The Cost of Stability in Coalitional Games

Yoram Bachrach Edith Elkinc?3, Reshef Meit, Dmitrii Pasechnik,
Michael Zuckermat Jorg Rothe, and Jeffrey S. Rosenschéin

! Microsoft Research, Cambridge, United Kingdom
2 University of Southampton, United Kingdom
3 Nanyang Technological University, Singapore
4 School of Engineering and Computer Science, Hebrew Urityederusalem, Israel
5 Institut fur Informatik, Heinrich-Heine-Universitatidseldorf, Germany

Abstract. A key question in cooperative game theory is that of coalaicsta-
bility, usually captured by the notion of tttmre—the set of outcomes such that
no subgroup of players has an incentive to deviate. Howseene coalitional
games have empty cores, and any outcome in such a game iblansta

In this paper, we investigate the possibility of stabilgzia coalitional game by
using external payments. We consider a scenario where amakparty, which
is interested in having the players work together, offeragpkemental payment
to the grand coalition (or, more generally, a particularlitioa structure). This
payment is conditional on players not deviating from theialtion(s). The sum
of this payment plus the actual gains of the coalition(s) rttegn be divided
among the agents so as to promote stability. We definedkeof stability (CoS)
as the minimal external payment that stabilizes the game.

We provide general bounds on the cost of stability in sev#aakes of games, and
explore its algorithmic properties. To develop a bettewitian for the concepts
we introduce, we provide a detailed algorithmic study of ¢bet of stability in
weighted voting games, a simple but expressive class of garhieh can model
decision-making in political bodies, and cooperation inltragent settings. Fi-
nally, we extend our model and results to games with coalgiouctures.

1 Introduction

In recent years, algorithmic game theory, an emerging firedticombines computer sci-
ence, game theory and social choice, has received muchiatiérom the multiagent
community [19, 8, 22, 20]. Indeed, multiagent systems nesefacuses on designing in-
telligent agents, i.e., entities that can coordinate, eoaie and negotiate without requir-
ing human intervention. In many application domains, sugéngs areself-interested
i.e., they are built to maximize the rewards obtained byrtbieators. Therefore, these
agents can be modeled naturally using game-theoretic. tdoiseover, as agents often
have to function in rapidly changing environments, compoiteal considerations are of
great concern to their designers as well.

In many settings, such as online auctions and other typesaokets, agents act
individually. In this case, the standard notions of nonayafive game theory, such as
Nash equilibriunor dominant-strategy equilibriupprovide a prediction of the outcome
of the interaction. However, another frequently occurtiye of scenario is that agents



need to form teams to achieve their individual goals. In simtmains, the focus turns
from the interaction between single agents to the capasilitf subsets, aroalitions of
agents. Thus, a more appropriate modeling toolkit for teisrgg is that ocooperative

or coalitional, game theory [4], which studies what coalitions are mogljiko arise,
and how their members distribute the gains from cooperatdimen agents are self-
interested, the latter question is obviously of great inguace. Indeed, thital utility
generated by the coalition is of little interest to indivedwagents; rather, each agent
aims to maximize her own utility. Thus, stablecoalition can be formed only if the
gains from cooperation can be distributed in a way thatfgegiall agents.

The most prominent solution concept that aims to formalzeidea of stability in
coalitional games is theore Informally, anoutcomeof a coalitional game is payoff
vectorwhich for each agent lists her share of the profit of gin@nd coalition i.e., the
coalition that includes all agents. An outcome is said torbhe core if it distributes
gains so that no subset of agents has an incentive to abahe@nand coalition and
form a coalition of their own. It can be argued that the conadghe core captures
the intuitive notion of stability in cooperative settingsowever, it has an important
drawback: the core of a game may be empty. In games with enop&gcany outcome
is unstable, and therefore there is always a group of ageaitsttempted to abandon the
existing plan. This observation has triggered the inventibless demanding solution
concepts, such ascore and the least core, as well as an interest in noncodyera
approaches to identifying stable outcomes in coalitioaahgs [5, 17].

In this paper, we approach this issue from a different petspe Specifically, we
examine the possibility of stabilizing the outcome of a gamimg external payments.
Under this model, an external party (tbentel), which can be seen as a central authority
interested in stable functioning of the system, attemptmdentivize a coalition of
agents to cooperate in a stable manner. This party doesytloffdring the members of
a coalition a supplemental payment if they cooperate. Ttisreal payment is given to
the coalition as a whole, and is provided only if this coatitis formed.

Clearly, when the supplemental payment is large enougheidting outcome is
stable: the profit that the deviators can make on their owwarfitd by the subsidy
they could receive by sticking to the prescribed solutioowiver, normally the exter-
nal party would want to minimize its expenditure. Thus, irsthaper we define and
study thecost of stability which is the minimal supplemental payment that is required
to ensure stability in a coalitional game. We start by comsid) this concept in the con-
text where the central authority aims to ensure #ibagents cooperate, i.e., it offers
a supplemental payment in order to stabilize the grand tooaliWe then extend our
analysis to the setting where the goal of the center is th@ligyeof a coalition struc-
ture, i.e., a partition of all agents into disjoint coalitions.this setting, the center does
not expect the agents to work as a single team, but nevesthetents each individual
team to be immune to deviations. Finally, we consider theade where the center is
concerned with the stability of a particular coalition vittta coalition structure. This
model is appropriate when the central authority wants aqaar group of agents to
work together, but is indifferent to other agents switchinglitions.

We first provide bounds on the cost of stability in generalitioaal games. We then
show that for some interesting special cases, such as adpéive games, these bounds



can be improved considerably. We also propose a generalithigdéc technique for
computing the cost of stability. Then, to develop a bettataratanding of the concepts
proposed in the paper, we apply them in the contextaifhted voting game8vVvGs),
a simple but powerful class of games that have been used t@lncodperation in
settings as diverse as, on the one hand, decision-makirgjitical bodies such as the
United Nations Security Council and the International MangFund and, on the other
hand, resource allocation in multiagent systems. For saofieg, we are able to obtain
a complete characterization of the cost of stability fronakgorithmic perspective.

The paper is organized as follows. In Section 2, we providertbcessary back-
ground on coalitional games. In Section 3, we formally defireecost of stability for
the setting where the desired outcome is the grand coglpimve bounds on the cost
of stability, and outline a general technique for computitngVe then focus on the
computational aspects of the cost of stability in the contéour selected domain,
i.e., weighted voting games. In Section 4.1, we demonsthatecomputing the cost of
stability in such games isoNP-hard if the weights are given in binary. On the other
hand, for unary weights, we provide an efficient algorithmtfds problem. We also
investigate whether the cost of stability can be efficieafiproximated. In Section 4.2,
we answer this question positively by describing a fullyymaimial-time approxima-
tion scheme (FPTAS) for our problem. We complement thisltégushowing that, by
distributing the payments in a very natural manner, we gétiwia factor of 2 of the
optimal adjusted gains, i.e., the sum of the value of thedjcaralition and the external
payments. While this method of allocating payoffs does remtessarily minimize the
center’s expenditure, the fact that it is both easy to imgleand has a bounded worst-
case performance may make it an attractive propositionrtaicesettings. In Section 5,
we extend our discussion to the setting where the center airsiabilize an arbitrary
coalition structure, or a particular coalition within igther than the grand coalition. We
end the paper with a discussion of related work and some gsiocls.

We omit some of the proofs due to space constraints; the édlion of the paper
(with all proofs included) is available online [2]. A prelimary version of this paper
was published in AAMAS’09 [3].

2 Preliminaries

Throughout this paper, given a vector= (z1,...,z,) andaseC C {1,...,n} we
write z(C') to denot€) ;- ;.

Definition 1. A (transferable utility) coalitional gam@ = (I,v) is given by a set of
agentgsynonymouslylayerd I = {1,...,n} and acharacteristic function : 2/ —
R* U {0} that for any subset (coalition) of agents lists the totalitytithese agents
achieve by working together. We assunig) = 0.

A coalitional game&Z = (I,v) is calledincreasingif for all coalitionsC' C C we
havev(C") < v(C), andsuper-additivef for all disjoint coalitionsC, C' C I we have
v(C)+v(C") < v(CUC"). Note that since(C) > 0 foranyC C I, all super-additive
games are increasing. A coalitional gatie= (I, v) is calledsimpleif it is increasing
andv(C) € {0,1} forall C C I.In a simple game, we say that a coaliti®nC I wins



if v(C) = 1, andlosesif v(C) = 0. Finally, a coalitional game is calleghonymous
if v(C) = v(C") foranyC,C" C I such tha{C| = |C’|. A particular class of simple
games considered in this paper is thatveighted voting gamegsvVGs).

Definition 2. A weighted voting gamé a simple coalitional game given by a set of
agentsl = {1,...,n}, avectorw = (wy,...,w,) of nonnegative weights, whetsg

is agenti’s weight, and a threshold. Theweight of a coalitionC' C I is w(C) =

Y icc wi. A coalitionC wins the gamdi.e., v(C) = 1) if w(C) > ¢, andloses the
game(i.e.,v(C) = 0) if w(C) < gq.

We denote the WVG with the weighte = (wy,...,w,) and the thresholg as
[w;g] Or [wy, ..., wy;q]. AlSO, We Setwnax = max;cy w;. Itis easy to see that WVGs
are simple games; however, they are not necessarily sdpiéive. Throughout this
paper, we assume tha(I) > g, i.e., the grand coalition wins.

The characteristic function of a coalitional game defindg thre total gains a coali-
tion achieves, but does not offer a way of distributing themoag the agents. Such a
division is called an imputation (or, sometimes, a payofftue).

Definition 3. Given a coalitional gam&' = (I,v), a vectorp = (p1,...,pn) € R®
is called animputation forG if it satisfiesp; > v({i}) for eachi, 1 < i < n, and
> pi = v(I). We callp; the payoff of agent; the total payoff of a coalitiorC' C I
is given byp(C). We writeZ(G) to denote the set of all imputations féf.

For an imputation to be stable, it should be the case that heeswf players has
an incentive to deviate. Formally, we say that a coalitibblocksan imputationp =
(p1,---,pn) if p(C) < v(C). Thecoreof a coalitional game7 is defined as the set
of imputations not blocked by any coalition, i.eare(G) = {p € Z(G) | p(C) >
v(C) for eachC C I}. Animputation in the core guarantees the stability of threngr
coalition. However, the core can be empty.

In WVGs, and, more generally, in simple games, one can cteiae the core us-
ing the notion of veto agents, i.e., agents that are indisgdae for forming a winning
coalition. Formally, given a simple coalitional gafe= (I,v), an ageni € I is said
to be aveto agentf for all coalitionsC' C I'\ {i} we havev(C) = 0. The following is
a folklore result regarding nonemptiness of the core.

Theorem 1. LetG = (I,v) be a simple coalitional game. If there are no veto agents
in G, then the core o7 is empty. Otherwise, let’ = {i1,...,iy,} be the set of veto
agents inG. Then the core of7 is the set of imputations that distribute all the gains
among the veto agents only, i.eore(G) = {p € Z(G) | p(I') = 1}.

So far, we have tacitly assumed that the only possible outcofra coalitional
game is the formation of the grand coalition. However, oftenakes more sense for
the agents to form several disjoint coalitions, each of Wiiian focus on its own task.
For example, WVGs can be used to model the setting where epgit has a certain
amount of resources (modeled by her weight), and there anender of identical tasks
each of which requires a certain amount of these resourceddled by the threshold)
to be completed. In this setting, the formation of the graoadliion means that only
one task will be completed, even if there are enough resedoteseveral tasks.



The situation when agents can split into teams to work onraétasks simulta-
neously can be modeled using the notion of a coalition gtrecti.e., a partition of
the set of agents into disjoint coalitions. Formally, we sagt CS = (C*,...,C™)
is acoalition structureover a set of agents if |J;*, C* = I andC* N C? = § for
all i # j; we write CS € CS(I). Also, we overload notation by writing(CS) to
denote}" ;. og v(C7). If coalition structures are allowed, an outcome of a game is
not just an imputation, but a pajiC's, p), wherep is an imputation for the coalition
structureCS, i.e., p distributes the gains of every coalition ifiS among its mem-
bers. Formally, we say thagt = (p1,...,p,) is animputation for a coalition structure
CS = (CY,...,C™) in agameG = (I,v) if p; > Oforalli,1 < i < n, and
p(CY) = v(CY) forall j, 1 < j < m; we writep € Z(CS,G). We can also gener-
alize the notion of the core introduced earlier in this setto games with coalition
structures. Namely, given a garGe= (I, v), we say that an outcom{&S, p) is in the
CS-core ofG if CS is a coalition structure ovef, p € Z(CS, G) andp(C) > v(C)
forall C C I, we write (CS,p) € CS-coré). Note that ifp is in the core o7 then
(I,p) is in the CS-core of7; however, the converse is not necessarily true.

3 The Cost of Stability

In many games, forming the grand coalition maximizes sae@iare; this happens, for
example, in super-additive games. However, the core of gaotes may still be empty.
In this case, it would be impossible to distribute the gaifhthe grand coalition in a
stable way, so it may fall apart despite being socially optifihus, an external party,
such as a benevolent central authority, may want to inciestthe agents to cooperate,
e.g., by offering the agents a supplemental paymeifithey stay in the grand coalition.
This situation can be modeled asadjusted coalitional gameéerived from the original
coalitional gamés.

Definition 4. Given a coalitional gamé&' = (I,v) andA > 0, theadjusted coalitional
gameG(A) = (I,v") is given by'(C) = v(C) for C # I, andv'(I) = v(I) + A.

We callv'(I) = v(I) + A theadjusted gain®f the grand coalition. We say that a
vectorp € R is asuper-imputatiofor a game = (I,v) if p; > 0forall € I and
p(I) > v(I). Furthermore, we say that a super-imputagwois stableif p(C) > v(C)
forall C C I. A super-imputatiorp with p(I) = v(I) + A distributes the adjusted
gains, i.e., it is an imputation fag(A); it is stable if and only if it is in the core of
G(A). We say that a supplemental paymehstabilizesthe grand coalition in a game
G if the adjusted gamé&'(A) has a nonempty core. Clearly,4f is large enough (e.g.,
A = nmaxccrv(C)), the gamez(A) will have a nonempty core. However, usually
the central authority wants to spend as little money as ptesdience, we define the
cost of stability as themallestexternal payment that stabilizes the grand coalition.

Definition 5. Given a coalitional gamé&r = (I,v), its cost of stability CoS(G) is
defined aC0S(G) = inf{A | A > 0 and core(G(A4)) # 0}.

We have argued that the st | A > 0 andcore(G(A)) # @} is nonempty. There-
fore,G(A) is well-defined. Now, we prove that this set contains its ggstdower bound



CoS(@G), i.e., that the gam&(CoS(G)) has a nonempty core. While this can be shown
using a continuity argument, we will now give a different pfavhich will also be use-
ful for exploring the cost of stability from an algorithmiegspective. Fix a coalitional
gameG = (I,v) and consider the following linear prografiP*:

min A subject to:

A >0, 1)
p; >0 foreachi=1,...,n, 2
> pi=v(I) + A4, (3)
i€l
> pi>v(C) forallCCI. (4)

Itis not hard to see tﬁ%?the optimal value of this linear paogis exactlyCoS(G).
Moreover, any optimal solution ofP* corresponds to an imputation in the core of
G(CouS(@)) and therefore the gan®@(CoS(G)) has a nonempty core.

As an example, consider a uniform weighted voting game,da &VG G = [w;¢]
with w; = --- = w,, = w. We can derive an explicit formula f@oS(G).

Theorem 2. Fora WVGG = [w,w, ..., w;q], we haveCoS(G) = Ta7aT — L

For example, ifw(n — 1) < ¢ < wn, thenCoS(G) = 0, i.e.,G has a nonempty core.
On the other hand, iy = 1, n = 3k andq = 2k for some integek > 0, i.e.,q = %n
we haveCoS(G) =3 —1=1.

3.1 Bounds onCoS(G) in General Coalitional Games

Consider an arbitrary coalitional gante= (I,v). Clearly, CoS(G) = 0 if and only

if G has a nonempty core. Further, we have argued@hat(G) is upper-bounded by
nmaxccrv(C), i.e., CoS(G) is finite for any fixed coalitional game. Moreover, the
bound ofn maxcc;v(C) is (almost) tight. To see this, consider a (simple) gaiie
given byv'(#) = 0 and+'(C) = 1 for all C # 0. Clearly, we haveC'oS(G') = n — 1:
any super-imputation that pays some agent lesstlwél not be stable, whereas setting
p; = Lforalli € I ensures stability. Thus, the cost of stability can be qaitgd relative
to the value of the grand coalition.

On the other hand, we can provide a lower boundZa$ (G) in terms of the val-
ues of coalition structures ovdr Indeed, for an arbitrary coalition structugs e
CS(I), we haveCoS(G) > v(CS) — v(I). To see this, note that if the total payment
to the grand coalition is less thgu(CS) — v(I)) + v(I), then for some coalition
C € CS it will be the case thap(C) < v(C). It would be tempting to conjecture
that CoS(G) = maxcgecs(r)(v(CS) —v(I)). However, a counterexample is provided
by Theorem 2 withw = 1, ¢ = 2n: indeed, in this case we hav@S(G) = 3, yet
max gsecs(r)(v(CS) —v(I)) = 0. We can summarize these observations as follows.

Theorem 3. For any coalitional gamé& = (I,v), we have

(v(CS) —v(I)) < CoS(G) < nmng(C).

max
csecs(I) CCI



For super-additive games, we can strengthen the upper lmounsitierably. Note that in
such games the grand coalition maximizes social welfargsstability is particularly

desirable. Yet, as the second part of Theorem 4 implies rivgsstability may turn out
to be quite costly even in this restricted setting.

Theorem 4. For any super-additive gam@ = (I,v), |I| = n, we haveCoS(G) <
(v/n — 1v(I), and this bound is asymptotically tight.

For anonymous super-additive games, further improvenagatpossible.

Theorem 5. For any anonymous super-additive ga6ie= (I, v), we haveCoS(G) <
2v(T), and this bound is asymptotically tight.

A somewhat similar stability-related concept is thast core which is the set of all
imputationsp that minimize the maximaleficitv(C) — p(C). In particular, thevalue
of the least core(G), defined ag(G) = inf,ez(q){max{v(C) —p(C) | C C I}},
is strictly positive if and only if the cost of stability israttly positive. The following
proposition provides a more precise description of theticelahip between the value
of the least core and the cost of stability.

Proposition 1. For any coalitional gamé& = (I, v) with |I| = n such that(G) > 0,
we haveCoS(G) < ne(G), and this bound is asymptotically tight.

3.2 Algorithmic Properties of CoS(G)

The linear programCP* provides a way of computingoS(G) for any coalitional
gameG. However, this linear program contains exponentially meogstraints (one
for each subset af). Thus, solving it directly would be too time-consuming fopst
games. Note that for general coalitional games, this isserese, inevitable: in general,
a coalitional game is described by its characteristic fiongt.e., a list of2” numbers.
Thus, to discuss the algorithmic propertie%fS (G), we need to restrict our attention
to games with compactly representable characteristidiums

A standard approach to this issue is to consider games thabealescribed by
polynomial-size circuits. Formally, we say that a clgsef games has aompact cir-
cuit representatiornif there exists a polynomigh such that for everys € G, G =
(I,v), |I| = n, there exists a circulf of sizep(n) with n binary inputs that on input
(b1, -..,b,) outputsv(C), whereC = {i € I | b; = 1}.

Unfortunately, it turns out that having a compact circuipresentation does not
guarantee efficient computability 610S(G). Indeed, it is easy to see that WVGs with
integer weights have such a representation. However, ingkesection we will show
that computing®oS (G) for such games is computationally intractable (Theorerdve).
can, however, provide sufficientcondition for CoS (G) to be efficiently computable.
To do so, we will first formally state the relevant computatibproblems.

SUPER-IMPUTATION-STABILITY : Given a coalitional gamé& (compactly represented
by a circuit), a supplemental paymedtand an imputatiop = (pi,...,p,) in the
adjusted gamé&/(A), decide whethep € core(G(A4)).

CoS: Given a coalitional gam@ (compactly represented by a circuit) and a parameter
A, decide whethe€oS(G) < A, i.e., whetherore(G(A)) # 0.



Consider first BPER-IMPUTATION-STABILITY . Fix a gameG = (I,v). For any
super-imputatiorp for G, let d(G,p) = maxccr(v(C) — p(C)) be the maximum
deficit of a coalition undep. Clearly,p is stable if and only id(G, p) < 0. Observe
also that foranyd > 0t is easy to decide whetheris an imputation fof7(A). Thus, a
polynomial-time algorithm for computing(G, p) can be converted into a polynomial-
time algorithm for SIPER-IMPUTATION-STABILITY . Further, we can decidedsS via
solving LP* by the ellipsoid method. The ellipsoid method runs in polyia time
given a polynomial-timeeparation oraclgi.e., a procedure that takes as input a candi-
date feasible solution, checks if it indeed is feasible, itids is not the case, returns
a violated constraint. Now, given a veciprand a parameted, we can easily check if
they satisfy constraints (1)—(3), i.e. pfis an imputation fo7(A). To verify constraint
(4), we need to check b is in the core of7(A). As argued above, this can be done by
checking whethed(G, p) < 0. We summarize these results as follows.

Theorem 6. Consider a class of coalitional gamgswith a compact circuit represen-
tation. If there is an algorithm that for ang € G, G = (I,v), |I| = n, and for
any super-imputatiop for G computes!(G, p) in timepoly(n, |p|), where|p| is the
number of bits in the binary representation f then for anyG € G the problems
SUPER-IMPUTATION-STABILITY andCoS are polynomial-time solvable.

We mention in passing that for games with poly-time completalharacteristic
functions both problems are #ooNP. For SJPER-IMPUTATION-STABILITY , the mem-
bership is trivial; for @S, it follows from the fact that the gant&(A) has a poly-time
computable characteristic function as longéasloes, and hence we can apply the re-
sults of [14] (see the proof of Theorem 7 for details).

4 Cost of Stability in WVGs Without Coalition Structures

In this section, we focus on computing the cost of stabitjzine grand coalition in
WVGs. We start by considering the complexity of exact aldnis for this problem.

4.1 Exact Algorithms

In what follows, unless specified otherwise, we assume thaeéghts and the thresh-
old are integers given in binary, whereas all other numeaiameters, such as the sup-
plemental payment\ and the entries of the payoff vectpr are rationals given in bi-
nary. Standard results on linear threshold functions [dgjly that WVGs with integer
weights have a compact circuit representation. Thus, walefine the computational
problems $PER IMPUTATION-STABILITY -WVG and GS-WVG by specializing the
problems $PER IMPUTATION-STABILITY and @S to WVGs. Both of the resulting
problems turn out to be computationally hard.

Theorem 7. The problemsSUPER-IMPUTATION-STABILITY -WVG and CoS-WVG
are coNP-complete.



The reductions in the proof of Theorem 7 are froarPITION. Consequently, our
hardness results depend in an essential way on the weightsdieen in binary. Thus,
it is natural to ask what happens if the agents’ weights atgnpmially bounded (or
given in unary). It turns out that in this case the resultsesftidn 3.2 imply that SPER-
IMPUTATION-STABILITY -WVG and G®S-WVG are inP, since for WVGs with small
weights one can computEG, p) in polynomial time.

Theorem 8. SUPER-IMPUTATION-STABILITY -WVG and CoS-WVG are in P when
the agents’ weights are polynomially bounded (or given iaryj

4.2 Approximating the Cost of Stability in Weighted Voting Games

For large weights, the algorithms outlined at the end of tleipus section may not
be practical. Thus, the center may want to trade off its paytraed computation time,
i.e., provide a slightly higher supplemental payment forolitihe corresponding stable
super-imputation can be computed efficiently. It turns bat this is indeed possible,
i.e., CoS(G) can be efficiently approximated to an arbitrary degree ofipren.

Theorem 9. There exists an algorithid (G, ) that, given a WV& = [w; ¢] in which
the weights of all players are nonnegative integers givebiirary and a parameter
e > 0, outputs a valueA that satisfiesCoS(G) < A < (1 +¢€)CoS(G) and runs in
timepoly (n, log wmax, 1/€). Thatis, there exists a fully polynomial-time approxiroati
scheme (FPTAS) faf0S (G).

Moreover, one can get a 2-approximation to the adjustedsgamply by paying
each agent in proportion to her weight, and this bound cambers to be tight.

Theorem 10. For any WVGG = [w;q] with CoS(G) = A, the super-imputation
p* given byp; = min{l, %} is stable and satisfies*(I) < 2p(I) for any super-
imputationp € core(G(A4)).

5 Cost of Stability in Games with Coalition Structures

If a coalitional game is not super-additive, the formatidrilee grand coalition is not
necessarily the most desirable outcome: for example, ithmediie case that by splitting
into several teams the agents can accomplish more task®yhanorking together. In
such settings, the central authority may want to stabiliz®aition structure, i.e., a
partition of agents into teams. We now generalize the costadiility to such settings.

5.1 Stabilizing a Fixed Coalition Structure

We first consider the setting where the central authoritytesémstabilize a particular
coalition structure.

Given a coalitional gamé&' = (I,v), a coalition structure®S = (C1,...,C™)
over] and a vectorA = (Al,..., A™), letG(A) be the game with the set of agetits
and the characteristic functia given byv' (C?) = v(C?) + Aé fori = 1,...,m and



v'(C) = v(C) foranyC ¢ {C1,...,C™}. We say that the gam@(A) is stable with
respect toC'S if there exists an imputatiop € Z(CS,G(A)) such that CS, p) is in

the CS-core of7(A). Also, we say that an external paymetstabilizesa coalition
structureCS with respect to a gamé' if there existA! > 0,...,A™ > 0 such that
A= A + .-+ A™ and the gam&(A) is stable with respect t€'S. We are now
ready to define the cost of stability of a coalition structGi®in G.

Definition 6. Given a coalitional gamé& = (I,v) and a coalition structureC'S =
(C1,...,C™) overI, thecost of stabilityCoS(CS,G) of the coalition structureC'S
in G is the smallest external payment needed to stabdiZei.e.,

CoS(CS,G) =inf{)_ A*|A*>0fori=1,...,m and
=1

Ip € I(CS,G(A)) st. (CS,p) € CS-coréG(A))}.

Fix a gameG = (I,v) and setnax = maxccrv(C). Itis easy to see that for any
coalition structureCS = (C%,...,C™) the gameG(A), where A? = |Ct|vmax,
is stable with respect t@’S, and thereforeCoS(CS, G) is well-defined and satisfies
CoS(CS,G) < numax. Moreover, as in the case of games without coalition struc-
tures, the value'oS(CS, @) can be obtained as an optimal solution to a linear pro-
gram. Indeed, we can simply take the linear prog&®i and replace the constraint
> icr pi = v(I)+Awith the constraind ;. ; p; = v(CS)+A. Itis not hard to see that
the resulting linear program, which we will denote BP .5, computeCoS(CS, G):
in particular, the constraintd? > 0 for i = 1,...,m are implicitly captured by the
constraintsy ", : pi > v(C?) in line (4) of LP .

We now turn to the question of computing the cost of stabititya given coali-
tion structure in WVGs. To this end, we will modify the deoisiproblems stated in
Section 4.1 as follows.

SUPERIMPUTATION-STABILITY -WVG-CS: Given a WVGH = [w; ¢] with the set of
agentd, a coalition structur€S = (C*,...,C™) overl,avectorA = (Al, ..., A™)
and an imputatiop € Z(CS,G(A)), decide if(CS, p) is in the CS-core off (A).

CoS-WVG-CS: Given a WVGT = [w; g] with the set of agent$, a coalition struc-
ture CS overI and a parametef,, decide whethe€oS(CS,G) < A.

The results of Section 4.1 immediately imply that both oftheroblems are com-
putationally hard even fom = 1. Moreover, using the results of [9], we can show
that SUPER-IMPUTATION-STABILITY -WVG-CS remainsoNP-complete even iA is
fixed to be(0, .. ., 0). On the other hand, when weights are integers given in ubaty,
CoS-WVG-CS and BPER-IMPUTATION-STABILITY -WVG-CS are polynomial-time
solvable. Indeed, to solveUBER-IMPUTATION-STABILITY -WVG-CS, one needs to
check if there is a coalitiol’ with w(C) > ¢, p(C') < 1. This can be done us-
ing the dynamic programming algorithm from the proof of Treen 8. Moreover, to
solve @MS-WVG-CS, we can simply run the ellipsoid algorithm on tme&r program
LPg described earlier in this section, using the algorithm foPSR-IMPUTATION-
STABILITY -WVG-CS as a separation oracle. Thus, we obtain the follgwésult.



Theorem 11. When all players’ weights are integers given in unary, thebtems
CoS-WVG-CSand SUPER-IMPUTATION-STABILITY -WVG-CSare inP.

Finally, we adapt the approximation algorithm presentefi@ntion 4.2 to this setting.

Theorem 12. There exists an FPTAS fa@toS(CS,G) in WVGs.

5.2 Finding the Cheapest Coalition Structure to Stabilize

So far, we have focused on the setting where the external pamts to stabilize a
particular coalition structure. However, it can also bedhase that the central authority
simply wants to achieve stability, and does not care whigiitton structure arises, as
long as it can be made stable using as little money as pos¥iklevill now introduce
the notion ofcost of stability for games with coalition structurescapture this type of
setting. Recall tha€S(I) denotes the set of all coalition structures oler

Definition 7. Given a coalitional gamé& = (I,v), let thecost of stability forG with
coalition structuresdenoted byCoS ¢s(G), bemin{ CoS(CS,G) | CS € CS(I)}.

Clearly, one can comput€oS ¢s(G) by enumerating all coalition structures over
and picking the one with the smallest value@fS (CS, G). Alternatively, note that the
linear programCP¢,¢ depends only on the value of the coalition structG® Hence,
stabilizing all coalition structures with the same totdleshas the same cost. Moreover,
this implies that the cheapest coalition structure to $tabis the one that maximizes
social welfare. Hence, if we could compute the value of thadition structureC'S™* that
maximizes social welfare, we could fir€bS ¢s(G) by solvingLP g .

For WVGs, paper [9] (see Theorem 2 there) shows that if weigin¢ given in
binary, it is NP-hard to decide whether a given game has amptyeCS-core. As this
question is equivalent to asking whett@S ¢s (G) = 0, the latter problem is NP-hard,
too. One might hope that computiti®pS o5 (G) is easy if the weights of all players are
given in unary. However, this does not seem to be the caseethaur algorithms for
computing the cost of stability in other settings relied olving the corresponding lin-
ear program. To implement this approach in our scenario, mgdneed to compute the
value of the coalition structure that maximizes social asf However, a straightfor-
ward reduction from 3-ERTITION, a classic problem that is known to be NP-hard even
for unary weights, shows that the latter problem is NP-hamhdf weights are given
in unary. While this does not immediately imply that compgtCoS ¢s (G) is hard for
small weights, it means that finding the cheapest-to-stabilutcome is NP-hard even
if weights are given in unary.

5.3 Stabilizing a Particular Coalition

We now consider the case where the central authority wardst@plar group of agents
to work together, but does not care about the stability obtherall game. Thus, it wants
to identify a coalition structure containing a particularatition C' and the minimal
subsidy to the players that ensures that no set of playersntiades members of’
wants to deviate. We omit the formal definition of the cormwting cost of stability



concept, as well as its algorithmic analysis due to spacstrints. However, we would
like to mention several subtle points that arise in this egntFirst, one might think
that the optimal way to stabilize a coalition is to offer pamts to members of this
coalition only. However, this turns out not to be true (sep.[3econd, stabilizing a
given coalition may be strictly cheaper than stabilizargy of the coalition structures
that contain it (see [2]). Thus choosing a good definitionhaf tost of stability of an
individual coalition is a nontrivial issue.

6 Related Work

The complexity of various solution concepts in coalitiogaimes is a well-studied
topic [6, 13,7, 23]. In particular, [10] analyzes some intpat computational aspects
of stability in WVGs, proving a number of results on the coaxity of the least core
and the nucleolus. The complexity of the CS-core in WVGsldisd in [9]. Paper [15]

is similar to ours in spirit. It considers the setting whereexternal party intervenes
in order to achieve a certain outcome using monetary paysnétawever, [15] deals
with the very different domain aforncooperative games. There are also similarities be-
tween our work and the recent research on bribery in eles{ibh], where an external
party pays voters to change their preferences in order teraakven candidate win. A
companion paper [18] studies the cost of stability in nelwitmw games.

7 Conclusion

We have examined the possibility of stabilizing a coalitibgame by offering the agents
additional payments in order to discourage them from dingatind defined the cost
of stability as the minimal total payment that allows a stattivision of the gains. We
focused on the computational aspects of this concept foghted voting games. In
the setting where the outcome to be stabilized is the graatitiom, we provided a
complete picture of the computational complexity of theted decision problems. We
then extended our results to settings where agents can fooaliéion structure.

There are several lines of possible future research. Ritste the focus of this
paper was on weighted voting games, the notion of the coshbilisy is defined for any
coalitional game. Therefore, a natural research direésiom study the cost of stability
in other classes of games. Second, we would like to develagitarlunderstanding of
the relationship between the cost of stability of a game ji@rdast core and nucleolus.
Finally, it would be interesting to extend the notion of tlestof stability to games with
nontransferable utility and partition function games.
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