
Social Choice and Welfare manuscript No.
(will be inserted by the editor)

On the Complexity of Achieving Proportional
Representation

Ariel D. Procaccia, Jeffrey S. Rosenschein, Aviv Zohar

School of Engineering and Computer Science, The Hebrew University of Jerusalem
Jerusalem 91904, Israel (e-mail: {arielpro,jeff,avivz}@cs.huji.ac.il)

Received: date / Revised version: date

Abstract We demonstrate that winner selection in two prominent pro-
portional representation voting systems is a computationally intractable
(namely, NP-complete) problem — implying that these systems are im-
practical when the assembly is large. On a different note, in settings where
the size of the assembly is constant, we show that the problem can be solved
in polynomial time.

1 Introduction

Andrew Carnegie, the American industrialist, famously remarked: “The first
man gets the oyster, the second man gets the shell.” Nevertheless, in many
settings there may be multiple winners; the second, third and fourth men
(or women) may also savor the oyster. When elections are held for a leg-
islature, for instance, there are often hundreds of winners. Although many
single-winner voting rules can be generalized to elect multiple winners [4],
when multiple winners are involved complications arise — which are not
necessarily shared by single-winner scenarios.

One of the basic properties one expects from a multi-winner voting rule
is proportional representation (PR). Intuitively, the requirement is that the
proportional support enjoyed by different factions be accurately reflected in
the election’s results. In practice, this usually means that the percentage of
votes secured by a party is roughly proportional to the number of seats it
is awarded.

Monroe [9] proposes an intriguing multi-winner voting scheme which
strives towards proportional representation. In what Monroe refers to as the
“pure” version of his scheme, the elected set of candidates minimizes voters’

Correspondence to: arielpro@cs.huji.ac.il

2 Ariel D. Procaccia et al.

sum of “misrepresentation” values. More concrete versions of the system
specify the source of these values. Monroe’s scheme attempts to realize the
following principle: if there are k winners, voters should be partitioned into
k equally-sized groups, and each group assigned to a candidate, in a way
that minimizes dissatisfaction of voters from their associated candidates.
Chamberlin and Courant [5] preceded Monroe with a similar voting scheme.
The main difference is that they eschew the abovementioned principle, but
attempt to achieve a comparable outcome using weighted voting.

Unfortunately, otherwise appealing theoretical voting schemes may have
a fatal flaw: the problem of determining who the winners are may be compu-
tationally intractable. A problem is considered tractable (in this context) if
its solution can be calculated using a number of computational steps which
is polynomial in the size of the input; problems which may require expo-
nential time are considered intractable. Indeed, for all practical purposes,
it would take an absurdly long time to solve a problem which demands
a number of steps which is exponential in the size of the input — when
the input is large. Computational complexity theory [11] classifies problems
into complexity classes, such as NP (see Section 2 for details). The class of
NP-complete problems contains problems which, intuitively, are as hard as
any other problem in NP. Such problems are almost unanimously believed
to be intractable.

Bartholdi et al. [3] establish computational intractability as a major
consideration against the adoption of a voting system. Specifically, they
show that in the voting schemes devised by Charles Dodgson (a.k.a. Lewis
Carroll, author of “Alice’s Adventures in Wonderland”) and Kemeny, it is
NP-hard to pinpoint the winners. The importance of such results is not at
all diminished by the fact that the complexity analysis involved is worst-
case. There is no arguing that a situation where the outcome of an election
takes centuries to compute must be avoided at all costs — even if such
occasions are relatively rare. This stands in stark contrast to work on the
computational complexity of manipulating elections [1,2,6,7]; even if a ma-
nipulation problem is NP-hard, it may still be the case that manipulation
is often possible. NP-hardness is thus not a strong enough guarantee of
resistance to manipulation, although it can be a mighty objection against a
voting system.

Potthoff and Brams [12] show that in Monroe’s and the Chamberlin-
Courant voting schemes, the winners can be determined using integer pro-
gramming. Although this provides a method to safely and accurately com-
pute results of elections when the numbers involved are small, it is by no
means an efficient method, as finding the solution of a general integer pro-
gram is an NP-complete problem [10]. Potthoff and Brams acknowledge
this obstacle, and formulate an improved integer program for settings where
the electorate is large. Nevertheless, the modified integer program is still of
gargantuan size when the number of candidates is large.

In this paper we prove that in general, selecting the winners in an
election is an NP-complete problem in both the Monroe scheme and the

On the Complexity of Achieving Proportional Representation 3

Chamberlin-Courant scheme. This result holds even if the misrepresentation
values are based on simple approval ballots.

We also consider a scenario where the number of winners is small, al-
though the electorate and the number of candidates are large. Using a new
algorithm, we show that in this setting winner selection can be accomplished
efficiently.

The paper proceeds as follows. In Section 2 we briefly discuss compu-
tational complexity analysis. In Section 3 we formally define the voting
schemes devised by Monroe, and by Chamberlin and Courant. In Section 4,
we prove that the winner selection problem is hard when the number of
winners is large, and in Section 5, we demonstrate that the problem can be
efficiently solved when the number of winners is small. Finally, our conclu-
sions appear in Section 6.

2 Computational Complexity

Computational complexity is a branch of the theory of computation, which
deals with the resources required to solve a problem (in our context the
resource is time, but there are other scarce resources, such as memory).
Established in the second half of the 20th century, it has since become a
standard tool in many disciplines, including operations research and eco-
nomics. In this section, we briefly discuss a tiny fragment of the theory.
Readers are urged to consult [13] for an especially readable overview; a
more detailed presentation can be found in [11].

The time complexity of a problem is the worst-case number of compu-
tational steps required to solve the problem, as a function of the size of the
input, using the best algorithm. The problems considered are often decision
problems: questions to which the answer is either “yes” or “no”. A decision
problem is formally described as a set: instances which are contained in the
set are “yes” instances, while those that are not are “no” instances.

Decision problems are classified into complexity classes; the two best-
known are P and NP. P is the class of all decision problems whose time
complexity is polynomial in the size of the input. In order to show that a
problem is in P, one has to devise an algorithm that solves the problem
in polynomial time for any input; such an algorithm is considered formally
efficient.

NP is the class of decision problems whose positive solutions can be
verified in polynomial time, given the right information. In other words,
for any “yes” instance of an NP problem, there exists a witness which
makes it possible to verify in polynomial time that the given instance is
indeed a “yes” instance. Consider the following problem, which will be used
throughout the paper.

Definition 1 In the Max k-Cover problem, we are given a set U of n
points, a collection of subsets F = {F1, . . . , Fm}, and integers k, t ∈ N. We

4 Ariel D. Procaccia et al.

are asked whether it is possible to find k subsets in F such that their union
covers at least t points in U .

An instance is a specific choice of 〈U ,F , k, t〉. If the given instance is a
“yes” instance, a witness is a choice of k subsets from F . One can easily
check in polynomial time whether the k subsets indeed cover at least t
points.

Some of the problems in NP are known as NP-complete problems. In-
formally, these are problems which are as hard as any problem in NP: if
one NP-complete problem can be solved efficiently, then any problem in
NP can be solved efficiently. Known algorithms that solve NP-complete
problems precisely might require a number of computational steps which is
exponential in the size of the input. Unfortunately, exponential functions
tend to grow at an alarming rate. For example, consider an algorithm that
executes 2n computational steps, where n is the size of the input; when
n = 400, this algorithm might require more than 10100 operations, which is
significantly more than the number of particles in the known universe. Even
with computers that are a thousand-fold faster than today’s best supercom-
puters, such a computation would run longer than the the current age of
the universe. Furthermore, this is a trifle compared to the time required to
solve the problem when the size of the input is 500. . .

To prove that a problem is NP-complete, one must show that any prob-
lem in NP can be reformulated as this problem. Formally:

Definition 2 Let A and B be two sets, which are associated with decision
problems. A function g from instances of A to instances of B is a polynomial
reduction if and only if g can always be calculated in polynomial time and
for all instances x of the problem A:

x ∈ A ⇔ g(x) ∈ B.

If there exists such a function, we say that A reduces to B, and write A ≤p

B.

Given that one knows how to reduce problem A into problem B, one
can solve A by translating it to B, and then solving B.

Definition 3 A problem B is NP-complete if and only if:
1. B ∈ NP.
2. NP-hardness: For all A ∈ NP, A ≤p B.

As literally thousands of problems are currently known to be NP-
complete, the most straightforward way to show that a problem is NP-
complete is to provide a reduction from some problem already known to be
NP-complete; this is sufficient, since a composition of reductions is also a
reduction.

The problem Max k-Cover is intuitively difficult: there is no obvious
way to avoid checking many choices of k subsets from F — and there are
an exponential number of possibilities. In this case, the intuition does not
fail us; the following result is known [8]:

On the Complexity of Achieving Proportional Representation 5

Lemma 1 Max k-Cover is NP-complete.

3 Proportional Representation Systems

Let the set of voters be V , and denote |V | = n; let the set of candidates be
C, |C| = m. We use i to index the voters, and j to index the candidates.
Furthermore, assume that k candidates are to be elected.

We begin by specifying Monroe’s pure scheme [9]. For each voter i and
candidate j, a misrepresentation value µij is known; this value characterizes
the degree to which candidate j misrepresents voter i.

Let S = {S ⊆ C : |S| = k}. Let S ∈ S, and let fS : V → S be
a function which assigns voters to candidates in S. The misrepresentation
score of voter i under fS is µifS(i). The total misrepresentation of assignment
fS is

∑
i∈V µifS(i).

Monroe requires that fS be restricted so that a similar number of voters
is assigned to each candidate in S. In other words, each candidate in S must
be assigned at least bn/kc voters; we say that such an assignment is balanced.
The misrepresentation score of S is the misrepresentation score of fS , where
fS : V → S is the assignment with the minimal misrepresentation, subject
to the above restriction. The k winners are the set S ∈ S with the lowest
misrepresentation score.

Chamberlin and Courant [5] adopt a similar approach; as before, one con-
siders sets S ∈ S and assignments fS . However, Chamberlin and Courant
impose no restrictions on the assignments. Therefore, each set S is associ-
ated with the assignment fS : V → S which minimizes misrepresentation
among all possible assignments. In order to maintain proportionality, Cham-
berlin and Courant compensate by using weighted voting in the assembly:
if S is the winning set of candidates, and the function fS is the one which
minimizes misrepresentation, a candidate j ∈ S is given weight |f−1

S (j)|.
The misrepresentation values µij may be naturally derived from ballots

cast by the electorate. Assume voters cast ordinal ballots, i.e., each voter
ranks all candidates, and denote by rij the rank of candidate j on the ballot
of voter i. In this setting, it is reasonable to define µij = rij − 1. Another
possibility, which Monroe recommends, is approval balloting: voters either
approve or disapprove candidates, and may approve as many candidates
as they wish. The misrepresentation value µij is 0 if i approves j, and 1
otherwise.

Remark 1 In any case, it is logical to assume that µij ∈ {0, 1, . . . ,m}, and we
make this assumption throughout the paper. This point is very important,
since the results in Section 5 depend on this assumption.

4 Winner Selection is Intractable When the Assembly is Large

Before proceeding with a rigorous computational complexity analysis, we
must formulate the decision problem that we face.

6 Ariel D. Procaccia et al.

Definition 4 In the Winner-Selection problem, we are given the set of
voters V , the set of candidates C, integers k, t ∈ N, and integral values
µij ∈ {0, 1, . . . ,m}. We are asked whether there exists a subset S ⊆ C such
that |S| = k, with misrepresentation at most t.

Keeping in mind the discussion in Section 3, this formulation is valid with
respect to both approaches mentioned: in Chamberlin and Courant’s scheme
the misrepresentation of a subset is the minimum over all assignments, while
in Monroe’s scheme it is the minimum over all balanced assignments.

Remark 2 Selecting winners is clearly harder than the above decision prob-
lem: once winners are selected, one can easily determine whether their mis-
representation is at most t. Since the set of winners minimizes misrepresen-
tation, this procedure correctly decides the problem.

Remark 3 For ease of exposition, we shall assume that n/k is an integer.
This does not limit the generality of our results, as otherwise it is possible
to pad the electorate with voters i such that µij = 0 for all j ∈ C.

We shall presently prove that the Winner-Selection problem is com-
putationally intractable. We strengthen the result by limiting voters’ ballots
to approval — misrepresentation values are either 0 or 1.

Theorem 1 The Winner-Selection problem in the Chamberlin-Courant
scheme is NP-complete, even with approval ballots.

Proof We must first show that the problem is in NP. Given a “yes” in-
stance 〈V,C, {µij}, k, t〉, it can be verified in polynomial time when a spe-
cific choice S of k candidates is produced as a witness. One simply verifies
that the misrepresentation of S is at most t. The function fS which mini-
mizes misrepresentation can be trivially obtained by assigning each voter i
to argminj∈Sµij .

We must show that any problem in NP can be reduced to Winner-
Selection in the Chamberlin-Courant scheme with approval ballots. It is
sufficient to exhibit a polynomial reduction from some NP-complete prob-
lem; we use Max k-Cover. We begin by showing how to transform an
instance of the the latter problem to an instance of the former; this trans-
formation is the reduction function.

We are given an instance 〈U ,F , k, t〉 of Max k-Cover. We associate
each point i ∈ U with a voter i ∈ V , and associate each set Fj ∈ F with a
candidate j ∈ C; µij = 0 (candidate j is approved by voter i) if in the given
instance of Max k-Cover it holds that i ∈ Fj ; otherwise µij = 1. This
should make the association between sets in F and candidates apparent:
a candidate j is affiliated with the set of all voters i such that µij = 0.
We ask whether there is S ∈ S with a misrepresentation score of at most
n − t. Notice that this reduction between problems can be carried out in
polynomial time.

On the Complexity of Achieving Proportional Representation 7

It remains to show that an instance of Max k-Cover is a “yes” instance
if and only if the transformed instance is a “yes” instance of our problem.
Assume an instance of the former problem is a “yes” instance. Hence, there
is a k-cover {Fj1 , . . . , Fjk

} which covers at least t points in U . Observe the
set of candidates S = {j1, . . . , jk}; each candidate jl is approved by all the
voters associated with points in Fjl

. These voters can be assigned to the
candidate jl; it follows that their misrepresentation score is 0. There are at
least t voters that approve one of the candidates in S, as the union of the
sets Fjl

covers at least t points in U . Note that a nonempty intersection
of sets Fjl

is equivalent to voters approving several candidates in S; such
voters are simply assigned to one of the candidates they approve, so their
misrepresentation score is still 0. Therefore, there are at most n − t voters
with misrepresentation 1, so the total misrepresentation of S cannot exceed
n− t.

In the other direction, suppose that the transformed instance is a “yes”
instance of Winner-Selection in the Chamberlin-Courant scheme. There
must exist a set of candidates S = {j1, . . . , jk} with misrepresentation at
most n − t. By similar reasoning as before, at least t voters {i1, . . . , it}
approve the candidates in S. Thus it holds that {i1, . . . , it} ⊆

⋃k
l=1 Fjl

; this
entails that |

⋃k
l=1 Fjl

| ≥ t. ut

Winner-Selection in the Monroe scheme is intuitively harder than
in the Chamberlin-Courant Scheme, since it involves an extra stage of bal-
ancing assignments, instead of assigning each voter to a favorite candidate.
Indeed, the hardness of the Monroe scheme follows almost directly from the
last theorem.

Theorem 2 The Winner-Selection problem in Monroe’s scheme is NP-
complete, even with approval ballots.

Proof In order to show that Winner-Selection in Monroe’s scheme is in
NP, we note that given a specific set S and an assignment fS , it can be ver-
ified in polynomial time that fS is balanced and that the misrepresentation
of S with respect to fS is at most t.

Next we prove that Winner-Selection in Monroe’s scheme is at least
as hard as solving the problem in the Chamberlin-Courant scheme. Given
an instance 〈V,C, {µij}, k, t〉 of the latter, we transform it by building an
instance 〈V ′, C, {µij}, k, t〉 of the former which is identical in all respects,
with the exception of the set of voters V ′. The transformed electorate con-
tains kn voters: the n original voters V with the given misrepresentation
values µij , and another (k − 1)n voters i with µij = 0 for all candidates j.
Clearly the abovementioned transformation constitutes a polynomial time
reduction.

We claim that for all S ⊆ C such that |S| = k, S’s misrepresentation with
respect to the given Chamberlin-Courant version is equal to its misrepre-
sentation in the transformed Monroe version. Indeed, the misrepresentation
in the Chamberlin-Courant instance is at most that of the Monroe instance:

8 Ariel D. Procaccia et al.

there are less voters, and the functions fS are unconstrained. In the other
direction, for any function fS in the Chamberlin-Courant instance, we can
construct a function f ′S in the Monroe instance with equal misrepresenta-
tion. For all i ∈ V , fS = f ′S . The other (k − 1)n voters in V ′ are assigned
to candidates in S arbitrarily, under the restriction that each candidate is
assigned exactly n voters. This is possible as any candidate was assigned at
most n voters by fS . The assignment f ′S is balanced, and its misrepresenta-
tion is clearly equal to that of fS , since for all i ∈ V ′ \V and all candidates
j, µij = 0.

It follows directly that there is a set of k candidates with misrepresen-
tation at most t in the Chamberlin-Courant instance if and only if there is
such a set in the Monroe instance. ut

5 Winner Selection is Tractable When the Assembly is Small

Our hardness results in the previous section relied on the implicit assump-
tion that the number of winners k grows with the number of voters and
candidates. In this section, we explore the scenario where the number of
winners is constant — this is an additional property of the problem which
is implicitly or explicitly assumed throughout this section. In fact, we prove:

Theorem 3 When k is constant, Winner-Selection is in P, both in the
Chamberlin-Courant scheme and in Monroe’s scheme.

It is quite straightforward that Winner-Selection in the Chamberlin-
Courant scheme can be solved efficiently. In this scheme, the misrepresen-
tation value for each S ∈ S can be easily calculated by assigning each voter
i to argminj∈Sµij . Moreover, it holds that

|S| =
(

m

k

)
=

m!
k!(m− k)!

.

This is a polynomial in m when k is constant. For example, if k = 3,

|S| =
(

m

3

)
=

m(m− 1)(m− 2)
6

≤ m3,

and in general |S| ≤ mk. To conclude the point, one can compute the
misrepresentation for every set in S using a number of operations which is
polynomial in n and m — assuming k is constant.

Solving Winner-Selection efficiently in Monroe’s scheme is far trick-
ier. Naturally, it still holds that S is polynomial in m. An algorithm that
efficiently computes the misrepresentation score of every S ∈ S entails, by
similar reasoning as before, an efficient method to select winners: one simply
computes the misrepresentation for all subsets in S and minimizes.

Unfortunately, computing the misrepresentation for a given S ∈ S in
Monroe’s scheme is not straightforward. It can be accomplished using inte-
ger programming, but the solution suggested by [12] might be exponential in

On the Complexity of Achieving Proportional Representation 9

the number of candidates. Monroe [9] himself mentions a simple algorithm:
at first, each voter i is assigned to argminj∈Sµij . Then, the assignment is
balanced by shifting voters that “will suffer the least increase in misrepre-
sentation from the shift.” Monroe adds that “determining the proper order
of shifting is more tedious” when k > 2, “but the process is still straight-
forward.”

Although this algorithm is indeed suitable when k = 2, a simple inter-
pretation is not even guaranteed to terminate when k ≥ 3. For example, let
S = {1, 2, 3}, and let there be 3 voters. The misrepresentation values are:
µi1 = 1, µi2 = µi3 = 0 for all i. Suppose that the initial assignment assigns
two voters to candidate 2 and one voter to candidate 3. One of the voters
assigned to candidate 2 must be shifted, and the total misrepresentation
remains the same if a voter is shifted to candidate 3. Now candidate 3 is
assigned 2 voters instead of one, and a voter is shifted back to candidate 2.
This sequence of events is repeated infinitely.

We propose an efficient but somewhat more complicated algorithm. The
algorithm maintains at each stage a balanced assignment, and iteratively
decreases misrepresentation. Changes in the assignment are introduced by
cyclically right-shifting sets of voters: each voter in a set A = {i1, i2, . . . , il}
is shifted to the candidate which is assigned to his successor; the assignment
remains balanced as the last voter is assigned to the first candidate. In more
detail, if the current assignment is fS , the algorithm singles out a set of
voters A = {i1, i2, . . . , il}, l ≤ k, and modifies the assignment by defining
the next assignment f ′S as follows:

f ′S(i) =

fS(id+1) i = id ∈ A and d < l

fS(i1) i = il ∈ A

fS(i) i /∈ A

The algorithm can be described as follows:

Input: n voters V , m candidates C, a subset S of k candidates, misrep-
resentation values µij .

Output: An assignment fS of voters to candidates in S such that n/k voters
are assigned to each candidate, and the total misrepresentation is mini-
mized.

Initialization: Arbitrarily assign n/k voters to each candidate in S.

Iterative Step: Determine whether there is A ⊆ V , |A| = l ≤ k, such that
cyclically right-shifting the voters in A strictly decreases the total misrep-
resentation. If so, perform the shift. Otherwise, terminate and return the
current assignment.

Lemma 2 The algorithm terminates after at most n · m repetitions of the
iterative step.

10 Ariel D. Procaccia et al.

Proof At each iteration, the total misrepresentation decreases by at least 1,
since the µij are integers. On the other hand, the total misrepresentation
cannot decrease below 0, and is initially at most n ·maxi,j µij ≤ n ·m. ut

The iterative step of the algorithm can be calculated efficiently: since k
is constant, the number of possible cycles of length at most k is polynomial
in n. By Lemma 2, the iterative step is repeated polynomially in n and
m. We have that the time complexity of Winner-Selection in Monroe’s
scheme is polynomial — provided we are able to show that the algorithm
works!

Lemma 3 The algorithm returns an optimal assignment.

Proof Consider a scenario where the algorithm reaches the iterative step,
but the current assignment is not optimal. We must show that the algo-
rithm does not terminate at this point. Indeed, let f∗S : V → S be a fixed
optimal assignment. We consider the voters i such that fS(i) = f∗S(i) to be
placed, and the other voters to be misplaced. Assume without loss of gener-
ality that f∗S minimizes the number of misplaced voters among all optimal
assignments.

We claim that there is a set of l ≤ k voters which can be cyclically
right-shifted in a way that places all l voters. Let i1 be a misplaced voter.
In order to place it, it has to be assigned to the candidate f∗S(i1). Thus, one
of the voters that fS assigns to f∗S(i1) must be misplaced, otherwise fS is
not balanced; call this voter i2. i2 can be placed by uprooting a candidate
i3 assigned to f∗S(i2). Iteratively repeating this line of reasoning, there must
at some stage be a voter id1 , d1 ≤ k, such that f∗S(id1) = fS(id0) for some
d0 < d1; this is true, since there are only k distinct candidates in S. Hence,
the voters {id0 , id0+1, . . . , id1} can be cyclically right-shifted in a way that
places all d1 − d0 + 1 = l ≤ k voters.

For any set of voters that can be placed by cyclic right-shifting, the
shift must strictly decrease misrepresentation. Otherwise, by cyclically left-
shifting the same set in f∗S , we can obtain a new optimal and balanced
assignment, in which more voters are placed compared to f∗S ; this is a con-
tradiction to our assumption that f∗S minimizes the number of misplaced
voters.

It follows that there must be a set of at most k voters such that cyclically
right-shifting the set strictly decreases the misrepresentation. Therefore, the
algorithm does not terminate prematurely. ut

The proof of Theorem 3 is completed.

6 Conclusion

The fact that the Winner-Selection problem in the Monroe and the
Chamberlin-Courant schemes is NP-complete strongly suggests that these

On the Complexity of Achieving Proportional Representation 11

schemes cannot be used in practical settings. In the worst-case, comput-
ing the election results could take eons! Viewed positively, this result im-
plies that the integer programming formulation proposed by Potthoff and
Brams [12] is in a sense optimal: one cannot hope to find a polynomial-time
solution, and different methods can be used to tackle integer programs with
reasonable efficiency on average (although, of course, the solution might still
take exponential time in the worst-case). Another important aspect of this
result is that the type of ballots cast does not affect the complexity: the
problem is hard even when misrepresentation values are only 0 or 1.

Our hardness results depend on the number of winners growing with
the number of voters and candidates. When the number of winners is small,
it is possible to select winners efficiently. This is straightforward in the
Chamberlin-Courant scheme, but is more difficult in the Monroe scheme,
as the misrepresentation of sets is based on balanced assignments. Our al-
gorithm finds a balanced assignment that minimizes misrepresentation in
polynomial time. The analysis also relies (in the proof of Lemma 2) on the
misrepresentation values being in {0, 1, . . . ,m}. That said, our results are
quite general, since this assumption holds when approval, ordinal, or any
method of reasonable balloting is used. We stress that integer programming
cannot be efficiently used in this setting. In fact, in the worst case the so-
lution of an appropriate integer program (of the type proposed by Potthoff
and Brams for large electorates) could run exponentially long in the number
of candidates, even if the number of winners is constant.

References

1. J. Bartholdi and J. Orlin. Single transferable vote resists strategic voting.
Social Choice and Welfare, 8:341–354, 1991.

2. J. Bartholdi, C. A. Tovey, and M. A. Trick. The computational difficulty of
manipulating an election. Social Choice and Welfare, 6:227–241, 1989.

3. J. Bartholdi, C. A. Tovey, and M. A. Trick. Voting schemes for which it can be
difficult to tell who won the election. Social Choice and Welfare, 6:157–165,
1989.

4. S. J. Brams and P. C. Fishburn. Voting procedures. In K. J. Arrow, A. K. Sen,
and K. Suzumura, editors, Handbook of Social Choice and Welfare, chapter 4.
North-Holland, 2002.

5. J. R. Chamberlin and P. N. Courant. Representative deliberations and repre-
sentative decisions: Proportional representation and the Borda rule. American
Political Science Review, 77(3):718–733, 1983.

6. V. Conitzer, J. Lang, and T. Sandholm. How many candidates are needed
to make elections hard to manipulate? In Proceedings of the International
Conference on Theoretical Aspects of Reasoning about Knowledge, pages 201–
214, Bloomington, Indiana, 2003.

7. V. Conitzer and T. Sandholm. Complexity of manipulating elections with
few candidates. In Proceedings of the National Conference on Artificial Intel-
ligence, pages 314–319, Edmonton, Canada, July 2002.

8. U. Feige. A threshold of lnn for approximating set cover. Journal of the ACM,
45(4):634–652, 1998.

12 Ariel D. Procaccia et al.

9. B. L. Monroe. Fully proportional representation. American Political Science
Review, 89(4):925–940, 1995.

10. C. H. Papadimitriou. On the complexity of integer programming. Journal of
the Association for Computing Machinery, 28(4), 1981.

11. C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
12. R. F. Potthoff and S. J. Brams. Proportional representation: Broadening the

options. Journal of Theoretical Politics, 10(2), 1998.
13. M. Sipser. Introduction to the Theory of Computation. Course Technology,

1996.

