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Abstract

In this paper we introduce a novel approach to continual planning and
control, calledDynamics Based ContrdDBC). The approach is similar in
spirit to the Actor-Critic [6] approach to learning and estimation-based dif-
ferential regulators of classical control theory [13]. However, DB@Got a
learning algorithm, nor can it be subsumed within models of standard con-
trol theory. We provide a general framework for applying DBC to ditscre
Markovian environments, and discuss the key differences betweem it an
a popular alternative for this type of environment — Partially Observable
Markov Decision Processes (POMDPSs). We then show how a recently de
veloped control scheme based on Extended Markov Tracking (EMTP[9
can be seen as a suboptimal algorithm within the DBC framework, and dis-
cuss EMT’s limitations relative to the general DBC approach.

1 Introduction

Consider NASA engineers who encounter a serious problem: spazecraft,
while attempting to dock in orbit, keep crashing or whirriogt of control. At
first, control schemes and sensors are blamed for beingdhexad great efforts
are invested in perfecting the precision of spacecrafttiposng. Bizarrely, as
precision improves, the problem perseveres and becomesnevre violent. A
surprising solution is proposed that finally solves the fb— reduce position-
ing precision. As long as orbits do not change too much, dackan be done
using a simple funnel-like mechanism. This kind of proble@wmntrol of change
over time, or in other wordsontrol of system dynamics what we describe in
this paper.

The central idea behind Dynamics Based Control (DBC) is thainglgov-
erning changes in a system, the system dynamics, are bah&fisiome sense,
then neither state estimation precision nor the state saiter as much. These
system dynamics, like the funnel of a vortex, will channel glystem into the de-
sired configuration. The target of a DBC algorithm would bedl@st actions in
such a way as to create or simulate the beneficial dynamics.



Recalling our spacecraft scenario, applying Dynamics BasedrG@dDBC)
would mean that instead of attempting to set the orbit pmsidirectly, one should
ensure that it has the tendency to recover from deviatiams &n ideal orbit. This
tendency would be the beneficial system dynamics, and itnegjonuch less effort
than precise positioning of a spacecraft. A similar effecbserved while driving
a car (the “small corrections principle”); there is no atpgno precisely position
the car in the middle of a car lane, but rather it is directektarn there.

The “small corrections principle” has another interprietatthat of classical
control theory [13]. Control theory has a concephefghboring contral Should
the system manifest itself in an ideal, noiseless way, thmrabsignal (actions
selected) would be clear. But if a (small) deviationsiystem stateccurs, the
control signal can be augmented by a small difference as wsllally propor-
tional to the real or estimated state-difference, as oleskeiv literature on linear
systems [3, 13]. Though DBC uses terminology suclsysem deviatignthe
focus is on the rules that govern the system, rather thaneosytstem state itself.

The main principle of action selection in DBC can be split itvto phasesdy-
namics estimatioanddynamics correctionEstimation can be done in numerous
ways, starting from true system identification by a complegening algorithm,
and ending with lighter tracking algorithms, such as Exeshiarkov Tracking
(EMT) [9, 10]. Given the way estimation is done, one can dewastions so that
future system behavior will produce estimates similar @ itheal or beneficial
system dynamics.

DBC-type action selection is actually quite widespread. Giersifor exam-
ple, color creation on a computer screen. Human color pgocefi.e., light fre-
guency estimation) is based on three distinct receptoch) éeatecting a specific
frequency or hue. This is used in color monitors, where molgtrs are not actu-
ally emitted by the screen. Instead three sources of canstenare tapped into,
and a mixture is created that simulates for the human eyesthered color. This
scheme parallels the phasesestimationandcorrectionas performed by DBC.

A similar dual structure can be found in learning algorithsngh as Actor-
Critic algorithms [6]. A Critic estimates the value functi@system performance
evaluator, while an Actor uses the estimation to refine natesgy. However,
Actor-Critic algorithms are learning algorithms, and produat the end a good
value function estimate and the corresponding, usualticstirategy. The DBC
framework by itself is not a learning algorithm, though ihdze utilized in creat-
ing one (see below).

The rest of the paper is organized as follows. In Section 2 noeige a for-
mal introduction to Dynamics Based Control, focusing esplgoan Markovian



stochastic environments. This is followed in Section 3 bgnparison to a clas-
sical control alternative for these environments — Payti@bservable Markov

Decision Processes (POMDPs). Section 4 demonstrates lvewthgintroduced

EMT-based control fits the DBC architecture under the Markovassumption,
and also exposes the limitations of naive EMT-based cogniobpposed to the
general DBC framework. Section 5 provides some concludingarks and direc-
tions for future developments of DBC.

2 Dynamics Based Control

Dynamics Based Control (DBC) specification can be broken ineethrteracting
levels: Environment Design Level, User Level, and Agentdlev

e Environment Design Levelconcerns itself with the formal specification
and modeling of the environment. For example, this level ldi@pecify
the laws of physics within the system, and set its paramesech as the
gravitation constant.

e User Levelin turn relies on the environment model produced by Environ-
ment Design to specify the ideal or beneficial system dynsumiwishes to
observe. The User Level also specifies the estimation anitggaprocedure
for system dynamics and the measure of deviation. In ourespaft dock-
ing scenario these would correspond to specifications bsabilization at
an optimal orbit, and angular speed and radii differencéuati@ns.

e Agent Level in turn combines the environment model from the Environ-
ment Design level, and the dynamics estimation and ideahmiycs spec-
ification from the User Level, to produce a sequence of asttbat create
system dynamics as close as possible to the ideal one wipece® the
deviation measure specified by the User Level.

As we are interested in the continual development of a s&ithsystem, such
as happens in classical control theory [13] and continwaimhg [5], the question
becomes how the Agent Level is to treat the deviation measemés over time. A
classical approach would be to use expectation, to avenagreatl possible sys-
tem developments. However, we prefer to use a probabiligstiold alternative
— that is, we would like the Agent Level to maximize the proitiabthat the
deviation measure will remain below a threshold.

Specific action selection would depend on system formabzatOne possi-
bility would be to create a mixture of available system tignchuch like what



happens in Behavior-Based Robotic architectures [1]. The atternative would
be to rely on the estimation procedure provided by the Useel.end utiliz-

ing the Environment Design Level model of the environmenthioose actions
S0 as to manipulate the dynamics estimator to believe tha&trtaic dynamics
has been achieved. Notice that this manipulation is notitait via the envi-
ronment. Thus, for strong enough estimator algorithmsgessful manipulation
would mean a successful (i.e., beyond discerning via thiged@ sensory input)
simulation of the ideal or beneficial system dynamics.

DBC levels can also have a back-flow of information (see Fid)re~or in-
stance, the Agent Level could provide data about ideal dycafeasibility, al-
lowing the User Level to modify the requirement, perhapsi$iag on attainable
features of system behavior. Data would also be availabbeitaihe system re-
sponse to different actions performed; combined with a dyos estimator de-
fined by the User Level, this can provide an important tooltf@a environment
model calibration at the Environment Design Level.

Model Estimator
. Ideal Dynamics
Env. Design User 4 Agent
. e
Estimator Dynamics Feasibilit
? System Response Data ‘

Figure 1: Data flow of the DBC framework

Extending the idea of Actor-Critic algorithms [6], DBC datavloan provide
a good basis for design of a learning algorithm. For exaniple,User Level
can operate as an exploratory device for a learning algorithferring an ideal
dynamics target from the environment model at hand that dvexpose and ver-
ify most critical features of system behavior. In this cdsasibility and system
response data from the Agent Level would provide key infdiomefor an environ-
ment model update. In fact, the combination of feasibilitg @esponse data can
provide a basis for the application of strong learning atpars such as EM [2, 8].

2.1 DBC for Markovian Environments

For a Partially Observable Markovian Environment, DBC carsjpecified more
rigorously. In this case, the phases or levels of DBC can be aeéollows:

e The Environment Designlevel specifies a tuple: S, A, T, O, s¢ >:

— S'is the set of all possible environment states;



— sg Is the initial state of the environment (which can also beveié as
a distribution overs);

— Als the set of all possible actions applicable in the envirentn

— T is the environment’s probabilistic transition functiéhiz S x A —
I1(S). Thatis,T'(s'|a, s) is the probability that the environment will
move from state to states’ under actioru;

— O is the set of all possible observations. This is what the@enput
would look like for an outside observer;

— Q is the observation probability functioffi2 : S x A x S — TI(O).
That is,Q2(o|s, a, s) is the probability that one will obserwe given
that the environment has moved from state states’ under actionu.

e The User Level in the case of a Markovian environment, operates on the set
of system dynamics described by a family of conditional pimlities 7 =
{r: S x A—TI(S)}. Thus ideal or beneficial dynamics can be described
by ¢ € F, and the learning or tracking algorithm can be represendeal a
functionL : O x (A x O)* — F;, thatis, it maps sequences of observations
and actions performed so far into an estimate F of system dynamics.

There are many possible variations available at the Useelltevdefine
divergence between system dynamics; several of them are:

— trace (or L,) distancebetween two distributiong andq defined by
1
D(p()a()) =5 > Ip(x) -

— Fidelity measure of distance

F(p(-),q(-) =Y _ Vp(@)q(x)

T

— Kullback-Leibler divergence

D )1
xr(p()la(-) ZP og 2 (@)

Note that the latter two are not actually metrics over thecepa possible
distributions, but still have meaningful and importantemmretations. For



instance, Kullback-Leibler divergence is an important ioinformation
theory [4] that allows one to measure the “price” of encodingnformation
source governed by, while assuming that it is governed by The User
Level also defines the threshold of dynamics deviation gotiba .

e The Agent Levelis then faced with a problem of selecting a control signal
functiona* to satisfy a minimization problem as follows:

a* = argmin Pr(d(7,, q) > 0)

whered(r,, q) is a random variable describing deviation of the dynamics
estimater,, created by, under control signat, from the ideal dynamics.
Implicit in this minimization problem is that is manipulated via the en-
vironment, based on the environment model produced by thediment
Design Level.

3 DBCvs. POMDPs

Comparison of the DBC approach to classical control can be daremmparison
of DBC to Partially Observable Markov Decision ProcessesMP®s). Since
POMDPs are a classical representative of the control thebstochastic sys-
tems, and DBC has a well-formed formalization over Markoweamironments,
comparison between them illuminates key features of the DifZaach.
Structurally, POMDPs can also be fitted into the three legékhe Environ-
ment Design Level, User Level, and Agent Level. Furthermore can assume
that the Markovian environment model produced by the Emvirent Design Lev-
els of both approaches completely overlap (see Table 1 fouatsral compari-
son). However, the User and Agent Levels differ significarAit the User Level,
instead of idealized system dynamics, the POMDP approafthedea reward
functionr : S x A x S — R to express preferences over different system transi-
tions. POMDP at the User Level also defines an optimalitggoh, determining
how the reward should be treated over time, e.g., discouatedmulated op-
timality dictates that reward is additively collected wighrery next step being
less profitable by a discount factor. The Agent Level therdaibe problem of
finding an action selection policy so as to maximize the etqeeoptimum re-
ward. For instance, in the case of discounted accumulatechality this would
ber* = arg mng [>~~'r;], wherer; denotes the reward obtained at time slice

under the policyr, and0 < ~ < 1 is a discount factor.



Approach
MDP \ Markovian DBC
< S, AT, O,Q >,where
Environment S — set of states
A — set of actions
T:5x A— II(S) — transition
Design O — observation set
Q:5%xAxS—T(0)
r:SxAxS—=R q: S xA—IIS)
F(r*) —r L(o1,...,01) = T
User r — reward function g — ideal dynamics
F — reward remodeling| L — dynamics estimator
6 — threshold
Agent T = arg max ED Ay | 7 = arg mﬂin Prob(d(t||q) > 6)

Level

Table 1: POMDP vs. Dynamics-Based Control in a Markovian Emrinent

In some cases the POMDP approach also defines a reward fumetizod-
eling procedurel’(7*) — r, that transforms the reward function according to
some features of the resulting action selection behavibis Wway the POMDP
approach achieves reward function composition that resale system behav-
ior with specific features. Contrast this with DBC, which spesifine idealized
system behavior directly.

Available complexity results for POMDPs, such as [7], rerdany optimal-
ity criteria infeasible, and limit the choice to discountsrtumulated optimality,
which we assume for the rest of our discussion. The follovtwg subsections
discuss properties of POMDP and DBC-induced policies in et lof features
such as user preference interpretation and similarity tarotler mechanisms.
The summary of this discussion is available in Table 2, withnbers in parenthe-
ses denoting the subsection in which specific issues aressisd.

3.1 Properties of POMDP-Induced Policy

Even within its framework, POMDP-induced policy has one amant technical
limitation — its optimization isexpectatiororiented, and is applied as is for all
possible system developments. Computed off-line, POMDRIBdad policy is, in
a sense, an open-loop control mechanism.



| Issue | POMDPs (see 3.1) | DBC (see 3.2) |

Action Selector Off-line computed On-line action se-
policy lection

Controller Similar-|| Open-loop (3.1.2) | Closed-loop (3.2.1)

ity

User preference int State value oriented Transition fre-

terpretation (3.1.3) quency orienteg

(3.2.2)

Optimality concept || Expectation ori-| Context dependent,
ented (3.1.1) situated (3.2.3)

Complexity PSpace Unknown for DBC

Table 2: Features of POMDP and DBC-induced policies

3.1.1 Optimality Concept

POMDP policy selection dictates that a policy with a maximexpectecdutility
be taken as optimal. Let us concentrate on this notioexpectation Consider
two policiesm; andn, applied to the same POMDP, and distributions of the (ac-
cumulated) value under these two policies and D, respectively, as shown in
Figure 2. POMDP optimization dictates that the poligyshould be selected and
applied at all times. However, the variance of the value unges high, which
means that if a critical value exists below which the gairorbidden to drop (as
denoted by in Figure 2) —m; may not be suitable.

The expectation problem can be discussed from another pbwiew, that
of system development. POMDP policies can be seen as asok#t for a Se-
guential Decision Making (SDM) problem. Each policy creaaistribution over
system developments (state-action sequences), and ote ¢tasose among dif-
ferent policies based on a comparison of distributions. BiSroblem defines
a preference order over system development, in a sensenddtey an ideal sys-
tem development and a measure of divergence between dewvehbgequences.
The POMDP concept of solution combines policy-induceditistion and SDM-
induced preference over the state-action sequences lynegsireal values to
sequences and optimizing over the value expectation. Retuto our previous
argument, we see that POMDP-optimal policy can have a vely probability
of large deviations from an ideal system development semgjenproperty unin-
tended by, and not desired by, the SDM formulation.
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Figure 2: Value distribution under POMDP policies

3.1.2 Controller Similarity

Although POMDP policies can be history dependent, desoripeéngth feasibility
argues that a policy will have only finite (and rather smadljiability in response
to different system developments that actually take platbis, together with
off-line computation and optimality based on average perémce, underscores
POMDP policies’ inability to adapt and change for a specifgtem development
that actually occurs, and which deviates from theecteddevelopment under
application of the policy.

3.1.3 User Preference Interpretation

POMDP solutions also exhibit a form of user-preferenceodigtn. By formal
definition, reward/cost is obtained based on specific ttiansi exhibited by the
system. However, a POMDP'’s induced policy is computed vétipect to a Value
Function, which is a state-oriented, rather than transitioented, concept. This
may potentially cause distortion of User preferences whegmessed by the re-
ward structure.

3.2 Properties of DBC-Induced Policy

Dynamics Based Control (DBC) is a closed-loop control scheme aation se-
lection is bound to a system development that actually gcatirun-time. DBC
is also directly tied to system-transition preferenceregped as the ideal system
dynamics.



3.2.1 Controller Similarity

DBC is a situated, context-dependent scheme because itmugssi@ation algo-
rithm L that is used to identify the system development that agttiakes place
at run-time. In fact, DBC (and EMT-based control as a repradige of a DBC
scheme) takes this to an extreme, in that it vidwas the “actual” system, and
selects actions in a way that leabl$o a required estimate.

It is important to note thak is not influenced directly; otherwise, its estimate
and DBC action-selection make no sense. Rathas influenced only through
the environment that it estimates. This mode of operatiomast similar to a
closed-loop differential controller, and is explicitly ¢ine. Note, also, that DBC
formally is not a learning, tracking, or estimation algbnit by itself, although it
has a tracking (estimator) component utilized with its ctuce.

3.2.2 User Preference Interpretation

The DBC discussion and POMDP discussion above can be unifieéaking the
point of view of distributions over different system devahoent sequences. Un-
like POMDP, the DBC framework attempts a direct comparisdween distribu-
tions over system development sequences. This is done sjdesimg “inductor”
stochastic functions, that represent different stocbdsthaviors and thus dif-
ferent distributions over system development sequenc&C &ssumes that the
ideal system development sequence and the measure ofide\fraim it can be
combined into such an “inductor” function,— the ideal system dynamic$he
learning/tracking algorithni is then used to seek the same form of representation
for the actual system development,

3.2.3 Optimality Concept

A DBC policy considers andgq, that is, the “estimated actual” and the “ideal”
distributions over system development sequences, anctsele action based on
their direct comparison. The DBC concept of optimality isdzhen a threshold
probability, and an optimal policy is the one that is capaiflkeeping deviation
from the ideal system dynamics below the threshold with ésgiprobability.

4 EMT-based Control as a DBC

Recently, a control algorithm was introduced calleT-based Controf9, 10],
which fits perfectly into the DBC framework. Although it presgan approximate



greedy solution in the DBC sense, initial experiments usiMjrbased control
have been encouraging [11]. EMT-based control is basedeoM#rkovian envi-
ronment definition, as in the case of POMDPs, but its User agehALevels are
of the DBC type.

e The User Levelof EMT-based control defines a limited-case, idealized sys-
tem dynamics independent of actiofy;,r : S — TI(.S). It then utilizes
the Kullback-Leibler divergence measure to compose a mtangsystem
dynamics estimator — the Extended Markov Tracking (EMT )oalttym.
The algorithm keeps a system dynamics estimatg, that is capable of
explaining recent change in an auxiliary Bayesian systete sstimator
from p;_; to p;, and updates it conservatively using Kullback-Leiblerediv
gence. Since};,,, andp,_1, are respectively the conditional and marginal
probabilities over the system’s state space, “explanasionply means that
p(s) = S 7Ly (8Is)pi-1(s), and the dynamics estimate update is per-

formed byssolving a minimization problem:

T%MT = H[Ptapt—l»TE\/lfT] = arg mTin Dk (7 % pt—1||7—2‘_]L}T X Pi-1)
s.t.

puls’) = 22(T X pra)(s', 5)

s

Pi-1(8) = 2(T X pra)(s', 5)

S/

e The Agent Levelin EMT-based control is sub-optimal with respect to DBC
(though it remains within the DBC framework), performing gulg action
selection based on prediction of EMT’s reaction. The praahids based on
the environment model provided by the Environment Desigelleso that
if we denote by7, the environment’s transition function limited to action
a, andp;_; the auxiliary Bayesian system state estimator, then EM&dbas
control choice is described by

a* = arg Eﬂeiil DKL(H[Ta X D¢, Dt TEMT] ||QEMT X pt—l)

Note that this follows the DBC framework precisely; a dynasnéstimator
(EMT in this case) is manipulated via action effects on therenment to produce
an estimate close to the idealized system dynamics. Yet #&WT-based control
is suboptimal in the DBC sense, and has several additionaations that do not
exist in the general DBC framework.



4.1 EMT-based Control Limitations

EMT-based control is a sub-optimal (in the DBC sense) reptasiee of the DBC
structure. It limits the User by forcing EMT to be its dynartracking algorithm,
and replaces Agent optimization by greedy action selectidms kind of com-
bination, however, is common for on-line algorithms. Albigh further develop-
ment of EMT-based controllers is planned, evidence so fggesis that even the
simplest form of the algorithm possesses a great deal of pewvd trends that are
optimal (in the DBC sense of the word).

There are two further, EMT-specific, limitations to EMT-kd<ontrol that are
evident at this point. Both already have partial solutiora® subjects for future
research.

The first limitation is the problem of negative preferenca. the POMDP
framework, for example, this is captured simply, throughdppearance of values
with different signs within the reward structure. For EMdsed control, how-
ever, negative preference means that one would likkertad a certain distribution
over system development sequences; EMT-based controkveoywconcentrates
on getting agloseas possible to a distribution. Avoidance is thus unnatural i
native EMT-based control.

The second limitation comes from the fact that standard-enment modeling
can creat@ure sensory actions- actions that do not change the state of the world,
and differ only in the way observations are received and tiadity of observations
received. Since the world state does not change, EMT-bas#hbtwould not be
able to differentiate between different sensory actions.

Notice that both of these limitations of EMT-based contn@ absent from
the general DBC framework, since it may have a tracking aflgaricapable of
considering pure sensory actions and, unlike Kullbaclolegidivergence, a dis-
tribution deviation measure that is capable of dealing witgative preference.
Furthermore, as was mentioned, EMT-based control itssl@haumber of possi-
ble extensions that promise to be less prone, or not at alleprto the aforemen-
tioned limitations.

5 Conclusions and Future Work

In this paper we have formally introduced a novel contratfesvork —Dynamics
Based Contro[DBC). Unlike existing approaches to control and planning, DBC
is directly involved with the rules that govern change witthe controlled system



— system dynamics. Instead of limiting its attention to ditative changes of
system state and their estimation, DBC attempts to estinmateary the qualita-
tive features of system modulations. A Dynamics Based Cdatroan operate
either as a direct mixer of available sources of system dycgrar as a simulator
with respect to a given dynamics estimator.

The DBC framework, even limited to well-studied Markoviarvieonments,
significantly differs in its approach and the resulting cohsignal (action pol-
icy) from the classical control approach, as representacefample) by Partially
Observable Markov Decision Processes.

It is important to note, however, that DBC and POMDPs are nat,ribut
rather parallel, approaches. Furthermore, the DBC appreaute it is related to
on-line noise-resistant control methods, can be usedhegetith POMDP. For
instance, one can configure DBC to maintain the system dysaiméticed by
a POMDP solution policy, forming a kind of “neighboring cowit [13], which
exhibits both maximum payoff expectation and performaneeantees.

Although at this point a complete and exact solution of the OiBnhework
is not available, a promising beginning in this directiomséx— control based on
Extended Markov Tracking (EMT) [9, 10]. EMT-based contsotomputationally
efficient, and in fact is polynomial in environment desdgptparameters. Initial
experiments using EMT-based control have been encour@tirjgand the trend
continues with further development [12].

EMT-based control does have limitations, the main two beiagative dy-
namics preference and pure sensory actions. It seems, agvikat extended
state representations may resolve these problems, anditéegion is currently
under investigation.

DBC also requires extensive feasibility and complexity stadparalleling
those done for POMDPs, as well as utilizing its potentialtfer composition of
learning algorithms. The latter would be significant for fieéd of robotics, pro-
viding flexible automated techniques for environment maddibration simulta-
neous with task performance. In this direction it would beeliesting to take a
closer look at the application of EMT combined with EM, as lhter can use
Kullback-Leibler divergence for its operation, thus ditgenaking use of infor-
mation from an EMT-based controller.
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