
Emergent deception and skepticism via theory of mind

Lion Schulz * 1 Nitay Alon * 1 2 Jeffrey S. Rosenschein 1 2 Peter Dayan 1 3

Abstract
In complex situations involving communication,
agents might attempt to mask their intentions, ex-
ploiting Shannon’s theory of information as a
theory of misinformation. Here, we introduce
and analyze a simple multiagent reinforcement
learning task where a buyer sends signals to a
seller via its actions, and in which both agents
are endowed with a recursive theory of mind. We
show that this theory of mind, coupled with pure
reward-maximization, gives rise to agents that se-
lectively distort messages and become skeptical
towards one another. Using information theory to
analyze these interactions, we show how savvy
buyers reduce mutual information between their
preferences and actions, and how suspicious sell-
ers learn to reinterpret or discard buyers’ signals
in a strategic manner. We discuss the implications
of our findings for cognitive science and AI safety.

1. Introduction
Actions speak louder than words—sometimes enabling us
to infer another person’s beliefs and desires. Savvy speakers
spin stories to fit their audience, like house buyers feigning
disinterest to get a better deal. In turn, savvy listeners retali-
ate by ignoring them, like sellers sticking to their original
prices. Here, we introduce a minimal two-agent task that
captures the essence of such interactions and model agents’
interaction using the reinforcement learning (RL) frame-
work of Interactive Partially Observable Markov Decision
Processes (IPOMDP; Gmytrasiewicz & Doshi, 2005), that
endows agents with a theory of mind. We employ informa-
tion theory to analyze the signalling behavior arising in this
novel paradigm, showing how purely reward-maximizing
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Figure 1. To illustrate how theory of mind gives rise to deception
and skepticism, we introduce a two-player game where a buyer and
seller interact. We use IPOMDP to endow agents with recursive
theory of mind.

agents endowed with a theory of mind (ToM) distort and
re-interpret signals.

To the AI community, our work demonstrates how com-
plex signalling behavior can emerge via pure reward maxi-
mization (Silver et al., 2021). To the cognitive science and
economics communities, we highlight computations that
show how humans might optimally act when signalling us-
ing theory of mind. Information theory provides a tool with
which to understand deception and skepticism. Our work
also has broader implications, for example for dynamic pric-
ing, privacy, recommender systems, and AI safety. We note
that the results from the current work have been previously
presented in a more condensed form (Alon et al., 2022).

1.1. Related work

In machine learning, inferring an agent’s preferences, or
utility function, is part and parcel of models that can be
summarized as ‘inverse reinforcement learning’ (IRL) (Ng
& Russell, 2000). These models observe an agent’s actions
and try to glean the its preferences from these observations.
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The core insight of these models is that agents only perform
actions that are worth the cost. For example, if your col-
league walks three blocks to a fancy cafe when there is a
free coffee machine in the office, they likely award high
utility to artisanal roasts. Algorithmic methods of exact or
approximate Bayesian inference (Baker et al., 2011), includ-
ing neural network distillations, can be used to carry out
IRL (Rabinowitz et al., 2018; Oguntola et al., 2021).

In cognitive science, IRL has been used for models of the
powerful inferences humans draw about one another (Baker
et al., 2017; Jara-Ettinger, 2019). Chiefly among them, the
‘Naive Utility Calculus’ (Jara-Ettinger et al., 2016) proposes
that humans reason in ways similar to Bayesian inference.
This type of model has successfully explained how we rea-
son about one another’s kindness, knowledge, effort alloca-
tion, and skills (Xiang et al., 2023; Berke & Jara-Ettinger,
2021). Across fields, this ability to reason about others
beliefs, desires and intentions has been referred to as “the-
ory of mind” (ToM) (Premack & Woodruff, 1978), a trait
hypothesized to be foundational to the human ability to per-
form complex social interactions (Ho et al., 2022; Ray et al.,
2008; Xiang et al., 2012; De Martino et al., 2013; Rusch
et al., 2020; Camerer et al., 2015; Hula et al., 2015; Zhao
et al., 2013).

The ‘Naive Utility Calculus’, however, is not called ‘naive’
without reason, and its naivety extends to most other ‘naive’
IRL algorithms: they assume that the agent being observed
is acting ‘naively’, that is, in a purely reward maximizing
manner. However, agents are often aware that they are being
watched. Such observer awareness (Miura & Zilberstein,
2021) matters less when the observer is an equally coffee-
obsessed colleague, but is complicated when the observer
can use its inferences to our detriment, for example, to in-
crease the price of our favorite espresso—as, for example,
in online dynamic pricing. Agents acting optimally should
take such competitive scenarios into account when mak-
ing their decisions—by inferring, and planning with, the
inference of the observer in mind.

Such recursive reasoning about other agents extends theory
of mind and has been used to explain a number of different
phenomena in human interaction, from how we teach to
how we lie and wage war (Ho et al., 2022; Crawford, 2003;
Oey et al., 2022). Broadly, formal models of this recursivity
(Doshi et al., 2020) tend to extend the simple inference in
IRL and “plan through” this inference model. A particu-
larly flexible instantiation of this is the mulitagent reinforce-
ment learning framework Interactive Partially Observable
Markov Decision Processes (IPOMDP; Gmytrasiewicz &
Doshi, 2004). In essence, in an IPOMDP characterization,
agents reason not only about uncertainty in the environment
(as in a regular POMDP), but also about other agents’ be-
liefs, desires, and intentions. Furthermore, agents do so in

a recursively, at different levels of a ‘cognitive hierarchy’
(Camerer et al., 2004). That is, agents of different sophis-
tication model agents with lesser sophistication (“I believe
what you believe what I believe” and so on). We note that
while IPOMDP is a very general model, others have also
implement recursion in the MDP setting (Tejwani et al.,
2022b;a).

In an IPOMDP, one agent’s actions are interpreted by other
agents as signals about latent characteristics that would be
the target of IRL. Information theory (IT) is a particularly
helpful tool to understand the messages that get sent among
such sophisticated reasoning agents, particularly regarding
deception (Kopp et al., 2018; Zaslavsky et al., 2020). This is
because it allows us to measure the distortion of the signals
transmitted between agents, and to pin down the deception
and skepticism that possibly arise.

IT has also been used explicitly to model disinformation in
multi-agent RL: Strouse et al. (2018) showed that training an
agent to minimize or maximize the Mutual Information (MI)
between its action and goals improves (mis-)communication
in cooperative and competitive games. In contrast to Strouse
et al. (2018), we show through simulations that theory of
mind, when coupled with reward maximization and plan-
ning, suffices to give rise to such information-theoretic de-
ception (and counter-deception, i.e., skepticism)—without
the further need for handcrafting any value function. We
examine in particular the extent to which signals about pref-
erences become degraded and deciphered as theory of mind
escalates.

2. Methods
2.1. Paradigm

As an example of the emergence of disinformation, we
model a buyer and a seller interacting over three periods
or stages (Fig. 2). Imagine a store owner offering items at
stalls in various locations, and using observations of buyer
behavior to set prices for subsequent sales to the buyer.

In the first stage, the buyer enters a simple T-Maze with
two different items located at the ends of opposite arms
(in our example, an apple and an orange). The buyer in-
curs travelling costs, denoted by the distances d(apple),
d(orange), for travelling down one of the arms until it
reaches and consumes one of the fruits. It then receives a
reward based on its preferences. We denote the preferences
over items by r(apple), r(orange), which are the rewards
that the agent would receive from consuming them. Thus,
the buyer’s immediate utlity at stage one, UB,1, from an
item i1 (i1 ∈ {apple, orange}) at this stage is just the re-
ward minus the cost incurred through the distance travelled:
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Figure 2. In our simulated paradigm, two agents interact, a buyer (orange) and a seller (purple). The buyer first chooses either of two
differently rewarding objects, incurring cost on the way to the chosen object via the distance travelled. The seller observes this choice and
the accompanying distances, draws inferences about the buyer’s prices, and then prices the items accordingly. Finally, the buyer has to
buy one of the items for the set price.

U t=1
B (i1, d) = r(i1)− d(i1) (1)

Crucially, the buyer’s decisions are observed by the seller
(Miura & Zilberstein, 2021). Importantly, the seller is also
aware of the buyer’s travelling cost, but is not aware of its
preferences towards either the apple or the orange, and, as
we will see below, needs to infer them.

In the second stage, the seller uses their observation of the
buyer to set prices, m(i3), for a future possible purchase of
one of these two items. This process requires the seller to
infer from the buyer’s selection something about the buyer’s
preferences, so that the seller can set prices that maximize
the seller’s reward. As mentioned above, this requires a
model of the buyer’s behavior. We present these models,
and describe the inverse inference process in a later section.

In the third stage, the buyer purchases one of the items for
the set price, m(i3), and then consumes it, again receiv-
ing a reward r(i3) for this consumption according to its
preferences:

U t=3
B (i3,m) = r(i3)−m(i3) (2)

The overall (undiscounted) utility accumulated by each
agent is thus as follows:

U total
B (i1, i3, d,m) = (3)

UB,1(i1, d(i1)) + UB,3(i3,m(i3))

The seller’s reward is just the price for the item the buyer
buys:

US(i3) = m(i3) (4)

Note that d(i1) is environmental (distance to items), while
m(i3) is set by the seller. For illustrative purposes, we here
restrict the preferences of oranges and apples to sum to 10.
We impose the same restriction on the walking distances
in the first stage and the prices that the seller can set in the
second stage.

2.2. Model and agents

We study different levels of sophistication of buyers and
sellers arising from the complexity of their ToM using the
IPOMDP framework. IPOMDP augments the POMDP
framework (Kaelbling et al., 1998) to include inference
about other agents’ (Fig. 2). This reasoning includes infer-
ring about other agents’ utility (IRL) as well as inferring
about their beliefs. Since these beliefs include the other
agent model of the inferring agent, ToM is defined recur-
sively (see Fig. 3). Unlike Camerer et al. (Camerer et al.,
2015), we assume a strict nesting, where each ToM-level
uses only a model of the agent one step below on the ToM
ladder as do Gmytrasiewicz & Doshi (2005).

As the turns in this game alternate, the ToM levels of buyer
and seller also alternate (Hula et al., 2015), starting from
the simplest buyer, which we denote as ToM(k = −1).
The ToM(−1) buyer independently decides based on dis-
tance/price and preferences at the first and third stages with-
out taking into account the seller. That is, this naı̈ve buyer
solves what amounts to the same utility maximization prob-
lem at each step where it gets a choice. As a result, its
action-values Q at a given state are simply defined as the
aforementioned utilities.

Qt=1
k=−1(i1, d(i1)) = U t=1

B = r(i1)− d(i1) (5a)

Qt=3
k=−1(i1, d(i1)) = U t=1

B = r(i3)−m(i3) (5b)

After the buyer computes these Q-values, it then selects
an item using a SoftMax policy (Equations 6a, 6b) with
inverse temperature β. If we use j to denoting the ‘other’
item (j represents ‘apple’ if i represents ‘orange’), then the
probabilities of the actions a1 and a3 of selecting item i1
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Figure 3. Model: We model agents of different levels of theory of mind (ToM). We begin with a simple reinforcement learning buyer
(purple) that makes the first and second choice independently, and a regular inverse reinforcement learning seller (orange), ToM(1), who
draws inferences about this buyer. The ToM(1) buyer plans through this seller’s inference process, and the ToM(2) seller tries to defend
itself against such a hack. The ToM(3) buyer finally tries to exploit the ToM(2) seller’s inference process.

and i3 at stages 1 and 3 are:

P t=1
k=−1(a1 = i1|r,d) = σ(β∆t=1

k=−1(i1, j1)) (6a)

P t=3
k=−1(a3 = i3|r,m) = σ(β∆t=3

k=−1(i3, j3)) (6b)

with ∆t
k(i, j) = Qt

k(i, d(i))−Qt
k(j, d(j))

In RL terms, these action probabilities are referred to as the
agent’s policy. Since r(i) + r(j) = d(i) + d(j) = m(i) +
m(j)1, these expressions only depend on one member of
the pairs of rewards, distances and prices.

To make inferences about the preferences of the ToM(−1)
buyer, the ToM(0) seller performs Bayesian inverse rein-
forcement learning (Ramachandran & Amir, 2007) on the
buyer’s first stage actions and sets the prices accordingly.
The IRL process (Eq. 7) inverts the selection using Eq. 6a
and reweighed using the prior p(r(i1)), assumed to be a
uniform distribution U [0, 10] in this paper.

pk=0(r|a1 = i1) ∝ P̂k=−1(a1 = i1|r,d)p(r) (7)

Here, we note that what the seller assumes to be the buyer’s
likelihood, P̂k=−1(a1 = i1|r,d), in this case is just the
ToM(−1)’s policy we defined above in equation 6a.

Given the posterior beliefs, the ToM(0) seller sets the opti-
mal prices via expected utility maximization. That is, the
optimal price of item i is set via:

m∗
k=0(i3, a1) = argmax

m(i)

{ E[US(i)|a1]} (8)

We outline the full expansion of this equation in the
appendix (Eq. 12). In brief, for every possible item
price m(i) the seller computes the subjective probability
that the ToM(−1) buyer will buy the item at that said
price: P̂k=−1(a3 = i|r(i),m(i)). The potential revenue,
US,total(i3) = m(i3), is weighted by the posterior proba-
bility over the buyer’s preferences computed via the inverse

reinforcement learning spelled out in Equation 7. Note that
while the buyer’s decision-making is stochastic, the seller’s
policy sets a deterministic price for each item. While this
has so far been a simple pairing of reinforcement learner
and inverse reinforcement learner, agents with higher theory
of mind will make more complex decisions.

Specifically, the ToM(1) buyer takes the ToM(0) price
computation into account, and plans through it to optimize
the sum of both first and third stage payoffs. Crucially, this
model-based planning takes into account the seller’s inverse
reinforcement learning, as the expectation in Eq. 13 is with
respect to this instance of IRL. This planning is computed
through a full planning tree span. After the simulation
terminates it outputs the action-values (Q(a)) for each item
selection in the first phase. The ToM(1) selects the first
action via a SoftMax policy like the ToM(−1) buyer. Since
the buyer cannot affect the seller’s behavior in the last step,
the ToM(1) acts an identical way to the ToM(−1), that is,
it selects an item via utility maximization.

The key factor in the ToM(1) policy is the belief manipula-
tion of the ToM(0) seller. Since the pricing policy affects
the overall utility of the buyer, but is affected by the buyer’s
decision in the first step, we can express the Q-values of the
k = 1 buyer at the first stage as:

Qt=1
k=1(a1 = i1,d) = (9)

U t=1
B (i1,d) + E[U t=3

B (i3,m
∗
k=0(i3, a1))|a1 = i1]

We present the full equation in the appendix. Unpacking it,
the ToM(1) agent performs a thought experiment in which
it envisions itself acting as the ToM(0) seller—observing
the first item pick and setting the prices accordingly. Using
its mental model of the seller it can simulate an inference
process (Eq. 7) and the consequent prices (Eq. 8). Thus,
the ToM(1) buyer can predict how its action in the first step
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affects the potential reward in the last phase through full
mentalization of the seller’s inference and learning process.

Crucially, while the ToM(0) seller makes inferences about
the ToM(−1) buyer’s utility from behavior, which is the
equivalent of IRL, the ToM(1) buyer makes inferences about
the optimal pricing of the ToM(0) seller given the buyer’s
own selection in the first phase. Note that in the last step of
the task the prices are given. Hence, the seller selects an item
that maximizes its utility similarly to the ToM(−1) item
selection (6b). Hence, the strategic aspect of the buyer’s
planning is first-item selection, as it is this that affects the
beliefs of the seller about the buyer’s preferences.

During planning, the buyer ‘imagines’ its own initial action,
and then simulates the seller’s best response as in Eq. 8.
This simulation performs the hypothetical IRL of the seller
and its consequent beliefs, and then computes the optimal
price from its policy. Thus, as discussed in the next section,
the ToM(1) buyer improves its utility through shaping the
beliefs of the ToM(0) seller. The ToM(1) choice at the first
stage is selected through a SoftMax policy (similar to the
ToM(−1) policy):

P t=1
k=1(a1 = i|r,d) = (10)

σ(β[Qt=1
k=1(i3, d(i3))−Qt=1

k=1(j3, d(j3))])

The ToM(2) seller models the buyer as a ToM(1) buyer,
and is aware of the manipulation schema deployed by it. In
essence, it uses the same principles as the ToM(0) seller
for its inverse RL, but unlike the ToM(0) seller, it learns to
treat the signal provided (item selection) with caution by
using the ToM(1)’s policy as its likelihood in the Bayesian
update:

pk=2(r|a = i1) ∝ P̂k=1(a = i1|r,d)p(r) (11)

Lastly, the ToM(3) buyer again attempts to ‘hack’ the
ToM(2) beliefs in a similar manner to the way the ToM(0)
attempts to manipulate the ToM(0) seller. This deception de-
pends on the ‘wiggle room’ left, given the defensive policy
adopted by the ToM(2) seller.

To hone in on an important point: each agent higher up in the
cognitive hierarchy nests the inference and planning of those
agents below it in the cognitive hierarchy. Essentially, there
is ever more sophisticated reinforcement learning (planning)
that gives rise to a policy, and ever more sophisticated in-
verse reinforcement learning that inverts this policy.

In the next section we present the results of the dyadic
simulations when we compute the optimal policies of the
agents.

2.3. Information Theory, Deception and Skepticism

As we briefly highlighted in the introduction, information
theory presents an elegant tool to analyze the signals sent

between agents, and their deceptive as well as skeptical
nature. It allows us to do so from different perspectives:

1. From the perspective of the sender of a message, we
can ask how much a message reveals about something
it wants to hide. As we will see, this will be particularly
relevant when asking how much the buyer’s actions
reveal about its preferences. Information theory allows
us to capture this using the Mutual Information be-
tween the buyer’s actions and its preferences, I(r, a1).

2. From the perspective of the receiver of the message,
we can analyse how much credence is lent to a signal.
We can do so by calculating how much a receiver’s
beliefs change in response to a signal. Information
Theory lets us do this via the Kullback-Leibler (KL)
Divergence between a receiver’s prior and its posterior
once it has seen a message. Here, we are interested in
this case for the seller before and after it has seen the
buyer’s action: DKL((p(r|a1)||p(r)). Essentially, the
lower this divergence, the more skeptical an agent.

3. Finally, we can take a more bird’s eye view of an in-
teraction and ask how much a given signal sent by
a sender is misinterpreted by a receiver. Again, we
can do so using KL-Divergence, for example between
what the receiver assumes is a sender’s policy and
what the sender’s actual policy is. In our case, we are
for example interested in how simpler sellers might
be led astray by higher level theory of mind buyers.
We measure this as the KL-distance between what a
ToM(k) seller assumes to be the buyer’s policy (i.e.
the ToM(k − 1) buyer) and the ToM(k + 1)’s actual
policy, for example for the the case of the ToM(0)
buyer: DKL((p

t=1
k=1(a1|r, d)||pt=1

k=−1(a1|r, d)). Essen-
tially, this quantifies how effective a senders deception
is, and is therefore different from the mutual infor-
mation outlined above, which is more about the mere
hiding of information (Kopp et al., 2018).

3. Results
We present the agents’ policies resulting from this progres-
sive, recursive modelling. As described above, the only
strategic action of the buyer is its first move; hence we com-
pare this action across different ToM levels. In addition, we
present the seller’s corresponding prices. We describe how
each buyer’s behaviour can be seen as a “best-response” to
its perceived opponent. In turn, we discuss how the sellers
respond to these policies. Throughout, we quantify these be-
havioural dynamics with key information theoretic metrics
and highlight the relation between the two in light of the
cognitive hierarchies. We describe the intricacies of these
policies in substantial detail in order to exploit the simplicity
and transparency of our setting.
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Figure 4. (A-C) Buyer policy in first stage as a function of the distance d(apple) and the preference towards the apple, r(apple), shown
by different ToM-levels. Here, we are using a soft policy with a temperature of β = .5, as for example in equation 6a. The policies are
symmetric because of the constraints. Notice the ruse in ToM(1) and ToM(3), who shift their policies. (D-E) Seller prices, m, after
a buyer chose the apple as a function of the distance to the apple, d(apple), for the two different seller ToM-levels. ToM(2) discards
the evidence at the extremes. (F) Amount of deception by the different ToM buyers quantified by the mutual information between the
buyer’s apple preferences and the probability that they will pick an apple. ToM(1) and ToM(3) show lower values, effectively hiding their
preferences. (G) Strength of the seller’s belief update quantified by the KL-Divergence between their (flat) prior and posterior over the
apple preferences, after observing the buyer choose the closer and thus more likely object (apple in left half, orange in shaded right half).
(H) Dissimilarity between the ToM(k) seller’s assumed policy and the ToM(k + 1) buyer’s actual policy, simultaneously showing the
hacking success of the buyer and error of the seller.

We begin with the ToM(−1) buyer. As we outlined in
the model section, this buyer acts naı̈vely, maximizing the
utility of each stage separately. Fig. 4A shows the probabili-
ties of choosing an apple, the x-axis describing the distance
from the entrance to the apple, d(apple1), and the y-axis
the reward derived from consuming the apple at the end of

the corridor, r(apple1). The colours represent apple selec-
tion probability. Here, due to the symmetric nature of the
problem we only discuss the apple selection.

The policy resulting from the ToM(−1)’s value computa-
tions are straightforward: The apple is more likely to be
chosen when it is closer (left of x-axis) and more preferred
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(top of y-axis). This behaviour is well aligned with the lack
of opponent model—the ToM(−1) buyer does not try to
conceal its preferences, since it does not model the seller’s
pricing scheme and so believes that its behaviour has no
consequences.

As we noted, we can re-express such a lack of concealment
in information-theoretic terms by measuring how informa-
tive the buyer’s choice is about its preferences, i.e., the
Mutual Information (MI) between the buyer’s preferences
and their initial choice, I(r, a1). This MI is shown in the
darkest curve in Fig. 4F—the action is generally informa-
tive, particularly when the fruits are nearly equidistant from
the buyer. Here, the buyer’s choice reveals most about its
preferences.

The ToM(−1) buyer in turn is the input to the ToM(0)
seller. This seller can translate what it knows about the
naive ToM(−1) policy into prices via simple inverse rein-
forcement learning. Fig. 4D shows these prices for the case
that the buyer has chosen the apple in the first stage. Since
the ToM(−1) signal is reliable, the distance covered by the
buyer is a good proxy for its preferences. For example, if
the apple is situated 8 steps from it, and the buyer picks it,
then the seller can infer that the buyer’s utility is at least 8
and set the price just shy of this. This all but guarantees that
the apple will be selected at the last phase.

Using IT, we re-express this “trust” in the buyer’s action in
mathematical terms. Specifically, we measure the strength
of the seller’s belief update via the KL-divergence (KLD)
between its (flat) prior and posterior, DKL((p(r|a1)||p(r)).
In the lighter curve in Fig. 4G, we show the ToM(0) seller’s
KLD associated with the choice of the more likely item,
which is apple when apple is closer and orange when orange
is closer (the latter shown in the shaded area). This high-
lights how the seller uses every decision of the buyer as a
signal, irregardless of the maze set-up.

Aiming to get the best price possible, the ToM(1) buyer at-
tempts to hack this pricing scheme by playing what amounts
to a gambit. This manipulation is manifested in three differ-
ent ways that are evident in Fig. 4B. First, the ToM(1) buyer
adopts a deceptive maneuver for the case when the apple is
close but undesired (the uniformly dark-purple part between
d(apple) = 0 and d(apple) = 2). In this setting, the buyer
knows that the ToM(0) seller would interpret an orange
selection as a signal for high orange preference. Hence it
selects the apple despite its lower appeal to convince the
seller that it prefers the apple to orange and gain a lower
price for the orange down the road.

The second deception takes place in the shift of location
of the indifference line (for example when d(apple1) =
7). Here, the probability of selecting an apple rises above
parity only when the preferences are about 7.5 instead of

7 (the expected behaviour by the observing ToM(0)). This
“delayed” selection shifts the posterior beliefs of the ToM(0)
seller to believe that the buyer prefers oranges more than it
actually does and the buyer gets a discounted price for the
apple.

Lastly, in the central region (d(apple1) = 5) the ToM(0)
policy outputs a slightly off-diagonal line of indifference.
Again, from the perspective of the ToM(0) observer, the
probability of selecting an apple in this setting, when the
apple preference is 6.0, are almost 1.0 and not 0.5—thus the
naı̈ve ToM(0)’s inverse RL process is inaccurate.

We can express this ruse in information-theoretic terms in
two ways. Returning to the MI between (naı̈ve) preferences
and policy, we show how the ToM(1) buyer manages to sig-
nificantly reduce this informativeness about its preferences,
particularly when one of the items is close (the medium line
in Fig. 4F).

As we discussed, we can measure the success of the
buyer’s ruse by asking how wrong the ToM(0) seller’s
model is. We do so by measuring the KLD between
what the ToM(0) seller assumes to be the buyer’s policy
(i.e., a ToM(−1) buyer) and the ToM(1)’s actual policy,
DKL(p

t=1
k=1(a1|r, c)||pt=1

k=−1(a1|r, c)). This belief discrep-
ancy is shown in a darker green line in Fig. 4H, highlighting
the large discrepancies.

Having access to this ToM(1) buyer model, the ToM(2)
seller becomes skeptical about the buyer’s actions, and ad-
justs its pricing appropriately. We show this pricing in
Fig. 4E. When the maze setting enables the ToM(1)’s bluff
(for example, when the distance to the apple d(apple1) = 1),
observing an apple selection provides the seller with no
information about the buyer’s preferences (compare the pre-
viously discussed uniformly purple policy of the ToM(1)
agent in Fig. 4B, and notice how it always chooses the apple
regardless of preference). As a result, the seller ignores the
distance travelled by the buyer and keeps pricing the items
equivalently at these distances.

As the cost of bluffing increases, the seller adapts the apple
price to match, but does so at a sub-linear rate, still remain-
ing suspicious of the buyer’s choice—which is warranted
by the buyer’s policy of over-selecting the under-preferred
item. However, when the apple is farther away than the or-
ange (right half of the plot), this logic switches, and picking
the apple now becomes a very strong signal of the buyer
actually liking the apple. This is because the ToM(1) buyer
is now more likely to employ a similar ruse towards the
orange, and would only pick an apple when it has a really
strong preference towards it.

Information theory again lets us formalize this skepticism
via the KL-divergence as a function of the item more likely
to be picked (see the dark line in Fig. 4G, which shows how
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the ToM(2) seller’s belief about the buyer is affected less, or,
when the items are closer, not at all, by the buyer’s actions).

The ToM(3) buyer attempts to manoeuvre around this skep-
tical pricing to achieve the best overall reward. However, it
is essentially cornered and can only attempt minimal ruses
in a few possible game settings, particularly when the items
are roughly equidistant (see Fig. 4C). In fact, it must act like
a ToM(1) buyer because the somewhat paranoid ToM(2)
would otherwise overprice the preferred item heavily.

This inability to outmanoeuvre the seller significantly has an
information-theoretic consequence. While the Mutual Infor-
mation between policy and naı̈ve preferences of the ToM(3)
buyer is, in some regions, slightly lower than the ToM(1)’s,
the ToM(3) buyer cannot mischaracterize its preferences
further (lightest curve in Fig. 4F). Equally, the discrepancy
between the ToM(2) seller’s assumptions about the ToM(3)
buyer and the truth is much less than that for the ToM(0)
seller and ToM(1) buyer pair (light curve in Fig. 4H). Note
that the ToM(2) dissimilarity increases in regions where
the ToM(0) dissimilarity decreases, showing the ToM(3)’s
attempts at deception.

4. Discussion and future work
4.1. Summary of results

Our work shows how purely reward-maximizing agents
can appear to engage in complex signalling behavior, as
captured by information theory. Crucially, unlike Strouse
et al. (2018), we do this in the absence of any hand-crafted
value function and only rely on theory of mind and plan-
ning. We show how, through a form of planning that is
opponent-aware, agents can exploit other agents’ inference
processes. More specifically, we show how a sender can
purposefully reduce the informativeness of their actions and
target the inferences they expect a receiver to perform. On
the other hand, we show how agents can defend themselves
from this manipulation by (partially) ignoring the behaviour
they observe. This counter-deception can be interpreted
as skepticism and we illustrate it both in policies and in
inference.

We quantified the extent of manipulation in these deceptive
behaviours using information-theoretic metrics. Our results
follow the conceptual ideas presented by (Kopp et al., 2018):
agents learn to distort the communication by reducing in-
formative information and deliberately convey wrong infor-
mation. These actions mangle their counterpart’s inference
process and cause them to adopt false beliefs. We show how
different ToM levels adopt different information-theoretic
’attacks’.

4.2. Relevance for animal and machine cognition

This work is relevant for the study of social cognition in
artificial (Rabinowitz et al., 2018; Jaques et al., 2019) and
biological systems. For example, it adds a model-based rein-
forcement learning and information theoretic perspective to
Goodhart’s law (Goodhart, 1984), which states that people
tend to try to game statistical regularities used by authorities
(e.g., the government or a retailer) for control purposes (e.g.,
taxation or dynamic pricing). There are many avenues for
further enquiry. Future research will have to investigate how
closely humans (Ransom et al., 2017; Barnett et al., 2021),
or other animals (Premack & Woodruff, 1978), actually fol-
low our theoretic analyses. This is particularly interesting
because theory of mind based deception like we discuss
here has been proposed to underlie a litany of behaviors,
from how the allies planned D-Day (Crawford, 2003) to
how birds strategically hide their food cache (Clayton et al.,
2007; Emery & Clayton, 2001).

One crucial limitation for the biological plausibility of our
simulations is the high computational cost of deep recur-
sive reasoning. This recursion forces a ToM(k) agent to
solve |M |k POMDP problems where M is the number of
possible agent models. In Gmytrasiewicz & Doshi (2005)
this complexity is evaluated to be PSPACE-hard for finite
time horizon. More heuristic approaches like the handcraft-
ing employed by Strouse et al. (2018) may present a more
computationally kind solution to this problem. Additionally,
model-free rather than planning might give rise to similar
dynamics (Dolan & Dayan, 2013). In essence, the Q-values
which we here computed via model-based planning may
also be approximated via model-free agents that play with
agents of lower levels of recursion - although this will sub-
stitute time/sample for space complexity.

Theory of mind also shares key overlaps with metacogni-
tion, that is an agent’s ability to introspect (Schulz et al.,
2023; Fleming & Daw, 2017; Carruthers, 2008). Such intro-
spection has been used in artificial intelligence to produce
agents that can justify their own behavior (Roy et al., 2022),
or large language models that curb their overconfidence
(Mielke et al., 2022), and thus has key implications for
explainable AI.

4.3. Ethical and AI safety concerns

Our work also offers words of caution for systems with
metacognition and theory of mind, particularly as the latter’s
existence is currently heavily debated with regards to large
language models (Sap et al., 2023; Ullman, 2023; Kosinski,
2023). These debates mainly center around whether LLMs
possess what we would at most consider ToM(0), mak-
ing relatively straightforward inferences about the mental
state of others but not using them for planning in (semi-
)competitive scenarios. LLM behavior has also been studied
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in more competitive game theoretic settings (Guo, 2023).
For example Akata et al. (2023) investigated the behavior
of LLMs in repeated games. Their results show how theory
of mind like prompts can improve coordination and that
GPT-4 has a tendency to play in an unforgiving manner.
LLMs have also been coupled with more explicit planning
strategies that share similarities with ours, for example for
gameplay in Diplomacy (Meta Fundamental AI Research
Diplomacy Team et al., 2022). We note however that ”Ci-
cero” is explicitly barred from lying and deceit.

Our work explicitly shows how theory of mind can – with-
out further handcrafting – give rise to deceitful and skeptical
agents in a symbolic negotiation task. We note how our set-
ting is a minimal representation of many semi-adversarial
human-AI interactions, for example in recommender sys-
tems, dynamical pricing or human-LLM conversations. As
such, the emergence of theory of mind capabilities will have
to be carefully monitored to understand how LLMs reveal
what they know and want, and how they interpret what other
agents tell them.

A crucial aspect of the safety and ethics perspective on our
results is that it is not theory of mind alone that gives rise to
deception and skepticism. Rather, what produces this behav-
ior is the coupling of theory of mind with a value function
that mis-aligns the utilites of two agents. Our work therefore
speaks to the alignment problem in AI safety. For example,
the deceitful hiding of intentions may be crucial for the
off-switch game (Hadfield-Menell et al., 2017). Given the
(model-based) reinforcement learning setting of our task,
our work also bears relevance to reinforcement learning
from human feedback where both training signals and the
learning itself may become skeptical or deceiving.

4.4. Extensions and future work

Our work leaves much opportunity for further investigation.
For simplicity, we here limited our paradigm to a two-player
setting. Additional research may include further agents,
which might result in interesting dynamics as highlighted by
Sclar et al. (2022) in a cooperative setting. Providing both
the seller and the buyer with richer (item or pricing) options
might also make the deception more subtle, and complex.

Conceptually, we also note several straightforward exten-
sions: First, a key factor of this deceptive dynamic is full
observability of the actions of the players. Hence, future
work might explore the information-seeking perspective of
this model (Schulz et al., 2023; Wang et al., 2021), asking
how much the buyer is willing to pay, or be paid, to dis-
close its action and how much the seller is willing to pay
to uncover the buyer’s action. Second, certain settings of
our task—like the extreme corners of the maze—encourage
more or less deceptive behaviours. Future work might thus
allow the seller to control the set-up of the maze as part of

its planning to maximize utility. We note that this control
of the decision environment has links to the game theo-
retic work on preference elicitation and mechanism design
(Becker et al., 1964; Roth, 2008). Third, potential future
work adopts a macroeconomic perspective and explores the
multi-seller, multi-buyer case. In this setting, sellers need
to make inferences about the actions of their competitors as
well as about the preferences of their clients. Finally, our
agents merely communicate via their (incentivised) actions.
More general games of our sort may allow agents to ex-
change less costly agents, in key overlap with the economic
literature on cheap talk (Farrell & Rabin, 1996; Franke et al.,
2012).
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A. Appendix.
A.1. Optimal pricing by ToM(0) seller

The below outlines the full computations involved in computing the optimal price by the ToM(0) seller.

m∗
k=0(i3, a1) = argmax

m(i)

{ E[US(i)|a1]}

= argmax
m(i)

{∫
R

m(i) · P̂k=−1(a3 = i|r(i),m(i))pk=0(r(i)|a1 = i1)dr(i)

}
(12)

A.2. Q-value computation of ToM(1) buyer

Here, we present the ToM(1) buyer’s Q-value computation in full:

Qt=1
k=1(a1 = i1,d) = U t=1

B (i1,d) + E[U t=3
B (i3,m

∗
k=0(i3, a1))|a1 = i1] (13)

= U t=1
B (i1,d) +

∑
i3

U t=3
B (i3,m

∗
k=0(i3, a1))P̂ (a3 = i3|m∗

k=0(i3, a1), a1 = i1)


