Exact VC-Dimension of Monotone Formulas

Ariel D. Procaccia and Jeffrey S. Rosenschein
School of Engineering and Computer Science
The Hebrew University of Jerusalem
Jerusalem, Israel

Abstract

We demonstrate that the Vapnik-Chervonenkis dimension of the class of monotone formulas over n variables is exactly $\binom{n}{\lfloor n / 2\rfloor}$.

Key words: Combinatorial problems, Computational complexity, Learnability

1 Introduction

The Vapnik-Chervonenkis (VC) dimension of a class \mathcal{F} of boolean functions is a combinatorial measure of the "richness" of the class.

Definition 1. Let \mathcal{F} be a class of functions $f: U \rightarrow\{0,1\}$, let $S=$ $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\} \subseteq U$, and let

$$
\Pi_{\mathcal{F}}(S)=\left\{\left\langle f\left(u_{1}\right), f\left(u_{2}\right), \ldots, f\left(u_{m}\right)\right\rangle: f \in \mathcal{F}\right\}
$$

If $\left|\Pi_{\mathcal{C}}(S)\right|=2^{m}$, then S is considered shattered by \mathcal{C}.
Email address: \{arielpro, jeff\}@cs.huji.ac.il (Ariel D.
Procaccia and Jeffrey S. Rosenschein).

Preprint submitted to Elsevier Science

Less formally, we might speak of dichotomies on a set S : vectors in $\{0,1\}^{m}$, where $|S|=m$, which assign each $u_{j} \in S$ a label in $\{0,1\}$. Similarly, we say f labels $u_{j} \in S$ by $b \in\{0,1\}$ if $f\left(u_{j}\right)=b$. Given a dichotomy on S, we say that f realizes the dichotomy if both labelings agree on every element of S. Using this terminology, it holds that S is shattered by \mathcal{F} if \mathcal{F} realizes all possible dichotomies on S.

Definition 2. The Vapnik-Chervonenkis (VC) dimension of \mathcal{F}, denoted VC$\operatorname{dim}(\mathcal{F})$, is the size of the largest set $S \subseteq X$ that is shattered by \mathcal{F}. If \mathcal{F} shatters arbitrarily large sets, then $\mathrm{VC}-\operatorname{dim}(\mathcal{F})=\infty$.

The VC-dimension of a class is directly related to the complexity of learning the class in the Probably Approximately Correct (PAC) model [7]: it yields almost matching upper [2] and lower [3] bounds. For more details, the reader is urged to consult [8].

In this paper we calculate the VC-dimension of the class of monotone formulas. Definition 3. A monotone formula is a boolean formula that contains only conjunctions and disjunctions as connectives, but no negations.

In particular, a monotone monomial is a conjunction of literals with no negations, and a monotone DNF formula is a disjunction of monotone monomials. Dually, a monotone CNF formula is a conjunction of disjunctions of literals with no negations.

Let \mathcal{M}_{n} be the class of all monotone formulas over the variables $\left\{x_{1}, \ldots x_{n}\right\}$, including the constant functions true and false. ${ }^{1}$ Each formula in \mathcal{M}_{n} is

[^0]regarded as a function into $\{$ true, false $\}$ whose domain is the set of all possible assignments to $\left\{x_{1}, \ldots, x_{n}\right\}$: the formula labels an assignment by 1 iff the assignment satisfies the formula.

The VC-dimension of some subclasses of \mathcal{M}_{n} has previously been investigated. Natschläger and Schmitt [5] have proven that the VC-dimension of the class of monotone monomials over n variables is n for all $n \in \mathbb{N}$. Bounds on the VCdimension of k-term monotone DNF formulas have been established in $[4,6]$.

In the following we show that the VC-dimension of the class \mathcal{M}_{n} of monotone formulas over n variables is $\binom{n}{\lfloor n / 2\rfloor} .{ }^{2}$

2 Bounds

The lower bound is quite straightforward.
Lemma 1. $\forall n \in \mathbb{N}, \operatorname{VC}-\operatorname{dim}\left(\mathcal{M}_{n}\right) \geq\binom{ n}{\lfloor n / 2\rfloor}$.

Proof. We must show that there is a set S of assignments to the variables $\left\{x_{1}, \ldots, x_{n}\right\}$, such that $|S|=\binom{n}{\lfloor n / 2\rfloor}$, which is shattered by \mathcal{M}_{n}. Consider the set S of all assignments A which assign true to exactly $\lfloor n / 2\rfloor$ of the variables; it holds that $|S|=\binom{n}{\lfloor n / 2\rfloor}$. Fix some dichotomy on S, and let $T=\{A \in S$: A is labeled by 1$\} \subseteq S$ be the set of all assignments in S which the dichotomy labels by 1 . It suffices to show that there is a monotone formula which is satisfied by all assignments in T, and not satisfied by any of the assignments in $S \backslash T$, as this implies that an arbitrary dichotomy can be realized by \mathcal{M}_{n}.

[^1]Observe the monotone formula

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{A \in T} \bigwedge_{i: A\left(x_{i}\right)=t r u e} x_{i} . \tag{1}
\end{equation*}
$$

We first consider some special cases. If the dichotomy labels all assignments in S by 0 , then $T=\emptyset$, and thus f is an empty disjunction - the constant function false; this formula is not satisfied by any assignment, hence f labels all assignments in S by 0 , and the dichotomy is realized. The only case where the disjunction in Equation 1 is not empty, but the conjunction is empty, is the one where $n=1$, and the single assignment in S is labeled by 1 . In this case, we have that f is an empty conjunction, and thus f is the constant function true, so the dichotomy is again realized.

Consequently, we may assume hereinafter that the disjunction and the conjunction in Equation (1) are both nonempty. For all $A \in T$, it holds that f is satisfied by A, as the monomial $\bigwedge_{i: ~} A\left(x_{i}\right)=t r u e ~ x_{i}$ is satisfied by A. Moreover, f is not satisfied by any of the assignments $A^{\prime} \in S \backslash T$. Indeed, all monomials in f are conjunctions of $\lfloor n / 2\rfloor$ variables, and A^{\prime} assigns true to exactly $\lfloor n / 2\rfloor$ variables; thus, in each monomial there is at least one variable which is assigned false by A^{\prime}.

In order to establish an upper bound, we first need to address a natural combinatorial problem. Given the numbers $\{1,2, \ldots, n\}$, we would like to find a maximal antichain of subsets, i.e., a family of subsets such that for any two subsets, neither one is contained in the other. Finding an antichain of size $\binom{n}{\lfloor n / 2\rfloor}$ is easy: we simply choose all subsets of size $\lfloor n / 2\rfloor$. But can one do better? Sperner's Theorem [1] gives a negative answer.

Theorem 1 (Sperner). Let \mathcal{F} be a family of subsets of $\{1,2, \ldots, n\}$, such that
for all $A, B \in \mathcal{F}: A \nsubseteq B$. Then $|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor}$.
Lemma 2. $\forall n \in \mathbb{N}, \operatorname{VC}-\operatorname{dim}\left(\mathcal{M}_{n}\right) \leq\binom{ n}{\lfloor n / 2\rfloor}$.

Proof. We need to prove that every set S of assignments such that $|S|>\binom{n}{\lfloor n / 2\rfloor}$ cannot be shattered by \mathcal{M}_{n}. Let S be such a set, and for each $A \in S$, let $V_{A}=\left\{i \in\{1, \ldots, n\}: A\left(x_{i}\right)=\right.$ true $\}$. By Sperner's Theorem, there must be two assignments $A_{1} \neq A_{2}$ in S such that $V_{A_{1}} \subseteq V_{A_{2}}$. To put it differently, there must be two different assignments A_{1} and A_{2} in S such that for all $i=1, \ldots n$:

$$
\begin{equation*}
\left[A_{1}\left(x_{i}\right)=\operatorname{true}\right] \Rightarrow\left[A_{2}\left(x_{i}\right)=\text { true }\right] . \tag{2}
\end{equation*}
$$

Let $f \in \mathcal{M}_{n}$ which is satisfied by $A_{1}\left(f\right.$ labels A_{1} by 1$)$. It follows from equation (2) and the monotonicity of f that f is also satisfied by A_{2}, or in other words - f labels A_{2} by 1. Therefore, any dichotomy which labels A_{1} by 1 and A_{2} by 0 cannot be realized by \mathcal{M}_{n}.

3 Conclusions

By combining Lemmas 1 and 2 we obtain:
Theorem 2. $\forall n \in \mathbb{N}, \mathrm{VC}-\operatorname{dim}\left(\mathcal{M}_{n}\right)=\binom{n}{\lfloor n / 2\rfloor}$

Notice that any monotone formula can be transformed into a monotone CNF or DNF formula by repeatedly using the distributivity of \wedge, \vee. Therefore, for all n, the VC-dimension of the class of monotone CNF/DNF formulas over n variables is also n.

References

[1] V. K. Balakrishnan. Theory and Problems of Combinatorics. Schaum's Outline Series. McGraw-Hill, 1995.
[2] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and the Vapnik-Chervonenkis dimension. Journal of the ACM, 36(4):929-965, 1989.
[3] A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant. A general lower bound on the number of examples needed for learning. Information and Computation, 82(3):247-261, 1989.
[4] N. Littlestone. Learning quickly when irrelevant attributes abound. Machine Learning, 2(4):285-318, 1988.
[5] T. Natschläger and M. Schmitt. Exact VC-dimension of boolean monomials. Information Processing Letters, 59:19-20, 1996.
[6] M. Schmitt. On the capabilities of higher-order neurons: A radial basis function approach. Neural Computation, 17(3):715-729, 2005.
[7] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-1142, 1984.
[8] M. Vidyasagar. A Theory of Learning and Generalization. Springer-Verlag, 1997.

[^0]: ${ }^{1}$ We do not identify true and false with 1 and 0 , as the latter are reserved for labelings.

[^1]: ${ }^{2}$ Recall that for $n=1,\binom{1}{0}=1$.

