
Algorithms for the Coalitional Manipulation Problem

Michael Zuckerman∗ Ariel D. Procaccia† Jeffrey S. Rosenschein‡

Abstract

We investigate the problem of coalitional manipulation in elections, which is known to be
hard in a variety of voting rules. We put forward efficient algorithms for the problem in Scoring
rules, Maximin and Plurality with runoff, and analyze their windows of error. Specifically, given
an instance on which an algorithm fails, we bound the additional power the manipulators need
in order to succeed. We finally discuss the implications of our results with respect to the popular
approach of employing computational hardness to preclude manipulation.

∗School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel,
email: michez@cs.huji.ac.il

†School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel,
email: arielpro@cs.huji.ac.il

‡School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel,
email: jeff@cs.huji.ac.il

1 Introduction

Social choice theory is an extremely well-studied subfield of economics. In recent years, interest in
the computational aspects of social choice, and in particular in the computational aspects of voting,
has sharply increased. Among other things, this trend is motivated by numerous applications of
voting techniques and paradigms to problems in artificial intelligence [15, 12, 10].

In an election, a set of voters submit their (linear) preferences (i.e., rankings) over a set of
candidates. The winner of the election is designated by a voting rule, which is basically a mapping
from the space of possible preference profiles into candidates. A thorn in the side of social choice
theory is formulated in the famous Gibbard-Satterthwaite Theorem [13, 22]. This theorem states
that for any voting rule that is not a dictatorship, there are elections in which at least one of
the voters would benefit by lying. A dictatorship is a voting rule where one of the voters—the
dictator—single-handedly decides the outcome of the election.

Since the 1970s, when this impossibility result was established, an enormous amount of effort
has been invested in discovering ways to circumvent it. Two prominent and well-established ways
are allowing payments [23, 4, 14], or restricting the voters’ preferences [18].

In this paper, we wish to discuss a third path—the “path less taken”, if you will—which has
been explored by computer scientists. The Gibbard-Satterthwaite Theorem implies that in theory,
voters are able to manipulate elections, i.e., bend them to their advantage by lying. But in practice,
deciding which lie to employ may prove to be a hard computational problem; after all, there are a
superpolynomial number of possibilities of ranking the candidates.

Indeed, Bartholdi et al. [2] put forward a voting rule where manipulation is NP-hard. In
another important paper, Bartholdi and Orlin [1] greatly strengthened the approach by proving
that the important Single Transferable Vote (STV) rule is hard to manipulate.

This line of research enjoys new life in recent years thanks to the influential work of Conitzer,
Lang and Sandholm [7].1 The foregoing paper studied the complexity of coalitional manipulation.
In this setting, there is a coalition of potentially untruthful voters, attempting to coordinate their
ballots so as to get their favorite candidate elected. The authors further assume that the votes
are weighted: some voters have more power than others. Conitzer et al. show that in a variety
of prominent voting rules, coalitional manipulation is NP-hard, even if there are only a constant
number of candidates (for more details, see Section 2). This work has been extended in numerous
directions, by different authors [16, 21, 5, 8]; Elkind and Lipmaa [9], for example, strengthened the
abovementioned results about coalitional manipulation by employing cryptographic techniques.

In short, computational complexity is by now a well-established method of circumventing the
Gibbard-Satterthwaite Theorem. Unfortunately, a shortcoming of the results we mentioned above
is that they are worst-case hardness results, and thus provide a poor obstacle against potential ma-
nipulators. Recent work regarding the average-case complexity of manipulation have argued that
manipulation with respect to many worst-case-hard-to-manipulate voting rules is easy in prac-
tice [6]. In particular, Procaccia and Rosenschein [20, 19] have established some theoretical results
regarding the tractability of the coalitional manipulation problem in practice. The matter was
further discussed by Erdelyi et al. [11]. In spite of this, the question of the tractability of the ma-
nipulation problem, and in particular of the coalitional manipulation problem, in practical settings
is still wide-open.

Our Approach and Results. We wish to convince that, indeed, the coalitional manipulation
problem can be efficiently solved in practice, but our approach differs from all previous work. We

1Historical note: although we cite the JACM 2007 paper, this work originated in a AAAI 2002 paper.

1

present efficient heuristic algorithms for the problem which provide strong theoretical guarantees.
Indeed, we characterize small windows of instances on which our algorithms may fail; the algorithms
are proven to succeed on all other instances.

Specifically, we prove the following results regarding three of the most prominent voting rules (in
which coalitional manipulation is known to be NP-hard even for a constant number of candidates):

Theorem.

1. In the Borda rule, if it is possible to find a manipulation for an instance with certain weights,
Algorithm 2 will succeed when given an extra manipulator with maximal weight.

2. In the Plurality with Runoff rule, if it is possible to find a manipulation for an instance with
certain weights, Algorithm 3 will succeed when given an extra manipulator with maximal
weight.

3. In the Maximin rule, if it is possible to find a manipulation for an instance with certain
weights, Algorithm 1 will succeed when given two copies of the set of manipulators.

Structure of the Paper. In Section 2, we describe the major voting rules and formulate the
coalitional manipulation problem. In Section 3, we present and analyze our algorithms in three
subsections: Borda, Plurality with Runoff, and Maximin. Finally, we discuss our results in Sec-
tion 4.

2 Voting Rules and Manipulation Problems

An election consists of a set C = {c1, . . . , cm} of candidates and a set S = {v1, . . . , v|S|} of voters.
The voters provide a total order on the candidates. To put it differently, each voter submits a
ranking of the candidates. The voting setting also includes a voting rule, which is a function from
the set of all possible combinations of votes to C.

We shall discuss the following voting rules (whenever the voting rule is based on scores, the
candidate with the highest score wins):

• Scoring rules. Let !α = 〈α1, . . . ,αm〉 be a vector of non-negative integers such that α1 ≥
α2 ≥ . . . ≥ αm. For each voter, a candidate receives α1 points if it is ranked first by the
voter, α2 if it is ranked second, etc. The score s!α of a candidate is the total number of
points the candidate receives. The scoring rules which we will consider are: Borda, where
!α = 〈m − 1,m − 2, . . . , 0〉, and Veto, where !α = 〈1, 1, . . . , 1, 0〉.

• Maximin. For any two distinct candidates x and y, let N(x, y) be the number of voters who
prefer x to y. The maximin score of x is S(x) = miny "=x N(x, y).

• Copeland. For any two distinct candidates x and y, let C(x, y) = +1 if N(x, y) > N(y, x) (in
this case we say that x beats y in their pairwise election), C(x, y) = 0 if N(x, y) = N(y, x),
and C(x, y) = −1 if N(x, y) < N(y, x). The Copeland score of candidate x is S(x) =∑

y "=x C(x, y).

• Plurality with runoff. In this rule, a first round eliminates all candidates except the two with
the highest plurality scores. The second round determines the winner between these two by
their pairwise election.

2

In some settings the voters are weighted. A weight function is a mapping w : S → N. When
voters are weighted, the above rules are applied by considering a voter of weight l to be l different
voters.

Definition 2.1.

1. In the Constructive Coalitional Weighted Manipulation (CCWM) problem, we
are given a set C of candidates, with a distinguished candidate p ∈ C, a set of weighted
voters S that already cast their votes (these are the truthful voters), and weights for a set of
voters T that still have not cast their votes (the manipulators). We are asked whether there
is a way to cast the votes in T such that p wins the election.

2. Constructive Coalitional Unweighted Manipulation (CCUM) problem is a special
case of CCWM problem where all the weights equal 1.

Remark 2.2. We implicitly assume in both questions that the manipulators have full knowledge
about the other votes. Unless explicitly stated otherwise, we also assume that ties are broken
adversarially to the manipulators, so if p ties with another candidate, p loses.

Theorem 2.3 ([7]). The CCWM problem in all the abovementioned voting rules is NP-complete,
even when the number of candidates is constant.

Throughout this paper we will use the convention that |C| = m, |S| = N and |T | = n. Whenever
the voting rule is based on scores, we will denote by SS,j(c) the score of candidate c from the voters
in S and the first j voters of T (fixing some order on the voters of T). Whenever it is clear from the
context that S is fixed, we will use simply Sj(c) for the same. Also, for G ⊆ C, 0 ≤ j ≤ n we will
write Sj(G) = {Sj(g) | g ∈ G}. For two lists A,B (ordered multisets, possibly with multiplicities),
we denote by A + B the list which is obtained after B is appended to A.

3 Results

We begin our contribution by presenting a general greedy algorithm for the coalitional manipulation
problem. Some of our main results concern this algorithm or its restriction to scoring rules.

The greedy algorithm is given as Algorithm 1. It works as follows: the manipulators, according
to descending weights, each rank p first and rank the other candidates in a way that minimizes
their maximum score. This algorithm is a generalization of the one that appeared in [3].

Remark 3.1. We refer to an iteration of the main for loop in line 4 of the algorithm as a stage of
the algorithm.

We will use the fact that for many voting rules, if there exists a manipulation for a coalition of
manipulators with weights list W , then there exists a manipulation for a coalition of manipulators
with weights list W ′ where W ′ ⊇ W . Normally, if the coalition is too small then there is no
manipulation, and this is indeed what the algorithm will report. On the other hand, if the coalition
is large enough, then the greedy algorithm will find the manipulation. So there remains a window
of error, where for some coalitions there could exist a manipulation, but the algorithm may not
find it. We are interested in bounding the size of this window. We first formulate the monotonicity
property described above.

Definition 3.2. In the context of the CCWM problem, a voting rule is said to be monotone in
weights if it satisfies the following property: whenever there is a manipulation making p win for
manipulator set T with weights list W , there is also a manipulation making p win for manipulator
set T ′ with weights list W ′, where T ′ ⊇ T , W ′ ⊇ W .

3

Algorithm 1 Decides CCWM

1: procedure Greedy(C, p,XS ,W) # XS is the set of preferences of voters in S, W is the list
of weights for voters in T , |W | = |T | = n

2: sort(W) # Sort the weights in descending order
3: X ← φ # Will contain the preferences of T
4: for j = 1, . . . , n do # Iterate over voters by descending weights
5: Pj ← (p) # Put p at the first place of the j-th preference list
6: for t = 2, . . . ,m do # Iterate over places of j-th preference list
7: # Evaluate the score of each candidate if j would put it at the next available place
8: Pick c ∈ argminc∈C\Pj

{Score of c from XS ∪ X ∪ {Pj + {c}}}
9: Pj = Pj + {c} # Add c to j’s preference list

10: end for
11: X ← X ∪ {Pj}
12: end for
13: XT ← X
14: if argmaxc∈C{Score of c based on XS ∪ XT } = {p} then
15: return true # p wins
16: else
17: return false
18: end if
19: end procedure

Monotonicity in weights is a prerequisite for the type of analysis we wish to present. However,
not all the basic voting rules have this property. In particular, the prominent Copeland rule does
not possess this property. See Appendix B for an example.

3.1 Borda

In this subsection, we analyze the performance of Algorithm 1 with respect to the important Borda
voting rule. Note that, in the context of scoring rules, Algorithm 1 reduces to Algorithm 2, which
appears in Appendix G. This algorithm first appeared in Procaccia and Rosenschein [20]. In this
specific instantiation of Algorithm 1, we do not require sorting the manipulators’ weights, as this
does not play a part in our analysis.

Lemma 3.3. Scoring rules are monotone in weights.

The proofs of all monotonicity Lemmas are deferred to Appendix A. We are now ready to
present our theorem regarding the Borda rule.

Theorem 3.4. In the Borda voting rule, let C be a set of candidates with p ∈ C a preferred
candidate, S a set of voters who already cast their votes. Let W be the weights list for the set T .
Then:

1. If there is no ballot making p win the election, then Algorithm 2 will return false.

2. If there exists a ballot making p win the election, then for the same instance with weights list
W + {w′

1, . . . , w
′
k}, where k ≥ 1,

∑k
i=1 w′

i ≥ max(W), Algorithm 2 will return true.

A key notion for the proof of the theorem is the definition of the set GW . Let W be list of
weights; we define GW as follows. Run the algorithm n+1 stages with the weights W +{w}, where

4

w is an arbitrary weight. Let G0
W = argmaxg∈C\{p}{S0(g)}, and, by induction, for s = 1, 2, . . . :

Gs
W = Gs−1

W ∪ {g | g was ranked after some g′ ∈ Gs−1
W at some stage l, 1 ≤ l ≤ n + 1}. Finally, let

GW = ∪0≤sGs
W . The definition is independent of the weight w, as this weight is used only at stage

n + 1, so it does not impact the preferences of the voters, and thus it does not impact GW . From
the definition, G0

W ⊆ G1
W ⊆ . . . ⊆ C \ {p}. Furthermore, as |C \ {p}| = m− 1, it follows that there

exists 0 ≤ s′ ≤ m − 2 s.t. Gs′
W = Gs′+1

W , and thus GW = Gs′
W = Gm−2

W .

Lemma 3.5. Given W , the candidates in GW were ranked at each stage l, 1 ≤ l ≤ n + 1 at |GW |
last places, i.e., they were always granted the points |GW |− 1, . . . , 0.

Proof. If, by way of contradiction, there exists c ∈ C \ GW that was ranked at some stage at one
of the last |GW | places, then there is g ∈ GW that was ranked before c at that stage. Let s ≥ 0
such that g ∈ Gs

W . By definition, c ∈ Gs+1
W ⇒ c ∈ GW , a contradiction.

Lemma 3.6. For all c ∈ C \ GW , it holds that Sn(c) ≤ ming∈GW {Sn(g)}.

Proof. Suppose for contradiction that there are c ∈ C \GW and g ∈ GW , s.t. Sn(c) > Sn(g). Then
at stage n+1, c would have been ranked after g. Let s ≥ 0 s.t. g ∈ Gs

W . Then c ∈ Gs+1
W ⇒ c ∈ GW ,

a contradiction.

Lemma 3.7. Given W , |W | = n, let GW be as before. Denote by q(W) the average score of
candidates in GW after n stages: q(W) = 1

|GW |
∑

g∈GW
Sn(g). Then:

1. If Sn(p) ≤ q(W) then there is no manipulation that makes p win the election, and the algo-
rithm will return false.

2. If Sn(p) > maxg∈GW {Sn(g)}, then there is a manipulation that makes p win, and the algorithm
will find it.

Proof. We first prove part 1. Denote W = {w1, . . . , wn}. We have the set GW , and we suppose
that Sn(p) ≤ q(W). Let us consider any ballot XT of votes in T , and let S′

n(c) be the scores of the
candidates c ∈ C implied by this ballot (including also all the votes in S). As in Algorithm 2, p
was placed at the top of the preference of each voter in T ; it follows that

Sn(p) = S0(p) +
n∑

j=1

wj(m − 1) ≥ S′
n(p) (1)

On the other hand, since by Lemma 3.5, in Algorithm 2 the candidates of GW were ranked by all
the voters in T at the last |GW | places, it follows that

q(W) =
1

|GW |(
∑

g∈GW

S0(g) +
n∑

j=1

wj

|GW |−1∑

i=0

i) ≤ 1
|GW |

∑

g∈GW

S′
n(g) =: q′(XT) (2)

Combining together (1) and (2) we get that S′
n(p) ≤ q′(XT). There is at least one g ∈ GW such

that S′
n(g) ≥ q′(XT) (since q′(XT) is the average of the scores), hence S′

n(p) ≤ S′
n(g), and so p will

not win when XT is applied.
Also note that Algorithm 2 returns true only if it constructs a (valid) ballot that makes p win,

and so for the case Sn(p) ≤ q(W) the algorithm will return false.
We now prove part 2 of the lemma. If Sn(p) > maxg∈GW {Sn(g)}, then by Lemma 3.6 for all

c ∈ C \ {p}, Sn(p) > Sn(c), and so the algorithm will find the manipulation.

5

Lemma 3.8. Let GW , q(W) be as before. Then for w ≥ 1, q(W + {w}) − q(W) ≤ wm−2
2 .

Proof. First, GW ⊆ GW+{w}, because for all s ≥ 0, Gs
W ⊆ Gs

W+{w}. Now, for all g ∈ GW+{w} \
GW , g was not ranked in the first n + 1 stages after any candidate in GW , and so for all g′ ∈
GW , Sn(g) ≤ Sn(g′), and hence

1
|GW+{w}|

∑

g∈GW+{w}

Sn(g) ≤ 1
|GW |

∑

g′∈GW

Sn(g′) = q(W)

Now we can proceed:

q(W + {w}) =
1

|GW+{w}|
∑

g∈GW+{w}

Sn+1(g)

=
1

|GW+{w}|
∑

g∈GW+{w}

Sn(g) +
w

|GW+{w}|

|GW+{w}|−1∑

i=0

i

≤ q(W) +
w

m − 1

m−2∑

i=0

i

= q(W) + w
m − 2

2

And so, q(W + {w}) − q(W) ≤ wm−2
2 .

We will prove in Lemmas 3.10 – 3.13 that for any weights list W , |W | = n: maxg∈GW {Sn(g)}−
q(W) ≤ max(W)m−2

2 . First we need to show that the scores of candidates in GW are not scattered
too much. We will need the following definition:

Definition 3.9. For an integer w ≥ 0, a finite non-empty set of integers A is called w-dense if
when we sort the set in nonincreasing order b1 ≥ b2 ≥ . . . ≥ bk (such that {b1, . . . , bk} = A), it
holds that for all 1 ≤ j ≤ k − 1, bj+1 ≥ bj − w.

Lemma 3.10. Let W be a list of weights, |W | = n. Let GW = ∪0≤sGs
W , as before. Then

for all s ≥ 1 and g ∈ Gs
W \ Gs−1

W there exist g′ ∈ Gs−1
W and X ⊆ C \ {p} (maybe X = φ),

s.t. {Sj(g), Sj(g′)} ∪ Sj(X) is a wmax-dense where wmax = max(W) and 0 ≤ j ≤ n.

Proof. Let s ≥ 1 and g ∈ Gs
W \ Gs−1

W . By definition there exist g′ ∈ Gs−1
W and 1 ≤ j ≤ n + 1

minimal s.t. g was ranked after g′ at stage j. We distinguish between two cases:
Case 1: j > 1. In this case g was ranked before g′ at stage j − 1. So we have:

Sj−1(g) ≥ Sj−1(g′) (3)

Sj−2(g) ≤ Sj−2(g′) (4)

Denote αd(h) := m − (place of h ∈ C at the preference list of voter d). Further, denote by wd

the weight of voter d (so at stage d, h gets wdαd(h) points). g was ranked before g′ at stage j − 1,
and hence αj−1(g) > αj−1(g′). Denote l = αj−1(g) − αj−1(g′). Let g′ = g0, g1, . . . , gl = g be the
candidates that got at stage j−1 the points wj−1αj−1(g′), wj−1(αj−1(g′)+1), . . . , wj−1(αj−1(g′)+l),
respectively. Our purpose is to show that {Sj−1(g0), . . . , Sj−1(gl)} is wj−1-dense, and therefore
wmax-dense. By definition of the algorithm,

Sj−2(g0) ≥ Sj−2(g1) ≥ . . . ≥ Sj−2(gl) (5)

6

Denote ut = Sj−2(gt) + wj−1αj−1(g′) for 0 ≤ t ≤ l. Then

For all 0 ≤ t ≤ l, Sj−1(gt) = ut + wj−1t (6)

So we need to show that {ut + wj−1t | 0 ≤ t ≤ l} is wj−1-dense. It is enough to show that:

(a) For all 0 ≤ t ≤ l, if ut+wj−1t < u0, then there exists t < t′ ≤ l s.t. ut +wj−1t < ut′ +wj−1t′ ≤
ut + wj−1(t + 1), and

(b) For all 0 ≤ t ≤ l, if ut + wj−1t > u0, then there exists 0 ≤ t′ < t s.t. ut + wj−1(t − 1) ≤
ut′ + wj−1t′ < ut + wj−1t.

Proof of (a): From (5) we get
u0 ≥ . . . ≥ ul (7)

Also from (3) and (6) we have u0 ≤ ul+wj−1l. Let 0 ≤ t ≤ l−1 s.t. ut+wj−1t < u0. Let us consider
the sequence ut + wj−1t, ut+1 + wj−1(t + 1), . . . , ul + wj−1l. Since ut + wj−1t < u0 ≤ ul + wj−1l,
it follows that there is a minimal index t′, t < t′ ≤ l s.t. ut + wj−1t < ut′ + wj−1t′. Then
ut′−1 + wj−1(t′ − 1) ≤ ut + wj−1t, and thus

ut′−1 + wj−1t
′ ≤ ut + wj−1(t + 1) (8)

From (7) ut′ ≤ ut′−1, and then

ut′ + wj−1t
′ ≤ ut′−1 + wj−1t

′ (9)

Combining (8) and (9) together, we get ut′ + wj−1t′ ≤ ut + wj−1(t + 1). This concludes the proof
of (a). The proof of (b) is similar.

Case 2 : j = 1. In this case s ≥ 2, because otherwise, if s = 1, then g′ ∈ G0
W ; therefore

S0(g) ≥ S0(g′) = maxh∈C\{p}{S0(h)} ⇒ g ∈ G0
W , a contradiction. g′ /∈ Gs−2

W , because otherwise,
by definition g ∈ Gs−1

W . Therefore there exists g′′ ∈ Gs−2
W s.t. g′ was ranked after g′′ at some stage

j′, i.e., Sj′−1(g′) ≥ Sj′−1(g′′). g has never been ranked after g′′ (because otherwise g ∈ Gs−1
W),

and it follows that Sj′−1(g) ≤ Sj′−1(g′′), and we have Sj′−1(g) ≤ Sj′−1(g′). Let j0 be minimal
s.t. Sj0(g) ≤ Sj0(g′). As at stage 1 g was ranked after g′, it holds that S0(g) ≥ S0(g′). If j0 = 0
then S0(g) = S0(g′), and hence {S0(g), S0(g′)} is 0-dense, and therefore wmax-dense. Otherwise it
holds that Sj0−1(g) > Sj0−1(g′), and as in Case 1, we can prove that {Sj0(g), Sj0(g′)} ∪ Sj0(X) is
wmax-dense for some X ⊆ C \ {p}.

Lemma 3.11. Let W be a list of weights, |W | = n, wmax = max(W). Let H ⊆ C \{p} s.t. Sj(H) is
wmax-dense for some 0 ≤ j ≤ n. Then there exists H ′,H ⊆ H ′ ⊆ C \{p} s.t. Sn(H ′) is wmax-dense.

Proof. We have H ⊆ C \ {p} and 0 ≤ j ≤ n, s.t. Sj(H) is wmax-dense. Denote Hj := H.
Define inductively for t = j, j + 1, . . . , n − 1: Ht+1 = {g ∈ C \ {p} | minh∈Ht{St(h)} ≤ St(g) ≤
maxh∈Ht{St(h)}}. Of course, for all t, Ht ⊆ Ht+1. It is easy to see that if for some j ≤ t ≤
n − 1, St(Ht) is wmax-dense, then St+1(Ht+1) is also wmax-dense. So we get by induction that
Sn(Hn) is wmax-dense, and H ⊆ Hn ⊆ C \ {p}.

Lemma 3.12. Let W be a list of weights, |W | = n, wmax = max(W). Let GW be as before. Then
the set Sn(GW) is wmax-dense.

7

Proof. Let g = g0 ∈ GW . If g /∈ G0
W , then g ∈ Gs

W \ Gs−1
W for some s ≥ 1. By Lemma 3.10

there exist g1 ∈ Gs−1
W and X1 ⊆ C \ {p} s.t. {Sj(g0), Sj(g1)} ∪ Sj(X1) is wmax-dense for some

0 ≤ j ≤ n. By Lemma 3.11 there exists X ′
1, X1 ⊆ X ′

1 ⊆ C \ {p}, s.t. {Sn(g0), Sn(g1)} ∪ Sn(X ′
1) is

wmax-dense. Denote Z1 := {g0, g1} ∪X ′
1. Similarly, if g1 /∈ G0

W , then there exist g2 ∈ Gs−2
W and X ′

2

s.t. {Sn(g1), Sn(g2)} ∪ Sn(X ′
2) is wmax-dense. Denote Z2 := {g1, g2} ∪ X ′

2, etc. Thus, we can build
a sequence of sets Z1, . . . , Zs+1, s.t. for all 1 ≤ t ≤ s + 1, Sn(Zt) is wmax-dense, g = g0 ∈ Z1 and
for each 1 ≤ t ≤ s there exists gt ∈ Gs−t

W s.t. gt ∈ Zt ∩ Zt+1, and in particular, gs ∈ G0
W .

It is easy to see that for two w-dense sets A,A′, if A ∩ A′ .= φ then A ∪ A′ is also w-dense,
and hence we get Zg :=

⋃s+1
t=1 Zt is wmax-dense. Note that S0(G0

W) is wmax-dense, and hence there
exists Ẑ,G0

W ⊆ Ẑ ⊆ C \ {p} s.t. Sn(Ẑ) is wmax-dense. From this we conclude that {Sn(g) | g ∈
Ẑ ∪

⋃
g∈GW

Zg} is wmax-dense. By Lemma 3.6, for all h ∈ Ẑ ∪
⋃

g∈GW
Zg, if h /∈ GW , then

Sn(h) ≤ ming∈GW {Sn(g)}, and hence Sn(GW) is a also wmax-dense.

Lemma 3.13. Let W be a list of weights, |W | = n, wmax = max(W). Let GW be as before, and
denote q(W) = 1

|GW |
∑

g∈GW
Sn(g), as before. Then maxg∈GW {Sn(g)} − q(W) ≤ wmax

m−2
2 .

Proof. Sort the members of GW by their scores after the n-th stage, i.e., GW = {g1, . . . , g|GW |}
s.t. for all 1 ≤ t ≤ |GW |−1, Sn(gt) ≥ Sn(gt+1). Denote for 1 ≤ t ≤ |GW |, ut = Sn(g1)−wmax(t−1),
and let U = {u1, . . . , u|GW |}. |U | = |GW |, maxU = Sn(g1) = maxg∈GW {Sn(g)}. By Lemma 3.12, it
is easy to see that for all 1 ≤ t ≤ |GW |, Sn(gt) ≥ ut. Consequently, q(W) ≥ 1

|GW |
∑|GW |

t=1 ut, hence

maxg∈GW {Sn(g)} − q(W) = u1 − q(W) ≤ u1 − 1
|GW |

∑|GW |
t=1 ut = wmax

|GW |−1
2 ≤ wmax

m−2
2 .

Now we are ready to prove Theorem 3.4.

Proof of Theorem 3.4. Regarding part 1, Algorithm 2 returns true only if it constructs a (valid)
ballot that makes p win, and thus if there is no ballot making p win, Algorithm 2 will return false.

We now prove part 2 of the theorem. Suppose that there exists a ballot making p win for weights
list W , |W | = n. Let W ′ := W + {w′

1, . . . , w
′
k} for k ≥ 1,

∑k
i=1 w′

i ≥ max(W). By Lemma 3.7,
Sn(p) > q(W). From Lemma 3.8 we get by induction that

q(W ′) ≤ q(W) +
k∑

i=1

w′
i ·

m − 2
2

(10)

By Lemma 3.13 and (10) we get:

max
g∈GW ′

{Sn+k(g)} ≤ q(W ′) + max(W ′) · m − 2
2

≤ q(W ′) +
k∑

i=1

w′
i ·

m − 2
2

≤ q(W) +
k∑

i=1

w′
i ·

m − 2
2

+
k∑

i=1

w′
i ·

m − 2
2

= q(W) +
k∑

i=1

w′
i · (m − 2)

< Sn(p) +
k∑

i=1

w′
i · (m − 1)

= Sn+k(p)

8

and hence, by Lemma 3.7 the algorithm will find a ballot making p win for set T ′ with weights W ′,
and will return true. This completes the proof of Theorem 3.4.

For an example where there is a manipulation for weights list W , but the algorithm will find a
manipulation only for weights list W + {w′}, see Appendix C.

3.2 Maximin

In this subsection, we show that Algorithm 1 also does well with respect to the Maximin rule.

Lemma 3.14. Maximin is monotone in weights.

Theorem 3.15. In the Maximin rule, let C be the set of candidates with p ∈ C the preferred
candidate, and S the set of voters who already cast their votes. Let W be the weights list for the
set T . Then:

1. If there is no ballot making p win the election, then Algorithm 1 will return false.

2. If there is a ballot making p win the election, then for the same instance with weights list W ′

s.t. W ′ ⊇ W + W (i.e., W ′ contains two copies of W), Algorithm 1 will return true.

The proof of Theorem 3.15 is deferred to Appendix D.

3.3 Plurality with Runoff

In this subsection we present a heuristic algorithm for the CCWM problem in Plurality with runoff.
The algorithm receives as a parameter a size of window 0 ≤ u ≤ max(W) where it can give a wrong
answer. Its running time depends on the size of its input and on u (see below). We begin by noting:

Lemma 3.16. Plurality with runoff is monotone in weights.

We will now give an informal description of the algorithm. We go over all the candidates other
than p. To each candidate g we try to assign the voters with minimal total weight, such that if
these voters place g first, g continues to the second round; the rest of the voters rank p first. If we
succeeded in this way to make g and p survive the first round, and in the second round p beats
g, then we found a valid ballot for making p win the election. If no candidate g was found in this
way, then we report that there is no ballot.

A formal description of this algorithm, Algorithm 3, is given in Appendix G. The following
additional notations are required. Denote by βX(g) the plurality score of g from voter set X (i.e.,
the sum of weights of the voters in X that put g at the top of their preferences). We also use
NX(g, g′) =

∑
v∈U wv, where U is the set of all the voters in X that prefer g to g′, and wv is the

weight of voter v. Finally, for g, g′ ∈ C we denote g / g′ if a tie between g and g′ is broken in
favor of g.

Remark 3.17. In Algorithm 3 we do not rely on the assumption that for all g .= p, g / p.

In the next theorem we prove the correctness of Algorithm 3, and analyze its time complexity.
We will see that for getting an exact answer (u = 0), we will need running time which is polynomial
in max(W) and the rest of the input. As the weights in W are specified in binary representation,
this requires exponential time. However when the size of the error window increases, the complexity
decreases, so for u = Ω(max(W)

log(max(W))) the complexity of the algorithm is polynomial in its input.

9

Theorem 3.18. In the Plurality with runoff rule, let C be the set of candidates with p ∈ C the
preferred candidate, S the set of voters who already cast their votes. Let W be the weights list for
the set T , and let u ≥ 0 be the error window. Then:

1. If there is no ballot making p win the election, then Algorithm 3 will return false.

2. If there is a ballot making p win the election, then for the same problem with voter set T ′ = T +
{vn+1, . . . , vn+l} with weights list W ′ = W + {wn+1, . . . , wn+l}, where l ≥ 1,

∑l
j=1 wn+j ≥ u,

Algorithm 3 will return true.

3. On input C, p,XS ,WS ,W, u, where |C| = m, |S| = N, |W | = n, u is an integer, s.t. 0 ≤
u ≤ max(W), the running time of Algorithm 3 is polynomial in m,N, log(max(WS)), n and
max(W)

u+1 .

The proof of the theorem is given in Appendix E.

4 Discussion

We would first like to discuss the application of our results to unweighted coalitional manipulation
(the CCUM problem). It is known that this problem is tractable when the number of candidates is
constant [7]. However, to the best of our knowledge there are no results regarding the complexity
of the problem when the the number of candidates is not constant. We conjecture that CCUM in
Borda and Maximin is NP-complete.

In the context of unweighted manipulation, one can consider the following optimization problem
(call it CCUO, where “O” stands for Optimization): given the votes of the truthful voters, find
the minimum number of manipulators needed in order to make p win. Then, our theorems almost
directly imply the following corollary:

Corollary 4.1.

1. Algorithm 2 approximates CCUO in Borda up to an additive factor of 1.

2. Algorithm 1 is a 2-approximation algorithm for CCUO in Maximin.

On the other hand, we have the following results:

Corollary 4.2. Algorithm 3 efficiently solves the CCUM problem in Plurality with runoff.

Theorem 4.3. Algorithm 2 efficiently solves the CCUM problem in Veto.

Corollary 4.2 is a special case of Theorem 3.18. The proof of Theorem 4.3 is given in Appendix F.
We deduce that CCUM, and thus CCUO, in the Plurality with runoff and Veto rules are in P.

We now turn to a brief and informal discussion regarding the implications of our results with
respect to solving the weighted coalitional manipulation problem, CCWM, in practice. Our the-
orems imply that our algorithms err on only very specific configurations of the voters’ weights.
Intuitively, this means that if one looks at some (reasonable) distribution over the instances of the
CCUM problem (such that weights are randomly selected), the probability of hitting the window
of error is extremely small.

Procaccia and Rosenschein [20] show that Algorithm 2 has a small chance of mistake with
respect to a junta distribution—which is arguably especially hard—over the instances of CCWM
in scoring rules. This result uses a very loose analysis regarding the algorithm’s window of error.
Our result regarding Borda is far stronger, since the window of error is much more accurately
characterized. However, since the result in Procaccia and Rosenschein deals with scoring rules in
general, neither result subsumes the other.

10

5 Acknowledgments

The first author would like to thank Noam Nisan for a generous grant that supported this research.

References

[1] J. Bartholdi and J. Orlin. Single transferable vote resists strategic voting. Social Choice and
Welfare, 8:341–354, 1991.

[2] J. Bartholdi, C. A. Tovey, and M. A. Trick. The computational difficulty of manipulating an
election. Social Choice and Welfare, 6:227–241, 1989.

[3] J. Bartholdi, C. A. Tovey, and M. A. Trick. Voting schemes for which it can be difficult to tell
who won the election. Social Choice and Welfare, 6:157–165, 1989.

[4] E. H. Clarke. Multipart pricing of public goods. Public Choice, 11:17–33, 1971.

[5] V. Conitzer and T. Sandholm. Universal voting protocol tweaks to make manipulation hard.
In Proceedings of the International Joint Conference on Artificial Intelligence, pages 781–788,
2003.

[6] V. Conitzer and T. Sandholm. Nonexistence of voting rules that are usually hard to manipulate.
In Proceedings of the Twenty-First National Conference on Artificial Intelligence, pages 627–
634, 2006.

[7] Vincent Conitzer, Tuomas Sandholm, and Jerome Lang. When are elections with few candi-
dates hard to manipulate? Journal of the ACM, 54(3):1–33, 2007.

[8] E. Elkind and H. Lipmaa. Hybrid voting protocols and hardness of manipulation. In 16th
Annual International Symposium on Algorithms and Computation, Lecture Notes in Computer
Science, pages 206–215. Springer-Verlag, 2005.

[9] E. Elkind and H. Lipmaa. Small coalitions cannot manipulate voting. In International Confer-
ence on Financial Cryptography, Lecture Notes in Computer Science. Springer-Verlag, 2005.

[10] E. Ephrati and J. S. Rosenschein. A heuristic technique for multiagent planning. Annals of
Mathematics and Artificial Intelligence, 20:13–67, 1997.

[11] G. Erdelyi, L. A. Hemaspaandra, J. Rothe, and H. Spakowski. On approximating optimal
weighted lobbying, and frequency of correctness versus average-case polynomial time. Technical
report, arXiv:cs/0703097v1, 2007.

[12] S. Ghosh, M. Mundhe, K. Hernandez, and S. Sen. Voting for movies: the anatomy of a
recommender system. In Proceedings of the Third Annual Conference on Autonomous Agents,
pages 434–435, 1999.

[13] A. Gibbard. Manipulation of voting schemes. Econometrica, 41:587–602, 1973.

[14] T. Groves. Incentives in teams. Econometrica, 41:617–631, 1973.

[15] T. Haynes, S. Sen, N. Arora, and R. Nadella. An automated meeting scheduling system that
utilizes user preferences. In Proceedings of the First International Conference on Autonomous
Agents, pages 308–315, 1997.

11

[16] E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe. Anyone but him: The complexity of
precluding an alternative. Artificial Intelligence, 171(5–6):255–285, 2007.

[17] D. S. Hochbaum. Approximation Algorithms for NP-Hard Problems. PWS Publishing Com-
pany, 1997.

[18] H. Moulin. On strategy-proofness and single peakedness. Public Choice, 35:437–455, 1980.

[19] A. D. Procaccia and J. S. Rosenschein. Average-case tractability of manipulation in voting
via the fraction of manipulators. In Proceedings of The Sixth International Joint Conference
on Autonomous Agents and Multiagent Systems, pages 718–720, 2007.

[20] A. D. Procaccia and J. S. Rosenschein. Junta distributions and the average-case complexity
of manipulating elections. Journal of Artificial Intelligence Research, 28:157–181, 2007.

[21] A. D. Procaccia, J. S. Rosenschein, and A. Zohar. Multi-winner elections: Complexity of
manipulation, control and winner-determination. In Proceedings of the Twentieth International
Joint Conference on Artificial Intelligence, pages 1476–1481, 2007.

[22] M. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and correspondence
theorems for voting procedures and social welfare functions. Journal of Economic Theory,
10:187–217, 1975.

[23] W. Vickrey. Counter speculation, auctions, and competitive sealed tenders. Journal of Finance,
16(1):8–37, 1961.

A Monotonicity Proofs

Proof of Lemma 3.3 (Scoring Rules). Let C be the candidates, p ∈ C is the preferred candidate,
S is the set of truthful voters, and W are the weights for the manipulators T . Denote |C| =
m, |S| = N, |W | = |T | = n. It is enough to show that if there is a manipulation for the set T ,
then for the same instance with manipulator voters T ′ = T + {v} with weights list W ′ = W + {w},
where w ≥ 1 is any integer, there is also a manipulation, and the rest will follow by induction.
Let !α = 〈α1, . . . ,αm〉 be the scores vector of the rule. Let XS be the preference orders of voters
in S, and XT the preference orders of voters in T that make p win. Fix some order on voters in
T . By definition, for all c ∈ C \ {p}, Sn(c) < Sn(p). Let the additional voter of T ′ vote with p
at the first place, and some arbitrary order on the other candidates. Then for all c ∈ C \ {p},
Sn+1(p) = Sn(p) + wα1 > Sn(c) + wα1 ≥ Sn+1(c), and so we got the ballot of votes of T ′ to make
p win.

Proof of Lemma 3.14 (Maximin). Let XS be the preference orders of the voters in S, and XT the
preference orders of voters in T that make p win. We need to show that there are preference orders
for T ′ = T + {v} with weights list W ′ = W + {w} where w ≥ 1 is any integer, that make p win.
Fix some order on voters in T . By definition, for all c ∈ C \ {p}, Sn(c) < Sn(p). Let the additional
voter of T ′ vote with p at the first place, and some arbitrary order on the other candidates. Then
for all c ∈ C \ {p}, Sn+1(p) = Sn(p) + w > Sn(c) + w ≥ Sn+1(c), and so we got the ballot of votes
of T ′ to make p win.

Proof of Lemma 3.16 (Plurality with Runoff). Let C be the candidates, p ∈ C is the preferred
candidate, S is the set of truthful voters, and W are the weights for manipulators of T . Suppose
that there is a ballot of votes of T that makes p win the election. We need to show that there

12

is a ballot making p win for the set W ′ = W + {w}, where w ≥ 1. Let g be the candidate that
proceeds with p to the second round in the winning ballot for W . Let the additional voter vote
p 0 Then the plurality score of p and g will not decrease, while the plurality score of any other
candidate will remain the same, and so p and g will proceed to the next round in the new ballot
as well. In the second round p will beat g in the new ballot, since the total weight of the voters
who prefer p to g increased, while the total weight of voters who prefer g to p remained the same.
Thus, p will win the election in the new ballot.

B Copeland is Not Monotone in Weights

When discussing Scoring rules, Maximin, and Plurality with runoff, we are motivated to look for
approximate solutions to the CCWM problem by the fact that these voting rules are monotone
in weights (see Appendix A). However, with respect to Copeland this is not the case. The next
example illustrates this fact. Consider the next setting: C = {p, 1, 2, 3}, N = |S| = 6. All the
weights equal 1. The votes of the voters in S are shown in the next table:

Voter in S Vote
1 p 0 1 0 2 0 3
2 p 0 2 0 1 0 3
3 3 0 p 0 1 0 2
4 3 0 p 0 2 0 1
5 1 0 2 0 3 0 p
6 2 0 1 0 3 0 p

The pairwise results are given in the next table. In the cell corresponding to the row of candidate
g and the column of candidate g′, we write “a : b” to indicate that g is preferred to g′ by a voters,
and g′ is preferred to g by b voters (i.e., a = N0(g, g′), b = N0(g′, g)):

p 1 2 3
p 4:2 4:2 2:4
1 2:4 3:3 4:2
2 2:4 3:3 4:2
3 4:2 2:4 2:4

From the above table we calculate that S0(p) = 1, S0(1) = S0(2) = 0, S0(3) = −1, so p wins
the election in this setting. However, if we add another voter (with weight 1), then no matter what
his vote will be, p will not win the election: if the additional voter puts 1 above 2, then 1 will win,
and otherwise 2 will win.

Remark B.1. It is easy to see, however, that whenever there is a manipulation for the coalition
with weights W , then there is also a manipulation for coalition with weights W +{w}+{w}, where
w ≥ 1 is any integer: the first additional voter makes an arbitrary vote, and the second additional
voter reverses the first’s ranking.

C An Example for Algorithm 2 and Borda

We present an example of a case where there is a manipulation for weights list W , but Algorithm 2
will find a manipulation only for weights list W + {w′}. In our example W = {1, 1, 1, 1}, w′ = 1,

13

so we are actually talking about the special case of unweighted coalitions. Consider the set C =
{p, 1, 2, 3, 4, 5, 6},m = |C| = 7, N = |S| = 5. 3 voters in S voted 6 0 5 0 4 0 3 0 2 0 p 0 1, and
the other 2 voters in S voted 2 0 3 0 4 0 5 0 6 0 p 0 1. When applying Algorithm 2 to this
input, the voters in T will award the candidates with the following scores (we denote by αj(c) the
points that voter j gives to candidate c):2

Candidate c ∈ C p 1 2 3 4 5 6
S0(c) 5 0 18 19 20 21 22
α1(c) 6 5 4 3 2 1 0
α2(c) 6 5 0 1 2 3 4
α3(c) 6 5 4 3 2 1 0
α4(c) 6 5 0 1 2 3 4
α5(c) 6 5 4 3 2 1 0

So the cumulative scores will be as follows:

Candidate c ∈ C p 1 2 3 4 5 6
S0(c) 5 0 18 19 20 21 22
S1(c) 11 5 22 22 22 22 22
S2(c) 17 10 22 23 24 25 26
S3(c) 23 15 26 26 26 26 26
S4(c) 29 20 26 27 28 29 30
S5(c) 35 25 30 30 30 30 30

Note that after 4 stages, the algorithm still did not find a manipulation: S4(p) = 29 < 30 =
S4(6). However, if we change the votes of the third and fourth voters of T , then we find an
appropriate ballot:

Candidate c ∈ C p 1 2 3 4 5 6
S0(c) 5 0 18 19 20 21 22
α1(c) 6 5 4 3 2 1 0
α2(c) 6 5 0 1 2 3 4
α′

3(c) 6 5 3 4 0 1 2
α′

4(c) 6 5 3 1 4 2 0

Now the cumulative scores are:

Candidate c ∈ C p 1 2 3 4 5 6
S0(c) 5 0 18 19 20 21 22
S1(c) 11 5 22 22 22 22 22
S2(c) 17 10 22 23 24 25 26
S′

3(c) 23 15 25 27 24 26 28
S′

4(c) 29 20 28 28 28 28 28

Evidently, for any c ∈ C \ {p}, S′
4(p) = 29 > S′

4(c).
2We assumed here that when two candidates have the same scores up until a certain stage, the current voter will

award fewer points to the candidate with lower index, but any tie-breaking rule will give the same results.

14

D Proof of Theorem 3.15

Let us introduce some more notation. For candidates g, g′ ∈ C and 0 ≤ j ≤ n we denote by
Nj(g, g′) the total weight of the voters after j stages (including the voters in S) that prefer g
over g′. So Sj(g) = ming′∈C\{g} Nj(g, g′). We also denote for g ∈ C, 0 ≤ j ≤ n: MINj(g) =
{h ∈ C \ {g} | Nj(g, h) = Sj(g)}. Fixing the set C, p ∈ C, and an order on the weights list W ,
we denote by f(j) the maximal score of p’s opponents distributed by Algorithm 1 after j stages:
f(j) = maxg∈C\{p} Sj(g).

In Algorithm 1, p is always placed at the top of each preference, and so with each voter its score
grows by the weight of this voter. In our next lemma we will put forward an upper bound on the
growth rate of the scores of p’s opponents.

Lemma D.1. Consider Algorithm 1 applied to the Maximin rule. Denote by wj the weight of the
j-th voter processed by the algorithm. Then for all 0 ≤ j ≤ n−2, f(j+2) ≤ f(j)+max{wj+1, wj+2}.

Proof. Let 0 ≤ j ≤ n − 2. Let g .= p be any candidate. By definition Sj(g) ≤ f(j). We would like
to show that Sj+2(g) ≤ f(j) + max{wj+1, wj+2}.

If Sj+1(g) ≤ f(j), then Sj+2(g) ≤ Sj+1(g) + wj+2 ≤ f(j) + max{wj+1, wj+2}, and we are
done. So let us assume now that Sj+1(g) > f(j). Define a directed graph G = (V,E), where
V = {g} ∪ {x ∈ C \ {p} | x was ranked after g at stage j + 1}, and (x, y) ∈ E iff y ∈ MINj(x).
There is at least one outgoing edge from g in E, since otherwise there was g′ ∈ MINj(g) that voter
j+1 put before g, and then Sj+1(g) = Sj(g) ≤ f(j), a contradiction. In addition, for all x ∈ V \{g},
there is at least one outgoing edge from x in E, because otherwise there was x′ ∈ MINj(x) that
was ranked before g at stage j + 1, and then Algorithm 1 would have ranked x before g (after x′)
since then Sj+1(x) = Sj(x) ≤ f(j) < Sj+1(g), a contradiction.

For x ∈ V , denote by V (x) all the vertices y in V s.t. there exists a directed path from x to
y. Denote by G(x) the sub-graph of G induced by V (x). It is easy to see that G(g) contains at
least one circle. Let U be one such circle. Let g′ ∈ U be the vertex that was picked first among the
vertices of U at stage j + 1. Let g′′ be the vertex before g′ in the circle: (g′′, g′) ∈ U . Since g′′ was
ranked after g′ at stage j + 1, it follows that Sj+1(g′′) = Sj(g′′) ≤ f(j).

Suppose by way of contradiction that Sj+2(g) > f(j) + max{wj+1, wj+2}. g was ranked by
j + 2 at place t∗. Then g′′ was ranked by j + 2 at place < t∗, since otherwise when we would have
reached the place t∗, we would pick g′′ (with score Sj+2(g′′) ≤ f(j) + wj+2 < Sj+2(g)) instead of g,
a contradiction.

Denote by X1 all the vertices in V (g) that have an outgoing edge to g′′ in G(g). For all
x ∈ X1, g′′ ∈ MINj(x), i.e., Sj(x) = Nj(x, g′′). All x ∈ X1 were ranked by j + 2 before g, since
otherwise, if there was x ∈ X1, s.t. until the place t∗ it still was not added to the preference list,
then when evaluating its score on place t∗, we would get: Sj+2(x) ≤ Nj+2(x, g′′) = Nj+1(x, g′′) ≤
Nj(x, g′′) + wj+1 = Sj(x) + wj+1 < Sj+2(g), and so we would put x instead of g. Denote by X2

all the vertices in V (g) that have an outgoing edge to some vertex x ∈ X1. In the same manner
we can show that all the vertices in X2 were ranked at stage j + 2 before g. We continue this way
backwards on the path in G(g) from g′′ to g, and we get that one vertex before g on that path, say
g0, was ranked by j + 2 before g. And thus,

Sj+2(g) ≤ Nj+2(g, g0) = Nj+1(g, g0) ≤ Nj(g, g0) + wj+1

= Sj(g) + wj+1 ≤ f(j) + max{wj+1, wj+2}
< Sj+2(g),

a contradiction.

15

We are now ready to prove the theorem.

Proof of Theorem 3.15. We prove part 1. Algorithm 1 returns true only if it constructs a (valid)
ballot that makes p win, and thus if there is no ballot making p win, Algorithm 1 will return false.

We now prove part 2. Suppose that there exists a ballot ZT making p win for weights list
W = {w1, . . . , wn}. Let S′

j(g) be the scores implied by ZT . Then:

f(0) < S′
n(p) ≤ S0(p) +

n∑

i=1

wi (11)

Let W ′ = W + W + X, where X is some list of weights (possibly empty). We need to show that
S|W ′|(p) > f(|W ′|). In Algorithm 1, after sorting the weights of W ′, the equal weights of two copies
of W will be adjacent, i.e., the order of weights in W ′ will be of the form:

x1, . . . , xq1 , w1, w1, xq1+1, . . . , xq2, w2, w2, . . . , wn, wn, xqn+1, . . . , x|X|

By Lemma D.1, one can prove by induction that:

f(|W ′|) ≤ f(0) +
|X|∑

i=1

xi +
n∑

i=1

wi (12)

And so by (11) and (12) we have:

S|W ′|(p) = S0(p) +
|X|∑

i=1

xi + 2
n∑

i=1

wi > f(0) +
|X|∑

i=1

xi +
n∑

i=1

wi ≥ f(|W ′|)

E Proof of Theorem 3.18

We start with part 1. Note that

x = (x1, . . . , xn) satisfies
n∑

j=1

wjxj ≤
n∑

j=1

wj − λg

⇐⇒ x = !1 − x satisfies
n∑

j=1

wjxj ≥ λg

(13)

and thus when voters corresponding to weights returned by the function SUBSET-OF-WEIGHTS-
APPROXIMATE(), vote g 0 . . ., they ensure that g proceeds to the second round. It is easy to see
that whenever Algorithm 3 returns true, it actually finds a (valid) ballot making p win the election,
and so if there is no such ballot, then the algorithm will return false.

We now move on to part 2. Denote by AW the instance of the problem with weights list W .
Suppose that there exists ballot XT of votes in T s.t. combined with preferences XS of voters
of S, it makes p win the election in AW . We will denote by β′

Y (g) the plurality score of g from
voter set Y under the preferences XS ∪ XT . Also, we denote N ′

Y (g, g′) =
∑

v∈UXS∪XT
wv, where

UXS∪XT is the set of all the voters in Y that prefer g to g′ under XS ∪ XT . Let 0 ≤ u ≤ max(W),
W ′ = W +{wn+1, . . . , wn+l}, where

∑l
j=1 wn+j ≥ u. We need to show that Algorithm 3 will return

true on the input W ′, u.

16

There is a candidate g .= p that passes together with p to the second round when applying the
preferences XT together with XS on AW , and thus for each g′ /∈ {p, g} and c ∈ {p, g}, if c / g′,
then β′

S(c) + β′
T (c) ≥ β′

S(g′) + β′
T (g′), and if g′ / c, then β′

S(c) + β′
T (c) > β′

S(g′) + β′
T (g′). Also,

β′
T (p) + β′

T (g) ≤
n∑

j=1

wj (14)

Now consider Algorithm 3 applied to AW ′ . If it does not reach g in the main loop, then it will exit
earlier returning “true”, meaning that it will find a desired ballot making p win. Otherwise, it will
reach the candidate g. λg is the minimal sum of weights that ensures that g will continue to the
second round, and hence

λg ≤ β′
T (g) ≤

n∑

j=1

wj ≤
n+l∑

j=1

wj (15)

We will reach the function SUBSET-OF-WEIGHTS-APPROXIMATE(), and enter it with argu-
ments W ′,λg and u. By (13), the vector x = (x1, . . . , xn+l) returned by SUBSET-OF-WEIGHTS-
APPROXIMATE() satisfies

∑n+l
j=1 wjxj ≥ λg, and so g will continue to the next round. Now we

show that p will also continue to the next round. Denote by H the maximization problem

max
n+l∑

j=1

wjxj

s.t.
n+l∑

j=1

wjxj ≤
n+l∑

j=1

wj − λg

xj ∈ {0, 1}, for j = 1, . . . , n + l

(16)

Let J∗ = {j | xj = 1, x = (x1, . . . , xn+l) is the optimal solution to H}. Denote P ∗ =
∑

j∈J∗ wj .
Let H(k) the scaled version of the above maximization problem:

max
n+l∑

j=1

⌊wj

k

⌋
xj

s.t.
n+l∑

j=1

wjxj ≤
n+l∑

j=1

wj − λg

xj ∈ {0, 1}, for j = 1, . . . , n + l

(17)

Let J(k) = {j | xj = 1, x = (x1, . . . , xn+l) is the optimal solution to H(k)}. Let P (k) =
∑

j∈J(k) wj .
Now, x = (x1, . . . , xn+l) which we obtained in SUBSET-OF-WEIGHTS-APPROXIMATE() satis-
fies:

n+l∑

j=1

wjxj =
∑

j∈J(k)

wj ≥
∑

j∈J(k)

k
⌊wj

k

⌋
≥

∑

j∈J∗

k
⌊wj

k

⌋
≥

∑

j∈J∗

(wj − (k − 1))

=
∑

j∈J∗

wj − (k − 1)|J∗| = P ∗ − (k − 1)|J∗|
(18)

17

Hence, the vector x = !1 − x returned by the function, satisfies:
n+l∑

j=1

wjxj ≤
n+l∑

j=1

wj − P ∗ + (k − 1)|J∗|

≤
n+l∑

j=1

wj − P ∗ +
⌊ u

2(n + l)

⌋
(n + l)

≤
n+l∑

j=1

wj − P ∗ +
⌊u

2

⌋

(19)

By definition of P ∗, we get:
n+l∑

j=1

wj − P ∗ = min{
n+l∑

j=1

wjxj |
n+l∑

j=1

wjxj ≥ λg, xj ∈ {0, 1}, 1 ≤ j ≤ n + l}

≤ min{
n∑

j=1

wjxj |
n∑

j=1

wjxj ≥ λg, xj ∈ {0, 1}, 1 ≤ j ≤ n}

≤ β′
T (g)

(20)

Combining (19) and (20), we get that for vector x returned by the function SUBSET-OF-WEIGHTS-
APPROXIMATE():

βT ′(g) =
n+l∑

j=1

wjxj ≤ β′
T (g) +

⌊u

2

⌋
(21)

In the algorithm, all the voters j s.t. xj = 0 will vote p 0 . . ., and so we will have

βT ′(p) =
n+l∑

j=1

wj −
n+l∑

j=1

wjxj ≥
n∑

j=1

wj + u − (β′
T (g) +

⌊u

2

⌋
)

=
n∑

j=1

wj − β′
T (g) +

⌈u

2

⌉
≥ β′

T (p) +
⌈u

2

⌉ (22)

Therefore, p will continue to the next round.
We now prove that p beats g in the next round. If g / p, then in the winning ballot XT ,

N ′
S(p, g) + N ′

T (p, g) > N ′
S(g, p) + N ′

T (g, p), otherwise N ′
S(p, g) + N ′

T (p, g) ≥ N ′
S(g, p) + N ′

T (g, p).
From (21) we get:

NT ′(g, p) = βT ′(g) ≤ β′
T (g) +

⌊u

2

⌋
≤ N ′

T (g, p) +
⌊u

2

⌋
(23)

Thus, from (23):

NT ′(p, g) =
n+l∑

j=1

wj − NT ′(g, p) ≥
n∑

j=1

wj + u − (N ′
T (g, p) +

⌊u

2

⌋
)

= N ′
T (p, g) +

⌈u

2

⌉
(24)

So, for g / p we get

N ′
S(p, g) + NT ′(p, g) ≥ N ′

S(p, g) + N ′
T (p, g) +

⌈u

2

⌉

> N ′
S(g, p) + N ′

T (g, p) +
⌊u

2

⌋

≥ N ′
S(g, p) + NT ′(g, p)

(25)

18

In the same way, for p / g we get

N ′
S(p, g) + NT ′(p, g) ≥ N ′

S(g, p) + NT ′(g, p) (26)

Therefore, by the algorithm p wins the second round of the election, and hence the entire election;
the algorithm will return true.

Next, we prove part 3. Using the notation of the previous item, let P (k) be the maximum sum
of weights from W = {w1, . . . , wn}, solving the scaled maximization problem H(k).3 There is a
well-known dynamic programming algorithm solving the knapsack problem H(k) in O(nP (k)) [17,
chapter 9]. Furthermore, P (k) ≤

∑n
j=1

⌊wj

k

⌋
≤ n

⌊max(W)
k

⌋
≤ nmax(W)

k . k =
⌊

u
2n

⌋
+ 1 ≥ u+1

2n , and so
we have:

P (k) ≤ n
max(W)

k
≤ n

max(W)
u+1
2n

= 2n2 max(W)
u + 1

(27)

Thus we can solve H(k) in O(nP (k)) = O(n3 · max(W)
u+1). It is easy to see that all the other steps of

Algorithm 3 are polynomial in its inputs; hence, the proof is completed.

F Proof of Theorem 4.3

We prove this theorem via the Lemmas F.1 – F.4. First, we define the set Xn = {x ∈ C \
{p} | x was ranked last at stage j for 1 ≤ j ≤ n}. And define Yn = {y ∈ C \ {p} | Sn(y) ≥
min(Sn(Xn))}. From the definition, Xn ⊆ Yn. Also by definition:

∀g /∈ Yn ∪ {p}, Sn(g) < min(Sn(Yn)) (28)

We denote by αj(x) the number of points x was awarded in stage j.

Lemma F.1. For all y1, y2 ∈ Yn, |Sn(y1) − Sn(y2)| ≤ 1.

Proof. Let x∗ ∈ Xn s.t. Sn(x∗) = min(Sn(Xn)). Let y ∈ Yn. By definition, Sn(x∗) ≤ Sn(y). We
would like to show that Sn(y) ≤ Sn(x∗) + 1. Suppose for contradiction that Sn(y) − Sn(x∗) ≥ 2.
Let 1 ≤ j ≤ n maximal s.t. αj(x∗) = 0. Then:

Sj(y) − Sj(x∗) =
[
Sn(y) −

n∑

k=j+1

αk(y)
]
−

[
Sn(x∗) −

n∑

k=j+1

αk(x∗)
]

≥
[
Sn(y) − (n − j)

]
−

[
Sn(x∗) − (n − j)

]

= Sn(y) − Sn(x∗) ≥ 2

Therefore Sj−1(y) − Sj−1(x∗) ≥ 1, and so Sj−1(y) > Sj−1(x∗), a contradiction to αj(x∗) = 0.
We showed that for all y ∈ Yn, Sn(x∗) ≤ Sn(y) ≤ Sn(x∗) + 1, and hence for all y1, y2 ∈ Yn,
|Sn(y1) − Sn(y2)| ≤ 1.

Lemma F.2. Define q(n) := 1
|Yn|

∑
y∈Yn

Sn(y). Let ZT be any preferences list of voters in T ,
and S′

n(g) be the scores of g ∈ C which are implied by ZT (including votes in S). Then q′(n) :=
1

|Yn|
∑

y∈Yn
S′

n(y) ≥ q(n).

3We slightly abuse notation here, as we defined the optimization problems for weights set W ′ = {w1, . . . , wn+l},
but the definition for the set W is analogous.

19

Proof. The above fact is true since in the algorithm, at every stage j, there is some x ∈ Xn ⊆ Yn

such that αj(x) = 0, and so for every j, the sum
∑

y∈Yn
αj(y) = |Yn|− 1 is minimal. Formally, let

us denote by α′
j(g) the number of points candidate g gets from voter j in ZT . Then:

q(n) =
1

|Yn|
(∑

y∈Yn

S0(y) + n(|Yn|− 1)
)

≤ 1
|Yn|

(∑

y∈Yn

S0(y) +
n∑

j=1

∑

y∈Yn

α′
j(y)

)

=
1

|Yn|
∑

y∈Yn

S′
n(y) = q′(n)

Lemma F.3. If Sn(p) > max(Sn(Yn)) then Algorithm 2 will find the manipulation that makes p
win.

Proof. By Equation (28), for all g ∈ C \{p}, Sn(g) ≤ max(Sn(Yn)), and so if Sn(p) > max(Sn(Yn)),
then for all g ∈ C \ {p}, Sn(p) > Sn(g), and so the algorithm will find the manipulation.

Lemma F.4. If Sn(p) ≤ max(Sn(Yn)) then there exists no manipulation.

Proof. Let ZT be any set of preferences of voters in T , and let S′
n(g), q′(n) and α′

j(g) as in
Lemma F.2. As for all j, αj(p) = 1 ≥ α′

j(p), it follows that Sn(p) ≥ S′
n(p). There is at

least one g0 ∈ Yn s.t. S′
n(g0) ≥ 3q′(n)4. By Lemma F.2, 3q′(n)4 ≥ 3q(n)4. By Lemma F.1,

3q(n)4 = max(Sn(Yn)). Combining the foregoing steps, we obtain:

S′
n(g0) ≥ 3q′(n)4 ≥ 3q(n)4 = max(Sn(Yn)) ≥ Sn(p) ≥ S′

n(p)

We conclude that p does not win under ZT , and hence there is no ballot of votes in T that makes
p win the election.

20

G Algorithms

Algorithm 2 Decides CCWM in Scoring rules
1: procedure Scoring-rules-Greedy(C, p, S0(C),W) # S0(C) is the list of scores of

candidates distributed by voters in S, W is the list of weights for voters in T , |W | = |T | = n
2: for j = 1, . . . , n do # Go over voters in T
3: Sj(p) = Sj−1(p) + wjα1 # Put p at the first place of the j-th preference list
4: Let t1, t2, . . . , tm−1 s.t. ∀l, Sj−1(ctl−1) ≤ Sj−1(ctl)
5: j votes p 0 ct1 0 . . . 0 ctm−1

6: for l = 1, . . . ,m − 1 do # Update the scores
7: Sj(ctl) = Sj−1(ctl) + wjαl+1

8: end for
9: end for

10: if argmaxc∈C{Sn(c)} = {p} then # p wins
11: return true
12: else
13: return false
14: end if
15: end procedure

21

Algorithm 3 Decides CCWM in Plurality with runoff with desired accuracy
1: procedure Plurality-with-runoff(C, p,XS,WS ,W, u) # XS is the set of preferences of

voters in S, WS are the weights of voters in S, W = {w1, . . . , wn} are the weights of voters in
T , u is the size of error window

2: for g in C \ {p} do # Go over candidates in C \ {p}
3: if there exists g′ ∈ argmaxg′∈C\{p}βS(g′), g′ .= g s.t. g′ / g then
4: λg ← maxg′∈C\{p} βS(g′) − βS(g) + 1
5: else
6: λg ← maxg′∈C\{p} βS(g′) − βS(g)
7: end if
8: if λg >

∑n
i=1 wi then # If we cannot make g pass to the next round

9: continue # Go to the next candidate in the main loop
10: end if
11: x ← subset-of-weights-approximate(W,λg, u)
12: # x ∈ {0, 1}n minimizes {

∑n
j=1 wjxj |

∑n
j=1 wjxj ≥ λg,∀j, xj ∈ {0, 1}}

13: All the voters j s.t. xj = 1 vote g 0 . . . # Order of candidates except g is arbitrary
14: All the voters j s.t. xj = 0 vote p 0 . . .
15: if ∃g′ ∈ C \ {p, g} s.t.

(
βS(g′) > βS(p) + βT (p)

)

16: or
(
βS(g′) = βS(p) + βT (p) and g′ / p

)
then

17: continue # p does not pass to next round
18: end if
19: if

(
NS∪T (p, g) > NS∪T (g, p)

)
or

(
NS∪T (p, g) = NS∪T (g, p) and p / g

)
then

20: return true # p beats g in the second round
21: else
22: continue
23: end if
24: end for
25: return false # No appropriate g was found
26: end procedure
27:

28: procedure subset-of-weights-approximate(W,λg, u) # W = {w1, . . . , wn}
are the weights of voters in T , λg is the minimum total sum of desired weights, u is the size of
error window

29: Check that 0 ≤ u ≤ max(W)
30: k ←

⌊
u
2n

⌋
+ 1

31: Solve by dynamic prog.: max{
∑n

j=1

⌊wj

k

⌋
xj |

∑n
j=1 wjxj ≤

∑n
j=1 wj − λg,∀j, xj ∈ {0, 1}}

32: Let x ∈ {0, 1}n be the vector that maximizes the above sum
33: return !1 − x # !1 is the vector of n 1-s
34: end procedure

22

