
Dynamics Based Control: Structure

Zinovi Rabinovich Jeffrey S. Rosenschein
School of Engineering and Computer Science

The Hebrew University, Jerusalem, Israel

Abstract

In this paper we introduce a novel approach to continual planning and
control, calledDynamics Based Control(DBC). The approach is similar in
spirit to the Actor-Critic [6] approach to learning and estimation-based dif-
ferential regulators of classical control theory [13]. However, DBCis not a
learning algorithm, nor can it be subsumed within models of standard con-
trol theory. We provide a general framework for applying DBC to discrete
Markovian environments, and discuss the key differences between it and
a popular alternative for this type of environment — Partially Observable
Markov Decision Processes (POMDPs). We then show how a recently de-
veloped control scheme based on Extended Markov Tracking (EMT) [9, 10]
can be seen as a suboptimal algorithm within the DBC framework, and dis-
cuss EMT’s limitations relative to the general DBC approach.

1 Introduction

Consider NASA engineers who encounter a serious problem: twospacecraft,
while attempting to dock in orbit, keep crashing or whirringout of control. At
first, control schemes and sensors are blamed for being inexact, and great efforts
are invested in perfecting the precision of spacecraft positioning. Bizarrely, as
precision improves, the problem perseveres and becomes even more violent. A
surprising solution is proposed that finally solves the problem — reduce position-
ing precision. As long as orbits do not change too much, docking can be done
using a simple funnel-like mechanism. This kind of problem,control of change
over time, or in other wordscontrol of system dynamics, is what we describe in
this paper.

The central idea behind Dynamics Based Control (DBC) is that if laws gov-
erning changes in a system, the system dynamics, are beneficial in some sense,
then neither state estimation precision nor the state itself matter as much. These
system dynamics, like the funnel of a vortex, will channel the system into the de-
sired configuration. The target of a DBC algorithm would be to select actions in
such a way as to create or simulate the beneficial dynamics.

Recalling our spacecraft scenario, applying Dynamics Based Control (DBC)
would mean that instead of attempting to set the orbit position directly, one should
ensure that it has the tendency to recover from deviations from an ideal orbit. This
tendency would be the beneficial system dynamics, and it requires much less effort
than precise positioning of a spacecraft. A similar effect is observed while driving
a car (the “small corrections principle”); there is no attempt to precisely position
the car in the middle of a car lane, but rather it is directed toreturn there.

The “small corrections principle” has another interpretation, that of classical
control theory [13]. Control theory has a concept ofneighboring control. Should
the system manifest itself in an ideal, noiseless way, the control signal (actions
selected) would be clear. But if a (small) deviation insystem stateoccurs, the
control signal can be augmented by a small difference as well, usually propor-
tional to the real or estimated state-difference, as observed in literature on linear
systems [3, 13]. Though DBC uses terminology such assystem deviation, the
focus is on the rules that govern the system, rather than on the system state itself.

The main principle of action selection in DBC can be split intotwo phases:dy-
namics estimationanddynamics correction. Estimation can be done in numerous
ways, starting from true system identification by a completelearning algorithm,
and ending with lighter tracking algorithms, such as Extended Markov Tracking
(EMT) [9, 10]. Given the way estimation is done, one can devise actions so that
future system behavior will produce estimates similar to the ideal or beneficial
system dynamics.

DBC-type action selection is actually quite widespread. Consider, for exam-
ple, color creation on a computer screen. Human color perception (i.e., light fre-
quency estimation) is based on three distinct receptors, each detecting a specific
frequency or hue. This is used in color monitors, where most colors are not actu-
ally emitted by the screen. Instead three sources of constant hue are tapped into,
and a mixture is created that simulates for the human eye the required color. This
scheme parallels the phases ofestimationandcorrectionas performed by DBC.

A similar dual structure can be found in learning algorithmssuch as Actor-
Critic algorithms [6]. A Critic estimates the value function,a system performance
evaluator, while an Actor uses the estimation to refine its strategy. However,
Actor-Critic algorithms are learning algorithms, and produce at the end a good
value function estimate and the corresponding, usually static, strategy. The DBC
framework by itself is not a learning algorithm, though it can be utilized in creat-
ing one (see below).

The rest of the paper is organized as follows. In Section 2 we provide a for-
mal introduction to Dynamics Based Control, focusing especially on Markovian

stochastic environments. This is followed in Section 3 by comparison to a clas-
sical control alternative for these environments — Partially Observable Markov
Decision Processes (POMDPs). Section 4 demonstrates how recently introduced
EMT-based control fits the DBC architecture under the Markovian assumption,
and also exposes the limitations of naive EMT-based control, as opposed to the
general DBC framework. Section 5 provides some concluding remarks and direc-
tions for future developments of DBC.

2 Dynamics Based Control

Dynamics Based Control (DBC) specification can be broken into three interacting
levels: Environment Design Level, User Level, and Agent Level.

• Environment Design Level concerns itself with the formal specification
and modeling of the environment. For example, this level would specify
the laws of physics within the system, and set its parameters, such as the
gravitation constant.

• User Level in turn relies on the environment model produced by Environ-
ment Design to specify the ideal or beneficial system dynamics it wishes to
observe. The User Level also specifies the estimation or learning procedure
for system dynamics and the measure of deviation. In our spacecraft dock-
ing scenario these would correspond to specifications of self-stabilization at
an optimal orbit, and angular speed and radii difference evaluations.

• Agent Level in turn combines the environment model from the Environ-
ment Design level, and the dynamics estimation and ideal dynamics spec-
ification from the User Level, to produce a sequence of actions that create
system dynamics as close as possible to the ideal one with respect to the
deviation measure specified by the User Level.

As we are interested in the continual development of a stochastic system, such
as happens in classical control theory [13] and continual planning [5], the question
becomes how the Agent Level is to treat the deviation measurements over time. A
classical approach would be to use expectation, to average over all possible sys-
tem developments. However, we prefer to use a probability threshold alternative
— that is, we would like the Agent Level to maximize the probability that the
deviation measure will remain below a threshold.

Specific action selection would depend on system formalization. One possi-
bility would be to create a mixture of available system trends, much like what

happens in Behavior-Based Robotic architectures [1]. The other alternative would
be to rely on the estimation procedure provided by the User Level, and utiliz-
ing the Environment Design Level model of the environment tochoose actions
so as to manipulate the dynamics estimator to believe that a certain dynamics
has been achieved. Notice that this manipulation is not direct, but via the envi-
ronment. Thus, for strong enough estimator algorithms, successful manipulation
would mean a successful (i.e., beyond discerning via the available sensory input)
simulation of the ideal or beneficial system dynamics.

DBC levels can also have a back-flow of information (see Figure1). For in-
stance, the Agent Level could provide data about ideal dynamics feasibility, al-
lowing the User Level to modify the requirement, perhaps focusing on attainable
features of system behavior. Data would also be available about the system re-
sponse to different actions performed; combined with a dynamics estimator de-
fined by the User Level, this can provide an important tool forthe environment
model calibration at the Environment Design Level.

UserEnv. Design Agent

Model
Ideal Dynamics

Estimator

Estimator

Dynamics Feasibility

System Response Data

Figure 1: Data flow of the DBC framework

Extending the idea of Actor-Critic algorithms [6], DBC data flow can provide
a good basis for design of a learning algorithm. For example,the User Level
can operate as an exploratory device for a learning algorithm, inferring an ideal
dynamics target from the environment model at hand that would expose and ver-
ify most critical features of system behavior. In this case,feasibility and system
response data from the Agent Level would provide key information for an environ-
ment model update. In fact, the combination of feasibility and response data can
provide a basis for the application of strong learning algorithms such as EM [2, 8].

2.1 DBC for Markovian Environments

For a Partially Observable Markovian Environment, DBC can bespecified more
rigorously. In this case, the phases or levels of DBC can be seen as follows:

• The Environment Designlevel specifies a tuple< S,A, T,O, Ω, s0 >:

– S is the set of all possible environment states;

– s0 is the initial state of the environment (which can also be viewed as
a distribution overS);

– A is the set of all possible actions applicable in the environment;

– T is the environment’s probabilistic transition function:T : S × A →
Π(S). That is,T (s′|a, s) is the probability that the environment will
move from states to states′ under actiona;

– O is the set of all possible observations. This is what the sensor input
would look like for an outside observer;

– Ω is the observation probability function:Ω : S × A × S → Π(O).
That is,Ω(o|s′, a, s) is the probability that one will observeo given
that the environment has moved from states to states′ under actiona.

• The User Level, in the case of a Markovian environment, operates on the set
of system dynamics described by a family of conditional probabilitiesF =
{τ : S × A → Π(S)}. Thus ideal or beneficial dynamics can be described
by q ∈ F , and the learning or tracking algorithm can be represented as a
functionL : O× (A×O)∗ → F ; that is, it maps sequences of observations
and actions performed so far into an estimateτ ∈ F of system dynamics.

There are many possible variations available at the User Level to define
divergence between system dynamics; several of them are:

– trace (orL1) distancebetween two distributionsp andq defined by

D(p(·), q(·)) =
1

2

∑

x

|p(x) − q(x)|

– Fidelity measure of distance

F (p(·), q(·)) =
∑

x

√

p(x)q(x)

– Kullback-Leibler divergence

DKL(p(·)‖q(·)) =
∑

x

p(x) log
p(x)

q(x)

Note that the latter two are not actually metrics over the space of possible
distributions, but still have meaningful and important interpretations. For

instance, Kullback-Leibler divergence is an important tool of information
theory [4] that allows one to measure the “price” of encodingan information
source governed byq, while assuming that it is governed byp. The User
Level also defines the threshold of dynamics deviation probability θ.

• The Agent Level is then faced with a problem of selecting a control signal
functiona∗ to satisfy a minimization problem as follows:

a∗ = arg min
a

Pr(d(τa, q) > θ)

whered(τa, q) is a random variable describing deviation of the dynamics
estimateτa, created byL under control signala, from the ideal dynamicsq.
Implicit in this minimization problem is thatL is manipulated via the en-
vironment, based on the environment model produced by the Environment
Design Level.

3 DBC vs. POMDPs

Comparison of the DBC approach to classical control can be donevia comparison
of DBC to Partially Observable Markov Decision Processes (POMDPs). Since
POMDPs are a classical representative of the control theoryof stochastic sys-
tems, and DBC has a well-formed formalization over Markovianenvironments,
comparison between them illuminates key features of the DBC approach.

Structurally, POMDPs can also be fitted into the three levelsof the Environ-
ment Design Level, User Level, and Agent Level. Furthermore, one can assume
that the Markovian environment model produced by the Environment Design Lev-
els of both approaches completely overlap (see Table 1 for a structural compari-
son). However, the User and Agent Levels differ significantly. At the User Level,
instead of idealized system dynamics, the POMDP approach defines a reward
functionr : S × A × S → R to express preferences over different system transi-
tions. POMDP at the User Level also defines an optimality criterion, determining
how the reward should be treated over time, e.g., discountedaccumulated op-
timality dictates that reward is additively collected withevery next step being
less profitable by a discount factor. The Agent Level then faces the problem of
finding an action selection policy so as to maximize the expected optimum re-
ward. For instance, in the case of discounted accumulated optimality this would
beπ∗ = arg max

π
E [

∑

γiri], whereri denotes the reward obtained at time slicei

under the policyπ, and0 < γ ≤ 1 is a discount factor.

Level
Approach

MDP Markovian DBC

Environment
< S,A, T,O, Ω >,where
S — set of states
A — set of actions

Design
T : S × A → Π(S) — transition
O — observation set
Ω : S × A × S → Π(O)

User

r : S × A × S → R q : S × A → Π(S)
F (π∗) → r L(o1, ..., ot) → τ

r — reward function q — ideal dynamics
F — reward remodeling L — dynamics estimator

θ — threshold
Agent π∗ = arg max

π
E[

∑

γtrt] π∗ = arg min
π

Prob(d(τ‖q) > θ)

Table 1: POMDP vs. Dynamics-Based Control in a Markovian Environment

In some cases the POMDP approach also defines a reward function remod-
eling procedureF (π∗) → r, that transforms the reward function according to
some features of the resulting action selection behavior. This way the POMDP
approach achieves reward function composition that results in a system behav-
ior with specific features. Contrast this with DBC, which specifies the idealized
system behavior directly.

Available complexity results for POMDPs, such as [7], render many optimal-
ity criteria infeasible, and limit the choice to discountedaccumulated optimality,
which we assume for the rest of our discussion. The followingtwo subsections
discuss properties of POMDP and DBC-induced policies in the light of features
such as user preference interpretation and similarity to controller mechanisms.
The summary of this discussion is available in Table 2, with numbers in parenthe-
ses denoting the subsection in which specific issues are discussed.

3.1 Properties of POMDP-Induced Policy

Even within its framework, POMDP-induced policy has one important technical
limitation — its optimization isexpectationoriented, and is applied as is for all
possible system developments. Computed off-line, POMDP-induced policy is, in
a sense, an open-loop control mechanism.

Issue POMDPs (see 3.1) DBC (see 3.2)

Action Selector Off-line computed
policy

On-line action se-
lection

Controller Similar-
ity

Open-loop (3.1.2) Closed-loop (3.2.1)

User preference in-
terpretation

State value oriented
(3.1.3)

Transition fre-
quency oriented
(3.2.2)

Optimality concept Expectation ori-
ented (3.1.1)

Context dependent,
situated (3.2.3)

Complexity PSpace Unknown for DBC

Table 2: Features of POMDP and DBC-induced policies

3.1.1 Optimality Concept

POMDP policy selection dictates that a policy with a maximumexpectedutility
be taken as optimal. Let us concentrate on this notion ofexpectation. Consider
two policiesπ1 andπ2 applied to the same POMDP, and distributions of the (ac-
cumulated) value under these two policiesD1 andD2 respectively, as shown in
Figure 2. POMDP optimization dictates that the policyπ1 should be selected and
applied at all times. However, the variance of the value under π1 is high, which
means that if a critical value exists below which the gain is forbidden to drop (as
denoted byα in Figure 2) —π1 may not be suitable.

The expectation problem can be discussed from another pointof view, that
of system development. POMDP policies can be seen as a solution set for a Se-
quential Decision Making (SDM) problem. Each policy creates a distribution over
system developments (state-action sequences), and one hasto choose among dif-
ferent policies based on a comparison of distributions. An SDM problem defines
a preference order over system development, in a sense, determining an ideal sys-
tem development and a measure of divergence between development sequences.
The POMDP concept of solution combines policy-induced distribution and SDM-
induced preference over the state-action sequences by assigning real values to
sequences and optimizing over the value expectation. Returning to our previous
argument, we see that POMDP-optimal policy can have a very high probability
of large deviations from an ideal system development sequence, a property unin-
tended by, and not desired by, the SDM formulation.

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Value

P
ro

ba
bi

lit
y

π
2

π
1

α

Figure 2: Value distribution under POMDP policies

3.1.2 Controller Similarity

Although POMDP policies can be history dependent, description length feasibility
argues that a policy will have only finite (and rather small) variability in response
to different system developments that actually take place.This, together with
off-line computation and optimality based on average performance, underscores
POMDP policies’ inability to adapt and change for a specific system development
that actually occurs, and which deviates from theexpecteddevelopment under
application of the policy.

3.1.3 User Preference Interpretation

POMDP solutions also exhibit a form of user-preference distortion. By formal
definition, reward/cost is obtained based on specific transitions exhibited by the
system. However, a POMDP’s induced policy is computed with respect to a Value
Function, which is a state-oriented, rather than transition-oriented, concept. This
may potentially cause distortion of User preferences when expressed by the re-
ward structure.

3.2 Properties of DBC-Induced Policy

Dynamics Based Control (DBC) is a closed-loop control scheme, and action se-
lection is bound to a system development that actually occurs at run-time. DBC
is also directly tied to system-transition preference, expressed as the ideal system
dynamics.

3.2.1 Controller Similarity

DBC is a situated, context-dependent scheme because it uses an estimation algo-
rithm L that is used to identify the system development that actually takes place
at run-time. In fact, DBC (and EMT-based control as a representative of a DBC
scheme) takes this to an extreme, in that it viewsL as the “actual” system, and
selects actions in a way that leadsL to a required estimate.

It is important to note thatL is not influenced directly; otherwise, its estimate
and DBC action-selection make no sense. Rather,L is influenced only through
the environment that it estimates. This mode of operation ismost similar to a
closed-loop differential controller, and is explicitly on-line. Note, also, that DBC
formally is not a learning, tracking, or estimation algorithm by itself, although it
has a tracking (estimator) component utilized with its structure.

3.2.2 User Preference Interpretation

The DBC discussion and POMDP discussion above can be unified bytaking the
point of view of distributions over different system development sequences. Un-
like POMDP, the DBC framework attempts a direct comparison between distribu-
tions over system development sequences. This is done by considering “inductor”
stochastic functions, that represent different stochastic behaviors and thus dif-
ferent distributions over system development sequences. DBC assumes that the
ideal system development sequence and the measure of deviation from it can be
combined into such an “inductor” function,q — the ideal system dynamics. The
learning/tracking algorithmL is then used to seek the same form of representation
for the actual system development,τ .

3.2.3 Optimality Concept

A DBC policy considersτ andq, that is, the “estimated actual” and the “ideal”
distributions over system development sequences, and selects an action based on
their direct comparison. The DBC concept of optimality is based on a threshold
probability, and an optimal policy is the one that is capableof keeping deviation
from the ideal system dynamics below the threshold with highest probability.

4 EMT-based Control as a DBC

Recently, a control algorithm was introduced calledEMT-based Control[9, 10],
which fits perfectly into the DBC framework. Although it presents an approximate

greedy solution in the DBC sense, initial experiments using EMT-based control
have been encouraging [11]. EMT-based control is based on the Markovian envi-
ronment definition, as in the case of POMDPs, but its User and Agent Levels are
of the DBC type.

• The User Levelof EMT-based control defines a limited-case, idealized sys-
tem dynamics independent of action:qEMT : S → Π(S). It then utilizes
the Kullback-Leibler divergence measure to compose a momentary system
dynamics estimator — the Extended Markov Tracking (EMT) algorithm.
The algorithm keeps a system dynamics estimateτ t

EMT that is capable of
explaining recent change in an auxiliary Bayesian system state estimator
from pt−1 to pt, and updates it conservatively using Kullback-Leibler diver-
gence. Sinceτ t

EMT andpt−1,t are respectively the conditional and marginal
probabilities over the system’s state space, “explanation” simply means that
pt(s

′) =
∑

s

τ t
EMT (s′|s)pt−1(s), and the dynamics estimate update is per-

formed by solving a minimization problem:

τ t
EMT = H[pt, pt−1, τ

t−1

EMT] = arg min
τ

DKL(τ × pt−1‖τ
t−1

EMT × pt−1)

s.t.

pt(s
′) =

∑

s

(τ × pt−1)(s
′, s)

pt−1(s) =
∑

s′
(τ × pt−1)(s

′, s)

• The Agent Levelin EMT-based control is sub-optimal with respect to DBC
(though it remains within the DBC framework), performing greedy action
selection based on prediction of EMT’s reaction. The prediction is based on
the environment model provided by the Environment Design level, so that
if we denote byTa the environment’s transition function limited to action
a, andpt−1 the auxiliary Bayesian system state estimator, then EMT-based
control choice is described by

a∗ = arg min
a∈A

DKL(H[Ta × pt, pt, τ
t
EMT]‖qEMT × pt−1)

Note that this follows the DBC framework precisely; a dynamics estimator
(EMT in this case) is manipulated via action effects on the environment to produce
an estimate close to the idealized system dynamics. Yet naive EMT-based control
is suboptimal in the DBC sense, and has several additional limitations that do not
exist in the general DBC framework.

4.1 EMT-based Control Limitations

EMT-based control is a sub-optimal (in the DBC sense) representative of the DBC
structure. It limits the User by forcing EMT to be its dynamictracking algorithm,
and replaces Agent optimization by greedy action selection. This kind of com-
bination, however, is common for on-line algorithms. Although further develop-
ment of EMT-based controllers is planned, evidence so far suggests that even the
simplest form of the algorithm possesses a great deal of power, and trends that are
optimal (in the DBC sense of the word).

There are two further, EMT-specific, limitations to EMT-based control that are
evident at this point. Both already have partial solutions and are subjects for future
research.

The first limitation is the problem of negative preference. In the POMDP
framework, for example, this is captured simply, through the appearance of values
with different signs within the reward structure. For EMT-based control, how-
ever, negative preference means that one would like toavoida certain distribution
over system development sequences; EMT-based control, however, concentrates
on getting ascloseas possible to a distribution. Avoidance is thus unnatural in
native EMT-based control.

The second limitation comes from the fact that standard environment modeling
can createpure sensory actions— actions that do not change the state of the world,
and differ only in the way observations are received and the quality of observations
received. Since the world state does not change, EMT-based control would not be
able to differentiate between different sensory actions.

Notice that both of these limitations of EMT-based control are absent from
the general DBC framework, since it may have a tracking algorithm capable of
considering pure sensory actions and, unlike Kullback-Leibler divergence, a dis-
tribution deviation measure that is capable of dealing withnegative preference.
Furthermore, as was mentioned, EMT-based control itself has a number of possi-
ble extensions that promise to be less prone, or not at all prone, to the aforemen-
tioned limitations.

5 Conclusions and Future Work

In this paper we have formally introduced a novel control framework —Dynamics
Based Control(DBC). Unlike existing approaches to control and planning, DBC
is directly involved with the rules that govern change within the controlled system

— system dynamics. Instead of limiting its attention to quantitative changes of
system state and their estimation, DBC attempts to estimate and vary the qualita-
tive features of system modulations. A Dynamics Based Controller can operate
either as a direct mixer of available sources of system dynamics, or as a simulator
with respect to a given dynamics estimator.

The DBC framework, even limited to well-studied Markovian environments,
significantly differs in its approach and the resulting control signal (action pol-
icy) from the classical control approach, as represented (for example) by Partially
Observable Markov Decision Processes.

It is important to note, however, that DBC and POMDPs are not rival, but
rather parallel, approaches. Furthermore, the DBC approach, since it is related to
on-line noise-resistant control methods, can be used together with POMDP. For
instance, one can configure DBC to maintain the system dynamics induced by
a POMDP solution policy, forming a kind of “neighboring control” [13], which
exhibits both maximum payoff expectation and performance guarantees.

Although at this point a complete and exact solution of the DBCframework
is not available, a promising beginning in this direction exists — control based on
Extended Markov Tracking (EMT) [9, 10]. EMT-based control is computationally
efficient, and in fact is polynomial in environment description parameters. Initial
experiments using EMT-based control have been encouraging[11], and the trend
continues with further development [12].

EMT-based control does have limitations, the main two beingnegative dy-
namics preference and pure sensory actions. It seems, however, that extended
state representations may resolve these problems, and thisdirection is currently
under investigation.

DBC also requires extensive feasibility and complexity studies, paralleling
those done for POMDPs, as well as utilizing its potential forthe composition of
learning algorithms. The latter would be significant for thefield of robotics, pro-
viding flexible automated techniques for environment modelcalibration simulta-
neous with task performance. In this direction it would be interesting to take a
closer look at the application of EMT combined with EM, as thelatter can use
Kullback-Leibler divergence for its operation, thus directly making use of infor-
mation from an EMT-based controller.

6 Acknowledgment

This work was partially supported by Israel Science Foundation grant #039-7582.

References

[1] R. C. Arkin. Behavior-Based Robotics. MIT Press, 1998.

[2] J. A. Bilmes. A gentle tutorial of the EM algorithm and its application to pa-
rameter estimation for Gaussian mixture and Hidden Markov Models. Tech-
nical Report TR-97-021, Dept. of EECS, Univ. of Calif., Berkeley,1998.

[3] C.-T. Chen.Linear System Theory and Design. Oxford Univ. Press, 1999.

[4] T. M. Cover and J. A. Thomas.Elements of information theory. Wiley, 1991.

[5] M. E. desJardins, E. H. Durfee, C. L. Ortiz, and M. J. Wolverton. A survey
of research in distributed, continual planning.AI Magazine, 4:13–22, 1999.

[6] V. R. Konda and J. N. Tsitsiklis. Actor-Critic algorithms.SIAM Journal on
Control and Optimization, 42(4):1143–1166, 2003.

[7] O. Madani, S. Hanks, and A. Condon. On the undecidability of probabilistic
planning and related stochastic optimization problems.Artificial Intelligence
Journal, 147(1–2):5–34, July 2003.

[8] R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies
incremental, sparse, and other variants. In M. I. Jordan, editor, Learning in
Graphical Models, pages 355–368. Kluwer Academic Publishers, 1998.

[9] Z. Rabinovich and J. S. Rosenschein. Extended Markov Tracking with an
application to control. InWorkshop on Agent Tracking: Modeling Other
Agents from Observations, at AAMAS’04, pages 95–100, New York, 2004.

[10] Z. Rabinovich and J. S. Rosenschein. Multiagent coordination by Extended
Markov Tracking. InAAMAS’05, pages 431–438, Utrecht, July 2005.

[11] Z. Rabinovich and J. S. Rosenschein. Robot-control based on Extended
Markov Tracking: Initial experiments. InThe Eighth Biennial Israeli Sym-
posium on the Foundations of Artificial Intelligence, Haifa, Israel, June 2005.

[12] Z. Rabinovich and J. S. Rosenschein. On the response of EMT-based control
to interacting targets and models. InAAMAS’06, Hakodate, Japan, May
2006. To appear.

[13] R. F. Stengel.Optimal Control and Estimation. Dover Publications, 1994.

