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Abstract

Identifying the corporate controller (controlling shareholder, ultimate owner) is an essen-
tial prerequisite for any debate on the corporate governance of a specific firm and of entire
markets. This paper aims to provide a comprehensive, precise and economically sound
method for identifying control relations on the corporate level and especially in complex
ownership structures. We apply weighted voting games literature as a theoretical framework
for our analysis and use the Shapley-Shubik and the Banzhaf power indices to determine
control rights. The core element of the proposed method, distinguishing our study from
others, in solving the puzzle of corporate control, is the simultaneous analysis of both the
specific ownership map within the corporation and the corporate network in which the firm
is embedded. We implemented our algorithm into a Java computer program and tested it
on a real-world data set of corporate ownership in the Israeli market. The direct product of
the analysis of these data is a comprehensive map of control relations at every time point.
We find that the corporate control relations identified by our method are richer and more
accurate than those provided by different official sources.
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1 Introduction

Identifying the corporate controller (controlling shareholder, ultimate owner) is an essential
prerequisite for any debate on the corporate governance of a specific firm and of entire markets.
The main reason for such emphasis on this process is that the controller’s identity plays a
crucial role in mechanisms that policy makers use to overcome various agency problems arising
from the separation of ownership and control [10, 16]. An inappropriate identification strategy
can result in mechanisms that are, at best, simply inadequate for the challenges facing policy
makers or, at worst, counterproductive. Therefore, the purpose of the present study is to provide
a comprehensive, precise and economically sound method for identifying control relations that
is applicable to a wide range of studies on ownership and corporate governance as well as to
practical implementations in any given market.

According to a simple but widely used analytical framework, the systems of governance across
the world can be broadly divided into two separate groups [32]. The first, the Anglo-Saxon
system (frequently called the ”outsider system”), which is prevalent in the US and the UK, is
characterized by widely dispersed ownership. The second, the ”insider system”, is relevant to
most of the rest of the world, and relies on the empirical observation of concentrated ownership.
While even in the outsider system, which is the simpler of the two systems, identifying the con-
trolling authority is not always a trivial task, the identification process is particularly difficult
in the insider system. This complexity stems from the multiplicity of control-enhancing mech-
anisms, e.g., dual shares, cross- or circular holdings, and especially stock pyramids, which are
often used to allow existing blockholders to deviate from the proportionality principle1 and to
enhance control by leveraging their voting power [23, 24, 33, 19]. These complex, multilayered
structures, in which an entity, such as an individual, a family or a company, holds significant
shares of some firms that in turn hold significant shares in other corporations, make it difficult
to identify the corporate controllers and render the market for control less transparent. Control
identification instruments able to cope with that complexity are thus required, but as others
have previously noted [7], the literature still offers no consensus on which types of instruments
are most appropriate.

In the present paper we suggest a new technique for the identification of control relations,
on the corporate level and especially in complex ownership structures. In formal terms, the
algorithm described in the current study transforms any given input-output matrix of cash-flow
(voting) rights2 into a Boolean matrix of control. The core element of the proposed method, and
the element that distinguishes our study from others, is an extensive examination of control re-
lations that incorporates firm-specific characteristics, e.g., the firm’s shareholdings distribution,
and at the same time considers the firm as embedded in a corporate network, i.e., the algorithm

1The ”proportionality principle” referring to proportionality between ultimate economic risk and control -
means that share capital that has an unlimited right to participate in the profits of the company or in the residue
on liquidation, and only such share capital, should normally carry control rights, in proportion to the risk carried.

2Unless cash flow rights are not equal voting rights. In such cases explicit voting rights are required.
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considers the possibility that a firm’s corporate shareholders are controlled by the same ultimate
owner and/or that they partake in cross-control relations. In other words, the aspects of control
of a certain firm and the control paths that involve that firm are treated simultaneously.

In order to develop control identification techniques, we apply weighted voting games liter-
ature as a theoretical framework for our analysis and use the Shapley-Shubik and the Banzhaf
power indices to determine control rights. These indices provide measures for the extent to which
an agent holding a certain proportion of the voting rights can affect the outcome of a collective
decision by casting his vote, given the overall proportion required to win and the distribution
of other voters’ rights [15]. This approach allows the measurements of control to be extended
to cases in which the majority threshold rule3 is not feasible or valid, and it provides a refined
alternative to traditionally used tests, for example, the weakest-link principle (WLP) approach
[33, 39, 26, 18]. We develop a power-index-based test for control and show that the holdings
required in order to achieve direct control are firm-specific. Afterward, we adapt the control
test into a fully integrated algorithm able to analyze control relations in any given complex
ownership structure. The main contributions and features of this algorithm are summarized
as follows: 1) It provides existence and uniqueness of a solution for any market irrespective of
its size or structure; and 2) the method is flexible in parameters and assumptions, facilitating
incorporation of additional market-specific information.

Many ownership structures where shareholders make joint decisions use weighted voting (or
some weighted voting variant which can be modeled as a simple coalitional game). In such
domains, one sometimes wants to obtain many power index results. In large and complex
networks computational issues become an obstacle in terms of running time and accuracy [21].
Thus, the practical applications of power indices for measuring shareholder voting behavior in
full scale settings have not been widely adopted in the classical corporate finance literature
until now. In order to overcome these obstacles in our analysis we incorporated the effective
randomized methods for approximating power indices as was recently developed by [43]. This
randomized approach outperforms any deterministic algorithm in terms of accuracy, and no
other randomized algorithm can achieve significantly better results.

We apply the algorithm to a real database of ownership in the Israeli capital market spanning
the period of 1995-2009. For the empirical compatibility test we use an input-output matrix
of cash flow rights4 of approximately 650 listed companies - the whole population of public
companies on the Tel Aviv Stock Exchange. The direct product of the analysis of these data is
a comprehensive map of control relations at every time point. Moreover, we find that the results
obtained through our method are more precise than those achieved with the frequently used
WLP method (for a detailed discussion see [38]. The simple WLP criterion, provided by [33],
misidentifies shareholders as controllers in many cases5 , and it also fails to define and empirically

3More than half the votes.
4Following the ”one-share - one-vote” principle legally adopted in Israel since 1994.
5For example in a case where three unrelated shareholders A, B, and C hold 20%, 21%, 22% respectively in a

certain firm, then the WLP method would misidentify shareholder C as the firm controller.
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identify corporate controllers in cases where the firm’s position within the corporate network
should be considered - i.e., when additional information about the control relations among the
firm’s direct corporate shareholders is required. Our approach overcomes these obstacles and
thus constitutes a more accurate alternative.

The paper is organized as follows. Section 2 presents and discusses a control concept based
upon voting (cash flow) rights. Section 3 introduces weighted voting games and power indices
in the context of shareholder votes. Section 4 provides a formal definition of control and derives
several related concepts. Section 5 states and explains the five central assumptions underlying
our model. Section 6 extends our formal definitions by incorporating additional information
about the control relations among corporate shareholders. Section 7 puts forward our method-
ology to identify control relations in corporate networks and intuitively describes the algorithm
we developed. Finally, Section 8 demonstrates several results from a real-world database and
compares the results of our method with the results derived from the cut-off point method.
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2 The concept of ”control”

There is a long and rich history attached to such words as influence, authority, power and control.
These terms, and especially the latter two, are often used interchangeably in many disciplines
as well as in general public parlance. Although for a great many essays distinctions among the
concepts are necessary and useful, in this section we seek to explicate the central notion that lies
behind these terms and to formulate a uniform conceptual framework. This, in order to supply
the key insights underlying our approach, and justify the use of our suggested algorithm as a
standalone technique for the identification of control relations.

The question of how ”control” is conceptualized is a critical one - apart from the problem
of obtaining reliable and valid information and prior to any decision regarding the identification
strategy. Generally speaking, control is derived from power - ”the capacity to initiate, con-
strain, circumscribe, or terminate action, either directly or by influence exercised on those with
immediate decision-making authority” [2]. Therefore, like the sociological concept of power,
the concept of control, by itself, is elusive - it can rarely be sharply segregated or clearly defined
[1]. Nevertheless, the attempt should be made.

In our study we refer to the concepts of control and power as they relate to ownership, which
is an important basis for obtaining a strategic position, and which constitutes a key factor in the
dynamics of decision-making processes within a firm. Power in such settings is defined as the
capacity to influence decisions; the degree of influence depends on the complete configuration of
holdings allocated to all shareholders. Control refers to a situation in which the ownership stake
is so powerful that its influence becomes complete discretion [22]. Thus, control is an absolute
property, whereas voting power can be quantified. In the context of corporate control and for
practical purposes, as Berle and Means [1] initially put it, control may be said ”to lie in the
hands of the individual or group who have the actual power to select the board of directors (or
its majority), either by mobilizing the legal right to choose them - controlling a majority of the
votes (cash-flow rights) directly or through some legal device - or by exerting pressure which
influences their choice”6. Thus, since direction over the activities of a corporation is exercised
through the board of directors, control is restricted to major powers only, i.e. it refers to the
power of determining the broad policies for guiding a corporation and to the power of making
crucial strategic decisions - for example, choices related to production function and/or markets
of distribution, volume and direction of investment, larger commercial and political strategies,
and selection of top-management personnel, rather than decisions related to routine, day-to-day
activities.

This definition of control encompasses, among others, situations in which control derives
from majority ownership. However, we do not restrict our attention to niches in which the
binary decision rule of majority control is the leading criterion for identification of the corporate

6Nonetheless, ”occasionally the major elements of control are made effective through dictation to the man-
agement” [1].
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controller. The majority control criterion is a conventional, theoretically convenient tool that is
consistent with many views regarding the establishment and maintaining of formal/legal control
in corporations [7, 17, 24]; however, it seems to be too conservative for many situations. Control
in large corporations is more often factual, depending upon a strategic position secured through
a measure of ownership. Following the argument of Berle and Means (1932), factual control is
less clearly defined than legal forms of control, but it nonetheless ”may exist and be maintained
over a long period, and as a corporation becomes larger and its ownership more widespread,
it tends towards a position of impregnability comparable to that of legal control, a position
from which it can be dislodged only by virtual revolution” [1]. Factual, or effective, control,
to distinguish it from the majority rule, may involve different degrees of ownership lying below
50% of the cash-flow (voting) rights and may be said to exist when an individual or small group
holds a sufficient stock interest to be in a position to dominate a corporation - to attract from
scattered owners proxies sufficient to control a majority of the votes during all decision-making
processes7.

Since different corporations are held with different proportions of ownership, it seems to
be conceptually important to extend the measurement of control rights, beyond that based on
simple majority rule, to more general cases. In practice, however, Berle and Means and their
followers have relied on assumptions that eliminate the necessity to address this issue. They
have assumed that once a threshold of a minimum specified proportion of the stock8 is adopted,
the corporation can be easily assigned to one of two types: widely held (i.e. under ”management
control”), meaning that the corporation is not controlled by anyone, or ultimately controlled,
i.e., one shareholder owns at least the threshold stock proportion in the corporation. In cross-
country studies this approach, undoubtedly, has an enormous advantage, as it allows smoothing
of different national disclosure requirements and substantially simplifies the calculation of control
rights. On the other hand, this ad hoc rule has no formal justification and does not take into
account the variability of ownership concentration - the concept of a universal fixed cutoff point
for all firms is not relevant; a specific cutoff point should be applied to each individual firm in
each market at each time period, as we will elaborate later. Moreover, this simple empirical rule
of thumb constitutes a wide foundation for many serious problems in measurement of control
rights and may lead to some paradoxical results (see [38]).

On this background we argue that to completely solve the puzzle of corporate control, it is
crucial to analyze the concrete ownership map within the corporation, as well as the corporate
network - the web of shareholding relations among corporations - in which the firm is embedded.
This must be done before one can begin to understand where control is actually located and how

7Even if the controlling shareholder’s stake is less than outright majority (50% of the stock) it can still negotiate
with other shareholders and try to form a winning coalition, e.g. by ’bribing’ them or by offering logrolling. The
controlling shareholder has the best chances of forming a winning coalition in the occurrence of sharp divergence
of interests vis-a-vis other shareholders [30, 8].

8Whether 20 percent - as in the original Berle and Means work - or the 10 percent criteria as adopted in most
recent studies.
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to identify it. The method of investigation proposed by Berle and Means, their definition and
categorization of different kinds of control, provide an essential starting point for the analysis.
However, the procedures used in their study do not take into account the complete distribution
of ownership within the corporate network, a crucial aspect of control. For this reason, we do
not reduce the concept of control to a rigid criterion such as a cutoff point; rather, we propose
a more adaptable definition. Inspired by Weber’s view of ”power” [40], we define ”control” as
the ability of an object - either an individual or a family - or an identifiable group of objects,
given the concrete structure of corporate ownership and inter-corporate relationships, to realize
their own will in any action over time, despite the resistance of other participants in that action
space. To estimate the probability that a given individual or group controls a corporation, then,
we must know who the rivals or potential rivals for control are and what assets they can bring
to the struggle [28]. In other words, we must know the exact composition of corporate principal
shareholdings.

This definition of control has two obvious immediate implications related to the present
study: First, it suggests that a specific arbitrary percentage of ownership in itself can tell
us little about the potential for control that it represents. We can discover a threshold of
ownership that yields control9 only by a case study of the exact pattern of ownership within
the given corporation. Most importantly, it also implies that focusing our attention on the
single corporation may limit our ability to see the pattern of power relationships of which a
corporation is merely one element, and it may restrict our understanding of the potential for
control represented by a specific bloc of shares in a particular corporation. In many cases, the
principal shareholders within the same corporation may themselves be controlled by a common
ultimate owner. It is reasonable to assume that in such a situation they will act in unison
regarding the decision-making processes in the corporation. Therefore, an individual’s or a
group’s capacity for control must be a function of the distribution of direct ownership and the
existence of concerts10 among the shareholders. Identification of such complex relationships is
possible only by incorporating the analysis of the single corporation into the network context
and vice versa. In other words the simultaneous analysis of control relations is required.

The methods and procedures in our research, as well as the basic concepts and units of
analysis, are not different from those that have been commonly employed in the past [12, 13].
The discussion above established our view of control over a firm and based the manifestation of
control upon shareholders’ voting power. In order to formalize the concepts of power and control,
which will allow us to model decision-making processes in firms and to measure shareholders’
voting power, we incorporate weighted voting games into our analytical framework.

9If such a threshold exists for a specific shareholder in a given firm.
10Groups of shareholders controlled by the same ultimate owner.
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3 Weighted voting games and power indices

3.1 Weighted voting games

Weighted voting games are special cases of simple superadditive games11. For the purposes of
this study, we assume that in each firm, every shareholder is assigned a non-negative number,
or weight, represented by its fraction of voting rights in that particular firm. Moreover, for
each firm a positive number that is not greater than one is specified as a quota such that a
subset of shareholders wins the game if the sum of the weights of its participants exceeds that
quota. Denote [q;w1, . . . , wn] where q and w1, . . . , wn are nonnegative real numbers satisfying
0 < q ≤

∑n
i=1wi. We may think of wi as the fraction of voting rights, or weight, of shareholder

i in the set N = {1, . . . , n} of the direct shareholders in a specific firm, and q as the threshold,
or quota, needed for a coalition to win in that firm. Thus [q;w1, . . . , wn] represents the simple
game v defined by:

v(S) =
{

1, w(S) ≥ q
0, w(S) < q

where for S ⊆ N,w(S) means
∑

S⊂N wi.
Therefore, each firm is characterized by an idiosyncratic decision rule, which is completely

defined by the firm’s voting majority quota q and the distribution of its shareholders’ voting
rights. In this study we concentrate on the component of voting power that derives solely from
the decision rule itself - as distinct from real-world interactions. This a priori voting power
of a shareholder under a given decision rule is regarded as the capacity of potential influence
attributed to the shareholder by virtue of the rule [34]. It is exactly this a priori voting power of
shareholders that we want to measure and later to incorporate in an operational test of control
in corporate networks.

3.2 Power measurement

A critical shareholder has a strong influence on the result of the voting game, and the prominence
of this property is related to various measures of power. The two approaches to measuring the
a priori voting power of individual shareholders in weighted voting games, adopted in this

11A cooperative transferable utility (TU) game is a pair (N, v), where N := (1, . . . , n) denotes the set of
shareholders and v a function which assigns a real number to each nonempty subset or coalition of N , and
v(∅) = 0. A (0− 1)− game is a game in which the function v only takes the values 0 and 1. It is a simple game if
it is not identically 0, and obeys the condition of monotonicity: v(T ) ≥ v(S) whenever T ⊇ S. In these games a
coalition S of shareholders is winning if v(S) = 1, and is losing if v(S) = 0. A shareholder i is said to be critical
in a coalition S if S is winning and S\{i} is not. A TU game is superadditive if v(S ∪T ) ≥ v(S) + v(T ) whenever
S ∩ T = ∅, in simple games superadditivity is equivalent to v(S) + v(N\S) ≤ 1 for all S ⊆ N . As a collective
decision-making procedure in a firm is specified by the voting body of shareholders and the decision rules, it can
be modeled by a (0− 1)− game whose winning coalitions are those that can make a decision without the vote or
despite the resistance of the remaining shareholders.
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study, are those developed by Shapley and Shubik [36], by Penrose [35] and by Banzhaf
[14]. The power indices provided by these studies are functions that associate with each simple
superadditive game v a vector or power profile whose ith component is interpreted as a measure
of the influence that shareholder i can exert on the outcome 12.

3.2.1 The Shapley-Shubik power index

The Shapley-Shubik power index [36] may be interpreted as a prior estimate of a voter’s expected
relative share in a fixed prize available to the winning coalition as a measure of voting power. For
calculation of this index, it is assumed that shareholders join a coalition in a particular order.
A pivotal shareholder for a given ordering is the member whose joining turns a developing
coalition from a losing coalition into a winning coalition. The Shapley-Shubik power index
is simply the Shapley value when applied in a setting of the simple weighted voting game
v. Denote by π a permutation (reordering) of the shareholders, so π is a reversible function
π : {1, . . . , n} → {1, . . . , n}, and by Π the set of all possible such permutations. Denote by
Sπ(i) the predecessors of i in π , so Sπ(i) := {j|π(j) < π(i)} . The Shapley-Shubik index is
given by Sh(v) = (Sh1(v), . . . , Shn(v)) , where Shi(v) := 1

n!

∑
π∈Π[v(Sπ(i)∪{i})− v(Sπ(i))]. In

other words, if we denote by pivi the number of orderings where shareholder i is pivotal, the
Shapley-Shubik power index of shareholder i is: Shi(v) := pivi

n! .

3.2.2 The Banzhaf power index

The Banzhaf power index [14, 31] may be interpreted as the probability that a given shareholder
will change an outcome of a vote by swinging, where a swing for shareholder i corresponds to
a winning coalition S containing i, from which i’s defection would change the coalition from
winning to losing. For a game v, the Banzhaf index13 of shareholder i is given by: β(v) =
(β1(v), . . . , βn(v)) , where βi(v) := 1

2n−1

∑
S⊂N,i∈S [v(S) − v(S\{i})]. In other words, using the

notation of swingi for the number of swings for shareholder i, the Banzhaf power index of
shareholder i is: βi(v) := swingsi

2n−1 .
In the next section we propose a basic definition of control over a firm by using voting games

and power indices.

3.3 Power Indices and Computational Complexity

The applicability of the power indices to measuring power in various domains has raised the
question of finding tractable ways to compute them. Unfortunately, this problem has a high
computational complexity, e.g. calculating the Shapley-Shubik power index in a weighted voting

12It is possible to generalize the power indices that we apply by using any member of the class of indices that
fulfill certain relevant axioms (see e.g. [6]). They may serve for the same purpose of power measurement.

13Banzhaf actually considered the percentage of coalitions in which the shareholder is a swinger out of all
winning coalitions. This is called the normalized Banzhaf index.
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game. A naive algorithm for computing the Shapley-Shubik power index simply examines all
the permutations of the n players, and averages the marginal contribution14 of a player in each
of them. Although calculating the marginal contribution of the player in a single permutation is
easy, there are n! permutations to consider. This is intractable even for n = 50 players, as even
the strongest supercomputers available today cannot enumerate over such a high number of per-
mutations. Computer scientists generally consider algorithms whose running time is polynomial
in the size of the input as reasonably efficient algorithms, and those whose running time grows
super-polynomially (for example exponentially) as inefficient. In the case the Shapley-Shubik
power index computation, the input to the problem is the list of the weights of the players, or
n integers. The naive method examines f(n) = n! permutations, and since f(n) grows faster
than any polynomial this method is considered inefficient. Consequently, a prominent question
is whether there exists a more efficient algorithm for computing the Shapley-Shubik power in-
dex in a weighted voting game. Although such improved algorithms do exist, a desirable goal
is to find an algorithm whose running time is polynomial in the input size, or in other words
an algorithm that computer scientists would consider efficient. Unfortunately, it seems such an
algorithm is very unlikely to exist15. A key way of overcoming these negative results is using
an approximation algorithm which works for any weighted voting game, but only computes the
power index approximately, providing a certain guarantee regarding the error in the computa-
tion. In this paper we have used the power index approximation method proposed and analyzed
by [43]. This algorithm estimates the power indices and returns, with high probability, a re-
sult that has a very low approximation error16. This allows us to compute power indices for
highly complex ownership structures with many firms, while guaranteeing almost no error in the
computed power indices.

14If a player is pivotal for a permutation of the players, we say it has a marginal contribution of one, and
otherwise we say she has a marginal contribution of zero. One definition of the Shapley-Shubik power index is
simply the average marginal contribution a player has across all permutation.

15 [42] show that calculating the the Banzhaf index and Shapley value in weighted voting games are NP-
complete problems, and [41] showed an even stronger negative result regarding the Shapley value, proving it to
be a #P -complete.

16More formally, given a game in which a player’s true power index is ψ, and given a target accuracy level ε
and confidence level δ, the algorithm returns an approximation ψ̂ such that with probability at least 1 − δ we
have |ψ − ψ̂| ≤ ε (i.e. the result is approximately correct, and is within a distance ε of the correct value). This
algorithm works by drawing a sample of k permutations (or coalitions), and testing whether the target player
is pivotal in them. The total running time is logarithmic in the confidence and quadratic in the accuracy, so
this approach provides an extremely accurate approximation and operates quickly even for games with many
thousands of agents.
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Figure 1: Simple corporate network

4 Defining control through voting games and power indices

4.1 Corporate Networks

Let the network of shareholding relationship among a set V of n firms and shareholders17 be
described by the n× n adjacency matrix H ∈ [0, 1](n×n).

H is defined such that hi,j > 0 represents the fraction of the stock of firm j owned (directly)
by shareholder i. When hi,j > 0 we say that i is a direct shareholder of j. For each share-
holder/firm j ∈ V we denote by Γ−(j) the set of direct shareholders of j i.e. Γ−(j) = {i ∈
V : hi,j > 0} . When Γ−(j) = ∅ it means that j is an individual shareholder or a group of
shareholders attached by family ties. For the sake of simplicity, in both cases we will call j a
family and we denote by F the set of families in the network. Thus

∑n
i=1 hi,j = 1 for every

j ∈ V \F , i.e. if j is not a family, then it is a firm and thus its shareholders jointly hold the
entire stock of j. To each firm j ∈ V \F corresponds a weighted voting game gj , which is defined
by the shareholders Γ−(j) with their weights {hi,j : hi,j > 0}18. Thus, the weighted voting
game gj provides a model for the decision-making process of firm j.

In Figure 1 we present a simple market with participants V = {j1, j2, j3, j4, j5} and an
ownership structure represented by the corresponding input-output matrix of ownership:

17Firms themselves can be and usually are shareholders of other firms (corporate shareholders) (La Porta et
al., 1998).

18In other words, gj is completely represented by j’s column of the input-output matrix of ownership together
with firm j’s majority quota qj .
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H :=


0 100 60 0 0
0 0 0 0 20
0 0 0 0 40
0 0 0 0 40
0 0 0 0 0


The set of families in this example is F = {j1, j4}, the set of firms is V \F = {j2, j3, j5},

and the set of direct shareholders of j5, for example, is Γ−(j5) = {j2, j3, j4}.

4.2 Direct control

We consider the class of weighted voting games gj , where each shareholder is endowed with
a certain number of weights, represented by the shareholder’s holding fraction in a given firm
j ∈ V \F . For each firm with its specific voting rule, we use the power index as a measure of the
a priori voting power of each of its direct shareholders. A controller will be a) the most powerful
player; and b) powerful enough to dominate votes.

Definition 4.1 Let j ∈ V \F be a firm. Denote the majority quota by qj, with 0.5 ≤ qj ≤ 1; and
denote the control threshold by θ, with 0.5 < θ ≤ 1 . A party i ∈ V with stock holdings in the
firm j is said to directly control j, if and only if the power index of i, given majority quota qj,
is at least as large as the control threshold θ. The power index is calculated for the shareholders
of j, Γ−(j), as a player-set in a weighted majority game gj with weights equal to their fraction
of voting rights in j.

If for a given firm there is no shareholder with direct holdings that fulfills the conditions
above, then we say that this firm is not directly controlled, i.e., the firm is widely held.

By construction, the Shapley-Shubik and the normalized Banzhaf power indices of all share-
holders in a specific game gj sum to 1. Therefore, the restriction θ > 0.5 in the definition implies
the uniqueness of a controller of a firm, if a controller exists. For each firm j and for each of
j’s shareholders i ∈ Γ−(j), given the majority quota qj , the power index threshold for con-
trol θ, and the complete configuration of holdings allocated to all other shareholders in this firm
Γ−(j)\ {i}, we can determine the minimum level of holdings required for shareholder i to achieve
direct control in j (if such a minimum exists)19, is at least as large as the control threshold θ.
Thus, we say that the voting rights (holdings) required in order to achieve direct control are
firm-specific in this model, and cannot be fixed for all firms as suggested, for example, in the
WLP model.

19By solving the inverse problem: Given Γ−(j)\ {i} and their corresponding voting rights, and given the majority
quota qj , what are the minimal holdings a ’newly added’ shareholder i must possess such that the power index of
i calculated for the weighted majority game, played by i and the other shareholders Γ−(j)\ {i}
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Figure 2: Indirect control and an ultimate owner

4.3 Indirect control

Controlled firms may and in many real-world cases indeed control other firms as dominant
corporate shareholders. We provide an extension to Definition 4.1 of direct control, by using
transitivity, in which a shareholder indirectly controls a firm through a ”chain of direct control
relations”.

Definition 4.2 For a shareholder/firm j1 ∈ V and a set of distinct firms {j2, . . . , jm} ⊆ V , if
for all k := 1, . . . ,m− 1 jk directly controls jk+1, then we say that j1 indirectly controls jk for
all k := 2, . . . ,m.

We shall call the set P (j1, jm) := (j1j2, . . . , jm−1jm) ⊆ V ×V the control path from j1 to jm.
A shareholder that indirectly controls every firm along a control path but itself is not controlled
is defined as the ultimate owner of each of its indirectly controlled firms.

Definition 4.3 Given a firm j ∈ V and a shareholder u ∈ V , we say that u is the ultimate
owner of j if the following two conditions hold:

1. u controls j (directly or indirectly); and

2. u is not controlled

Since a controller of a firm is uniquely determined, a firm can have one and only one ultimate
owner.

The ownership structure from Figure 2 is represented by the following adjacency matrix:
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H :=


0 100 60 0 0
0 0 0 0 80
0 0 0 0 10
0 0 0 0 10
0 0 0 0 0


In Figure 2 we recognize the set of firms to be V \F = {j2, j3, j5} and assume that the

majority quota qj = 50% for every firm in V \F , which means that a simple majority is required
to win a vote. Furthermore, we will use the Shapley-Shubik power index (SS) and fix the power
threshold for control θ = 0.9. Family j1 controls firm j2, since this family holds 100% of the
voting rights of firm j2. Next we will observe firm j5; it has three direct shareholders Γ−(j5) =
{j2, j3, j4}, whose voting rights are taken from h•,5

20 and are represented by the voting rights
vector (80, 10, 10), together with qj5 = 50% the game gj5 is completely determined. Calculating
the Shapley-Shubik power index of the shareholders in game gj5 yields the corresponding power
index vector (1, 0, 0), and since Sh(j2) = 1 > θ = 0.9 we identify the corporate shareholder j2
as the direct controller of firm j5. In sum, since j1 directly controls j2 and since j2 directly
controls j5, then according to Definition 4.2 of indirect control we will say that j1 indirectly
controls j5; the control path from j1 to j5 is given by P (j1, j5) = (j1j2, j2j5). Moreover, since
j1 is not controlled by anyone (it is a family), according to Definition 4.3 j1 is the ultimate
owner of j2 and of j5.

4.4 concert of shareholders

There are cases where several shareholders of a certain firm are directly or indirectly controlled
by the same ultimate owner. We name each such (maximal) subset a concert of shareholders21.
In the next section we will impose an assumption about the voting patterns of concerts of
shareholders. The following example illustrates this case.

In Figure 3 assume as in Figure 2 a majority quota qj = 50% for every firm j ∈ V \F , and
a Shapley-Shubik power index with a fixed power threshold for control θ = 0.9. Using similar
argumentation as in the analysis of Figure 2, we can say that j1 is the ultimate owner of firm
j2 and of firm j3. When we observe firm j5’s set of shareholders Γ−(j5) = {j2, j3, j4}, we
recognize that {j2, j3} is a concert of shareholders, since the two firms have the same ultimate
owner (j1) and since it is a maximal set, as no other shareholder of j5 has j1 as its ultimate
owner.

Definition 4.4 Let C be a subset of shareholders in some firm j. We say that C is a concert
of shareholders if the following three conditions hold:

20The column of H representing the voting rights of the shareholders of firm j5. An entry of 0 in column j5
means that the shareholder in that particular row has no direct holdings in j5, e.g. j1.

21Inspired by the definition in the City Code on Takeovers and Mergers (the Code), persons acting in concert
are persons who, pursuant to an agreement or understanding (whether formal or informal), co-operate to obtain
or consolidate control of a company or to frustrate the successful outcome of an offer for a company.

14



Figure 3: Concert of Shareholders

1. There exists one and only one vertex u, where u is the ultimate owner of each member ci
of C.

2. For each ci ∈ C, there exists a control path P (u, ci) from u to ci such that P (u, ci) does
not contain the firm j.

3. C is a maximal set for which conditions (1.) and (2.) hold.

The set of shareholders of a certain firm may contain several concerts of shareholders. How-
ever, given the uniqueness of control relations and of the ultimate owner, these concerts must
be disjoint sets.

Remark : We can weaken condition (1.) in Definition 4.4 by requiring that u only indirectly
control each member ci of C, i.e. u is not required to be an ultimate owner, and thus can be
controlled. In this case we say that C is a weak concert of shareholders.

4.5 Cycles

Real corporate networks may contain cross shareholdings (two companies that posses a stake
of each other’s shares), or in the general case be cyclic with respect to shareholdings. In some
cases the shareholdings among the firms in a cycle are significant enough to be considered control
relations by Definition 4.1. This setting might give rise to a simple closed control cycle of firms
having direct control relations, where none of the firms contained in the closed cycle is controlled
directly or indirectly by a shareholder outside the cycle. Formally we define:

Definition 4.5 A simple closed control cycle is a set of firms {j1, . . . , jn} ⊆ V \F for which the
following conditions hold:
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Figure 4: A closed control cycle

1. For all k, l := 1, . . . ,m, jk indirectly controls jl

2. For all k := 1, . . . ,m, jk has no ultimate owner.

It is clear from Figure 4 that firm j1 controls firm j2, which controls firm j3, and that j3
in turn controls j1. The presence of closed control cycles creates an ambiguity about the actual
power of a corporate shareholder j1 to dominate votes in a firm j2 that it controls, if in addition
j2 controls j1 directly or indirectly. We address this issue in the next section by imposing an
assumption about the validity of control in such cases.
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5 Assumptions

So far we have introduced a single-firm-level mechanism for identifying control relations and
provided auxiliary definitions for indirect control, control path, concert of shareholders and
closed control cycle. In this section we shift our attention to the corporate-network level of
analysis and extend our mechanism to complex ownership structures. Our approach relies on
the following five central assumptions:

Assumption 5.1 Control relations are effectively transitive.

We assume that indirect control relations effectively function as direct control relations. That
is, if a shareholder is powerful enough to control a certain firm, and that firm in turn has direct
control over another firm, we assume that the controller of former has the equivalent ability to
realize its own will in any decision-making process in either firm. This concept of transitivity of
control is assumed to extend further along possible control paths, such that the ultimate owner
has the dominant say in major issues under vote in each firm that it indirectly controls.

Assumption 5.2 The unobserved minority shareholders do not participate in votes.

Specifically, we assume that the total unobserved voting rights are dispersed over an infinitely
large number of ’minor’ owners. Then, following the argument of Grossman and Hart [37], we
postulate that shareholders with a very small stake would in most cases abstain from partici-
pating in voting and company meetings, since the social benefit to monitoring by participation
is far larger than the private benefit to any individual. In other words, because of the ’free
rider’ problem not all shareholders will participate in the process of decision-making - it is thus
mainly a contest between the large shareholders. Therefore, we normalize to 1 the fraction of
total observed holdings in every firm j ∈ V \F .Consequently, if firm j is not a family, then its
observed shareholders are assumed to hold together the entire stock of j.22

Assumption 5.3 Shareholders within the same concert vote in the same direction.

The meaning of this assumption is that we impose a departure from the equal probability
assumption for coalitions in which some shareholders in a firm are controlled by the same
ultimate owner. In other words, a pre-coalition structure is assumed to exist in this case with
a priori unions of shareholders, where each such union votes as one bloc. We assume that the
obligation to vote in a certain direction is dictated by the ultimate owner. Thus, if a certain
corporate shareholder is a member of a concert, a deviation from the concert into another
coalition is likely to be correlated with severe negative payoffs. The concept of a priori unions
or pre-coalitions implies that certain coalitions will not form at all, i.e. will have a probability

22It is possible to incorporate models for the voting patterns of the unobserved dispersed shareholders instead
of normalizing (see [44, 11]).
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of zero of forming (because shareholders that are controlled by the same ultimate owner cannot
appear in separate coalitions). However, an underlying assumption for the indices we use to
measure the power of an agent presupposes equal probability for each coalition. In order to
avoid deviating from this independence assumption regarding power indices we will refer to such
blocs of shareholders (concerts) as one voter, i.e., a bloc whose weight is equal to the sum of the
weights of its members. Thus, for each bloc we will calculate the power index of the entire bloc
rather than the individual index of each member [5, 4, 20].

Assumption 5.4 Shareholders outside concerts and different concerts vote independently.

The only systematic pre-determined coalition structure in our model is the one derived from
control relations, i.e., the concert of corporate shareholders (in which shareholders controlled
by the same ultimate owner vote in the same direction). In our technical analysis we will not
consider non-systematic ad-hoc unions or alliances based on incidental or temporary conver-
gence of interests. Such non-systematic occurrences are random, and consequently any further
correlation in the pattern of voting by shareholders requires imposing extra assumptions and
restrictions on the distribution of the coalition’s formation. In cases where voting behavior is
not dictated by an external authority, and since interests are usually hidden, not measurable,
and diverge and converge randomly, extra assumptions about the temporary voting tendencies
of shareholders are extremely difficult to justify without further data about the preferences of
these shareholders. Therefore, we shall adopt the independence assumption regarding the voting
patterns outside concerts of shareholders.

Assumption 5.5 Control relations in a ”closed control cycle” cancel each other.

Closed control cycles raise a difficult issue in analyzing control relations, since they create ambi-
guity about the corporate shareholders’ power to dominate votes in firms belonging to the same
cycle. We assume that the closed control cycle structure neutralizes the effects of the direct
control relations composing the cycle. Otherwise, if we take j1 and j2 to be corporate share-
holders such that j1 indirectly (directly) controls j2 and vice versa, then regarding the relations
between these two firms as control relations according to our conceptual framework would be
counterintuitive and ambiguous, especially when the interests of j1 and j2 diverge. Therefore,
we will not consider the control relations of closed control cycles of firms in our results. The
exception is the case where at least two firms within a control cycle are directly controlled by
the same ultimate owner. Since this ultimate owner is not subordinated to any of the cycle
firms, it can thus impose decisions through direct and indirect control relations. This case can
reflect the interpretation that companies in dominated cross-ownership structures are linked by
horizontal cross-holdings of shares that reinforce and entrench the power of a ’central’ controller
[24], which in our case is the ultimate owner.
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Figure 5: A control cycle with an ultimate owner

In Figure 5 j1 is the ultimate owner of firms {j2, j3}, {j1, j2} is the controlling concert23 of
shareholders in firm j3, and {j1, j3} is the controlling concert of shareholders in firm j2.

23For a detailed discussion of control by a concert, see Section 6.1.
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6 Extending the definitions by using concerts of shareholders

In this section we refine our formal model to accommodate control by a concert of shareholders.
We apply the assumptions stated in the previous section to control by a concert of shareholders
in order to provide extended definitions for indirect control, control path and closed control
cycle. These definitions will become useful in Section 7 when we present our method.

6.1 Control by a concert of shareholders

We stated in Assumption 5.3 that concerts of shareholders vote together and that we regard
them as one bloc when measuring the power of those shareholders. A firm can be controlled
by a concert of shareholders, if the power index of the concert (bloc) is at least as large as
the control threshold θ. Since the concert must be controlled by an ultimate owner, by the
transitivity of control relations stated in Assumption 5.1, it is effectively this ultimate owner
that dominates votes in the controlled firm through the concert. In this case we say that the
firm is controlled by a concert ; each member of the concert will be called a controlling concert
member. The definition of indirect control extends accordingly, i.e., if a firm j1 controls each
member of a concert C ⊆ V \F , and another firm j2 is controlled by that concert C, then we
say that j1 indirectly controls j2 (through a concert). Consequently, the ultimate owner of the
controlling concert is the ultimate owner of the firm controlled by that concert. For illustration, in
Figure 3 concert j2, j3 controls the firm j5, and j1 is the ultimate owner of j5. This observation
allows us to extend the definitions of the simple control path and of the simple control cycle to
accommodate control by a concert.

Definition 6.1 Let {j1, . . . , jm} ⊆ V be a set of m shareholders/firms. A compounded con-
trol path from j1 to jm, is an acyclic sub-graph, denoted by CP (j1, jm) ⊆ V × V such that
CP (j1, jm) := {jijk|ji} is a controlling concert member of {jk, i}k≤m;

Moreover, j1 indirectly controls (through a concert) ji for all i = 2, . . . ,m and jm is indirectly
controlled (through a concert) by all {jk}k=1,...,m−1.

The definition above covers the simple case of a control path (see Definition 4.2) as well,
since a concert of shareholders may contain a single member. The same argumentation is
applied in order to extend simple closed control cycles. We use the variation of a weak concert
of shareholders presented at the end of Section 4.4.

Definition 6.2 A compounded closed control cycle is a set of firms {j1, . . . , jm} ⊆ V \F for
which the following conditions hold:

1. For all i, k := 1, . . . ,m, ji indirectly controls jk (through a weak concert of shareholders).

2. For all i := 1, . . . ,m, ji has no ultimate owner.

Hereafter, when we mention control paths and closed cycles we refer to the extended defini-
tions.
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Figure 6: A compounded closed control cycle

6.2 Changes in the control threshold

Incorporating the analysis of the single corporation into the network context depends on the
complete distribution of ownership within the corporate network. There are cases in which a
concert controls a firm for some control threshold θHigh, but does not control the same firm for a
lower threshold θLow. This is possible since a low enough control threshold like θLow may induce
the creation of other concerts of shareholders whose voting rights are sufficiently large to rival
the original concert (that controlled the firm for the higher threshold condition θHigh) and thus
to eliminate its control or even to become the controller instead.

We focus on the extraction of a corporate network presented in Figure 7, where {j2, j3, j4, j5, j6, j7, j8, j10}
are firms and {j1, j9} are families. Assume that for some control threshold θLow = 0.6 we iden-
tify family j1 as the controller of all the firms {j2, j3, j4, j5, j6, j7, j8} which thus constitute a
concert of shareholders C in firm j10. Since the concert C holds together 54% of the voting
rights, it has a power index of 1 which is greater than θLow in firm j10. Therefore, this concert
controls the firm j10 and it follows that in this case j1 is the ultimate owner of firm j10. Let
us now choose a higher control threshold θHigh = 0.7 (such that θHigh = 0.7 > θLow = 0.6)
and such that the power index of family j1 would be too small to control any of the firms
{j2, j3, j4, j5, j6, j7, j8}. Those firms will no longer constitute the concert C in j10 as before
and thus the voting distribution within the firm j10 is different from the case of θLow by being
more scattered (since the concert C is eliminated) and thus presenting a weaker opposition to
family j9. Given this more scattered distribution, family j9 has a power index of 0.75 in firm
j10 which is greater than θHigh = 0.7, thus it would be identified as the controller (and ultimate
owner) of firm j10 as opposed to the case of θLow. The effect of a control threshold change on
the control status of a firm, when taking the corporate network into consideration, is more com-
plex to analyze than the case of a single firm and its shareholders when neglecting the network

21



Figure 7: Extraction of a corporate network to illustrate the network effect of a change in the
control threshold

structure. This is because changing the control threshold involves not only the direct effect -
the control threshold of the voting game within a specific firm, but also the indirect network
effect - through voting games in other firms and their influence on the creation of concerts of
shareholders in that firm. In other words, the original voting game in a firm j, gj (W1, q, θ1),
changes into the voting game gj (W2, q, θ2), where Wi, i = 1, 2, is the set of weights of the direct
concerts of shareholders, and q is the majority quota in this firm. The direct effect is due to
the change of θ1 into θ2, whereas the indirect effect is represented by the change of W1 into W2.
Following the example of Figure 7 we have gj10 (W1, 50%, 0.6) where W1 = {54%, 46%}, and
gj10 (W2, 50%, 0.7) where W2 = {7%, 7%, 8%, 8%, 8%, 8%, 8%, 46%}.
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Figure 8: Example of a simple market

7 The algorithm

We present here a fully integrated algorithm that is able to analyze control relations in any com-
plex ownership structure, and to transform a given input-output matrix of ownership (cash-flow
rights) into a corresponding Boolean matrix of control. For this purpose we will use the specific
market model from Figure 8 as a visual simplification to accompany an intuitive presentation of
our method. For a formal description see Appendix A. The input-output matrix of ownership

describing the market in Figure 8 is: H :=


0 100 60 0 0
0 0 0 0 20
0 0 0 0 40
0 0 0 0 40
0 0 0 0 0


Step 1 - Power index test for control: Assume a majority quota qj = 50% for every firm

j ∈ V \F and a Shapley-Shubik power index test with θ = 0.9. By considering that shareholders
outside concerts and different concerts vote independently, as stated in Assumption 5.4), we
calculate the power index24 of the shareholders in each of the firms {j2, j3, j5}, which yields the
matrix of power P , defined such that pi,j represents the power index of shareholder i in firm j.

24Although power analysis has been very restricted due to computational considerations, recent work [43] has
provided means to overcome this difficulty using tractable approximating power indices with a very high accuracy.
We have used the algorithms suggested in that work to perform our analysis, which is heavily based on power
index computation.
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Figure 9: Updated network after clustering and replacing concerts of shareholders

P :=


0 1 1 0 0
0 0 0 0 2/3
0 0 0 0 1/6
0 0 0 0 1/6
0 0 0 0 0


From column 2 we learn that family j1 controls firm j2, since p1,2 = 1 > θ = 0.9. By the

same argumentation, family j1 controls firm j3. However, since none of the shareholders of firm
j5 has a power index that is at least as large as θ = 0.9, this company is not controlled.

Thus, the temporary Boolean matrix of control C after step 1 is:

C :=


0 1 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


C is defined such that ci,j = 1 if and only if shareholder i is a member of a concert that

controls the firm j.
Step 2 - Ultimate owners: For each controlled firm we find its ultimate owner by climbing

up the (compounded) control paths that lead to the controlled firm. Once the ultimate owner
is identified, we update the pair (Firm,UltimateOwner) to an ultimate-owners information set
U , defined by U := {(j, u) ⊆ V × V : u is the ultimate owner of firm j}. Thus, in our example,
U = {(j2, j1), (j3, j1)}. If a firm is involved in a closed control cycle then it is not added to the
information set, since it has no ultimate owner.

Step 3 - Concerts of shareholders:
For the set of shareholders of each firm j, i.e. Γ−(j), we use the ultimate-owners infor-

mation set U to find concerts of shareholders. We then calculate the voting power of each
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Figure 10: Identified Control Relations

concert by summing the shareholders’ weights, assuming that they vote in the same direction
(Assumption 5.3). Furthermore, we replace the concert with its ultimate owner, which effectively
controls the concert’s decisions, as suggested in Assumption 5.1. In our example, when observ-
ing firm j5’s set of shareholders Γ−(j5) = {j2, j3, j4} as well as the set U = {(j2, j1), (j3, j1)}
we can qualify {j2, j3} as a concert of shareholders. Summing up the voting rights of j2 and
j3 and replacing them with j1 yields the updated network represented in Figure 9 and in the
corresponding updated matrix Hupdated.

Hupdated :=


0 100 100 0 60
0 0 0 0 0
0 0 0 0 0
0 0 0 0 40
0 0 0 0 0


We then carry out a second iteration, repeating steps 1 and 2, which results in:

P :=


0 1 1 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



C :=


0 1 1 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


U = {(j2, j1), (j3, j1), (j5, j1)}
Repeating step 3 in order to update the ownership matrix for concerts will not change
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Hupdated, since the concerts’ structure is the same as before. Therefore, P , C and U will also
not change, since they are derived from Hupdated. This outcome will thus remain fixed for all
subsequent iterations, and therefore the algorithm has converged into a solution. The control
relations in the market in our example are represented by Figure 10 and by the corresponding
Boolean matrix of control B25,26.

B :=


0 1 1 0 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0


The algorithm is not additive in the sense that during the iterative process the number

of ”adjusted” corporate shareholders in the updated matrix of ownership does not necessarily
diminish as a result of clustering firms into concerts of shareholders and replacing them with their
corresponding ultimate owners. An intuitive reason is that that it might take several iterations
until a concert is identified, and a concert that, in early iterations, appears to control a firm
might ”lose” its control in a later iteration. This might occur because of the formation of another
rival concert of shareholders. Furthermore, losing control over a certain firm might cause other
concerts to break, form, or lose or gain control in other firms that are connected to the original
firm throughout the network. However, the total number of identified control relations in each
iteration cannot be smaller than the number of that iteration. Since the number of shareholders
within the network is finite (which is the case in real-world situations) and thus the number
of possible control relations is bounded, our algorithm always converges to a solution that can
be obtained after a finite number of iterations. Under the assumptions stated in section 5, we
formulate the theoretical principle of our method as follows: Let the network of shareholding
relationships among a set V of n firms and shareholders be described by the n × n adjacency
matrix H ∈ [0, 1]n×n as defined in Section 4.1. Given a majority quota q ∈ (0, 1] and power
index threshold θ ∈ (0.5, 1], denote by Ψ a mapping Ψ : [0, 1]n×n × (0, 1]× (0.5, 1]→ {0, 1}n×n :
(H, q, θ) 7→ Ψ(H, q, θ) := F from the initial input-output matrix of holdings H to a sub-network
of control relations F described by the n×n adjacency matrix F ∈ {0, 1}n×n. The set VC ⊆ V is
the set of firms and shareholders participating in control relations. If a firm is not controlling or
controlled, then it is represented as a disconnected vertex, i.e. for all s ∈ V \VC we have Fsj = 0
and Fjs = 0, j = 1, . . . , n. F satisfies the following: A firm j is controlled by shareholder i if
and only if i is a member of a concert of shareholders controlling firm j. Formally, Fij = 1 if
and only if there exists B := Γ−VC

(j) ⊆ Γ−V (j) - a concert of shareholders (possibly with only one
shareholder) in firm j such that PowerIndexj(B) > θ and i ∈ B. In other words, the power
index of the concert B to which shareholder i is associated, when calculated as one bloc in the
game gj with majority quota q, is greater than θ. The control matrix F , which represents all

25A firm/shareholder that does not participate in control relations (family j4 in this example) will have all
entries in its corresponding row and column equal zero, and will not be included in the solution.

26Notice that h2,5 = 1 and also h3,5 = 1, which means that firm j5 is controlled by a concert.

26



control relations, is a directed network where each edge links each shareholder of a controlling
concert to the controlled firm in a direct control relation. This network is composed of disjoint
maximal connected components. Each maximal connected component is arranged as a directed
tree with a specific shareholder as the root (the ultimate owner).

Proposition 7.1
Given the ownership matrix H,a majority quota q and a power index threshold θ, as defined
above, then the algorithm proposed in this section and formally in Appendix A:

1. Converges to a solution (control network) after a finite number of iterations.

2. This solution is exclusive (or correct) in the sense that every identified control relation
between a shareholder (concert) and a firm is valid, and no other shareholder (concert)
can be the controller of that firm (it also excludes the possibility that the firm is widely
held).

3. The solution is exhaustive, in the sense that it identifies all control relations.

In other words our algorithm accepts H, q and θ as inputs and its output is the control matrix
FAlgo with the above properties. Thus, the mapping Ψ exists and is well defined, and Ψ(H, q, θ) =
F can be identified with our algorithm’s output of control matrix, FAlgo. That is, F = FAlgo.

Proof: In Appendix B.
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8 Application and Results

We implemented our algorithm into a Java computer program and tested it on a real-world data
set of holdings in the Israeli market between the years 1995 and 2009. In this section we provide
several results based on our algorithm.

Our source is the ownership data for 650 listed Israeli companies - the whole population
of publicly traded firms on the Tel Aviv Stock Exchange. Our sample comes from the Tel
Aviv Stock Exchange electronic reports on ownership distribution in each listed company, and
specifically the data regarding the percentage holdings of the principal shareholders (parties
of interest with a holding over 5 percent). At the first stage we identified on average 2300
owners (i.e., potential controllers) per month. These owners are heterogeneous, and include local
individuals (55%), private companies (21%), foreign owners (10%), publicly traded companies
(8%) and trusts and partnerships (6%). Since the available official information does not include
holdings in private companies we added data on ultimate owners of these companies27, which
we collected manually from the Registrar of Companies’ database in the Ministry of Justice.
In cases where identification was successful, we re-attributed the shareholdings held by private
firms to their ultimate owners. If we could not identify the ultimate owner, then the private
companies’ shareholdings remained unchanged. Next, we examined the extended set of all
individual shareholders and clustered them, when possible, into groups defined by family ties.
We assumed that every family votes and owns its shares collectively SAF2. The adjusted set of
corporate owners comprised 2700 parties of interest on average for each month. According to
assumption 1 the unobserved minority shareholders do not participate in votes; therefore, we
normalized the total shareholdings of parties of interest in each firm to 100 percent28.

8.1 Controlled public firms for different control thresholds

We examined the percentage of controlled public firms out of the total number of public firms for
each month between April 1995 and April 2009. We ran the algorithm four times, with control
thresholds of θ = 1 and θ = 0.5 + ε, the highest and lowest boundaries for the control threshold
respectively: two runs with the Shapley-Shubik power index (denoted SS in the figure); as well
as two runs with the Banzhaf power index (denoted B in the figure). Figure 11 summarizes the
results of those runs across consecutive time points.
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Figure 11: Percentage of controlled public firms for different control thresholds

29



Figure 12: Ultimate owners and controlled public firms in maximal control components contain-
ing at least two public firms in the Israeli market for April 2009
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8.2 Maximal control components containing at least two public firms in the
Israeli market for April 2009.

In Figure 12 the vertices represent firms and shareholders, and the edges represent control
relations29. Shareholders within the same tree that are located above a firm and are connected to
it by edges are the controlling concert of that firm, and the root of the tree is the ultimate owner.
Since we identified many firms participating in control relations, for the clarity of illustration, we
chose to visualize only ultimate owners and public firms in control components that contained
at least two controlled public firms (and thus removed the private firms from the figure).

8.3 Comparison with the cut-off point method

In this section we examine the results of our method vs. the results derived from cut-off point
method on a real-world data set of holdings in the Israeli market. For the application of our
method, we chose the Shapley-Shubik power index with control threshold parameter θ = 0.75 ;
and for the cut-off method we followed the widely-used 20% rule - i.e. the corporate controller
(ultimate owner) was identified if this shareholder’s direct and indirect voting rights in the firm
exceeded 20 percent [33]. The following table summarizes the comparison of the main results
and refers to the control status of listed Israeli companies as of April 2009:

Table 1: Comparison of the empirical results provided by the power indices based method and
the 20% cut-off point rule, April 2009.
Category Algorithm SS 0.75 20% cut-off

1 Total number of identified controlled firms 425 534
2 Identified as controlled in ONLY one method 13 122
3 Identified as controlled in both methods 412
4 - out of which (3) firms with different ultimate owner 31
5 - Identified with the same controller and ultimate owner 381

The analysis of the results shows that both methods identify the same controllers and ulti-
mate owners for 381 (category 5) firms. However, for a total of 166 firms (categories 2 and 4) the
results are significantly different. Such difference, at the sampled time point (April 2009), ac-
counted for 25% of the total market value30. A more detailed analysis of the discrepancy between
two methods is provided below. As can be seen from Table 1, the ”cut-off method” identifies

27This procedure is not essential for using our method. Running the algorithm without incorporating the
”adjusted” shareholding data would still yield correct results with respect to the input information.

28Precise knowledge or different assumptions regarding the voting patterns of the unobserved minority can be
easily incorporated instead of normalizing.

29After running the algorithm for θ = 0.8
30Not including ”Teva”.
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Figure 13: First example of a weakness of the 20% cut-off-rule in accurately identifying control

Figure 14: Shapley-Schubik Power Index of Controllers Identified by the 20% cut-off rule only

122 controlled firms, or 8.6% in terms of market value, that are considered non-controlled by the
method presented in this paper. A careful examination of the ownership structure of these firms
reveals that in most cases despite the fact that controller holds a significant stake (more than
20% by construction) there are other shareholders that hold large blocks as well and thus are
presenting a potential strong opposition to the controller. In these situations the distribution
of power among the rest of the shareholders questions the possibility of the identified controller
(by the cut-off method) to effectively exercise control.

Figure 13 shows a true representative case in which the 20% cut-off method identified a
controller and our method did not.

The histogram in Figure 14 shows the power index of the controllers in the 122 firms that
the cut-off method identifies as controlled, which are considered non-controlled by our method.
The most important implication of Figure 14 is that in about 85% of those firms the controller,
who was identified (only) by the 20%-rule, has a power index lower than 0.5. In other words,
due to the distribution of power in those firms, the assumed controller does not achieve a pivotal
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Figure 15: Second example of a weakness of the 20% cut-off-rule in accurately identifying control.
The cut-off method identified j5 as the controller and ultimate owner of j6, however since j1
controls the concert j2,j3 they are likely to vote as one block with 24% which matches exactly
the stake of j5. Therefore, our method identified firm j6 as not controlled.

position in more than 50% of the cases. Accepting the fact that such a shareholder controls a
firm by virtue of voting rights (holdings) is not in accord with our definition of effective control.
Moreover, the cut-off method does not examine the entire sub-networks in which firms are
embedded, and thus misses the fact that some non-controlling shareholders may form concerts
and thus vote in the same direction. This leads again to a different distribution of power and
to a greater potential opposition to the shareholder who was identified as a controller.

Figure 15 shows a true representative case in which the 20% cut-off method identified a
controller and our method did not.

Regarding the 13 companies which are identified as controlled by using our method and as
widely-held by the cut-off rule, we find that the total market value of these firms exceeds 6.3%
- this in comparison with 8.6% of 122 companies identified as controlled by cut-off method only
- and that their market activity is concentrated primarily in banking, computers and electronic
sectors. A fascinating observation, however, is that the list of these companies includes one of
the two biggest Israeli banks - Bank ”Hapoalim”. In this case as well as in the rest of the cases
in which our method uniquely identifies corporate controllers and the cut-off method does not,
the controller holds less than 20% of the corporate voting rights but, in line with the proposed
methodology, is powerful enough to obtain effective control of the firm.

The last bone of contention between two methods is the discrepancy about the identity of
ultimate owners. We find that among 31 firms (10.25% of total market value) four relatively
big companies (7.23% of total market value) are affiliated with 3 different business groups,
while in 27 other cases the ultimate owners are not the same. Besides the numerical differences
provided in this section, the implications of choosing the identification strategy is of concern.
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The discrepancy about the controller’s identity between the two methods 31 in our particular
example raises concerns about the robustness of empirical analysis related to corporate gover-
nance in other cases. Thus, for example, identifying the largest blockholder as a controller in
the presence of other large shareholders is questionable. The phenomena of multiple dominant
shareholders which is well documented in different studies [33, 25] and appears also in 122 com-
panies in our example above has different implications than the existence of a single ultimate
owner. These implications are linked strongly to shareholders power, corporate performance,
valuation and governance issues in companies with concentrated ownership [27, 9, 29, 3] In such
cases, the misspecification of the corporate control structure, while using the cut-off method,
can lead, at best, to biased or insignificant empirical results. In other scenarios, however, an
inappropriate identification strategy can result in mechanisms that are simply inadequate for the
challenges facing policy makers while coping with the consequences of principal-agent problems,
or even counterproductive. Despite the fact that by using the cut-off method one can simplify
the calculation process of identifying control relations and especially those in complex owner-
ship structures, adopting more accurate and methodologically based approach - as provided in
this paper - seems to significantly reduce many potential sources of bias and to avoid serious
measurement errors.

31In the Israeli case we find disagreement between the two methods for 166, or 25% from the total population
of listed companies and 25% of total market capitalization.
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9 Summary and conclusions

In the present study we provide a new method for identifying control relations on the corporate
level and especially in complex ownership structures. We argue that a complete identification
of such relations is possible only by incorporating the analysis of the single corporation into the
network context and vice versa. In other words, in order to obtain the exact and comprehensive
map of corporate control in any given market, the aspects of control of a particular firm and the
control paths that involve that firm must be treated simultaneously. For this purpose we apply
weighted voting games as a theoretical framework for our analysis and use the Shapley-Shubik
and the Banzhaf power indices to determine the voting power of shareholders. Given the exact
distribution of voting rights in a specific firm we define the direct controller as the shareholder
who is pivotal in most decision making processes. Subsequently, from our definition of direct
control we derive the following essential concepts: indirect control, ultimate owner, concert of
shareholders and control cycle. These concepts allow us to shift our focus to the corporate-
network level of analysis and extend our mechanism to complex ownership structures. Our
approach for the identification strategy relies on five central assumptions: 1) control relations
are effectively transitive; 2) the unobserved minority shareholders do not participate in votes;
3) shareholders within the same concert vote in the same direction; 4) shareholders outside
concerts and different concerts vote independently; and 5) control relations in a ”closed control
cycle” cancel each other out. We integrate our analytical framework and assumptions to present
an algorithm that is able to analyze control relations in any complex ownership structure, and
prove that if the number of firms within the network is finite (which is the case in real-world
situations) then there always exists a solution that can be obtained after a finite number of
iterations, and it is unique. Thus, our algorithm is well defined. In the next stage we implement
our algorithm into a Java computer program and test it on a real-world data set of monthly
holdings in the Israeli market between the years 1995 and 2009. For the empirical compatibility
test we use an input-output matrix of cash flow rights of approximately 650 listed companies -
the whole population of public companies on the Tel Aviv Stock Exchange. The direct product
of the analysis of these data is a comprehensive map of control relations at every time point.
Moreover, we find that the corporate control relations identified by our method are richer and
more accurate than those provided by different official sources (e.g. Israel Securities Authority,
Banking Supervision department in the Bank of Israel, etc.).
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A The Algorithm

We present Algorithm 1, which is our main algorithm for calculating control graphs. In
this algorithm, we maintain a set of pairs, namely PairsGroup, in which every pair represents
a control relation. We build this set iteratively until it stops changing, and together with the
market itself, it represents the control graph in the market. In every iteration the algorithm uses
the following methods sequentially (the complexity measures relate to the number of companies
in the market):

In Algorithm 2 , for every company, we go over every control component we have identified so
far (represented by the root of the control component) and sum its holdings in the company
as follows. We sum the holdings of the mothers in the control component, and then replace
those mothers by attributing their direct holdings (the summed mothers’ holdings) to the
root of the control component. This is done in order to convey the coalition’s holdings,
which are relevant when referring to the power division among the company shareholders.
The complexity of this algorithm is O(N2).

In Algorithm 3 , we simply go over each company, and change the holdings of its current
mothers according to the scores given to them by the chosen test. In tests that require an
exponential number of calculations, we use an approximation algorithm that calculates the
voting power over 1

ε2
log(1

δ ) samples, where ε is the required accuracy, and δ is the required
confidence level. We denote this number of samples as k. Therefore, the complexity of
this algorithm is O(Nk).

In Algorithm 4 , for each company, we leave only dominating mothers, i.e., we delete the
holdings of mothers that are not dominant according to the given test and threshold. We
note that there cannot be more than one dominant mother, and therefore if two mothers’
holdings are above the control threshold and are the same, both of them will be deleted.
The complexity of this algorithm is O(N2).

In Algorithm 5 , we deal with the special case of control cycles. We do this by going over every
root (which inherently cannot be a part of a cycle), and then recursively going through the
graph (DFS - Depth-first search), while keeping track of the route throughout the search
in order to know when a cycle is reached. We then check if it is a true control cycle, and
then unify the new cycle with the other correlated ones. The complexity of this algorithm
is O(N2).

In Algorithm 6 , we extract the new control relations from the process, and create a set of
pairs NextPairGroup. The complexity of this algorithm is O(N2).

Eventually, due to the fact that the paths of control, represented through PairsGroup,
constantly grow until the algorithm stops; we conclude that the main loop in the algorithm runs
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O(N) time. Therefore, the complexity of our main algorithm is O(kN2) for markets with large
breadth (i.e. many companies hold every company in the market), and O(N3) for those with
small breadth.

Algorithm 1 Attaches the controlling root to each company
1: procedure CreateDominationTrees(Market)
2: NextPairsGroup←() . Holds pairs of companies and their attached roots so far
3: while NextPairsGroup6=PairsGroup do
4: PairsGroup←NextPairsGroup
5: NewMarket←V alidCoalitionJoining(Market, PairsGroup)
6: NewMarket←RunTest(NewMarket, TestType, Threshold,Majority)
7: NewMarket←DirectControlRelation(newMarket, Threshold)
8: NewMarket←DealWithCycles(newMarket, PairsGroup)
9: NextPairsGroup←SingleControllerThroughPathes(newMarket)

10: end while
11: Return PairsGroup,Market
12: end procedure
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Algorithm 2 For every company, removes mothers from the same coalition, and puts an edge
from the root with the sum of holdings

1: procedure ValidCoalitionJoining(Market, PairsGroup)
2: for comp in companies(NewMarket) do
3: Pcomp←Mothers(comp)
4: PcompPairsGroup←AttachRoot(Pcomp, PairsGroup)
5: for root in Roots(PcompPairsGroup) do
6: if root6=comp then
7: PcompRoot←sons(PcompPairsGroup, root) . comp’s parents ∩ root’s

descendants
8: sum←Sum the direct holdings of PcompRoot in comp
9: in Market, Delete all holdings of companies from PcompRoot in comp

10: in Market, Add holdings for root in comp, that equal to sum
11: end if
12: end for
13: end for
14: Return Market
15: end procedure
16:

17: procedure AttachRoot(CompanySet, PairsGroup)
18: NewPairsGroup←()
19: for p in CompanySet do
20: if there exists Z s.t. (z, p)∈PairsGroup then
21: Add (z, p) to NewPairsGroups
22: else
23: Add (p, p) to NewPairsGroups
24: end if
25: end for
26: return NewPairsGroup
27: end procedure
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Algorithm 3 Runs the required voting test on every mother set, and updates their holdings
according to their power index

1: procedure RunTest(Market, TestType, Threshold,Majority)
2: for company in companies(Market) do
3: weights←MotherHoldings(company)
4: votingPower←test results for running TestType, with weights, Threshold and Ma-

jority as input
5: in Market, change that holdings of the mothers in company to be their voting power
6: end for
7: return Market
8: end procedure

Algorithm 4 Deletes relations that do not represent control relations
1: procedure DirectControlRelation(Market, Threshold)
2: for company in Companies(Market) do
3: for mother in Mothers(company) do
4: if Holdings(mother, company) < Threshold then
5: in Market, DeleteHoldings(mother, company) . mother is not controlling

company
6: end if
7: end for
8: if NumberOfMothers(company) > 1 then
9: maximalMother←Mothers(company) . null if no unique maximum exists

10: in Market, DeleteMothers(company)
11: in Market, returnMother(maximalMother, company)
12: end if
13: end for
14: Return Market
15: end procedure
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Algorithm 5 Deals with cycles
1: procedure DealWithCycles(Market, PairsGroup)
2: Undominated←getUndominatedCompanies(Market, PairrsGroup)
3: for company in Undominated do
4: RouteList←()
5: recursiveF indCycle(Market, PairsGroup, company,RouteList)
6: end for
7: CalculateDominationsInCycles(Market)
8: Return Market
9: end procedure

10:

11: procedure recursiceFindCycle(Market, PairsGroup, company.RouteList)
12: if company∈RouteList then . If we closed a cycle
13: newCycle←extractCycleFromRoute(List, company)
14: if everyone in the cycle has the same root then . Meaning its a control cycle
15: AddToCycles(Market, newCycle)
16: end if
17: else
18: Add company to RouteList
19: for daughter in daughters(company) do
20: recursiveF indCycle(Market, PairsGroup, daughter,RouteList)
21: end for
22: end if
23: end procedure
24:

25: procedure AddToCycles(Market, newCycle)
26: for cycle in cycles(Market) do
27: if cycle∩newCycle6=∅ then
28: Remove cycle from cycles(Market)
29: newCycle = newCycle∪cycle
30: end if
31: end for
32: Add newCycle to cycles(Market)
33: end procedure
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Algorithm 6 Update the pairs of control in the market
1: procedure SingleControllerThroughPathes(Market)
2: NextPairsGroup←()
3: for company in companies(Market) do
4: if company has no mothers (in Market) then
5: for descendant in getAllDescendants(Market, company) do
6: Add (company, descendant) to NextPairsGroup
7: end for
8: end if
9: end for

10: Return NextPairsGroup
11: end procedure
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B Proofs

Let the network of shareholding relationships among a set V of n firms and shareholders be
described by the n× n adjacency matrix H ∈ [0, 1]n×n as defined in Section 4.1 where n < ∞.
Fix a majority quota q ∈ (0, 1] and power index threshold θ ∈ (0.5, 1]. Further, denote by L the
maximal path length among all the holdings paths in the network H, i.e. L := max{|P (y, x)| :
P (y, x) ⊆ H is a directed simple path of holdings from y to x}. Where |P (y, x)| is the length of
P (y, x) defined as the number of edges in the path, and we always have L ≤ n− 1.

1. Notice that for any adjusted matrix of holdings resulting from each iteration (after joining
concerts and replacing them by the root) the maximal length of holdings path cannot be
larger than L - the maximal length of holdings path in the original matrix, H. Thus, the
algorithm, by construction, converge after at most L steps to a solution, i.e. the solution
will not change any more for any iteration ≥ L. The finiteness of L implies that the process
terminates.

2. We show correctness (exclusive controllers) by induction over L. For L = 1, a power index
test (Shapley-Shubik or Banzhaf) with θ > 0.5 implies the uniqueness of the controller
and thus it leads to a correct solution. Assume that the statement holds for L = k − 1.
For L = k , since by the induction hypothesis the matrix of holdings is fixed and correct
after k − 1 steps, we are in fact in the same case as L = 1. The last non tested nodes
(the leaf in level L = k) will yield a correct solution after the power index test since it
is uniquely determined with θ > 0.5. Intuitively, assume that there was a mistake during
some iteration 1 ≤ m ≤ L, i.e. a firm is identified as controlled by some shareholder,
that does not actually control it by the data in H. However, in each iteration (in our
case iteration m), the power index test uniquely and correctly identifies controllers from a
given updated matrix of holdings Hm−1 (which is H adjusted for concerts after iteration
m − 1). Then, after adjusting for concerts and applying test in iteration m, it cannot be
the case that the mistake was in iteration m, i.e. the mistake must have occurred before.
By the same logic we will trace back to iteration 1, i.e. to the original matrix of holdings,
H. But since the power index test is unique and correct for θ > 0.5, it cannot be the case
that the mistake was in iteration 1. A contradiction.

3. We perform a similar induction over L as in above. For L = 1 all possible control relations
are identified by the construction of the power index test with θ > 0.5 and are thus similar
to the control relations in Ψ(H, q, θ) = F . Assume that the statement holds for L = k− 1.
For L = k we have an updated matrix of holdings derived from all possible (and correct)
control relations in level L = k − 1 by the induction hypothesis. Thus, the last test is
similar to the case of L = 1, identifying all relations in level L = k. This completes the
proof.

46


