting Turtle Geometry will
be useful to those people actively investigating this
area.

DEALING WITH MIT PRESS

One of the first things I did after being hired
to format Turtle Geometry was to talk with the
people at MIT Press (the publishers of the book)
and hear their views on the project. The book
editor and the book designer were not computer
scientists—they were mainly interested in produc-
ing a book. However, they were intrigued by the
idea of using a computer formatting system, instead
of traditional typesetting, and were willing to par-
ticipate in the experiment of formatting the whole
book by computer. They made a few things clear:
first, the quality of Turtle Geometry must not suffer
as a result of doing the formatting by computer. In
the past, a few people have published books (mainly
computer science textbooks) formatted using primi-
tive text formatters and low quality printers, which
looked horrible, and were impossible to read. The
MIT Press was not willing to publish a book of such
low quality. I was expected to produce computer-
generated output fine enough so that, when it was
photographed and printed, the book it would be
virtually indistinguishable from a book typeset us-
ing the normal methods. They were not willing to
sacrifice quality for the sake of our experiment. A
second condition was that they did not want to put
more work into this book then they would have if it
was typeset normalily. There would be little reason
to use the computer if it took more work on their
part. Within these restrictions, however, they were
willing to be flexible. They were interested in what
we could do using a computer formatting system.

The book designer gave me a set of
specifications, written on a standard form. This in-
cluded such information as the page dimensions, the

- placement, of headings and page numbers, the fonts

to be used with different types of text, etc. These
specifications had been chosen so as to make the
book as beautiful and readable as possible. Book
designers use their experience with book formatting,
and a long-cultivated sense of aesthetics, to choose
a combination of design specifications such that the
total effect is pleasing to the eye, as well as ap-
propriate for the type of book being published. This
is the art of book designing.

Turtle Geometry is a textbook dealing with
mathematics, physics, and computer science. It con-
tains mathematical equations, computer program
listings, and figures, interspersed with paragraphs
of text. The book designer decided how each

68

of these objects should be formatted, so that the
book would be readable, and would have the right
“style.” Each of these objects seemed to have fairly
simple formatting—there were no fancy footnotes or
other objects requiring complicated formatting—so
1 didn’t anticipate any problems with the formatting
of individual objects. However, the book as a whole
was sure to present some problems, because there
were literally hundreds of figures and equations that
had to be formatted. I hoped that using a computer
formatting system would allow me to cope with this
problem better. In retrospect, formatting individual
equations and figures didn’t present many problems.
The hard problems arose when I had to deal with
the formatting of the book as a whole. In part this
is because TEX can handle low-level details beauti-
fully, but cannot deal directly with higher-level for-
matting concepts. I will discuss this problem more
thoroughly later.

LEARNING TEX .
After talking with the book designer, I had to
learn about TEX. I knew that Donald Knuth at
Stanford University had developed TEX in order to
format his series of books, The Art of Computer
Programming. Supposedly, TEX was a book-quality
typesetting system particularly optimized for for-
matting mathematics. So I picked up a copy of
Knuth's TEX manual and proceeded to read it.

My first impression was that TgX was very com-
plicated. Knuth’s manual tries to present the lan-
guage “gently,” a little at a time, so that the reader
is not overwhelmed, but it only succeeds in being
confusing. This style only served to make it difficult
to use the manual as a quick reference. Eventually,
I wound up reading the manual cover-to-cover three
times, until I had a good idea about how the whole
TEX system worked.

TEX can be used to produce very high-quality
formatted output on a high-resolution printer.
However, this comes at a price. The TEX user has
to specify exactly how he wants to format his docu-
ment using a complicated formatting language. TEX
is an improvement over many other formatters in
that it uses some of the vocabulary and concepts
of printing and typesetting, but it still requires the
user to specify the formatting in excruciating detail.
In general, I would characterize TEX by saying that
its “output” is good, but its “input” is bad. It is
possible to produce beautifully-formatted copy, but
the specifications necessary to achieve this are very
complex.

Rather than explicitly specifying the exact
formatting for every object in a document, TEX
provides a macro facility which allows one to en-

TUGboat, Volume 2, No. 3

capsulate and name a sequence of commonly-used
formatting specifications, and to refer to them by
using the macro name. TEX's macros are imple-
mented using simple text substitution—when you
reference a macro, TgX acts as if the macro text
were substituted for the macro reference. Macros
can be defined to take arguments, which are in-
serted into the text of the macro in the same way
that the macro is inseried into the text file. It
was obvious that I should use macros to specify
all of the different objects that would appear in
Turtle Geometry. I began creating a file of mac-
ros. Initially, they were very simple, and 1 was
able to get them working very quickly. I gradually
refined them, changing the macro definitions until
they fulfilled the specifications for the book.

I had a lot of problems using macros because
of the way that they are implemented in TEX. In
most cases, simple text-substitution worked well,
but sometimes I wished that it were possible to
write “smarter” macros. One problem was that
the exact effect of a set of formatting commands
depends on where they occur. A TgX macro has
no way of detecting where it has been placed, so
you can get very strange results by putting a macro
in the wrong place. A similar problem occurred
because the arguments to a macro are blindly in-
serted into the macro text, and there is no way to
check whether they are appropriate. If the argu-
ments are not of the correct form, the macro may
do something quite unexpected. (I give an example
of this second problem below, in the section on for-
matting figures.) Both of these problems happen as
a. result of people making mistakes-—using macros
incorrectly—so it could be claimed that this is not a
deficiency of TEX. However, this situation influences
the way that people use TEX. In order to use a
macro correctly, you need to know exactly where it
can be used, and the precise form of all of its argu-
ments. Therefore, all macros need to be supplied
with extensive documentation concerning their use.
This is the same documentation problem that people
have to deal with when maintaining programs writ-
ten in computer languages, raised to a higher de-
gree. Most computer languages allow programs to be
somewhat isolated from each other, with only min-
imal communication between them—this allows one
to consider the effects of one program apart from the
others. Macros in TEX get much of their meaning
from the context within which they are inserted. A
macro is meaningless by itself. Consequently, this
makes the tough problem of documentation even
tougher. While ! was developing the macros for
Turtle Geometry, I found that I had to write exten-

TUGboat, Volume 2, No. 3

sive notes to remind myself exactly where and how
to use my macros. In spite of this, I made a lot of
mistakes which were difficult to discover and to fix.
Luckily, the macros would not have to be used by
anyone else. It would not have been easy to write
macros that anyone could use. In general, I would
not want anyone else to use my macros Unless they
understood them completely, it would just be too
easy to make a mistake. Because of this problem, I
predict that it will be difficult to set up “libraries” of
commonly-used TEX macros, in an effort to prevent
duplication of effort. Instead, most people using TEX
will have to start from scratch, and write their own
macros.

One unfortunate characteristic of TEX is that it
is difficult to debug your formatting specifications
if there is some type of error. TEX has a large set
of error messages, but these only signal when you
specify formatting illegally. Most of the time, TEX
formats your document without complaining, and
there is something strange in the output. What can
you do? Usually you can figure out where something
went wrong, but sometimes this is very difficult.
This problem is compounded by the use of macros,
which may do unpredictable things if you use them
incorrectly. This makes TEX very hard to use.

FORMATTING THE TEXT OF Turtle Geometry

Once | learned how to use TEX and developed
the formatting macros, I began to edit the text of
the book, inserting the macro invocations where ap-
propriate. The book was first written and printed
using a primitive text formatter called TJ6, so the
text files (one per chapter) contained text inter-
st :rsed with TJ6 commands. All of the TJ6 com-
mands had to be removed, and TEX commands
had to be inserted. I eventually deleted all of the
TJ6 commands using a text editor, then scanned
the straight text which remained, and inserted TEX
commands as needed.

Most of the time formatting the text was no
problem-—the job was tedious, but not difficult. Oc-
casionally I came across an object that had to be
formatted somewhat strangely, and I had to do a
Jot of thinking and experimentation to make TEX
do what I wanted. However, with most objects all
1 had to do was to insert the appropriate macro in-
vocations, and TEX would format them correctly.

Using TEX's macro facility to specify formatting
turned out to be very useful when I was not ex-
actly sure how something should be formatted. For
example, Turtle Geomeiry contained many vector
equations. The authors and the book designer were
not exactly sure how they wanted to represent vec-
tor variables. So I defined a macro called \vect,

69

and used it to specify all vector variables. Then,
I printed out a section of the book several times,
defining \vect a different way each time. By chang-
ing that single macro definition, I could represent all
vectors in an entire section by letters with arrows
on top of them, or by boldface characters. The only
way to judge which notation was better was to see
how it looked in print. Using macros allowed me to
experiment with very little effort.

FORMATTING FIGURES

Of all of the objects in Turtle Geometry, the
hardest to format were the figures. MIT Press and
the authors had decided that the figures would be
drawn by a technical illustrator, and pasted onto
the camera-ready copy of the formatted document.
Therefore, spaces had to be left for the drawings.
Formatting a figure proved more complicated than
simply leaving a specified amount of space on a page,
however. The book designer had specified that a
single figure should contain a caption, and an ar-
bitrary number of subfigures, each with an optional
label, organized one or two or three in a row across
the page. I had to develop macros to allow me to
construct complex figure boxes.

QOne problem I ran into was determining exactly
how much space to leave for a particular figure. If
I put in too much space, the drawing would look
strange surrounded by emptiness. If I didn’t leave
enough space, on the other hand, it would be im-
possible to paste the drawing into the final copy of
the document. Given a drawing, I measured it, and
give its height as an argument to a figure-generating
macro. In most cases, this produced a good-looking
figure, with just enough blank space to paste in the
appropriste drawing. However, there were a fair
number of figures which didn’t have labels for the
subfigures. Because of the way that TEX macros are
implemented, there is no way for a macro to detect
when it is given a null argument. When given a null
label argument, my figure formatting macros still al-
located space for a label, which resulted in a figure
with too much space. Eventually, I solved this prob-
lem by subtracting an appropriate amount from the
size | gave as an argument to the figure macro, to
compensate for the extra space added for the non-
existent label. This was a rather inelegant solution.
In retrospect, it would have been better for me to
have defined separate macros for figures with labels
and figures without labels. The best solution, if TEX
had had the capability, would have been to define
& figure macro that could detect when it is given a
null label, and format the figure accordingly. TEX
could be grestly improved by extending its macro
facility so that a macro could test its arguments.

70

PAGE BREAKING AND HIGH-LEVEL

FORMATTING

As I have mentioned before, I didn’t encounter
many problems with formatting most of the in-
dividual objects in the book. To format a figure,
or a program listing, or an equation, I just had to
use the appropriate macro from the set I developed.
Admittedly, constructing and debugging that set of
macros was & slow and painful process, but I only
had to do that once. The real problems began after
I had formatted the individual objects and was try-
ing to bring them all together. The book designer
at MIT Press had given me certain aesthetic rules
to follow when formatting pages. Unfortunately,
TEX was not designed to deal with such high-level
formatting concepts. As an example, consider the
placement of figures within a document. Each figure
is referred to at a specific point within the text. The
readability of a document is improved if figures are
placed so as to minimize the amount of page-flipping
a reader has to go through to associate references
with figures. For this reason, the book designer at
MIT Press specified that a figure should be placed at
the top of the page containing its reference, if pos-
sible. If that was not possible, the next best choice
would be to have the figure on the facing page, to the
left or to the right. If that too was not possibie, then
the figure should be on the next possible page later
on in the document. Unfortunately, TEX cannot
deal with figure placement in these terms. For one
thing, there is no notion of “facing pages” in TEX.
This is a serious failing, since commercial publishers
design document formatting in terms of how each

“gpread” (facing left and right pages) looks. More
generaliy, TEX does not give the user very much con-
trol over which page a figure is placed upon.

Another formatting rule I was given was that the
pages should all be of the same length, if possible,
but a page could be a line short or a line long, if that
would help the formatting of the page. In TEX, the
height of a page is set to a specific distance using
a \vsize command. Page breaks are generated to
fit as closely as possible to that limit, without going
over. There is no provision in TEX for changing
this number dynamically, on a page by page basis,
subservient to other formatting needs. Within TEX
all formatting decisions have equal weight, which
sometimes unnecessarily restricts the possibilities for
formatting something, and reduces TEX's power.

If I only had to deal with a small, simple docu-
ment, the aesthetic goals mentioned above would
not be very important. It is not difficult to place a
figure in a small document consisting of a few pages,
and TEX would probably position it correctly, us

TUGboat, Volume 2, No. 3

ing its simple figure-placement algorithms. However,
Turtle Geometry was a very large document, with
many figures and equations. When you have a
large number of figures in a document, placing these
figures becomes a much more complicated problem,
and it is harder for TEX to place them correctly.
It can’t deal with the aesthetic concepts that come
into play with large documents. The first time I
formatted Turtle Geometry using TEX, it formatted
the individual figures and equations correctly but
the total effect was horrendous. The book was
unreadable—of much lower quality than you would
get using traditional human typesetting.

I had to find some way to correct this situation.
First, 1 tried coercing TEX into doing the correct
page formatting by adding formatting commands at
places where it broke pages and placed figures incor-
rectly. This proved to be very difficult. The problem
was that I could easily prevent TEX from breaking a
page at a particular bad place, but it was harder to
ensure that it would break it at a good place. I was
never sure of the effect of adding any particular for-
matting command until I saw the text reformatted.
Coercing TEX involved endless experimentation, just
to get around the inadequacies of TEX's page format-
ting algorithm. I realized quickly that this method
was unsuitable. I was spending my time fighting
TEX, trying to merge its page formatting with my
aesthetics, rather than worrying about the format-
ting of the book.

Rather than having both TEX and myself handle
the page breaking and figure placement, I decided
to simplify things by doing all of the page breaking
by myself. To be exact, I inserted an \eject com-
mand every place that I wanted a page break, and
specified to TEX that it shouldn’t do any page breaks
itself. So that I would not have to figure out by
myself where all of the page breaks should go, I de-
veloped a macro called \bookmark which I inserted
into each file containing a chapter of the book. The
\bookmark macro told TEX that all page breaks be-
fore the point where it oceurs will be handled by
explicit \eject commands, but that TEX should
attempt to generate page breaks from that point
on. I eventually developed a routine for handling
the page breaks in a chapter: I would insert a few
\eject commands, move the \bookmark macro call
forward to the end of my \ejects, and run the file
through TEX. Seeing how TEX would format the
next few pages helped me decide where"I wanted to
insert page breaks. Often, I didn’t have to do any-
thing more than insert \eject macros where TEX
had broken the page before, but most of the time
I wanted to move figures around, and change the

TUGboat, Volume 2, No. 3

exact placement of the page breaks. It was neces-
sary to do this work a few pages at a time, because

each formatting change I made could send effects -

percolating through the rest of the document in un-
predictable ways.

By doing the page breaking and figure place-
ment myself, I was able to optimize the page for-
matting with respect to aesthetic rules that I could
not express with TEX. Consequently, I produced a
book of very high quality.

LOOKING BACK

Formatting Turtle Geometry was a long,
difficult job. Everything did not go as smoothly as it
may seem from what I have said above. One prob-
lem was that the macro development, the figure for-
matting, and the editing of the actual text of the
book were all happening at the same time. It was
very difficult to coordinate these separate activities.
Another problem, which is sure to occur whenever
a document is available on a computer system, was
that of “freezing” the text of the document. When it
is easy to change the text, authors are very reluctant
to finish editing. There is always a great temptation
ta fix one more error. At some point, however, it is
necessary to decide that the text will not change any
more.

A typical example of the organizational prob-
lems I had to deal with was that associated with
putting the figures in the book. It took a long time
to get the figures drawn and checked. Until the
drawings were in final form, I couldn’t measure them
and give these measurements to the figure macros.
Therefore I couldn’t do the page formatting, since
the sizes of the figures critically affected the location
of page breaks. To cope with this situation, I worked
on each chapter separately, so that at any one time
different chapters could be at different stages of
production—the authors might still be editing the
text of chapter 5 while I was sizing the figures for
chapter 1, and formatting its pages.

1 made many mistakes, and had to do some
things several times. I was learning what to do, and
developing new methods for doing things, while I
was formatting the book. Everything would have
been much better if all of the people working on
Turtle Geometry had sat down before the work was
started, and developed a routine for producing the
book. We could have avoided a lot of problems, and
produced a better book with less effort, if we had
been more organized.

Thoughts on Text Formatters

Current computer text formatting systems
suffer from many deficiencies, which become increas-

71

ingly apparent as people attempt to use them in
more and more situations. Some of these prob-
lems sare due to formatting languages that cannot
cope with the aesthetic ideas that book designers
have developed from long experience with document
production. Other problems result because format-
ters are designed with small documents in mind, and
cannot deal with the formatting concerns of large
documents. I don’t claim to have “the solution” for
all of these formatting problems. However, I have
come up with a few ideas about how text formatters
could be improved.

FORMATTING LANGUAGES AND CONTROL

Computer-controlled printers deal with docu-
ments at a very low level. To a graphics-oriented
printer, a document is a set of commands which
specify the exact positions of individual dots, Lines,
and characters on & page. Obviously, people do
not want to have to specify the formatting of
their documents in such excruciating detail. In-
stead, they use a computer text formatter, which
could be considered as a translator between an
abstract, high-level formatting language and the
specific detailed language of a printer. A format-
ter allows its user to specify document formatting
in terms which are more abstract and general, such
as words and paragraphs and lines of text. Us-
ing these specifications, the formatter decides where
each character of the document should be placed on
each page.

An important characteristic of a formatting lan-
guage is the level of detail with which the user has to
specify the formatting of a document. Suppose that
a formatting language deals only with high-level for-
matting concepts, and the user wishes to specify the
formatting of a particular object a little more ex-
plicitly. This could happen if the formatter doesn’t
format something exactly right automatically, and
the user wants to fix this. Another possibility is that
the user may wish to create a one-time special-case
object, which needs to be formatted strangely, and
the user is willing to take the extra time to specify it
in detail. (As an example of this, in Turtle Geometry
there were only two or three tables, and it was easier
to specify them in detail, rather than developing
general macros for formatting tables.) In this case,
the only solution is for the user to try to coerce
the system into formatting correctly. This may in-
volve tricking the formatter, making it treat some
objects like other objects, and trying to second-guess
the formatting algorithm. This is very difficult to
do, it requires an intimate knowledge of the inter-
nal workings of the formatting system which not all
users may have, and it is extremely inelegant. The

72

problem is really that the way such formatters are -

designed, there are simply some documents which
cannot be produced. In the interest of making a for-
matter easier to use, the set of possible documents
that could have been formatted with it has been
constrained.

Now, let us consider the opposite extreme,
where you have a very low-level formatting lan-
guage, and you wish to do high-level formatting. In
other words, you don’t care exactly how your docu-
ment looks, as long as it conforms to certain high-
level formatting goals, such as having lines filled to
a constant length, ete. Using a low-level formatting
language, it should be possible to produce a docu-
ment conforming to these high-level constraints, but
you will be required to specify a lot of low-level
details that you are not really interested in. Aside
from the inconvenience of specifying the formatting
in this much detail, this makes things very difficult if
you wish to change your document later. The more
detailed your specifications, the more work has to
be done in order to change them. When you work
with specifications at a low level of detail, you es-

sentially have to calculate the formatting yourself,

rather than letting a computer do it.

There is another, rather subtle, problem as-
sociated with formatting languages which use
descriptions at a lower level than you need for a par-
ticular document. The greater the detail in which
you specify the formatting of 2 document, the more
you constrain the possible ways that it could be for-
matted. If you have to use a low-level language, you
wind up making a lot of fairly arbitrary decisions
asbout how something should be formatted at a low
level, since you have to specify something. However,
all of the formatting specifications are heeded by
a computer formatting system, whether they are
important to the user, or whether they were just
specified arbitrarily. The more constrained a for-
matter is, the smaller the space of possible ways a
document could be formatted, and the more likely
that there will be no formatting which is accept-
able. When a user is specifying how his document,
should be formatted, he should use the least possible
amount of detail, while still mentioning those things
important to him. In this way, the possibility is in-
creased that the formatter can find an acceptable
way to format his document.

Early text formatters were designed around the
idea that documents were fairly simple, consisting of
text organized into paragraphs, with an occasional
heading or footnote. These programs would take
the user’s specifications, and format a document us-
ing rules interna! to the formatter. It was possible

TUGboat, Volume 2, No. 3

to modify exactly how the formatting was done by
specifying the values of certain parameters, but the
formatting was essentially done by one “smart” pro-
gram. These early formatters present a good ex-
ample of formatting languages which work at too
high a level for many formatting tasks. As long
as the shape of your document conformed to the
ideas explicit in the formatter’s abstract paragraphs
and words, it would be easy to to format your docu-
ment. However, if your document contained somne-
thing out of the ordinary that the program was not
equipped to handle, there was little that you could
do. No matter how much effort you were willing to
expend to specify the detail, these early formatting
languages wouldn’t allow you to. The user simply
had very little control over the formatting process.
The shape of a document had to be specified in terms
of the objects the formatter was built to deal with,
then the user would just have to “throw it to the
winds,” and hope the formatter produced something
acceptable.

TEX is similar to these early formatters, in that
it deals with abstract ideas such as paragraphs and
pages, and the user only has indirect control over
how these objects are formatted. However, TEX
also can deal with the idea of “boxes and glue,”
which allow a user to specify an object at a very
low, but manageable, level. This facility is very
useful for handling “special case” objects, such as
complex figures, which would be too complicated
for TEX to deal with as built-in objects. In essence,
TEX allows the user to deal with formatting at two
distinct levels of detail, or control. Either you can
“throw your formatting to the wind” and let TgX
take care of it all, or you can specify the format-
ting of the object in low-level detail. This is an im-
provement over the earlier text formatters, which
gave you no choice, but it still proves inadequate in
many situations. The problem is, a user sometimes
want to have control over the formatting, without
having to specify all of the formatting explicitly.
For example, consider the problem I had while for-
matting the Turtle Geometry book with breaking
pages, and placing figures. When I let TEX do all
of the formatting by itself, it would do it incor-
rectly, in part because it doesn’t consider some of
the aesthetic considerations I am concerned with.
For a while, I tried tricking TEX’s formatting algo-
rithms into doing the correct thing, but this involved
going through all sorts of complicated contortions.
Finally, I was forced to deal with the problem at a
very low level, by specifying all of the page breaks
and figure placements myself, explicitly. I was able
to get what I wanted, but it required a lot of work

TUGbost, Volume 2, No. 3

on my part. Another issue in this situation was that
once | had done the page breaking by hand, that es-
sentially “froze” that part of the document. If any
changes had needed to be made to the document
after I had done the page breaks, it would have been
necessary for me to do all of that work over again.
It would have been better if I had the ability in TEX
to specify formatting at a higher level, while still
retaining control over the formatting.

People who design text formatting systems need
to worry about -this issue. One way that format-
ters could be improved is by giving more control
to the user, at different levels of detail, so that
it is not mecessary to specify document formatting
at more than the minimum amount of specificity.
Looking at TEX in particular, one way to improve
it would be to introduce “smarter” boxes—objects
that are not quite as explicit and low-level as boxes
are in TEX. For example, you could have an object
called a “paragraph box,” which contains text that
should be formatted as a paragraph. Eventually,
this may not be formatted as a single rectangular
box—the paragraph may eventually extend across
several pages. Without explicitly specifying the ex-
act formatting of every character in the paragraph,
you could express parameters appropriate to the
level of abstraction of a paragraph, such as line
length, degree of raggedness, whether the paragraph
can be broken, etc. To format any particular object
in a document, simply express it in terms of a for-
matter object which deals with the correct level of
abstraction.

One problem with implementing this scheme is
that it could lead to a complicated formatting lan-
guage with an unmanageably large number of ob-
jects defined. A way to deal with this is to only
define a few objects, which can be used to specify
formatting at differing levels of detail. For example,
consider a “box” object that acts in the following
way: given a set of objects as arguments, it for-
mats them like a paragraph, using default width,
raggedness, etc. values. If these values are given as
parameters to the box, it will use them instead. You
can imagine a whole set of parameters and defaults
set up so that a single box object could be used for
formatting a paragraph (at the most abstract level)
or used exactly like a box in TEX (if everything, in-
cluding vertical and horizontal sizes, are specified).
A single object, with many parameters and defaults,
could be used at many different levels of abstraction.

HIGH-LEVEL FORMATTING GOALS

One problem I have mentioned regarding cur-
rent text formatters is that they do not deal with
some of the aesthetic rules that book designers have

73

developed after years of experience with formatted
documents. I had to explicitly specify page break-

" ing for Turtle Geometry, because TEX could not

deal with some of these concepts. Let us examine
this problem more closely. When breaking pages by
hand, I had to keep in mind several aesthetic con-
siderations. First, figures had to be positioned to
be as near to their references in the text as possible
(on the same page, or on the facing page, or on the
next page). Second, I didn’t want a page break in
the middle of a computer program listing, if at all
possible. Third, the length of each page should be
nearly constant, plus or minus a line. In certain
special situations, I had to worry about other aes-
thetic considerations, such as not having an equation
directly under a figure, but this didn’t come up too
often. Mainly, I was concerned with choosing page
breaks, and positioning figures, so as to produce a
document optimized with respect to those three aes-
thetic rules given above.

Certain problems arise when dealing with high-
level aesthetic formatting goals. It is difficult to
explicitly specify such goals in a form that a com-
puter can work with. Consider what a human has
to go through to format a document while consider-
ing these goals. It is seldom the case, given a tricky
formatting situation with a lot of figures, that all
of these formatting goals are compatible. Often,
they are contradictory. For example, suppose you
have a page with a computer program listing in the
middle, and a figure reference near the top of the
page. Suppose that if you place the figure at the
top of the page, this pushes the text on the page
down far enough so that the computer program has
to be broken between this page and the next one.
Here you have a conflict between the rule that wants
figures on the same page as their references and the
rule that doesn't want computer program listings
to be broken. Exactly what I would do depends
on the exact situation. If the page in question was
a left-hand one, it might be possible to move the
figure to the facing right-hand page. Alternately, if
the place where the program was to be broken was
only a few lines into the program, I might just break
that page short. (notice that in this second case I
may be breaking the third aesthetic rule.) Making
an aesthetic decision of this sort involves finding a
compromise between several contradictory goals.

The problem of formatting a document with
respect to certain aesthetic formatting goals can be
reduced to the problem of considering two situa-
tions, where a part of a document is formatted in
two different ways, and deciding which is “better.”
Usually there are only a few possibilities to consider

T4

in any formatting problem, and a computer could
afford to try the various possibilities, and pick the
“best” one. The key to this problem is obviously
determining what the word “better” means with
respect to a set of high-level aesthetic formatting
goals. It is instructive to examine a mechanism that
TEX has for dealing with this problem on a lower
level. In order to optimally generate line breaks and
page breaks within a paragraph, TEX associates an
integer with each paragraph known as its “badness.”
Every line break generates a certain “penalty,”
another integer, which indicates how “bad” that
break is. Line breaks have large penalties associated
with them if the break requires hyphenating a word,
or if a line is too long, among other things. Page
breaks in a paragraph have large penalties associated
with them if they generate widows (the first or last
line in the paragraph alone on a separate page). The
badness of a paragraph is calculated as the sum of
all of the penalties in the paragraph. The formatting
algorithme inside TEX are designed to make line and
page breaks so a8 to minimize the total badness of
& paragraph. This is a fairly flexible system-—users
can specify penalties explicitly at certain points to
indicate places that are particularly good or bad to
break at—and it formats individual paragraphs very
well. However, this type of system would not be
suitable for dealing with more complex formatting
constraints. “Badness” is a simple, one-dimensional
“score” which can be easily calculated and used for
comparisons, but it is not powerful enough to ex-
press some of the more complex combinations of
higher-level formatting goals. Consider the aesthetic
goals given above, dealing with figure placement and
computer program listings. You can’t simply take a

TUGboat, Volume 2, No. 3

badness score with respect to one goal, and a bad-
ness score with respect to another, and sum them
to get total badness. This is like adding apples
and oranges. Aesthetic formatting goals combine
in more complex ways than that. In a particular
situation, it might be possible to represent a situa-
tion in terms of carefully-adjusted penalties, but this
wouldn’t work in general. You need a more complex,
multidimensional, way of comparing two situations.
The fundamental problem with implementing
high-level abstract formatting goals in a text for-
matting system is the problem of achieving a goal.
Supposing that you have a way of unambiguously
stating fairly complex aesthetic rules, how is the
computer to make sure that they are achieved? Ex-
actly what can the formatter do if the formatting it
chooses disobeys one of the aesthetic rules? Consider
the low-level decisions that a formatter makes when
formatting a document. The decisions about exactly
which word to break a line at, or exactly how much
to stretch a line, are fairly arbitrary. Unless the
user specifically specifies it, the formatter has a fair
amount of leeway as to exactly how the document is
formatted. Ideally, the low-level arbitrary decisions
could be influenced by the high-level aesthetic rules.
I admit that I don’t know how this could be ac-
complished, but this is obviously what text format-
ters should work towards. As an intermediate step,
formatting systems should be designed that can ex-
press the concepts of high-level aesthetic goals. Even
if they couldn’t use these goals to influence the for-
matting process, it would be worthwhile simply to
flag violations of these rules, pointing out to the user
places in the document where one or another of the
rules are broken. This by itself would lead to better
formatters, producing better-looking documents.

TUGBOAT : VOLUME 2, NUMBER 3

Contents
November 1981

Addresses of Officers, Authorsand Others.t v it it vt vt o vt ot nonssneense]
Official Announcements. ¢ . . .t et ittt st P . 3
General Delivery
Michael Spivak. Message fromthe Chairman« i v i it it i ettt ts e nenan 3
Samuel B. Whidden. TUG Treasurer’s Reportttt it et eninsosnnsa 4
Donald Knuth. The Current Stateof Things i i i i it vt oot o v onnanees 5
Tom Pierce. TEX Users Group Winter 1982 Meeting, January 11-12, 1982, Cincinnati, Ohio 7
Software
Arthur Samuel. PASCAL-Coded TEX Errata« i v vttt v i ittt aovononnns 7
David Fuchs. The Format of PXL Files« « i i it it it ottt et oo s aoenneens 8
Output Devices
John Sauter. Sample of output from anIDS-640 i e e e e 13
Rilla Thedford. Output DeviceIndex ¢ o i i i i i et vt v ot nvnon e e e e e 14
Jim Mooney. A Varian Qutput Driver in VAX/VMSFORTRAN, 14
Timothy Murphy. Disbolic TEX & o i i it ittt e it ettt ot e et onoesaenns 15
Site Reports '

David Fuchs. News from the Home Front (Stanford) v ¢ i it v it et it e p) |
CDC Cyber

Michael J. Frisch. TgX Under the North Star 0. e 22
DEC 10 and 20

Barbara Beeton. A TUGboat Tour: Excerpts from the TEXnician’sLog 23
Hewlett-Packard HP3000

Lance Carnes. TEX forthe HP3000 v it vt it i vt i et onnoorannons 25
IBM 370 and related architectures

Susan Plass. TEX for the IBM 370 o ot i i i it ettt e et onsonnenn 26

Jeffrey S. Rosenschein. TEXinIsrael o0 v ittt ittt it e i e e 27

David Rodgers. TgX at the University of Michigan, Summary of Progress 28
VAX/UNIX

Robert Morris. VAX on UNIX i i it i ittt s v o e eontanasoesonsonsas 29

Calvin Jackson. TEX at CalTech i i i ittt it nn e onons 29

Jenet Incerpi. The Statusof VAX/TEX atBrownt veenonnn . 32
VAX/VMS

Monte C. Nichols. VAX/VMS Site Report« et it i it aennnnn e e 32

John Blair. Enhancements to VAX/VMS TEX at Calma00 e iicusens 32

John Sauter. “Poorman’s” TN . . . o o o v i i it e et e et ettt it e .- 34

LEZ 2 2 Continued SRERE

TUGBOAT - VOLUME 2, NUMBER 3

Contents — Continued
Fonts :
Ronald Whitney. Font Update. , i ittt it iesroonnennssaa 35
Warnings & Limitations
Barbara Beeton. Don’t Just \let TEX Hang, \raigeor\lower It 35
Macros
Lynne Price. Editor’sIntroduction ittt neeoaonens 36
TUGbost MacroIndex i i i i it it it it s st s annoecsosanonseose 36
Timothy Murphy. Bubbles: A TEXtension in Searchof a TEXpert 37
Michael F. Plass. Charting Your Grammar with TgXo 39
Monte Nichols, Barbara Beeton. Chemical Notation Using TEX vt v v v v 57
Problems .

Lynne Price. Balancing columns of text and translation (Johnny Stovall);
Input-dependent macro redefinition (Mike Spivak);
A macro that prints its name (Anthony Siegman); :
Testing the equivalence of StFings v . i i it e e e e 58

Problems from the TkXarcana Class: Answers, and Another Problem 61
Letters et alia '
JM Cole. et e e e e e e e s e 66

Michael Sannella. Formatting a Book with TgX: Experiences and Observations 66

