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Abstract. A key solution concept in cooperative game theory is the core. The
core of an expense sharing game contains stable allocations of the total cost to
the participating players, such that each subset of players pays at most what it
would pay if acting on its own. Unfortunately, some expense sharing games have
an empty core, meaning that the total cost is too high to be divided in a stable
manner. In such cases, an external entity could choose to induce stability using
an external subsidy. We call the minimal subsidy required to make the core of a
game non-empty the Cost of Stability (CoS), adopting a recently coined term for
surplus sharing games.
We provide bounds on the CoS for general, subadditive and anonymous games,
discuss the special case of Facility Games, as well as consider the complexity of
computing the CoS of the grand coalition and of coalitional structures.

1 Introduction

We begin with a motivating example. Three hospitals plan to purchase an X-ray ma-
chine. A standard machine costs $5 million, and can fulfill the needs of up to two hos-
pitals. An advanced machine capable of serving all three hospitals costs $9 million. The
hospital managers understand that the right thing to do is to buy the more expensive ma-
chine, which can serve all three hospitals and costs less than two standard machines, but
cannot agree on how to allocate the cost of the expensive machine among the hospitals.
There will always be a pair of hospitals that together need to pay at least $6 million, and
would then rather split off and buy the cheaper machine for themselves. The generous
mayor solves the problem by subsidizing the expensive machine: she contributes $3
million, and lets each hospital add $2 million. Pairs of hospitals now have no incentive
to buy the less efficient machine, as each pair together pays only $4 million.

The example shows how external monetary funding can increase cooperation among
self-interested parties. Clearly, a high enough subsidy can always induce cooperation.
For example, if the mayor would decide to have the city pay for the entire expensive X-
ray machine on its own, then the hospitals’ (zero) costs would be irrelevant. However,
we would like to consider the minimal external intervention needed to induce coopera-
tion; in the scenario above, for example, a subsidy of $1.5 million would suffice.

The concepts of stable payoffs, cost allocation, and subsidies have received much
attention in economics, decision-making, and recently also computer science. While
some papers concentrate on the fair allocation of payments, strategyproofness, and



other requirements, we focus on finding the minimal subsidy that guarantees cooper-
ation among all parties. We model situations such as the example above as Transferable
Utility (TU) Expense games. In such games, every subset of agents has a fixed cost.
An imputation is an allocation of the cost of the grand coalition containing all agents,
and it is stable if no coalition can do better (i.e., pay less) on its own. The set of all
stable imputations is known as the core, and unfortunately it may be empty (as the ex-
ample above illustrates). The Cost of Stability (CoS) of an expense game is the minimal
external payment, or subsidy, required to stabilize a game with an empty core.

Related work The term “Cost of Stability” for TU games was coined by Bachrach et
al. [3, 4]. They defined it as the minimal monetary infusion required to stabilize a sur-
plus game (where agents try to distribute a positive surplus, rather than a negative cost),
focusing on computational problems in Weighted Voting games. Resnick et al. [24] ex-
tended the results to Threshold Network Flow games (suggested in [7]). The CoS in
expense games, which are the complementary class of surplus games, has a more nat-
ural interpretation as the necessary proportion of subsidy, or “how much of the total
expense should be subsidized?” The answer ranges between 0% (when the core is non-
empty) and 100% (when no agent is willing to contribute). The relative part of the cost
covered by the agents, i.e., the complement of the CoS, is called the cost recovery ratio.

Using different terms, several other researchers studied subsidies in expense games,
and in facility games in particular (described below), sometimes adding requirements on
top of the minimization of subsidies. A common assumption is that players gain some
private utility from their participation.1 Devanur et al. [13] suggested a mechanism that
covers at least a fraction of 1

ln(n)+1 in facility games, and a constant fraction of 0.462 in
Metric Facility Location games—with the additional requirement of strategyproofness.

An application that has drawn much attention is routing in networks, which was
initially formulated as a Minimum Spanning Tree game [12]. In this game, agents are
nodes on a graph, and each edge is a connection that has a fixed price. The cost of a
coalition is the price of the cheapest tree that connects all participating nodes to the
source node. The CoS in this particular game is always 0, as its core is nonempty [14].
However, there is a more realistic variant of routing scenarios known as the Steiner
Tree game, where nodes are allowed to route through nodes that are not part of their
coalition. Meggido [20] showed that the core of the Steiner Tree game may be empty,
and therefore its CoS is nontrivial. Jain and Vazirani [17] proposed a mechanism for the
Steiner Tree game with a cost recovery ratio of 1/2, under the stronger requirements of
group strategyproofness.2 Other research [25] suggested a cost sharing mechanism for
Steiner Trees that does not consider strategyproofness, and showed empirically that it
allocates at least 92% of the cost on all tested instances.

Other cost sharing mechanisms for many different games have been suggested; see
Pal and Tardos [22], and Immorlica et al. [16] for an overview. Some proofs in this pa-
per use similar techniques. Some of the proposed mechanisms pose strong requirements

1 Our model drops this assumption, which is equivalent to assuming that participation is manda-
tory, or that the utility is sufficiently high to guarantee participation at any cost.

2 To be exact, Jain and Vazirani demanded full cost recovery, and relaxed stability constraints.
The bound on the CoS is achieved if we divide their proposed payments by 2.



such as group strategyproofness, in addition to stability. Therefore it is quite likely that
tighter bounds on the CoS can be derived once these requirements are relaxed.

While we focus mainly on bounds, there has also been interest in the complexity
of computing the CoS [3, 2]. Stability bounds regarding the ratio between the optimal
social welfare and a core-stable social welfare were examined in affinity games [10].
External subsidies have also been suggested as a means of stabilizing normal form
games [21], including a normal form version of the facility game [11].

Our contribution We analyze bounds on the CoS in the general and the anonymous
case, and compare them to surplus games. We then focus on a particular class of expense
games called Facility Games (more widely known as Set-Cover Games). We provide
a tight bound on the CoS in facility games based on a known relation between the
CoS and combinatorial properties of the Set-Cover problem, and discuss some related
computational issues. We show that the bounds on facility games apply to all games
whose cost function is subadditive. Interestingly, subadditivity can be further exploited
to bound the subsidy even in games that are not subadditive. We conclude with an
efficient algorithm for stabilizing coalitional structures in anonymous games.

2 Preliminaries

We denote by I the set of n agents, and by S the set of all possible coalitions, i.e.,
S = 2I \ {∅}. I ∈ S is referred to as the grand coalition. An expense game G = 〈I, c〉
is characterized by a cost function c : S → R+, where c(S) is the cost of coalition
S. An imputation p ∈ Rn

+ is a vector whose sum is the total cost c(I), which defines
the amount each agent pays when the grand coalition is formed. A coalition S blocks
imputation p if it can guarantee a lower payment for itself, i.e., if c(S) < p(S) =∑

i∈S pi. The core is the set of all imputations that are stable, i.e., not blocked by any
coalition. We emphasize that the concept of the core refers only to stability of games in
which only a single coalition is allowed. We discuss cases where several coalitions may
exist in Section 6. For a detailed background treatment of coalitional games, see [23].

Monotonicity We say that an expense sharing game 〈I, c〉 is monotone if c(S) ≥ c(T )
for all T ⊂ S. Monotonicity means that adding agents to a coalition can only increase
its expenses. We will limit our attention to monotone games.

Subadditivity The game 〈I, c〉 is subadditive, if c(S ∪ T ) ≤ c(S) + c(T ) for all S, T
s.t. S ∩ T = ∅. Intuitively, in subadditive expense games larger coalitions are better
off, and should therefore be easier to stabilize. Like superadditivity in surplus sharing
games [3], subadditivity means it is always best to form the grand coalition.

The cost of stability In many games, the core is empty. However an external subsidy
lowers the cost of the grand coalition, thus creating a different game, possibly with
a nonempty core. Formally, the adjusted game is an expense sharing game G(∆) =
〈I, c′〉 where c′(I) = c(I) − ∆, and c′(S)=c(S) for all S 6= I . A payment vector
whose sum is less than c(I) is referred to as a subimputation. Thus, imputations in the
adjusted game are subimputations of the original game. Also, the imputation p inG(∆)



is blocked by coalition S iff the subimputation p in G is blocked by S. In the example
given in the introduction, c(I) was reduced from 9 (million) to c′(I) = 6, while for
all S ( I , c′(S) = c(S) = 5. Naturally, we would like the external payment to be
as small as possible. The Cost of Stability (CoS) in an expense sharing game is the
minimal non-negative payment ∆ s.t. the game G(∆) has a non-empty core.3 Thus the
CoS can be formulated as the optimal solution of a linear program with exponentially
many constraints, similarly to the approach in surplus sharing games; see [3] for details.

From the definition, we have that 0 ≤ CoS(G) ≤ c(I). The worst case (CoS(G) =
c(I)) occurs when the cost of any coalition (other than I) is 0. We can derive a closed
form for the Cost of Stability using balanced collections. Let δS ∈ R+ be the coefficient
of coalition S. δ = {δS}S∈S is called balanced if for every agent i,

∑
S:i∈S δS = 1.

Theorem 1 (Bondareva-Shapley theorem). The game G = 〈I, c〉 has a non-empty
core iff any balanced collection of coefficients satisfies:

∑
S∈S δS · c(S) ≥ c(I).

For a proof and more detailed discussion, see for example [23]. By applying the theorem
on the adjusted game, we can write the CoS of games with empty cores as follows:

CoS(G) = c(I)− min
balanced δ

∑
S∈S

δS ·c(S) (1)

If the righthand-side term is negative (nonempty core), then CoS(G) = 0. Unfortu-
nately, generally Equation (1) does not provide an efficient way to compute the CoS.

3 Expense Games vs. Surplus Games

We refer to transferable utility games with positive utilities as surplus games. In a sur-
plus game Gv = 〈I, v〉, v(S) ∈ R+ is the utility that coalition S can generate, and
an imputation is a division of v(I) among all agents. There has been much interest in
solution concepts for surplus games, as well as in their relation to expense games.

Duality The dual (not to be confused with linear duality) of the surplus game Gv =
〈I, v〉 is the expense game Gc defined as:

c(S) =

{
v(S) , S = I

v(I)− v(I \ S) , S 6= I

Gv’s core is empty iff Gc’s core is empty [9]. Duality also preserves monotonicity.
As in expense games, the CoS of a surplus game is the minimal amount that needs

to be added to v(I), so that the adjusted game has a non-empty core. Surplus games
have already been studied [3, 24, 2], so one might ask whether expense games deserve
special treatment. Further, we might conjecture that it is possible to derive the CoS of
an expense game by analyzing its dual, i.e., that there is some function f such that
CoS(Gc) = f(CoS(Gv)). Unfortunately, some important properties are not preserved

3 Following [3], we define the CoS w.r.t. the additive difference between c(I) and c′(I). Related
papers use the multiplicative ratio between the costs; the transformation is straightforward.



in the dual. For example, a game Gv can be superadditive, while its dual Gc is not sub-
additive nor superadditive. Furthermore, althoughCoS(Gc) = 0 impliesCoS(Gv) = 0
(and vice versa), the following example shows that the CoS of one problem does not re-
veal much information about the CoS of its dual. ConsiderGv, Gc s.t. c(I) = v(I) = 1,
and the cost of all singletons in Gc is c({i}) = 0. This means that CoS(Gc) = 1, as no
agent has any incentive to contribute anything. This only constrains the value of coali-
tions of size n− 1 in the dual game Gv to 1. CoS(Gv) can still be as low as 1

n−1 (if all
other values are 0), or as high as n− 1 (if v({i}) = 1 for all agents).

4 Anonymous Games

An anonymous expense sharing game is characterized by a cost function c : [n]→ R+,
i.e., the cost of S is c(|S|). In the anonymous case, Equation (1) can be simplified:

Theorem 2. Let G be an anonymous game. CoS(G) = c(n)− n ·mink≤n c(k)
k .

Proof. We first show that there is an optimal subimputation (i.e., whose sum is minimal)
in which all agents pay the same amount. Let p∗ be an optimal subimputation, and
define a new subimputation q, with qj = 1

n

∑
i∈I p

∗
i for all j. For each coalition S, we

have that q(S) = |S|
n

∑
i∈I ·p∗i . Denote by Sk the set of all coalitions of size k; then

from the stability of p∗,

∀S ∈ Sk, q(S) ≤ max{p∗(S′) ≤ c(k) : S′ ∈ Sk} ,

Thus q is also stable, and therefore a legal subimputation (q(I) = p∗(I)).
Since a coalition of size k has to pay at least c(k), every agent i has to pay at least

its fair share in the best possible coalition, i.e., qi = mink≤n
c(k)
k . ut

Without further assumptions, the CoS of an anonymous game can still reach the
trivial upper bound of c(n), for example if n = 2, c(1) = 0; c(2) = 1.

We now consider subadditivity in anonymous games, i.e., assume that c(s + t) ≤
c(s) + c(t). The following theorem shows that in such games the subsidy (CoS) will
be approximately half of the total cost. This is similar to the corresponding result on
superadditive anonymous surplus games, in which the CoS was shown to be roughly
twice the value of the grand coalition [3].

Theorem 3. Let G be a subadditive anonymous expense game.
CoS(G) ≤

(
1
2 −

1
2n−2

)
c(n), and this bound is tight. That is, there is a subadditive

anonymous expense game for which this is exactly the CoS.

Proof. For n ≤ 2 the theorem is trivial. Thus assume n ≥ 3. c(n) = c(nk · k) ≤⌈
n
k

⌉
c(k), which means that n c(k)

k ≥ n
k

1

dn
k e
c(n) for any k, and in particular for k∗ =

argmin c(k)
k .

We denote n
k∗ by a. Note that a ≥ n

n−1 > 1, thus dae ≥ 2. We first look at the case
dae ≥ 3. This means that a > 2, and thus (for n ≥ 4)

a

dae
≥ a

a+ 1
≥ 2

3
≥ n

2n− 2
.



The alternative case is dae = 2. Here, a = n
n−1 minimizes the expression a

dae (since

the denominator is fixed), and we get that a
dae ≥

n/(n−1)
2 = n

2n−2 . Note that for n = 3

we are either in the second case, or k∗ = 1, and thus a
dae =

3
3 = 1 > n

2n−2 also holds.
We showed that in any case a

dae ≥
n

2n−2 , thus:

n
c(k∗)

k∗
≥ n

k∗
1⌈
n
k∗

⌉c(n) = a

dae
c(n) ≥ n

2n− 2
c(n) ⇒

CoS(G) = c(n)− nc(k
∗)

k∗
≤
(
1− n

2n− 2

)
c(n) =

(
1

2
− 1

2n− 2

)
c(n) .

For tightness, consider a game where c(n) = 2, and c(k) = 1 for any k < n. In this
game k∗ = n− 1, and by using Theorem 2,

CoS(G) = c(n)− n 1

n− 1
= c(n)− c(n)

(
n

2(n− 1)

)
= c(n)

(
1− n

2n− 2

)
ut

5 Facility Games

We now describe a specific domain on which we demonstrate our approach. Later, we
use results for this domain to derive general results for expense games.

Facility Games (also known as Set-Cover Games) are closely related to the Min-
SetCover problem. In the MinSetCover problem, we are given a set I = {1, . . . , n}, a
family of subsets F = {A1, . . . , Am} ⊆ S, and a weight function w : F → R+. We
are asked to find the lightest group J s.t.

⋃
j∈J Aj = I . We denote the the optimal set

cover by F ∗(I) and its value by opt(I, F ) = w(F ∗(I)) =
∑

j∈F∗(I) wj . We assume
that each element is contained in at least one set, so opt(I, F ) is well-defined.

This algorithmic problem has a natural variant as an expense game: the agents are
the elements, and each set represents a facility capable of giving service to the agents
(corresponding to the elements in the set). The expense of a coalition is the minimal
total price of facilities it must buy so that all of its members are served.

Formally, a facility game is a tuple G = 〈I, F,w〉. The cost function is defined
as c(S) = opt(S, F |S), where F |S = {Aj ∩ S s.t. Aj ∈ F}. We also denote by
F ∗(S) ⊆ F the optimal cover of S; thus w(F ∗(S)) = c(S).

The hospital example given in the introduction is a facility game with three agents
(the hospitals). As the following lemma shows, facility games are highly expressive.

Lemma 1. Facility games are subadditive. Furthermore, any subadditive expense game
can be described as a facility game.

Proof. We first prove subadditivity. Let S, T ∈ S be distinct coalitions; then F ∗(S) ∪
F ∗(T ) is a cover of S ∪ T . Thus c(S ∪ T ) ≤ w(F ∗(S) ∪ F ∗(T )) ≤ w(F ∗(S)) +
w(F ∗(T )) = c(S) + c(T ).

In the other direction, every subadditive game has a naı̈ve formulation as a facility
game with an exponential number of facilities: we add a facility for each coalition,
whose price is the cost of the coalition. As the original game is subadditive, the cost of
a coalition in the new game is exactly the price of its corresponding facility. ut



The CoS is tightly coupled with the key concept of the integrality gap. Consider
the cost of the grand coalition c(I). This is the optimal solution of the MinSetCover
problem 〈I, F,w〉, which can be written as the following integer linear program, over
the variables {yj}Aj∈F :

min
∑
Aj∈F

wjyj subject to:

∑
j:i∈Aj

yj ≥ 1 for each i ∈ I,

yj ∈ {0, 1} for each Aj ∈ F.

In any returned solution, the facility Aj is part of the cover F ∗(I) if yj = 1. The linear
relaxation of this program is obtained by relaxing the last condition and allowing yj ∈
[0, 1]. The difference between the optimal integer solution and the optimal fractional
solution is known as the integrality gap of the problem.4

Formally, we denote by ILP (G) (= c(I)) and LP (G) the value of the optimal
integer and fractional solutions of the linear program corresponding to the facility game
G = 〈I, F,w〉, and define the integrality gap of G as IG(G) = ILP (G) − LP (G).
We use the following equality, which is a known folk theorem; and also supply a simple
proof, demonstrating how the optimal subimputation can be computed efficiently.

Theorem 4. Let G be a facility game. CoS(G) = IG(G).

Proof. We define the following linear program over the variables {pi}i∈I , which is the
dual program of LP (G):

max
∑
i∈I

pi subject to:

pi ∈ [0, 1] for each i ∈ I,∑
i∈Aj

pi ≤ wj for each Aj ∈ F.

Denote by p∗ the optimal assignment to the dual variables {pi}i∈I , and their sum
(which is the optimal value of the dual) by L̂P (G). From strong duality we have that:∑

i∈I
p∗i = L̂P (G) = LP (G) =

∑
Aj∈F

wjy
∗
j , (2)

where y∗ is the optimal solution vector of the primal linear (fractional) program. We
can read the dual LP as “the maximal sum of payments, such that all agents belonging to
a set Aj pay at most wj together”. Consider a coalition S with cost c(S). By definition

4 We use the term “integrality gap” to denote the difference between the solutions, rather than
their ratio. See also Footnote 3.



of the cost function, there is a partial cover F ′(S) = {A1, . . . , Ak} whose cost is
c(S) = w(F ′(S)) =

∑k
r=1 wr. Note that:

∑
i∈S

p∗i ≤
k∑

r=1

∑
i∈Ar

p∗i ≤
k∑

r=1

wr = c(S) .

That is, the vector p∗ is a legal subimputation in G, as it is not blocked by any coali-
tion S. Furthermore, any other subimputation p must obey the constraints of the dual
program (otherwise there is a coalition S = Aj that pays more than the cost of its cor-
responding facility), and therefore

∑
i∈I pi ≥

∑
i∈I p

∗
i must hold, so it is not possible

that there are better solutions (subimputations).
By definition, the CoS is the gap between the c(I) and the maximal payment. Thus,

from Equation (2): CoS(G) = c(I)−
∑

i∈I p
∗
i = IG(G) . ut

The proof also reveals the connection with the Bondareva-Shapley theorem: if all
agents pay something, then due to complementary slackness, the optimal solution vector
y is a balanced collection of coefficients (if there is an agent that pays 0, we can remove
him and obtain a solution y′).

The integrality gap of integer programs, and of MinSetCover in particular, is well-
studied in the literature. We can therefore use known bounds on the IG, and apply them
to the CoS. The following, for example, it due to Lovász [18]:

IG(G) ≤ c(I)
(
1− 1

ln(d) + 1

)
, (3)

where d is the size of the largest set in F .5

By joining Equation (3) and Lemma 1 to Theorem 4, we have the first part of the
following corollary:

Theorem 5. For any subadditive game G = 〈I, c〉, CoS(G) ≤ c(I)
(
1− 1

ln(n)+1

)
,

and this bound is tight, up to a constant.

The tightness is due to an example by Vazirani [26], showing that the integrality gap of
MinSetCover can be as high as log2(n)

2 .
It is interesting to compare this bound to the corresponding bound for superadditive

surplus games, which depends on the square root of n, rather than on the logarithm [3].

6 Coalition Structures

Although the CoS of subadditive games is bounded, not all expense games are subad-
ditive. Furthermore, in such games it is not guaranteed that forming the grand coalition
is optimal (cheapest). For example, we can think of variants of facility/routing games,
where there is an additional cost for using fewer facilities, or for constructing networks
with a high branching factor due to increased congestion.

5 The greedy cost-sharing scheme of [13] obtains a similar cost-recovery ratio in the worst case
(and is also strategyproof), but is inferior to the result of the dual in other cases.



In such cases, the external authority may be interested in stabilizing the structure
that minimizes the social cost, i.e., the total expenses. It is not hard to see that the same
structure also minimizes the subsidy, as stability constraints for each coalition remain
the same. See [3] for further discussion of this point.

Formally, a coalition structure is a partition of I to distinct coalitionsCS = {Tj}kj=1

s.t.
⋃

Tj∈CS Tj = I . The set T (A) contains all partitions of the set A, thus for A = I ,
we get the set of all coalition structures CS = T (I). The cost of a coalition structure
CS ∈ CS(I) in the game G = 〈I, c〉 is c(CS) =

∑
Tj∈CS c(Tj). The CS-core of G

(denoted by CORE(G,CS)) contains all subimputations such that: (a) c(S) ≥ p(S)
for all coalitions (i.e., p is stable); and (b) for each Tj ∈ CS, p(Tj) = c(Tj) (i.e.,
no transfer of payments between coalitions). In the adjusted game G(CS,∆) the cost
of each Tj ∈ CS is subsidized by ∆j ≥ 0, whereas the cost of any other coalition or
coalition structure remains the same. As in the case of the grand coalition,CoS(CS,G)
is the minimal sum of ∆ = (∆1, . . . ,∆k) s.t. the CS-core of G(CS,∆) is nonempty.

Finally, let ĈS ∈ CS be the structure that minimizes the cost c(ĈS). Then the
minimal amount required to stabilize the cheapest structure in the game, is defined as
CoSCS(G) = CoS(ĈS,G).

Theorem 6. For any expense game G = 〈I, c〉, CoSCS(G) ≤ c(ĈS)
(
1− 1

ln(n)+1

)
.

Proof. We define the subadditive closure of a game G = 〈I, c〉, as a coalitional game
G∗ = 〈I, c∗〉, whose cost function is c∗(S) = minT∈T (S)c(T ). In particular, for S = I
we get:

c∗(I) = minCS∈T (I)c(CS) = c(ĈS) . (4)

It is easy to see that 〈I, c∗〉 is a subadditive coalitional game, since any non-overlapping
coalitions S1, S2 are a partition of the coalition S1 ∪ S2.

Lemma 2 (Aumann and Dréze [1]). Let G = 〈I, c〉 be a coalitional game, and let
CS ∈ CS be a coalitional structure.6

1. If c∗(I) = c(CS) then the CS-core of G is equal to the core of G∗.
2. Otherwise (i.e., if c∗(I) < c(CS)), then the CS-core of G is empty.

Let ∆ be some fixed subsidy vector whose sum is ∆ ≥ 0, and consider the optimal
coalition structure ĈS. From Equation 4 we have that c∗(I) − ∆ = c(ĈS) − ∆, and
thus from Lemma 2 CORE(G(∆)∗) = CORE(G(ĈS,∆), ĈS). In particular, ∆
stabilizes G(∆)∗ iff ∆ stabilizes G(ĈS,∆). Finally, from Theorem 5,

CoSCS(G) = CoS(G, ĈS) = CoS(G∗) ≤
(
1− 1

ln(n) + 1

)
c∗(I)

=

(
1− 1

ln(n) + 1

)
c(ĈS), (from Equation (4))

since G∗ is a subadditive expense game. ut
6 Aumann and Dréze treated superadditive surplus games. However, a slight variation of their

work proves the lemma.



Our final result in this section shows that the subadditivity condition in Theorem 5
can in fact be weakened. Since {I} is also a coalition structure, we get the following
result for non-subadditive games as a corollary of Theorem 6.

Theorem 7. If c(I) ≤ c(CS) for all CS ∈ CS , then CoS(G) ≤ c(I)
(
1− 1

ln(n)+1

)
.

7 Some Notes on Computational Complexity

In some seemingly simple TU games, such as weighted voting games and threshold
network flow games, finding (or even testing) if a subimputation is stable proved to be
NP-hard, while computing the value of a coalition was trivial. In particular, computing
the CoS was hard in these games [3, 24].

Facility games present a situation opposite to that in the above mentioned surplus
games: it is NP-hard to compute the cost of a coalition, and in particular to know if
some set of facilities F ′ ⊆ F is optimal for the grand coalition. This follows directly
from the hardness of the MinSetCover problem [26]. However, the optimal subimputa-
tion p∗ can be computed efficiently by solving L̂P (G).

The computational complexity results regarding the CoS lead to an interesting trade-
off between the computational power of the center and the size of the subsidy. Since
the maximal costs the agents can safely pay (p∗) do not depend on the quality of the
selected set of facilities, faster computers can assist the city council in finding cheaper
solutions (better F ′) and thereby save money on subsidies (i.e., lower w(F ′)−

∑
i p
∗
i ).

It is important to note that the runtime of the mechanism would be polynomial in
the description size of the game, i.e., in the number of facilities. Therefore we cannot
efficiently compute optimal payments for arbitrary subadditive expense games with the
dual method, as the linear program might contain an exponential number of constraints.

The optimal coalition structure in anonymous games Recall that for anonymous games
the characteristic function is given by c : [n] → R+, and for every coalition structure,
c(CS) =

∑
C∈CS c(|C|). Computing the CoS of a given coalition structure is easy.

As in general games, p∗ is easy to compute. In the anonymous case, it has the form
p∗i = minj≤n

c(j)
j for all i. Thus for any given CS we can compute CoS(G,CS) as

CoS(G, ĈS) = c(CS)− n ·minj≤n
c(j)

j
. (5)

The proof is the same as the proof of Theorem 2, which is a special case for CS = {I}.
However, finding the optimal coalition structure might be difficult. That is, we know

how much money each agent should pay in total, but we do not know how much they
can make by themselves, and therefore we are not sure how much to subsidize.
Proposition 1. Computing CoSCS(G) for anonymous games is in P .
We note here that Proposition 1 also holds for surplus sharing games, as defined in [3].

Proof. From Equation (5) it is sufficient to find the optimal coalition structure ĈS.
Our key observation is that the problem of finding ĈS in an anonymous game is

equivalent to solving KNAPSACK with bounded weights.



In the KNAPSACK problem, we are given n pairs 〈wi, xi〉, and a threshold t. We can
select any pair ai ∈ N times, in order to minimize the total weight of the sack

∑
i ai ·wi,

while maintaining the total value above the threshold, i.e.,
∑

i ai · xi ≥ t.7 While
the general KNAPSACK problem is NP-hard, it can be solved by a simple dynamic
algorithm, provided that either the weights (wi) or the values (xi) are polynomially
bounded (see e.g., [19]).

Consider an anonymous cost game, with a characteristic function c. We construct a
KNAPSACK instance KN with the pairs {〈c(i), i〉}ni=1, and a threshold t = n (hence
the values are bounded). As wi = c(i), and xi = i, we have that

CoSCS(G) = min
∑
i≤n

ai · wi s.t.
∑
i≤n

ai · xi = n = t ,

which is the optimal knapsack solution.
Thus for anonymous coalitional games we have a dynamic algorithm that finds ĈS

and computes CoSCS(G) efficiently. ut

8 Discussion

Our study of minimal subsidies in expense sharing games joins together two lines of
work: the ongoing study of cost sharing mechanisms with different requirements for
specific game classes, and the clean formulation of bounds on the Cost of Stability that
depend on the cost function’s properties.

We have focused on the subadditivity property, and were able to provide tight
bounds on the CoS for broad families of games, even in the absence of an efficient
cost sharing mechanism. Our work also complements previous work on the Cost of
Stability, highlighting the similarities and differences between cost sharing games and
surplus games in terms of the magnitude of the required subsidy for achieving stability.

Several issues remain open for future research. First, better bounds on the CoS
should be developed for specific classes of games, such as those suggested in [15, 6, 8,
10, 5, 2]. It is particularly interesting if dropping all requirements except stability (such
as strategyproofness or computational efficiency) can result in mechanisms that are bet-
ter than the existing cost sharing mechanisms described in the related work section.

Another question for future research is whether the CoS of more coalitional games,
other than Set-cover and Steiner-tree games, can also be derived from the integrality
gap of their underlying combinatorial problem (when there is one).

Finally, we plan to further investigate the relation between the CoS and other solu-
tion concepts, such as the Shapley Value, the nucleolus, and the least core.
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