
The Agent Reputation and Trust (ART) Testbed
Architecture

Karen K. Fullam
�

, Tomas B. Klos
�

, Guillaume Muller
�

, Jordi Sabater
�

, Zvi Topol
�

, K.
Suzanne Barber

�

, Jeffrey S. Rosenschein
�

, and Laurent Vercouter
�

�

Laboratory for Intelligent Processes and Systems, University of Texas at Austin, USA
�

Center for Mathematics and Computer Science (CWI), Amsterdam, The Netherlands
�

École Nationale Supérieure des Mines, Saint-Étienne, France
�

Institute of Cognitive Science and Technology (ISTC), National Research Council (CNR),
Rome, Italy

	

Multiagent Systems Research Group—Critical MAS, Hebrew University, Jerusalem, Israel

Abstract. The Agent Reputation and Trust (ART) Testbed initiative has been
launched with the goal of establishing a testbed for agent reputation- and trust-
related technologies. This testbed serves in two roles: (1) as a competition forum
in which researchers can compare their technologies against objective metrics,
and (2) as a suite of tools with flexible parameters, allowing researchers to per-
form customizable, easily-repeatable experiments. In the testbed’s art appraisal
domain, agents, who valuate paintings for clients, may gather opinions from other
agents to produce accurate appraisals. This paper first gives a brief overview of
the testbed domain problem to orient the reader to the game rules. A detailed
discussion of the ART Testbed implementation architecture is presented, explain-
ing the functionality of the testbed’s Game Server, Simulation Engine, Database,
User Interfaces, and Agent Skeleton.

1 Introduction

The Agent Reputation and Trust (ART) Testbed [8] initiative has been launched with
the goal of establishing a testbed for agent reputation- and trust-related technologies.
This international team of eight researchers from five countries has been formed to
coordinate domain design, game specification, testbed development, and competition
administration. The ART Testbed is designed to serve in two roles: (1) as a competition
forum in which researchers can compare their technologies against objective metrics,
and (2) as a suite of tools with flexible parameters, allowing researchers to perform
customizable, easily-repeatable experiments.

In recent years, researchers [1, 4, 7] have recognized objective standards are nec-
essary to justify successful trust modeling systems and provide a baseline of certifi-
able strategies for future work. For trust algorithms and representations to crossover
into application [2, 3], the public must be provided with system evaluations based on
transparent, recognizable standards for measuring success. As a versatile, universal ex-
perimentation site, the ART Testbed will foster a cohesive exploration of trust research
problems; researchers will be united toward a common challenge, out of which can



come solutions to these problems via unified experimentation methods. Through objec-
tive, well-defined metrics, the testbed will provide researchers with tools for comparing
and validating their approaches. The testbed will also serve as an objective means of
presenting technology features—both advantages and disadvantages—to the research
community. In addition, the ART Testbed will place trust research in the public spot-
light, improving confidence in the technology and highlighting relevant applications.

In the testbed’s art appraisal domain, agents, who valuate paintings for clients, may
gather opinions from other agents to produce accurate appraisals. This paper first gives
a brief overview of the testbed domain problem in Section 2 to orient the reader to
the game rules. In Section 3, a detailed discussion of the ART Testbed implementation
architecture is presented, explaining the functionality of the testbed’s Game Server,
Simulation Engine, Database, User Interfaces, and Agent Skeleton. Finally, Section 4
concludes, presenting future plans, including upcoming testbed code releases and com-
petitions.

2 Testbed Domain Problem

The testbed operates in two modes: competition and experimentation. In competition
mode, the testbed compares different researchers’ strategies as they act in combina-
tion. Each participating researcher controls a single agent, which works in competition
against every other agent in the system. Competition organizers can change parame-
ters to permit the game structure to be adapted for subsequent competitions. To utilize
the testbed’s experimentation mode, the complete testbed will be downloadable for re-
searcher use independent of the competition. Thus, results may be compared among
researchers for benchmarking purposes, since the testbed provides a well-established
environment for easily-repeatable experimentation. In experimentation mode, the re-
searcher has the flexibility of complete control over all experiment parameters.

In the art appraisal domain, agents function as painting appraisers with varying
levels of expertise in different artistic eras (e.g. classical, impressionist, postmodern).
Clients request appraisals for paintings from different eras; if an appraiser does not have
the expertise to complete the appraisal, it can purchase opinions from other appraisers.
Other appraisers estimate the accuracy of opinions they send by the cost they choose to
invest in generating an opinion; opinion providers may lie about the estimated accuracy
of their opinions. Appraisers produce appraisals using opinions they receive from other
appraisers; they receive more clients, and thus more profit, for producing more accu-
rate appraisals. Appraisers may also purchase reputation information from one another,
which helps appraisers know from which other appraisers to request opinions. More de-
tail about the art appraisal domain rules can be found in the ART Testbed Competition
Rules [5]. In [6], the authors detail today’s most prominent trust research objectives,
solutions to which the testbed must facilitate, and present a structured defense of the
chosen art appraisal domain by delineating how the domain problem addresses each of
the prominent research objectives.

Appraiser strategies are analyzed in terms of both agent- and system-based metrics.
The agent perspective examines the utility of a strategy to a single appraiser without
regard for the benefit to the overall agent system. In the testbed’s appraisal scenario,



appraisers attempt to accurately valuate their assigned paintings; their decisions about
which opinion providers to trust directly impact the accuracy of their final appraisals.
Therefore, in competition mode, the winning agent is selected as the appraiser with the
highest bank account balance. In other words, the appraiser who is able to (1) estimate
the value of its paintings most accurately and (2) purchase information most prudently,
is deemed most successful. The testbed also provides functionality to compute the av-
erage accuracy of the appraiser’s final appraisals and the consistency of that accuracy,
represented as its final appraisal error mean and standard deviation, respectively. In ad-
dition, the quantities of each type of message passed between appraisers are recorded.

The system perspective employs metrics that emphasize social welfare, or benefit to
the appraiser network as a whole. The testbed collects data on system metrics such as
distribution of earnings among appraisers, number of messages passed (by type), num-
ber of transactions, and transaction distribution across appraisers. Finally, the testbed
provides methods allowing researchers to define additional metrics and collect relevant
data.

3 Implementation Architecture

As shown in Figure 1, the testbed architecture, implemented in Java, consists of five
components:

...

...


...


...

...


...

Data Base


GameServer


Game

Setup


Interface

Game


Monitor

Interface


Simulation Engine


Agent
 ...
Agent
 Agent


Fig. 1. ART Testbed architecture.



1. Game Server, which allows setting up and running games (Section 3.1),
2. Simulation Engine (one per game), which controls the simulation environment

(Section 3.2),
3. Agent Skeleton, designed to assist players in implementing their strategy code (Sec-

tion 3.3),
4. Database, which stores data for Simulation Engine calculations and experiment

analysis (Section 3.4), and
5. User Interfaces (Game Setup Interface and Game Monitor Interface), through which

games are set up and viewed (Section 3.5).

In competition mode, the Game Server, Simulation Engines, and Database run on a
central machine maintained by the ART Testbed Team, while the User Interfaces are
locally accessible to players and observers. In experimentation mode, the researcher
may run the Game Server, Simulation Engines, and Database locally. The following
subsections provide detailed descriptions of each module.

3.1 Game Server

The Game Server manages the scheduling and starting of all games. A game is initiated
by specifying parameters for new game through the Game Setup Interface (Section 3.5),
either by the ART Testbed Team (in competition mode) or by the researcher (in experi-
mentation mode); the Game Server records these game parameters in the Database and
initiates a Simulation Engine (Section 3.2) for each new game. A properties file, input
as the Game Server is instantiated, determines which game parameters are considered
‘fixed’ and which may be defined by the user when initiating a game. The Game Server
also registers Agents (Section 3.3) for games, recording agent data in the Database as
well.

3.2 Simulation Engine

A Simulation Engine is responsible for controlling a single game’s simulation environ-
ment by enforcing chosen parameters. The Simulation Engine also assigns clients to
appraisers and coordinates communication among appraisers. In each period, the Simu-
lation Engine manages allocation of clients to appraisers, the conducting of opinion and
reputation transactions, and calculation of final appraisals, as demonstrated in Figure 2.

Specifically, a single game proceeds as a series of periods. In each period, the Sim-
ulation Engine coordinates the following actions in sequence:

1. At the start of each period, the Simulation Engine assigns clients (with paintings to
be appraised) to each appraiser. Appraisers receive larger shares of clients if they
have produced more accurate appraisals in the past, to simulate clients’ preference
for accurate appraisers. The Simulation Engine sends appropriate client appraisal
request notifications to assigned appraisers to simulate clients requesting appraisals.
To simulate the payment of up-front appraisal fees by clients, the Simulation Engine
deposits fees into apppropriate appraiser bank accounts.



Fig. 2. Simulation Engine tasks for a single period, including: allocating clients (Step 1), con-
ducting reputation transactions (Step 2), conducting opinion transactions (Step 3), and calculating
final appraisals (Step 4).

2. Next, the Simulation Engine facilitates reputation transactions among appraisers.
Appraisers may conduct reputation transactions about third-party appraisers’ exper-
tise in given eras to decide from which appraisers to purchase appraisal opinions.
Figure 3(a) shows the sequence of steps in a reputation transaction. If a potential
reputation provider chooses to accept an appraiser’s reputation request, the request-
ing appraiser sends payment and the provider sends the reputation, which need not
be truthful. Alternatively, the provider may reject the request, and the transaction
is aborted. The Simulation Engine serves as a go-between for agent communica-
tion, handling the passing of transaction messages. In addition, the Simulation En-
gine handles payments between appraisers by withdrawing from requester bank
accounts and depositing into provider bank accounts.

3. The Simulation Engine then faciliates opinion transactions among appraisers. Fig-
ure 3(b) shows the sequence of steps in an opinion transaction. When an appraiser
requests an opinion, the potential provider may reject the request (thus the trans-
action is aborted), or send a (possible untruthful) certainty assessment about the
opinion it claims it will send. In the latter case, the requester may either decline
the potential opinion (and abort the transaction) or send payment. Upon receipt of
payment, the provider sends the opinion, which need not be truthful. Again, the
Simulation Engine handles the passing of transaction messages and payment with-
drawals and deposits.

4. Finally, the Simulation Engine calculates the appraiser’s final appraisal as a weighted
average of the opinions the appraiser purchases. Opinion weights are real values be-



(a) Reputation transaction proto-
col.

(b) Opinion transaction protocol.

Fig. 3. Reputation and Opinion Transaction Protocols.

tween zero and one that an appraiser assigns, based on its trust model, to another’s
opinion. The Simulation Engine, not the appraiser itself, performs the appraisal
calculation to ensure that the appraiser does not employ strategies for selecting
opinions to use after receiving all purchased opinions.

While conducting each of the above tasks, the Simulation Engine passes all relevant
data to the Database for recordkeeping, as described below in Section 3.4. The data is
then available for retrieval to complete necessary calculations.

3.3 Agent Skeleton

The Agent Skeleton is designed to allow researchers to implant within their appraiser
agent-customized trust representations and algorithms while permitting standardized
communication protocols with other entities. All appraiser agents participating in the
ART Testbed are descendants of the same abstract class Agent. This class defines a
set of abstract methods to be coded by the researcher to define the behavior of his/her
appraiser agent, as well as a set of methods to facilitate the communication with other
appraiser agents. The Agent class also provides methods for interacting with the Sim-
ulation Engine (for tasks such as verifying bank balances).

Researcher-Coded Methods The following abstract methods must be implemented to
give the agent competitive functionality in the ART Testbed.



– void prepareReputationQueries()The agent must determine which other
agents to query for reputations and the agents about whom to request. The agent
can send as many queries as desired.

– void prepareReputationResponses() Depending on received reputa-
tion queries, the agent must decide whether to respond and, if responding, whether
to respond truthfully.

– void prepareOpinionRequest()The agent must decide about which paint-
ings to seek opinions from other appraiser agents and which appraisers to query.

– void prepareCertaintyAssessment() Depending on received opinion
requests, the agent must decide whether to respond and, if responding, what cer-
tainty assessment to provide to the requester (certainty assessments may be falsi-
fied).

– void confirmOpinionRequest()After analyzing received certainty assess-
ments, the agent must decide whether to confirm purchase of opinions proposed by
potential providers.

– void processOpinionOrder()To satisfy an opinion request, the agent must
decide what opinion value to return to the requester.

– public ArrayList reportWeights() This method is called by the Sim-
ulation Engine when calculating an agent’s final appraisal. The agent must report a
reputation weight for each opinion it expects to receive.

– void processFeedback() Upon learning a true painting value, the agent
must revise its trust models of opinion-providing appraisers.

Methods for Inter-Agent Communication The communication between appraiser
agents is based on a message-passing scheme handled by the Simulation Engine. Mes-
sages are implemented as Java classes specifying the message sender, message receiver,
and a conversation thread identifier (the transaction conversation to which the message
belongs). Table 3.3 shows the different types of messages used in an ART scenario.

ReputationQuery The agent requests the reputation of a third-party appraiser in a given
era.

ReputationResponse The agent provides a reputation in answer to a reputation query.
OpinionRequest The agent requests an evaluation opinion of a painting.
CertaintyAssessment The agent responds to an opinion request by communicating its skill

level for the required era.
OpinionOrder The agent confirms the request for an opinion about which certainty has

been communicated.
Opinion The agent communicates an opinion about a painting.

Table 1. Types of messages

The abstract class Agent provides the methodvoid sendMessage (Message
m) that sends a message to the corresponding agent (as specified inside the message
‘m’). The agent first has to instantiate a message class of the desired type, to fill its



properties, and to call the sendMessage method. The message-sending task is fur-
ther facilitated by a set of methods for creating and sending specific message types in a
single step.

Message receipt is performed by calling the methodIterator getMessages(),
which returns an Iterator of the relevant received-message list. For example, if the
getMessagemethod is called inside the methodprepareReputationResponses(),
the agent will get an Iterator over a list of the reputation queries that need to be consid-
ered.

Each agent maintains two internal message lists managed by the Simulation En-
gine: an InBox (incoming messages) and an OutBox (outgoing messages). Calling the
sendMessagemethod adds a message to the OutBox list. The Simulation Engine col-
lects all messages in an agent’s OutBox, checks the validity of each message, and adds
each message to the receiver’s InBox. Invalid messages (for example, with no receiving
agent designated), are deleted. Also, only the messages with the correct type given the
current state of the simulation are accepted.

3.4 Database

The Database stores all information about the games. First, it stores information about
the participants (identification and classes provided) and the parameters for the cur-
rent games. Then, during the course of these games, the Database collects, through the
Simulation Engine, environment and appraiser data. These data are stored in a MySQL
database and include:

1. For each appraiser for each timestep:
– client share,
– fees paid to or from the agent (for reputations, opinions, or client appraisals),
– bank account balance,
– reputation weights associated with other appraisers,
– generated opinions,
– calculated final appraisals.

2. For the environment for each timestep:
– true painting values,
– all messages exchanged between appraisers.

In addition, the testbed is designed to provide researchers with the functionality to log
additional data types in the Database during experimentation mode. With access tools
for navigating Database logs, data sets are made available to researchers after each
game session for game re-creation and experimental analysis. Information stored in
the Database is extracted by the Simulation Engine to populate the User Interfaces, as
detailed below in Section 3.5.

3.5 User Interfaces

User Interfaces permit the creation of games (according to user-specified parameters)
and the joining of agents to games. The User Interfaces also allow observation of games



in progress and access to information collected in the Database by graphically display-
ing details such as transactions between appraisers, accuracy of appraisers’ final ap-
praisals, and money earned by each appraiser. In competition mode, the ART Testbed
Team (competition organizers) initiate official competition games with pre-specified
parameters, while competition participants may join and view those official games. In
experimentation mode, researchers may initiate games (with the parameters of their
choosing), join games, and view games according to experiment needs.

To interact with the testbed, the user first launches the Game Setup Interface (Fig-
ure 4). To initiate a new game (Figure 4(a)), the user specifies game parameters, such
as the number of agents to allow. Upon clicking Generate New Game, a new game
is initiated, and a game name and start time are assigned.

To join a game that has already been initiated (Figure 4(b)), perhaps by another
user, the user selects from the initiated games (with start times listed), then names each
agent and selects the agent’s class file to submit to the simulation. Games may only be
joined between the time at which the game is initiated and the time at which the game
is scheduled to start (agents may not join a game after the game as begun). The user
enters a login and password to secure viewing access to the agents owned by the user.

A user can view any initiated game (Figure 4(c)) as a guest by simply selecting the
game to view. By entering a login and password, a user is granted permission to view
additional game results related to the agents owned by the user. Clicking View Game
launches the Game Monitor Interface. Clicking Download Game Data permits the
user to save the data of a completed game, including private data of agents owned by
the user, as an XML file.

The Game Monitor Interface, shown in Figure 5, consists of a topology panel on
the left, displaying the entire agent system, and a set of detail panels on the right. The
user can view a detail panel of in-depth statistics for each agent owned by the user. In
addition, a System Data detail panel displays additional system-wide statistics. The
left-hand topology panel shows the current client share (proportionally represented by
the number of client figures in the corresponding blue oval) and bank balance of each
agent, updated after each simulation period. Arrows show the direction and quantity of
each type of message passed between agents, including opinion requests, opinions, rep-
utation requests, and reputations. Arrow thickness is proportional to message volume.

An agent’s detail panel (Figure 6) shows numerous statistics to assist the user in
gauging the agent’s performance. The Bank Balance chart (Figure 6(a)) measures
the agent’s total bank balance after each period. The Transaction Fee chart dis-
plays fees the agent earns or pays in each period, such as appraisal fees earned from
clients and opinion costs paid to opinion providers. An overlaid line displays the total
amount earned or lost in each period. The user can choose which subset of fees to dis-
play on the chart. Furthermore, the user can view the reputation weights the agent has
estimated for each other agent in the system with the Reputation Weights chart.
Scrolling down the agent’s detail panel (Figure 6(b)) The Average Appraisal
Error chart displays the agent’s accuracy, with standard deviation error bars, in es-
timating appraisals for clients. In the Transactions chart, the user can view per-
period counts of transactions (opinions and reputations sold to or purchased from an-



(a) Initiate Game panel. (b) Join Game panel.

(c) View Game panel.

Fig. 4. Game Setup Interface panels for initiating, joining, and viewing games.



Fig. 5. Game Monitor Interface.

other agent). The Message Log table at the bottom of the detail panel displays a log
of every message sent or received by the agent.

The System Data detail panel (Figure 7) provides statistics about all agents in
the system. The user can compare bank balances and average appraisal errors among
all agents (Figure 7(a)). Scrolling further down the System Data detail panel (Fig-
ure 7(b)), the user can view statistics comparing the number of completed transactions
(both opinion and reputation transactions) between each pair of agents in the system.
The Message Log table on the System Data detail panel logs every message
passed in the system.

4 Conclusions

This paper details the implementation architecture for the ART Testbed, which pro-
vides researchers with easy access to a common experimentation environment and al-
lows researchers to compete against one another to determine the most viable technol-
ogy solutions. The testbed provides functionality through five modules—Game Server,
Simulation Engine, Database, User Interfaces, and Agent Skeleton—to promote easy
experimentation and agent development by participating researchers.

The testbed team plans to demonstrate the testbed in July of 2005, releasing a beta
version of the testbed shortly after. Based on prototype testbed experimental review and
feedback from the research community, the first testbed competition will be conducted
in July of 2006. Development progress can be monitored through the ART Testbed web-
site [8], where updates to testbed development are posted periodically. The website
also hosts a discussion group through which the trust research community can provide
feedback.



(a) Bank balance, transaction fee
charts, and reputation weights.

(b) Transaction chart, message log ta-
ble and average appraisal error charts.

Fig. 6. The Agent Data panel.

Acknowledgment

Jordi Sabater enjoys a Sixth Framework Programme Marie Curie Intra-European fel-
lowship, contract No. MEIF-CT-2003-500573. Tomas Klos is working on the CIM-
project on Cybernetic Incident Management, sponsored by the Dutch government (SENTER)
under project number TSIT2021. Research by Karen Fullam is sponsored in part by the
Defense Advanced Research Project Agency (DARPA) Taskable Agent Software Kit
(TASK) program, F30602-00-2-0588.

References

1. K. Barber, K. Fullam, and J. Kim. Challenges for Trust, Fraud, and Deception Research in
Multi-agent Systems. In Trust, Reputation, and Security: Theories and Practice, volume 2631
of LNCS, pages 8–14. Springer, 2003.



(a) Bank balance and average ap-
praisal error charts.

(b) Transaction chart and message log
table.

Fig. 7. The System Data panel.

2. BizRate. BizRate. http://www.bizrate.com, 2002.
3. eBay. eBay. http://www.eBay.com, 2002.
4. K. Fullam and K. S. Barber. Evaluating Approaches for Trust and Reputation Research:

Exploring a Competition Testbed. In M. Paolucci, J. Sabater, R. Conte, and C. Sierra, editors,
Proc. IAT Workshop on Reputation in Agent Societies, pages 20–23, 2004.

5. K. Fullam, T. Klos, G. Muller, J. Sabater, A. Schlosser, Z. Topol, K. S. Barber, J. S. Rosen-
schein, L. Vercouter, and M. Voss. The Agent Reputation and Trust (ART) Testbed Competi-
tion Game Rules (version 1.0). Technical report, The University of Texas at Austin TR2004-
UT-LIPS-028, 2004.

6. K. Fullam, T. Klos, G. Muller, J. Sabater, A. Schlosser, Z. Topol, K. S. Barber, J. S. Rosen-
schein, L. Vercouter, and M. Voss. A Specification of the Agent Reputation and Trust (ART)
Testbed. In Proc. AAMAS, 2005.

7. J. Sabater. Toward a Test-Bed for Trust and Reputation Models. In R. Falcone, K. Barber,
J. Sabater, and M. Singh, editors, Proc. of the AAMAS-2004 Workshop on Trust in Agent
Societies, pages 101–105, 2004.

8. ART Testbed Team. Agent Reputation and Trust Testbed.
http://www.lips.utexas.edu/˜kfullam/competition/, 2005.


