
Memory-Bounded Bidirectional Search

Eshed Shaham
School of Engineering and CS

Hebrew University of Jerusalem
Jerusalem, Israel

eshed.shaham@mail.huji.ac.il

Ariel Felner
ISE Department

Ben-Gurion University
Be’er-Sheva, Israel
felner@bgu.ac.il

Jeffrey S. Rosenschein
School of Engineering and CS

Hebrew University of Jerusalem
Jerusalem, Israel

jeff@cs.ac.il

1 Introduction and Overview
Bidirectional heuristic search (Bi-HS) is a topic that has seen
great progress recently. New theoretical results have been
established regarding states that must be expanded (Eckerle
et al. 2017), and several novel Bi-HS algorithms have been
introduced, such as MM (Holte et al. 2016), NBS (Chen et
al. 2017), and Fractional MM (Shaham et al. 2017). Never-
theless, their main limitation is that, like all previous Bi-HS
algorithms, they are constrained to store at least one of the
frontiers in memory.

It is well known that unidirectional heuristic search
(Uni-HS) can be replaced with memory-bounded variants
such as IDA* (Korf 1985), SMA* (Russell 1992), and RBFS
(Korf 1993). It is, however, far more difficult to do so with
Bi-HS. This is the topic of our ongoing work.

We use fF , gF and hF to indicate costs of the forward
search, and fB , gB and hB to indicate costs of the backward
search. Likewise, OpenF and OpenB store states generated
in the forward and backward directions, respectively.

2 Iterative Deepening Bidirectional Search
IDA*, a memory-bounded variant of A*, reduces memory
requirements by using iterative deepening. Every iteration
tries to find solutions of a fixed-cost threshold th. If no so-
lution is found, th is increased.

How can we migrate this principle into Bi-HS? In
Uni-HS, a solution of cost th is found when a goal state
is generated with g(goal) = th. In Bi-HS, a solution of cost
th is found when a state n is generated by both the forward
and backward searches, and gF (n) + gB(n) = th. We call
n the meeting point. Note that the Uni-HS case is identical
to the Bi-HS case when the meeting point is the goal. As-
suming unit costs, there are th + 1 possible meeting points
on every solution, but only one of them has to be found.
Thus, we specify thF and thB such that thF + thB = th,
and then search for states n such that gF (n) = thF and
gB(n) = thB . If no such state is found, either thF or thB

is increased. We thus introduce Iterative Deepening Bidirec-
tional Search (IDBS), a general framework that acts in this
way. It is flexible as to which threshold (thF or thB) to in-
crease next; IDA* is a special case, where increasing thF is
mandatory.

3 Using Type Systems
IDBS is a framework and not an algorithm. It does not spec-
ify how the search phase of each iteration is implemented,
and provides no guarantees on its memory requirements.
How can we bound the memory used by the search phase
of the different iterations?

Consider the following search phase: two separate
searches, forward and backward, generate a list of potential
meeting points, OpenF and OpenB respectively. A solution
is found if OpenF ∩OpenB is nonempty. The trivial imple-
mentation requires storing OpenF in memory and searching
for a match when generating OpenB .

Type systems (Lelis et al. 2012) partition the entire state-
space into k disjoint types, labeled T1, T2, . . . , Tk. Now, we
incorporate a type system into IDBS by performing k dif-
ferent searches in each iteration. For each type Ti we per-
form the search with the same threshold thF , but only store
OpenF ∩Ti. We then perform the backward search for type
Ti, and match against the stored OpenF . This is repeated
until a solution is found or all types have been searched,
in which case the next iteration is activated. Naturally, if
the available memory can contain M states, we should par-
tition the graph uniformly into k = |OpenF |/M types.
This comes with the tradeoff that the full search is executed
|OpenF |/M times for each iteration.

4 The Reference Search Improvement
A very effective pruning rule can be applied to the search
of each type by using a type system that partitions the states
based on their h-value towards an arbitrary reference state
r. That is, we define Ti = {n | h(n, r) = i}. Assuming
a consistent heuristic, for every two states u, v it must hold
that |h(u, r)− h(v, r)| ≤ d(u, v). Let n be a state generated
during the forward search with thF . We know that for ev-
ery state u ∈ OpenF ∩ Ti it holds that gF (u) = thF and
h(u, r) = i. Therefore, if |h(n, r)− i| > thF − gF (n), n
can be safely pruned from the search.

In addition, we are exploring ways to use Bloom Fil-
ters (Bloom 1970) to store the frontiers. Experiments apply-
ing IDBSwith reference search and Bloom Filters, managed
to optimally solve the 86-pancake puzzle in a few hours with
a memory bound of approx. 8× 105 states, generating more
than 4×1010. This is the largest pancake puzzle ever solved.
We intend to continue this line of research in the future.

References
Bloom, B. H. 1970. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM 13(7):422–426.
Chen, J.; Holte, R. C.; Zilles, S.; and Sturtevant, N. R. 2017.
Front-to-end bidirectional heuristic search with near-optimal
node expansions. In IJCAI.
Eckerle, J.; Chen, J.; Sturtevant, N. R.; Zilles, S.; and Holte,
R. C. 2017. Sufficient conditions for node expansion in
bidirectional heuristic search. In ICAPS.
Holte, R. C.; Felner, A.; Sharon, G.; and Sturtevant, N. R.
2016. Bidirectional search that is guaranteed to meet in the
middle. In Proceedings of the AAAI Conference on Artificial
Intelligence.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial intelligence 27(1):97–
109.
Korf, R. E. 1993. Linear-space best-first search. Artificial
Intelligence 62(1):41–78.
Lelis, L.; Stern, R.; Felner, A.; Zilles, S.; and Holte,
R. C. 2012. Predicting optimal solution cost with bidirec-
tional stratified sampling. In Proceedings of the Twenty-
Second International Conference on Automated Planning
and Scheduling, ICAPS 2012, Atibaia, São Paulo, Brazil,
June 25-19, 2012.
Russell, S. J. 1992. Efficient memory-bounded search meth-
ods. In ECAI, volume 92, 1–5.
Shaham, E.; Felner, A.; Chen, J.; and Sturtevant, N. R. 2017.
The minimal set of states that must be expanded in a front-
to-end bidirectional search. In SoCS.

