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Abstract. A key question in cooperative game theory is that of coalitional sta-
bility, usually captured by the notion of thecore—the set of outcomes such that
no subgroup of players has an incentive to deviate. However,some coalitional
games have empty cores, and any outcome in such a game is unstable.
In this paper, we investigate the possibility of stabilizing a coalitional game by
using external payments. We consider a scenario where an external party, which
is interested in having the players work together, offers a supplemental payment
to the grand coalition (or, more generally, a particular coalition structure). This
payment is conditional on players not deviating from their coalition(s). The sum
of this payment plus the actual gains of the coalition(s) maythen be divided
among the agents so as to promote stability. We define thecost of stability (CoS)
as the minimal external payment that stabilizes the game.
We provide general bounds on the cost of stability in severalclasses of games, and
explore its algorithmic properties. To develop a better intuition for the concepts
we introduce, we provide a detailed algorithmic study of thecost of stability in
weighted voting games, a simple but expressive class of games which can model
decision-making in political bodies, and cooperation in multiagent settings. Fi-
nally, we extend our model and results to games with coalition structures.

1 Introduction

In recent years, algorithmic game theory, an emerging field that combines computer sci-
ence, game theory and social choice, has received much attention from the multiagent
community [19, 8, 22, 20]. Indeed, multiagent systems research focuses on designing in-
telligent agents, i.e., entities that can coordinate, cooperate and negotiate without requir-
ing human intervention. In many application domains, such agents areself-interested,
i.e., they are built to maximize the rewards obtained by their creators. Therefore, these
agents can be modeled naturally using game-theoretic tools. Moreover, as agents often
have to function in rapidly changing environments, computational considerations are of
great concern to their designers as well.

In many settings, such as online auctions and other types of markets, agents act
individually. In this case, the standard notions of noncooperative game theory, such as
Nash equilibriumordominant-strategy equilibrium, provide a prediction of the outcome
of the interaction. However, another frequently occurringtype of scenario is that agents



need to form teams to achieve their individual goals. In suchdomains, the focus turns
from the interaction between single agents to the capabilities of subsets, orcoalitions, of
agents. Thus, a more appropriate modeling toolkit for this setting is that ofcooperative,
or coalitional, game theory [4], which studies what coalitions are most likely to arise,
and how their members distribute the gains from cooperation. When agents are self-
interested, the latter question is obviously of great importance. Indeed, thetotal utility
generated by the coalition is of little interest to individual agents; rather, each agent
aims to maximize her own utility. Thus, astablecoalition can be formed only if the
gains from cooperation can be distributed in a way that satisfies all agents.

The most prominent solution concept that aims to formalize the idea of stability in
coalitional games is thecore. Informally, anoutcomeof a coalitional game is apayoff
vectorwhich for each agent lists her share of the profit of thegrand coalition, i.e., the
coalition that includes all agents. An outcome is said to be in the core if it distributes
gains so that no subset of agents has an incentive to abandon the grand coalition and
form a coalition of their own. It can be argued that the concept of the core captures
the intuitive notion of stability in cooperative settings.However, it has an important
drawback: the core of a game may be empty. In games with empty cores, any outcome
is unstable, and therefore there is always a group of agents that is tempted to abandon the
existing plan. This observation has triggered the invention of less demanding solution
concepts, such as�-core and the least core, as well as an interest in noncooperative
approaches to identifying stable outcomes in coalitional games [5, 17].

In this paper, we approach this issue from a different perspective. Specifically, we
examine the possibility of stabilizing the outcome of a gameusing external payments.
Under this model, an external party (thecenter), which can be seen as a central authority
interested in stable functioning of the system, attempts toincentivize a coalition of
agents to cooperate in a stable manner. This party does this by offering the members of
a coalition a supplemental payment if they cooperate. This external payment is given to
the coalition as a whole, and is provided only if this coalition is formed.

Clearly, when the supplemental payment is large enough, theresulting outcome is
stable: the profit that the deviators can make on their own is dwarfed by the subsidy
they could receive by sticking to the prescribed solution. However, normally the exter-
nal party would want to minimize its expenditure. Thus, in this paper we define and
study thecost of stability, which is the minimal supplemental payment that is required
to ensure stability in a coalitional game. We start by considering this concept in the con-
text where the central authority aims to ensure thatall agents cooperate, i.e., it offers
a supplemental payment in order to stabilize the grand coalition. We then extend our
analysis to the setting where the goal of the center is the stability of a coalition struc-
ture, i.e., a partition of all agents into disjoint coalitions. In this setting, the center does
not expect the agents to work as a single team, but nevertheless wants each individual
team to be immune to deviations. Finally, we consider the scenario where the center is
concerned with the stability of a particular coalition within a coalition structure. This
model is appropriate when the central authority wants a particular group of agents to
work together, but is indifferent to other agents switchingcoalitions.

We first provide bounds on the cost of stability in general coalitional games. We then
show that for some interesting special cases, such as super-additive games, these bounds



can be improved considerably. We also propose a general algorithmic technique for
computing the cost of stability. Then, to develop a better understanding of the concepts
proposed in the paper, we apply them in the context ofweighted voting games(WVGs),
a simple but powerful class of games that have been used to model cooperation in
settings as diverse as, on the one hand, decision-making in political bodies such as the
United Nations Security Council and the International Monetary Fund and, on the other
hand, resource allocation in multiagent systems. For such games, we are able to obtain
a complete characterization of the cost of stability from analgorithmic perspective.

The paper is organized as follows. In Section 2, we provide the necessary back-
ground on coalitional games. In Section 3, we formally definethe cost of stability for
the setting where the desired outcome is the grand coalition, prove bounds on the cost
of stability, and outline a general technique for computingit. We then focus on the
computational aspects of the cost of stability in the context of our selected domain,
i.e., weighted voting games. In Section 4.1, we demonstratethat computing the cost of
stability in such games is����

-hard if the weights are given in binary. On the other
hand, for unary weights, we provide an efficient algorithm for this problem. We also
investigate whether the cost of stability can be efficientlyapproximated. In Section 4.2,
we answer this question positively by describing a fully polynomial-time approxima-
tion scheme (FPTAS) for our problem. We complement this result by showing that, by
distributing the payments in a very natural manner, we get within a factor of 2 of the
optimal adjusted gains, i.e., the sum of the value of the grand coalition and the external
payments. While this method of allocating payoffs does not necessarily minimize the
center’s expenditure, the fact that it is both easy to implement and has a bounded worst-
case performance may make it an attractive proposition in certain settings. In Section 5,
we extend our discussion to the setting where the center aimsto stabilize an arbitrary
coalition structure, or a particular coalition within it, rather than the grand coalition. We
end the paper with a discussion of related work and some conclusions.

We omit some of the proofs due to space constraints; the full version of the paper
(with all proofs included) is available online [2]. A preliminary version of this paper
was published in AAMAS’09 [3].

2 Preliminaries

Throughout this paper, given a vector� � �� � � 	 	 	 � �
 � and a set�  ��� 	 	 	 � � � we
write � �� � to denote���� �� .
Definition 1. A (transferable utility) coalitional game� � �� � � � is given by a set of
agents(synonymously,players) � � ��� 	 	 	 � � � and acharacteristic function� � �� ��� � � � that for any subset (coalition) of agents lists the total utility these agents
achieve by working together. We assume� �!� �  .

A coalitional game� � �� � � � is calledincreasingif for all coalitions� "  � we
have� �� " � # � �� �, andsuper-additiveif for all disjoint coalitions� � � "  � we have� �� � $ � �� " � # � �� � � " �. Note that since� �� � %  for any�  � , all super-additive
games are increasing. A coalitional game� � �� � � � is calledsimpleif it is increasing
and� �� � & � � �� for all �  � . In a simple game, we say that a coalition�  � wins



if � �� � � �, andlosesif � �� � �  . Finally, a coalitional game is calledanonymous
if � �� � � � �� " � for any� � � "  � such that�� � � �� " �. A particular class of simple
games considered in this paper is that ofweighted voting games(WVGs).

Definition 2. A weighted voting gameis a simple coalitional game given by a set of
agents� � ��� 	 	 	 � � �, a vector� � �� � � 	 	 	 �� 
 � of nonnegative weights, where� �
is agent�’s weight, and a threshold� . Theweight of a coalition�  � is � �� � �
� ��� � �. A coalition� wins the game(i.e., � �� � � �) if � �� � % �, and loses the
game(i.e., � �� � �  ) if � �� � � �.

We denote the WVG with the weights� � �� � � 	 	 	 �� 
 � and the threshold� as�� � � � or
�� � � 	 	 	 �� 
 � � �. Also, we set�	
� � �� ��� � �. It is easy to see that WVGs

are simple games; however, they are not necessarily super-additive. Throughout this
paper, we assume that� �� � % �, i.e., the grand coalition wins.

The characteristic function of a coalitional game defines only the total gains a coali-
tion achieves, but does not offer a way of distributing them among the agents. Such a
division is called an imputation (or, sometimes, a payoff vector).

Definition 3. Given a coalitional game� � �� � � �, a vector� � �� � � 	 	 	 �� 
 � & �

is called animputation for� if it satisfies� � % � ����� for each�, � # � # � , and
�



�� � � � � � �� �. We call� � thepayoff of agent�; the total payoff of a coalition�  �

is given by� �� �. We write� �� � to denote the set of all imputations for� .

For an imputation to be stable, it should be the case that no subset of players has
an incentive to deviate. Formally, we say that a coalition� blocksan imputation� �
�� � � 	 	 	 �� 
 � if � �� � � � �� �. Thecore of a coalitional game� is defined as the set
of imputations not blocked by any coalition, i.e.,���� �� � � �� & � �� � � � �� � %
� �� � for each�  � �. An imputation in the core guarantees the stability of the grand
coalition. However, the core can be empty.

In WVGs, and, more generally, in simple games, one can characterize the core us-
ing the notion of veto agents, i.e., agents that are indispensable for forming a winning
coalition. Formally, given a simple coalitional game� � �� � � �, an agent� & � is said
to be aveto agentif for all coalitions�  � � ��� we have� �� � �  . The following is
a folklore result regarding nonemptiness of the core.

Theorem 1. Let � � �� � � � be a simple coalitional game. If there are no veto agents
in � , then the core of� is empty. Otherwise, let� " � ��� � 	 	 	 � �� � be the set of veto
agents in� . Then the core of� is the set of imputations that distribute all the gains
among the veto agents only, i.e.,���� �� � � �� & � �� � � � �� " � � ��.

So far, we have tacitly assumed that the only possible outcome of a coalitional
game is the formation of the grand coalition. However, oftenit makes more sense for
the agents to form several disjoint coalitions, each of which can focus on its own task.
For example, WVGs can be used to model the setting where each agent has a certain
amount of resources (modeled by her weight), and there are a number of identical tasks
each of which requires a certain amount of these resources (modeled by the threshold)
to be completed. In this setting, the formation of the grand coalition means that only
one task will be completed, even if there are enough resources for several tasks.



The situation when agents can split into teams to work on several tasks simulta-
neously can be modeled using the notion of a coalition structure, i.e., a partition of
the set of agents into disjoint coalitions. Formally, we saythat �� � �� � � 	 	 	 � � � �
is a coalition structureover a set of agents� if ���� � � � � � and� � � � � � ! for
all � �� � ; we write �� & � � �� �. Also, we overload notation by writing� ��� � to
denote�� 	 �
� � �� � �. If coalition structures are allowed, an outcome of a game is
not just an imputation, but a pair��� � � �, where� is an imputation for the coalition
structure�� , i.e., � distributes the gains of every coalition in�� among its mem-
bers. Formally, we say that� � �� � � 	 	 	 �� 
 � is animputation for a coalition structure
�� � �� � � 	 	 	 � � � � in a game� � �� � � � if � � %  for all �, � # � # �, and� �� � � � � �� � � for all � , � # � # � ; we write � & � ��� � � �. We can also gener-
alize the notion of the core introduced earlier in this section to games with coalition
structures. Namely, given a game� � �� � � �, we say that an outcome��� �� � is in the
CS-core of� if �� is a coalition structure over� , � & � ��� � � � and� �� � % � �� �
for all �  � ; we write ��� �� � & CS-core�� �. Note that if� is in the core of� then
�� �� � is in the CS-core of� ; however, the converse is not necessarily true.

3 The Cost of Stability

In many games, forming the grand coalition maximizes socialwelfare; this happens, for
example, in super-additive games. However, the core of suchgames may still be empty.
In this case, it would be impossible to distribute the gains of the grand coalition in a
stable way, so it may fall apart despite being socially optimal. Thus, an external party,
such as a benevolent central authority, may want to incentivize the agents to cooperate,
e.g., by offering the agents a supplemental payment if they stay in the grand coalition.
This situation can be modeled as anadjusted coalitional gamederived from the original
coalitional game� .

Definition 4. Given a coalitional game� � �� � � � and %  , theadjusted coalitional
game� � � � �� � � " � is given by� " �� � � � �� � for � �� � , and� " �� � � � �� � $  .

We call � " �� � � � �� � $  theadjusted gainsof the grand coalition. We say that a
vector� & �


is asuper-imputationfor a game� � �� � � � if � � %  for all � & � and� �� � % � �� �. Furthermore, we say that a super-imputation� is stableif � �� � % � �� �
for all �  � . A super-imputation� with � �� � � � �� � $  distributes the adjusted
gains, i.e., it is an imputation for� � �; it is stable if and only if it is in the core of
� � �. We say that a supplemental payment stabilizesthe grand coalition in a game
� if the adjusted game� � � has a nonempty core. Clearly, if is large enough (e.g.,
 � � ��� �� � �� �), the game� � � will have a nonempty core. However, usually
the central authority wants to spend as little money as possible. Hence, we define the
cost of stability as thesmallestexternal payment that stabilizes the grand coalition.

Definition 5. Given a coalitional game� � �� � � �, its cost of stability ��� �� � is
defined as��� �� � � ��� � �  %  �� ���� �� � �� �� !�.
We have argued that the set� �  %  and���� �� � �� �� !� is nonempty. There-
fore,� � � is well-defined. Now, we prove that this set contains its greatest lower bound



��� �� �, i.e., that the game� ���� �� �� has a nonempty core. While this can be shown
using a continuity argument, we will now give a different proof, which will also be use-
ful for exploring the cost of stability from an algorithmic perspective. Fix a coalitional
game� � �� � � � and consider the following linear program�� �:

� ��  subject to:

 %  � (1)
� � %  for each� � �� 	 	 	 � � � (2)�

���
� � � � �� � $  � (3)

�
���

� � % � �� � for all �  � 	 (4)

It is not hard to see that the optimal value of this linear program is exactly��� �� �.
Moreover, any optimal solution of�� � corresponds to an imputation in the core of
� ���� �� �� and therefore the game� ���� �� �� has a nonempty core.

As an example, consider a uniform weighted voting game, i.e., a WVG� � �� � � �
with � � � � � � � � 
 � � . We can derive an explicit formula for��� �� �.
Theorem 2. For a WVG� � �� �� � 	 	 	 �� � ��, we have��� �� � � 
���� 	 
 �.
For example, if� �� 
 �� � � # ��, then��� �� � �  , i.e.,� has a nonempty core.
On the other hand, if� � �, � � �� and� � �� for some integer�   , i.e.,� � �

� �,
we have��� �� � � �

� 
 � � �
� .

3.1 Bounds on��� �� � in General Coalitional Games

Consider an arbitrary coalitional game� � �� � � �. Clearly, ��� �� � �  if and only
if � has a nonempty core. Further, we have argued that��� �� � is upper-bounded by� ��� �� � �� �, i.e., ��� �� � is finite for any fixed coalitional game. Moreover, the
bound of� ��� �� � �� � is (almost) tight. To see this, consider a (simple) game� "
given by� " �!� �  and� " �� � � � for all � �� !. Clearly, we have��� �� " � � � 
 �:
any super-imputation that pays some agent less than� will not be stable, whereas setting� � � � for all � & � ensures stability. Thus, the cost of stability can be quite large relative
to the value of the grand coalition.

On the other hand, we can provide a lower bound on��� �� � in terms of the val-
ues of coalition structures over� . Indeed, for an arbitrary coalition structure�� &
�� �� �, we have��� �� � % � ��� � 
 � �� �. To see this, note that if the total payment
to the grand coalition is less than�� ��� � 
 � �� �� $ � �� �, then for some coalition
� & �� it will be the case that� �� � � � �� �. It would be tempting to conjecture
that ��� �� � � �� 
� ��� �� � �� ��� � 
 � �� ��. However, a counterexample is provided
by Theorem 2 with� � �, � � �

� �: indeed, in this case we have��� �� � � �
� , yet

�� 
� ��� �� � �� ��� � 
 � �� �� �  . We can summarize these observations as follows.

Theorem 3. For any coalitional game� � �� � � �, we have

��
� ��� �� � �
� �� � � 
 � �� �� # ��� �� � # � ��� �� � �� � 	



For super-additive games, we can strengthen the upper boundconsiderably. Note that in
such games the grand coalition maximizes social welfare, soits stability is particularly
desirable. Yet, as the second part of Theorem 4 implies, ensuring stability may turn out
to be quite costly even in this restricted setting.

Theorem 4. For any super-additive game� � �� � � �, �� � � �, we have��� �� � #
��� 
 ��� �� �, and this bound is asymptotically tight.

For anonymous super-additive games, further improvementsare possible.

Theorem 5. For any anonymous super-additive game� � �� � � �, we have��� �� � #
�� �� �, and this bound is asymptotically tight.

A somewhat similar stability-related concept is theleast core, which is the set of all
imputations� that minimize the maximaldeficit � �� � 
 � �� �. In particular, thevalue
of the least core� �� �, defined as� �� � � ��� ��� �� � ��� �� �� � 
 � �� � � �  � ��,
is strictly positive if and only if the cost of stability is strictly positive. The following
proposition provides a more precise description of the relationship between the value
of the least core and the cost of stability.

Proposition 1. For any coalitional game� � �� � � � with �� � � � such that� �� � %  ,
we have��� �� � # �� �� �, and this bound is asymptotically tight.

3.2 Algorithmic Properties of ��� �� �
The linear program�� � provides a way of computing��� �� � for any coalitional
game� . However, this linear program contains exponentially manyconstraints (one
for each subset of� ). Thus, solving it directly would be too time-consuming formost
games. Note that for general coalitional games, this is, in asense, inevitable: in general,
a coalitional game is described by its characteristic function, i.e., a list of�
 numbers.
Thus, to discuss the algorithmic properties of��� �� �, we need to restrict our attention
to games with compactly representable characteristic functions.

A standard approach to this issue is to consider games that can be described by
polynomial-size circuits. Formally, we say that a class� of games has acompact cir-
cuit representationif there exists a polynomial� such that for every� & � , � �
�� � � �, �� � � �, there exists a circuit� of size� �� � with � binary inputs that on input
��� � 	 	 	 � �
 � outputs� �� �, where� � �� & � � �� � ��.

Unfortunately, it turns out that having a compact circuit representation does not
guarantee efficient computability of��� �� �. Indeed, it is easy to see that WVGs with
integer weights have such a representation. However, in thenext section we will show
that computing��� �� � for such games is computationally intractable (Theorem 7).We
can, however, provide asufficientcondition for ��� �� � to be efficiently computable.
To do so, we will first formally state the relevant computational problems.

SUPER-IMPUTATION-STABILITY : Given a coalitional game� (compactly represented
by a circuit), a supplemental payment and an imputation� � �� � � 	 	 	 �� 
 � in the
adjusted game� � �, decide whether� & ���� �� � ��.
COS: Given a coalitional game� (compactly represented by a circuit) and a parameter
 , decide whether��� �� � #  , i.e., whether���� �� � �� �� !.



Consider first SUPER-IMPUTATION-STABILITY . Fix a game� � �� � � �. For any
super-imputation� for � , let � �� � � � � ��� �� �� �� � 
 � �� �� be the maximum
deficit of a coalition under� . Clearly,� is stable if and only if� �� � � � #  . Observe
also that for any   it is easy to decide whether� is an imputation for� � �. Thus, a
polynomial-time algorithm for computing� �� � � � can be converted into a polynomial-
time algorithm for SUPER-IMPUTATION-STABILITY . Further, we can decide COS via
solving �� � by the ellipsoid method. The ellipsoid method runs in polynomial time
given a polynomial-timeseparation oracle, i.e., a procedure that takes as input a candi-
date feasible solution, checks if it indeed is feasible, andif this is not the case, returns
a violated constraint. Now, given a vector� and a parameter , we can easily check if
they satisfy constraints (1)–(3), i.e., if� is an imputation for� � �. To verify constraint
(4), we need to check if� is in the core of� � �. As argued above, this can be done by
checking whether� �� � � � #  . We summarize these results as follows.

Theorem 6. Consider a class of coalitional games� with a compact circuit represen-
tation. If there is an algorithm that for any� & � , � � �� � � �, �� � � �, and for
any super-imputation� for � computes� �� �� � in time�� �� �� � �� ��, where �� � is the
number of bits in the binary representation of�, then for any� & � the problems
SUPER-IMPUTATION-STABILITY andCOS are polynomial-time solvable.

We mention in passing that for games with poly-time computable characteristic
functions both problems are in����

. For SUPER-IMPUTATION-STABILITY , the mem-
bership is trivial; for COS, it follows from the fact that the game� � � has a poly-time
computable characteristic function as long as� does, and hence we can apply the re-
sults of [14] (see the proof of Theorem 7 for details).

4 Cost of Stability in WVGs Without Coalition Structures

In this section, we focus on computing the cost of stabilizing the grand coalition in
WVGs. We start by considering the complexity of exact algorithms for this problem.

4.1 Exact Algorithms

In what follows, unless specified otherwise, we assume that all weights and the thresh-
old are integers given in binary, whereas all other numeric parameters, such as the sup-
plemental payment and the entries of the payoff vector� , are rationals given in bi-
nary. Standard results on linear threshold functions [16] imply that WVGs with integer
weights have a compact circuit representation. Thus, we candefine the computational
problems SUPER-IMPUTATION-STABILITY -WVG and COS-WVG by specializing the
problems SUPER-IMPUTATION-STABILITY and COS to WVGs. Both of the resulting
problems turn out to be computationally hard.

Theorem 7. The problemsSUPER-IMPUTATION-STABILITY -WVG and COS-WVG
are ����

-complete.



The reductions in the proof of Theorem 7 are from PARTITION. Consequently, our
hardness results depend in an essential way on the weights being given in binary. Thus,
it is natural to ask what happens if the agents’ weights are polynomially bounded (or
given in unary). It turns out that in this case the results of Section 3.2 imply that SUPER-
IMPUTATION-STABILITY -WVG and COS-WVG are in

�
, since for WVGs with small

weights one can compute� �� �� � in polynomial time.

Theorem 8. SUPER-IMPUTATION-STABILITY -WVG andCOS-WVG are in
�

when
the agents’ weights are polynomially bounded (or given in unary).

4.2 Approximating the Cost of Stability in Weighted Voting Games

For large weights, the algorithms outlined at the end of the previous section may not
be practical. Thus, the center may want to trade off its payment and computation time,
i.e., provide a slightly higher supplemental payment for which the corresponding stable
super-imputation can be computed efficiently. It turns out that this is indeed possible,
i.e., ��� �� � can be efficiently approximated to an arbitrary degree of precision.

Theorem 9. There exists an algorithm� �� � � � that, given a WVG� � �� � � � in which
the weights of all players are nonnegative integers given inbinary and a parameter
�   , outputs a value that satisfies��� �� � #  # �� $ � ���� �� � and runs in
time�� �� �� � ��� �	
� � ��� �. That is, there exists a fully polynomial-time approximation
scheme (FPTAS) for��� �� �.

Moreover, one can get a 2-approximation to the adjusted gains simply by paying
each agent in proportion to her weight, and this bound can be shown to be tight.

Theorem 10. For any WVG� � �� � � � with ��� �� � �  , the super-imputation
� � given by� �� � � �� ��� � �� � is stable and satisfies� � �� � # �� �� � for any super-
imputation� & ���� �� � ��.

5 Cost of Stability in Games with Coalition Structures

If a coalitional game is not super-additive, the formation of the grand coalition is not
necessarily the most desirable outcome: for example, it maybe the case that by splitting
into several teams the agents can accomplish more tasks thanby working together. In
such settings, the central authority may want to stabilize acoalition structure, i.e., a
partition of agents into teams. We now generalize the cost ofstability to such settings.

5.1 Stabilizing a Fixed Coalition Structure

We first consider the setting where the central authority wants to stabilize a particular
coalition structure.

Given a coalitional game� � �� � � �, a coalition structure�� � �� � � 	 	 	 � � � �
over� and a vector� � � � � 	 	 	 �� �, let � �� � be the game with the set of agents�
and the characteristic function� " given by� " �� � � � � �� � � $  �

for � � �� 	 	 	 �� and



� " �� � � � �� � for any� �& �� � � 	 	 	 � � � �. We say that the game� �� � is stable with
respect to�� if there exists an imputation� & � ��� � � �� �� such that��� �� � is in
the CS-core of� �� �. Also, we say that an external payment stabilizesa coalition
structure�� with respect to a game� if there exist � %  � 	 	 	 �� %  such that
 �  � $ � � � $ � and the game� �� � is stable with respect to�� . We are now
ready to define the cost of stability of a coalition structure�� in � .

Definition 6. Given a coalitional game� � �� � � � and a coalition structure�� �
�� � � 	 	 	 � � � � over � , thecost of stability��� ��� � � � of the coalition structure��
in � is the smallest external payment needed to stabilize�� , i.e.,

��� ��� � � � � ��� �
��
�� �

 � � � %  ��� � � �� 	 	 	 �� ��
�� & � ��� � � �� �� � 	� 	 ��� �� � & CS-core�� �� ���	

Fix a game� � �� � � � and set�	
� � ��� �� � �� �. It is easy to see that for any
coalition structure�� � �� � � 	 	 	 � � � � the game� �� �, where � � �� � ��	
� ,
is stable with respect to�� , and therefore��� ��� � � � is well-defined and satisfies
��� ��� � � � # ��	
� . Moreover, as in the case of games without coalition struc-
tures, the value��� ��� � � � can be obtained as an optimal solution to a linear pro-
gram. Indeed, we can simply take the linear program�� � and replace the constraint
���� � � � � �� �$ with the constraint���� � � � � ��� �$ . It is not hard to see that
the resulting linear program, which we will denote by�� �
� , computes��� ��� � � �:
in particular, the constraints � %  for � � �� 	 	 	 �� are implicitly captured by the
constraints���� � � � % � �� � � in line (4) of�� �
� .

We now turn to the question of computing the cost of stabilityof a given coali-
tion structure in WVGs. To this end, we will modify the decision problems stated in
Section 4.1 as follows.

SUPER-IMPUTATION-STABILITY -WVG-CS: Given a WVG� � �� � � � with the set of
agents� , a coalition structure�� � �� � � 	 	 	 � � � � over� , a vector� � � � � 	 	 	 �� �
and an imputation� & � ��� � � �� ��, decide if��� �� � is in the CS-core of� �� �.
COS-WVG-CS: Given a WVG� � �� � � � with the set of agents� , a coalition struc-
ture �� over� and a parameter , decide whether��� ��� � � � #  .

The results of Section 4.1 immediately imply that both of these problems are com-
putationally hard even for� � �. Moreover, using the results of [9], we can show
that SUPER-IMPUTATION-STABILITY -WVG-CS remains����

-complete even if� is
fixed to be� � 	 	 	 �  �. On the other hand, when weights are integers given in unary,both
COS-WVG-CS and SUPER-IMPUTATION-STABILITY -WVG-CS are polynomial-time
solvable. Indeed, to solve SUPER-IMPUTATION-STABILITY -WVG-CS, one needs to
check if there is a coalition� with � �� � % � , � �� � � �. This can be done us-
ing the dynamic programming algorithm from the proof of Theorem 8. Moreover, to
solve COS-WVG-CS, we can simply run the ellipsoid algorithm on the linear program
�� �
� described earlier in this section, using the algorithm for SUPER-IMPUTATION-
STABILITY -WVG-CS as a separation oracle. Thus, we obtain the following result.



Theorem 11. When all players’ weights are integers given in unary, the problems
COS-WVG-CSandSUPER-IMPUTATION-STABILITY -WVG-CSare in

�
.

Finally, we adapt the approximation algorithm presented inSection 4.2 to this setting.

Theorem 12. There exists an FPTAS for��� ��� � � � in WVGs.

5.2 Finding the Cheapest Coalition Structure to Stabilize

So far, we have focused on the setting where the external party wants to stabilize a
particular coalition structure. However, it can also be thecase that the central authority
simply wants to achieve stability, and does not care which coalition structure arises, as
long as it can be made stable using as little money as possible. We will now introduce
the notion ofcost of stability for games with coalition structuresto capture this type of
setting. Recall that� � �� � denotes the set of all coalition structures over� .

Definition 7. Given a coalitional game� � �� � � �, let thecost of stability for� with
coalition structures, denoted by��� 
� �� �, be� �� ���� ��� � � � � �� & � � �� ��.
Clearly, one can compute��� 
� �� � by enumerating all coalition structures over�
and picking the one with the smallest value of��� ��� � � �. Alternatively, note that the
linear program�� �
� depends only on the value of the coalition structure�� . Hence,
stabilizing all coalition structures with the same total value has the same cost. Moreover,
this implies that the cheapest coalition structure to stabilize is the one that maximizes
social welfare. Hence, if we could compute the value of the coalition structure�� � that
maximizes social welfare, we could find��� 
� �� � by solving�� �
� � .

For WVGs, paper [9] (see Theorem 2 there) shows that if weights are given in
binary, it is NP-hard to decide whether a given game has a nonempty CS-core. As this
question is equivalent to asking whether��� 
� �� � �  , the latter problem is NP-hard,
too. One might hope that computing��� 
� �� � is easy if the weights of all players are
given in unary. However, this does not seem to be the case. Indeed, our algorithms for
computing the cost of stability in other settings relied on solving the corresponding lin-
ear program. To implement this approach in our scenario, we would need to compute the
value of the coalition structure that maximizes social welfare. However, a straightfor-
ward reduction from 3-PARTITION, a classic problem that is known to be NP-hard even
for unary weights, shows that the latter problem is NP-hard even if weights are given
in unary. While this does not immediately imply that computing ��� 
� �� � is hard for
small weights, it means that finding the cheapest-to-stabilize outcome is NP-hard even
if weights are given in unary.

5.3 Stabilizing a Particular Coalition

We now consider the case where the central authority wants a particular group of agents
to work together, but does not care about the stability of theoverall game. Thus, it wants
to identify a coalition structure containing a particular coalition � and the minimal
subsidy to the players that ensures that no set of players that includes members of�
wants to deviate. We omit the formal definition of the corresponding cost of stability



concept, as well as its algorithmic analysis due to space constraints. However, we would
like to mention several subtle points that arise in this context. First, one might think
that the optimal way to stabilize a coalition is to offer payments to members of this
coalition only. However, this turns out not to be true (see [2]). Second, stabilizing a
given coalition may be strictly cheaper than stabilizinganyof the coalition structures
that contain it (see [2]). Thus choosing a good definition of the cost of stability of an
individual coalition is a nontrivial issue.

6 Related Work

The complexity of various solution concepts in coalitionalgames is a well-studied
topic [6, 13, 7, 23]. In particular, [10] analyzes some important computational aspects
of stability in WVGs, proving a number of results on the complexity of the least core
and the nucleolus. The complexity of the CS-core in WVGs is studied in [9]. Paper [15]
is similar to ours in spirit. It considers the setting where an external party intervenes
in order to achieve a certain outcome using monetary payments. However, [15] deals
with the very different domain ofnoncooperative games. There are also similarities be-
tween our work and the recent research on bribery in elections [11], where an external
party pays voters to change their preferences in order to make a given candidate win. A
companion paper [18] studies the cost of stability in network flow games.

7 Conclusion

We have examined the possibility of stabilizing a coalitional game by offering the agents
additional payments in order to discourage them from deviating, and defined the cost
of stability as the minimal total payment that allows a stable division of the gains. We
focused on the computational aspects of this concept for weighted voting games. In
the setting where the outcome to be stabilized is the grand coalition, we provided a
complete picture of the computational complexity of the related decision problems. We
then extended our results to settings where agents can form acoalition structure.

There are several lines of possible future research. First,while the focus of this
paper was on weighted voting games, the notion of the cost of stability is defined for any
coalitional game. Therefore, a natural research directionis to study the cost of stability
in other classes of games. Second, we would like to develop a better understanding of
the relationship between the cost of stability of a game, andits least core and nucleolus.
Finally, it would be interesting to extend the notion of the cost of stability to games with
nontransferable utility and partition function games.
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