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Abstract

Agents operating in real-world settings are of-
ten faced with the need to adapt to unexpected
changes in their environment. Recent advances
in multi-agent reinforcement learning (MARL)
provide a variety of tools to support the ability
of RL agents to deal with the dynamic nature
of their environment, which may often be in-
creased by the presence of other agents. In this
work, we measure the resilience of a group of
agents as the group’s ability to adapt to unex-
pected perturbations in the environment. To
promote resilience, we suggest facilitating col-
laboration within the group, and offer a novel
confusion-based communication protocol that
requires an agent to broadcast its local obser-
vations that are least aligned with its previous
experience. We present initial empirical eval-
uation of our approach on a set of simulated
multi-taxi settings.

1 Introduction
Reinforcement Learning (RL) agents are typically re-
quired to operate in dynamic environments, and must
develop an ability to quickly adapt to unexpected per-
turbations in those environments. Promoting this ability
is challenging, even for single-agent settings [11]. For
a group of agents this becomes even more of a chal-
lenge; in addition to the dynamic nature of the envi-
ronment, the agents need to deal with high variance
caused by changes in the behavior of other agents [14;
19; 9].

In this work, we measure the resilience of a group of
agents according to the group’s ability to adapt to pertur-
bations in the environment. Contrary to the investigation
of transfer learning [21; 7] or curriculum learning [13],
we do not have a target domain in which the group of
agents is going to be deployed, nor do we have a training
phase dedicated to preparing agents for the deployment
environment. Instead, we aim to equip a group with the
ability to adapt to unexpected changes that can occur at
random times.

Recent literature is rich with a variety of different defi-
nitions of resilience and robustness, for both single and
multi-agent settings [20; 18; 12]. Our measure for re-
silience is inspired by work done in robotics [16], which
views resilience as the ability of a group to reach an
agreement about estimated values of variables in the
presence of non-cooperative members. In our setting, re-
silience measures the agents’ performance in the presence
of unexpected perturbations.
To promote group resilience, we introduce a commu-

nication protocol that defines the information that each
agent shares with the group. Recent work demonstrates
how communication in multiagent reinforcement learning
(MARL) settings allows a group to learn and operate
efficiently in complex but non-perturbed environments [6;
5]. To promote a group’s ability to adapt to a randomly
perturbed environment, we present a novel confusion-
based communication protocol, that requires an agent to
broadcast its current observations that are least aligned
with its previous model of the environment.

Example 1 Consider Figure 1, which depicts a multi-
agent variation of the single Taxi domain [3]. In this
setting, taxis are associated with one operator, but each
taxi receives a direct payment from each passenger that
it drops off at her destination. In addition to the taxis,
we posit a designer, representing the taxi’s operator, that
aims to maximize the group’s total revenue.

The designer monitors the taxis’ performance (rev-
enue), and notices that taxis sometimes deviate from
their usual routes. This may happen, for example, due
to road construction, road congestion, or many other
reasons. Trying to enable the group to maximize group
performance despite these changes, and with the inten-
tion of not overwhelming the communication channel, the
designer instructs taxis to broadcast ‘confusing’ experi-
ences to the others, corresponding to actions that have
unexpected outcomes. Thus, for example, when a taxi
encounters a blocked road, and fails to drive through a
street it has driven through regularly, it will broadcast this
unsuccessful attempt to the other taxis. Similarly, when
the taxi drives through a typically busy street, and finds
that it is not busy, it will broadcast this information. This
may relieve the effect these perturbations will have on the
other taxis.



Figure 1: An illustration of the multiagent taxi do-
main. Perturbations are represented by introducing non-
traversable walls in the environment on the right.

Our key contributions in this work are threefold. First,
we suggest a new measure of group resilience that cor-
responds to the group’s ability to adapt to unexpected
changes. As a second contribution, and in order to pro-
mote resilience, we offer a new confusion-based communi-
cation protocol according to which all agents are notified
about notable changes in an agent’s surroundings. Lastly,
we offer an initial empirical evaluation that demonstrates
how agents that operate according to the confusion-based
protocol are more resilient when compared to agents that
are not using the suggested protocol.

2 Background
A Markov Decision Process (MDP) [2] is a widely used
formalization of sequential decision making in stochastic
environments. One standard formulation of an MDP
is a tuple M = 〈S,A,R, P, γ〉 where S is a finite set
of states, A is a finite set of actions, R is a reward
function R : S × A 7→ R, P is a transition function
P : S ×A× S 7→ [0, 1] defining a probability distribution
Pas [S] over next states given the current state s ∈ S and
action a ∈ A, and γ ∈ (0, 1] is a discount factor describing
the rate by which reward deprecates over time. When
the state is only partially observable by the agent, the
definition also includes a set of observation tokens O,
and an observation function O : S 7→ O that defines the
observation that is done by an agent given the current
state of the environment. In some cases, the definition of
an MDP also includes an initial state s0 ∈ S.
A Markov game, or a stochastic game, is a gener-

alization of the MDP to multi-agent settings [8]. A
Markov game is defined as a tuple 〈S,A,R, T , γ〉. Where

A = {Ai}ni=1 is a collection of action sets Ai , one for
each of the n agents in the environment, R = {Ri}ni=1 is
a collection of reward functions Ri defining the reward
ri(at, st) that each agent receives when the joint action
at is performed at state st, and T describers the proba-
bility distribution over next states when a joint action is
performed. In the partially observable case, the definition
also includes a joint observation function: O : S 7→ O,
defining the observation for each agent at each state. In
this work, we refer to Markov games as MDPs, games,
domains, or environments interchangeably.
Reinforcement learning (RL) is a branch of machine

learning that aims to learn optimal policies for partially
informed agents operating in some environment, typically
modeled as an MDP for the single agent case, or a Markov
Game, for multi-agent settings. The behavior of an RL
agent is described by a policy π : S × A → [0, 1] which
associates a probability of taking some action a at state
s.
One common objective for RL agents is to max-

imize the expected discounted accumulated reward:
Eat∼π(·|st)[

∑
t≥0 γ

tR(st, at, st+1)]. Many RL algorithms
maximize this objective by estimating a value function
Vπ(s) = Eat∼π(·|st)[

∑
t≥0 γ

tR(st, at, st+1)|s0 = s], that
estimates the accumulated discounted reward of follow-
ing some policy π from a given state. Another function
commonly used is the action-value function or Q-function
Qπ(s, a) = Eat∼π(·|st)[

∑
t≥0 γ

tR(st, at, st+1)|a0 =

a, s0 = s], representing the expected accumulated re-
ward of taking action a at state s and then following
policy π.
Multi-Agent Reinforcement Learning (MARL) extends

RL to multi-agent settings, which are typically modeled
using a Markov game. The performance (utility) U of
a group can be defined in various ways, but is typically
measured by the total discounted accumulated reward of
the agents, or the average individual utility. In this work
we use the terms group performance and group utility
interchangeably.
A key challenge in MARL is that the policy of each

agent changes during training, and the environment is
non-stationary from the perspective of any individual
agent, which may not be fully aware of the other agents
and of their effect on the environment. This results in
unstable learning and prevents the straightforward use of
past experiences when deciding how to behave [9]. This
high variance in the agent’s experience is intensified in
the settings we consider here, in which the environment
is randomly perturbed.

3 Measuring Group Resilience
We aim to promote the ability of a group of agents to
adapt to random perturbations in their environment. We
refer to this ability as resilience, and describe it below.
We will then suggest ways to promote group resilience
by offering methods by which agents can collaborate
effectively.
To measure the resilience of a group of agents we



take inspiration from the field of robotics. The work of
Saulnier et al. [16] presents a control policy that allows a
team of mobile robots to achieve desired performance in
the presence of faults and attacks on individual members
of the group. A group of robots achieves resilient con-
sensus if the cooperative robots’ performance is in some
desired range, even in the presence of up to a bounded
number of non-cooperative robots. In essence, we want
resilience to mean that if an environment undergoes an
unexpected (but somehow bounded-in-magnitude) per-
turbation, then agents can still achieve a fixed fraction
of their original performance.

Our definition of resilience relies on some user-specified
distance measure δ(M,M

′
) that quantifies the magni-

tude of the change between an original MDP M and the
modified MDP M

′
. It also relies on the specification of

a utility measure U(M ′), quantifying the performance
of a group of agents in a given MDP. Based on these
measures, we define several notions of resilience. The
strongest would not place any conditions on M

′
other

than distance:

Definition 1 (Relative to Optimum CK-resilience)
Given an MDP M and a bound K ∈ R, we say that a
group of agents α is universally CK-resilient in M if

∀M
′

: δ(M,M
′
) ≤ K =⇒

U(M ′) ≥ CK · U∗(M ′)
where U∗(M ′) = maxπ U(π,M ′)

Our definition above relies on the ability to compute
the optimal value in a given environment, and comparing
it to the actual utility achieved by the group of agents.
For settings where this is not possible, we offer a Relative
to Origin resilience measure that compares the perfor-
mance of the group before and after the environment is
perturbed.

Definition 2 (Relative to Origin CK-resilience)
Given an MDP M and a bound K ∈ R, we say that a
group of agents α is universally CK-resilient in M if

∀M
′

: δ(M,M
′
) ≤ K =⇒

U(M ′) ≥ CK · U(M)

It is important to note that Definition 2 compares the
performance of the agent in the perturbed environment
against its performance in the original one, without con-
sidering its value. This means that a group of agents that
follows a non-efficient policy (e.g., performing a no-op ac-
tion repeatedly) will have high resilience. If this measure
is used it is important to consider the utility achieved as
an orthogonal measure. Moreover, the above definitions
may not be very useful, as (depending on the distance
measure used) we might not have any way to construct
the set of arbitrary MDPs within a certain distance from
the original MDP. A more restrictive definition would be
to explicitly restrict resilience to be over a given set of
environments of interest.

Definition 3 (Relative to Origin CK-resilience over M)
Given an MDP M , a set of perturbed MDPsM, and a
bound K ∈ R, we say that a group of agents is universally
CK-resilient in M overM if

∀M
′
∈M : δ(M,M

′
) ≤ K =⇒

U(M ′) ≥ CK · U(M)

Resilience overM allows us to choose the setM of en-
vironments such that the distance condition is more easily
verified. However, this condition still requires that the
bound on performance holds for anyM

′ ∈M, which may
be unreasonably strong and impractical in many cases.
We therefore further define resilience-in-expectation over
a set equipped with a uniform probability distribution or
another probability distribution Ψ generating MDPs M

′
.

In other words, we require the expected performance of
agents in MDPs to fulfill a performance guarantee, where
the expectation is uniformly over all MDPs inM that
are within K-distance of M . Similarly, we can define this
notion for arbitrary distributions over MDPs:

Definition 4 (CK-resilience in expectation over Ψ)
Given an MDP M , a distribution over MDPs Ψ, and
a bound K ∈ R, we say that a group of agents is
CK-resilient in expectation in M over Ψ if

E[M ′∼Ψ|δ(M,M ′ )≤K]U(M ′) ≥ CK · U(M)

As a known result, it is easy to see that polynomially-
many samples from Ψ are sufficient to achieve arbitrarily
close approximations of the true expectation, with arbi-
trarily high probability.1
In this work, we are interested in settings in which

we have an initial environment and a set of perturba-
tions that can occur to the environment. In general, a
perturbation φ :M 7→ M is a function transforming a
source MDP into a modified MDP. An atomic pertur-
bation is a perturbation that changes only one of the
basic elements of the original MDP. In the following,
given an MDP M = 〈S,A,R, P, γ〉 and perturbation
φ, the resulting MDP after applying φ is denoted by
Mφ = 〈Sφ, Aφ, Rφ, Pφ, γφ〉.
Among the variety of perturbations that may occur,

we focus here on three types of atomic perturbations:
transition function perturbations modify the distribution
over next states for a single state-action pair, reward
function perturbations modify the reward of a single
state-action pair, and initial state perturbations change
the initial state of the MDP (if that state is defined).

Definition 5 (Transition Function Perturbation)
A perturbation φ is a transition function perturbation if
for every MDP M = 〈S,A,R, P, γ〉, Mφ is identical to

1Assume that the utility function U(M ′), considered as a
random variable with M ′ drawn from [M

′
∼ Ψ|δ(M,M

′
) ≤

K] as above, is i.i.d. for a random draw ofM
′
and has a finite

variance σ2. Then it follows from Chebychev’s inequality that
in order to be within ε of the true mean with probability at
least δ, it is sufficient to collect at least σ2

ε2·(1−δ)
samples.



M except that for a single action state pair s ∈ S and
a ∈ A, Pas [S] 6= Pφas [S].

Definition 6 (Reward Function Perturbation) A
perturbation φ is a reward function perturbation if for
every MDP M = 〈S,A,R, P, γ〉, Mφ is identical to M
except that for a single action state pair s ∈ S and a ∈ A,
ras 6= rφ

a
s .

Definition 7 (Initial State Perturbation) A per-
turbation φ is a transition function perturbation if for
every MDP M = 〈S, s0, A,R, P, γ〉, Mφ is identical to
M except that s0 6= sφ0 .

Example 1 (continued) In our multi-taxi domain
from Example 1, a road blockage is a perturbation com-
prised of atomic transition function perturbations that
reduce to zero the probability of transitioning to the blocked
cell from any adjacent cell. If the destination of a pas-
senger changes, this is represented by two atomic per-
turbations, one that replaces the reward for a dropoff
at the original destination with a negative reward, and
one that adds a positive reward for a dropoff at the new
destination.

There are a variety of metrics for measuring the dis-
tance between two MDPs [17; 1]. We want the magnitude
of a perturbation to represent the extent by which a per-
turbed environment is different from the original one.
Intuitively, the bigger the magnitude, the harder it would
be for a set of RL agents to adapt.

A straightforward way to measure the distance between
two MDPs is to count the minimal number of atomic
perturbations that transition the original MDP into the
transformed one. Another measure is the one suggested
by Song et al. [17], where the distance between two MDPs
M and M

′
is calculated by computing the accumulated

distance between every state in M and its corresponding
state in M ′. This definition holds for a setting where
the two MDPs are homogeneous, such that there exists
a correspondence (mapping) between the states, action
spaces, and reward functions of the two MDPs.

Given two homogeneous MDPsM andM ′, the distance
d(s, s′) between any two states s ∈ SM and s′ ∈ SM ′ is
defined as follows:

d(s, s′) = max
a∈A
{|ras − r′

a
s′ |+ cTk(d)(Pas [SM ],P′s′

a
[SM ′ ]])}

where ras ,Pas [SM ], r′
a
s′ ,P′

a
s′ [SM ′ ] are the immediate re-

ward and the transition function for M and M ′ respec-
tively, Tk(d) is the Kantorovich distance [4] between
the two probability distributions, and c ∈ [0, 1] is some
hyper-parameter defining the significance of the distance
between the distributions.
In our setting, we focus on perturbations Φ that do

not change the state space nor the action space, so Φ(M)
and M are homogeneous according to Song et al. [17],
and each state s ∈ SM corresponds to the same state in
SΦ(M). We therefore use this measure to estimate the
distance between an MDP and its perturbed variations
in our empirical evaluation below.

4 Promoting Group Resilience Via
Confusion-Based Communication

Equipped with a way to assess the resilience of a group
of agents, we aim at maximizing the resilience of a group
of RL agents. Recent work in MARL suggests various
approaches for promoting efficient collaboration within
a group of agents. Such approaches include introducing
a communication protocol [6; 9] or an ability to model
other agents’ policies [10; 15]. The focus in these frame-
works is on helping agents deal with the non-stationarity
of the environment that stems from the existence of
other agents in it. Instead of promoting collaboration
in order to maximize a group’s performance in a given
environment, we suggest promoting collaboration as a
way to promote resilience. We hypothesize that agents
that learn to collaborate will adapt more quickly to a
changing environment.

Inspired by the success of communication protocols in
increasing the performance of a group of RL agents [6;
5], we suggest a confusion-based communication proto-
col. We refer to confusion as the level by which the
immediate reward observed by an agent is misaligned
with its estimated reward. After every fixed number of
time steps, each agent notifies the other agents in the
system about its most confusing observations since its
last broadcast. Our protocol relies on the existence of a
limited communication channel that is shared among all
agents, so that every message is broadcast to all other
agents.
Formally, we define the level of confusion of an agent

in a specific state by using its Q function. Let πp be
the policy of agent p, and let sj be the next state the
environment transitioned to after taking action ai in
si. The reward r̂i of taking ai in si is estimated by:
r̂i ≈ Qπp(si, ai) − Qπp(sj , πp(sj)). The confusion level
for a given state and agent is defined as follows:

Definition 8 (Level of Confusion) Let ri and r̂i be
the observed and estimated reward of agent p after taking
ai = πp(si) in si. The level of confusion of agent p at si,
Jpsi is defined as:

Jpsi = Jpsi,πp(si)
= Jpsi,ai =

|ri − r̂i|
ri

where Jsi,ai represents the level of confusion of the agent
at state si after taking action ai.

When communicating, the agent broadcasts its ex-
perience from the most confusing encountered states,
meaning the states with the highest Jpsi . Specifically, the
agent shares the state, action taken, reward collected,
and next encountered state. The number of state expe-
riences communicated is determined by a parameter ml

that represents the communication channel bandwidth.
For example, let πi be the policy of agent i, and Qi

be the Q function associated with it after interacting
with environment M . When agent i interacts with the
perturbed environment Φ(M), high confusion is expressed
as the difference between the estimated and observed



Figure 2: Average utility for a small K ∈ {0, 50}

Figure 3: Average utility for K = 150.

Figure 4: Average utility for K = 200

immediate rewards achieved by taking some action ai at
some state sj . We use confusion to decide what knowledge
should be broadcast to other agents, so that they can
help one another adapt to the perturbed environment.
As we want to focus in this paper entirely on the

aspect of resilience and confusion-based communication,
we chose a specific implementation of communication
that avoids any problems of emergent communications.
Specifically, we take the state experience that an agent
broadcasts, and insert it directly into the receiving agents’
replay buffers. This also illustrates that we consider
resilience to be a feature of a system of learning agents,
rather than of final policies to be deployed. We see no
reason why our approach couldn’t also work with suitable
frozen policies however, for instance using LSTM policies,
and leave this as an interesting direction for future work.

5 Empirical Evaluation

The objective of our empirical evaluation is to assess the
effect collaboration has on the resilience of a group of
agents. Specifically, we examine a MARL setting where
agents use different forms of communication, according
to the group’s performance in perturbed environments.

5.1 Environments

Our dataset consists of instances of the multi-taxi domain
described in Example 1.2 The environment is episodic,
resetting when all passengers arrive at their destinations.
At the beginning of each episode, the taxis appear at
random start locations on the grid, while passengers’
source and destination locations are chosen at random
from a set of possible locations. Each taxi receives a high
positive reward for each passenger that is successfully
dropped off at her location, a small negative reward for
each step in the environment, and a high negative reward
when trying to drive through a wall. For each instance,
the environment is represented by a 5× 5 to 8× 8 grid,
with 2–3 taxis and 2–3 passengers.

Agents have a communication protocol according to
which they broadcast their experience to the other agents.
We experimented with channel bandwidths of ml ∈ [4, 15]
and a transmission frequency (the rate by which messages
are broadcast) mf ∈ [10, 30] time steps. The perturba-
tions that can occur include the addition or removal
of walls (modeled as transition function perturbation),
passengers appearing in unexpected (initial state per-
turbations) locations, and new passenger destinations.
In addition to this, we evaluated our approach in sev-
eral other environments. We discuss these domains and
results of our experiments in the supplementary material.

5.2 Setup

We experimented with perturbation bounds K ∈
{0, 50, 150, 200}, measured according to the distance mea-
sure suggested by Song et al. [17], randomly chosen to
define the number of episodes the agents interact with
the environment. Each episode is capped at 100 time
steps, and each experimental setting is run for a fixed
number of T ∈ [1500, 3000] episodes. We use DQN agents
parameterized by 4 sequential linear and ReLU layers;
the agents are decentralized and self-interested. Group
utility U is the accumulated reward of all agents.

In each environment instance, we compare the following
groups of agents:

1. No communication: each agent interacts with the
environment relying only on its own observations.
Agents are not explicitly aware of one another, and
do not communicate.

2. Collaboration via communication of ran-
domly selected observations: agents broadcast
a random subset of their observations at some fixed
frequency and bandwidth.

3. Collaboration via confusion-based communi-
cation: the communication protocol we have intro-
duced, according to which agents broadcast the top
ml most-confusing observations they encountered
since the last message broadcast.

2Our dataset, source code and complete empirical results
can be found in the supplementary material of this submission.



Figure 5: Learning curve of a group of agents in original
and perturbed MDP, for K = 150.

Communication
Protocol

K=50 K=150 K=200

No communication 0.801 0.450 0.238
Communication of
randomly selected
observations

0.822 0.242 0.187

Confusion based
communication

0.888 0.55 0.347

Table 1: C-resilience values for groups of agents with
different communication protocols, calculated over 10
experiments.

We considered two experimental setups. In the first,
for each value of K, we constructed a set MK by intro-
ducing randomly chosen perturbations to some initial
environment. The resilience of the group is measured as
the expected performance over the sampled group (Def-
inition 4). In the second setup, we choose at random
the frequency tpert ∈ [250, 500] by which perturbations
are introduced into the environment. We let the agents
learn and communicate in some initial environment M for
tpert episodes, and introduce a perturbation after tpert
episodes, transforming M 7→ M ′. After another tpert
episodes, the environment reverts back to the original
environment, and so on. Our experiments were run on
a university cluster using a mix of recent CPUs; each of
our experiments ran in about 24 hours on 4 cores using
16GB RAM.

5.3 Results
Table 1 presents the average CK -resilience in expectation
calculated over 10 samples taken withinK = 50,K = 150,
and K = 200. As can be concluded from the results, our
confusion based communication protocol achieves the
highest resilience value. It is also interesting to see that
the protocol that randomly selects the observations to
broadcast achieves in average lower resilience than the no
communication setting. This shows that merely sharing
experiences between agents is not sufficient to achieve re-
silience. On the other hand, our specific confusion-based
approach does lead to significantly improved resilience,
showing the merit of using confusion to determine what
information to share.

Figure 5 shows a learning curve for a group of agents be-
fore and after the environment is perturbed, as indicated

by the vertical red bar in the plot. It is easy to see that
the confusion-based group of agents (green line) achieves
highest performance in the perturbed environment.

5.4 Outlook: Resilience in
constantly-changing environments

The definitions we presented in Section 3 specify resilience
based on the performance of agents after a single pertur-
bation event leaves them in an altered environment. As
a theoretical tool we believe this approach is most useful.
In practice, however, we also investigate the merit of our
confusion-based communication protocol in a wider range
of settings. In particular, we evaluated the performance
of confusion communication in constantly-changing en-
vironments. In this, the environment is perturbed every
tpert episodes. Then, after tpert perturbed episodes, the
environment is transitioned back to the original environ-
ment, before being perturbed again.
Figures 2, 3, and 4 show the average utility achieved

by agents in these constantly-changing settings for K ∈
(0 − 50), K = 150, and K = 200, respectively. Simi-
larly to our single-perturbation-event results, we see that
confusion-based communication clearly outperforms both
non-communication and random communication in the
perturbed environment (the time region between the 1st
and 2nd red bar, and between and 3rd and 4th red bar).
This suggests the applicability of our approach to a

wider range of problems of learning in frequently-changing
environments. This could include more generally non-
MDP environment, at least as long as the non-stationarity
is coming from an underlying process that is in some form
similar to occasionally introducing perturbations to an
MDP.

5.5 Discussion
The results presented above show that the collabora-
tion, and the use of confusion based communication in
particular, achieves higher resilience in the presence of
perturbations of large magnitude in the environment. We
conclude that confusing observations encapsulate valu-
able information that helps agents learn about perturbed
environments.

In addition, examining the achieved C-resilience values
in Table-1 along side with Figures 3 and 4, we conclude
that our suggested measure for the group’s resilience,
C-resilience, is a useful quantitative measure of group
resilience. We also note that random communication i.e.
sharing a random sample of experiences between agents,
did not lead to high C-resilience, even though in principle
even a random sample of another agent’s experiences
could be useful. This supports our belief that confusion-
based communication is a useful tool to support resilience,
rather than experience sharing in general.
It is interesting to note that at the beginning of each

experiment the groups that use a communication channel
in the non perturbed environment learn more slowly and
achieve lower utility than the no communication group.
This could be explained by the fact that during the ini-
tial learning phase in which exploration is high, messages



transferred by other agents can hinder the learning pro-
cess. This could be resolved by learning a confusion
threshold θconf that will be used to decide when to listen
to incoming messages, or by delaying the activation of
the communication channel until after the exploration
phase of the individual agents completes. These are two
interesting aspects we intend to investigate in future
work.

6 Conclusion
We introduced novel formulations to evaluate the re-
silience of a group of agents by assessing the group’s
ability to adapt to perturbations of the environment. In
addition, we suggested a novel confusion-based commu-
nication protocol to promote group resilience. To the
best of our knowledge, this is the first measurement of
group resilience that is relevant to multi-agent RL set-
tings. Our evaluation shows that collaboration via our
confusion-based communication protocol improves group
resilience over naive baselines.

The ability of autonomous agents individually, or as a
group in a multiagent system, to adapt to changes in the
environment is obviously highly desirable in real-world
settings. Dynamic environments are the rule, not the
exception; if a system is to reliably pursue its objective
function, it should be able to handle unexpected envi-
ronmental changes. Those who have delegated tasks to
autonomous agents stand to benefit from those agents
being more likely to succeed. Societal benefit of resilience
is thus clear, assuming the original tasks were of societal
benefit themselves. It is noteworthy that the recent global
pandemic perturbed many aspects of the environments in
which we operated. In such cases, people used to certain
kinds of collaboration before the pandemic may have
found it easier adjusting to the unfamiliar constraints
that were imposed. We believe our results reflect a quite
specific kind of benefit that automated agents can de-
rive from collaborating with one other. We do note that
many usual caveats on AI research apply, for instance
where the original task itself is not of societal benefit; we
also note that communication sharing experience could
potentially open questions of privacy. We leave this for
future work and note potential solutions in existing work
on differential privacy or federated learning.
The communication protocol we suggest here is im-

posed on the agents by a designer. In future work we
intend to investigate other approaches for facilitating
collaboration. In addition, we intend to examine settings
in which instead of imposing a collaboration method, the
designer merely introduces a new collaboration method
and agents can choose whether or not to adopt it. In
such settings, the designer may incentivize agents to
collaborate, for example by using reward shaping.
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7 Appendix
In this section we present results of our methodology in
another domain, which we call “apple picking”. In this
domain, agents have to visit as many “apple” states as
they can to collect a reward at each such state. Once all
apples have been picked, the episode ends.

The perturbations we experimented with are similar as
in section 5: adding obstacles and changing the possible
“apple” locations.

We note that this environment in a way is easier than
the original one, as the agents get reward for even complet-
ing part of the task. It is interesting to see in Table-2 that
in this setting, where the objective is less complex, the
different group of agents achieve similar resilience levels.
However, confusion-based communication still achieves
the highest resilience throughout our experiments.

Figure 6: Apple Picking domain, Average utility for
K = 150

Figure 7: Apple Picking domain, Average utility for
K = 50

Table 2: C-resilience values for groups of agents with
different communication protocols in the “apple picking”
domain, calculated over 10 experiments.

Communication
Protocol

K=50 K=150 K=200

No communication 0.844 0.418 0.265
Communication of
randomly selected
observations

0.719 0.433 0.262

Confusion based
communication

0.881 0.451 0.327

Table 3: C-resilience values for groups of agents with
different communication protocols in the “apple picking”
domain, calculated over 10 experiments.
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