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Abstract

We present here a tracking method for Markovian system
dynamics which operates in an on-line fashion, during in-
teraction with the system. Existence of a simple numerical
solution of the technique is demonstrated. We also demon-
strate the application of the tracking method in a novel
continual planning architecture, together with experimen-
tal data to support the validity of the presented tracking ap-
proach.

1. Introduction

Imagine an artificial intelligence (AI) system capable of
serving as a car’s autopilot. Using satellite positioning and
maps, the car navigates through city streets, moving from a
starting location to some defined end location. Notice, how-
ever, that there are really two separate kinds of tasks being
carried out by the AI autopilot. The “high-level” task de-
cides, based on constraints like street connectivity and one-
way traffic restrictions, how to go from point A to point B.
The “low-level” task is to make sure that the car maintains
other constraints as it progresses, that it follows the curve of
the road, adjusts the car’s steering in response to dynamic
feedback from the environment, and applies brakes as nec-
essary. It is the interaction of these two levels that results in
successful completion of the task.

Besides reasoning about the immediate tasks at hand,
two activities are of major importance: environment evo-
lution (a.k.a. dynamics) tracking, and failure detection.1

Environment-dynamics tracking and failure detection are
the “supports” that keep any continual planning scheme to-
gether.

1 In our car scenario, this might be keeping track of the streets the car
has already passed, as well as detecting the situation where the path
becomes accidentally blocked.

Unfortunately, most tracking and detection techniques
attempt to look into the reasons behind events, thus creat-
ing complex dynamic models that require a large amount of
computation and observational data [3, 11, 10]. Although
such models eventually provide accurate and insightful im-
ages of the world, in many cases we are simply not inter-
ested in the internal wiring of the system, but need, rather,
a simple surface explanation of its ongoing interaction with
the environment.

Pursuing this demand for simplicity and the on-line ex-
ploitation of minimal data, we develop a Markov-dynamics
tracking mechanism, which operates during the system’s in-
teraction with the environment as described in Section 2. To
demonstrate the effectiveness of our approach, we have in-
tegrated it into a continual planning architecture (Section 3),
and set up an experimental domain as discussed in Sec-
tion 3.2.

2. Extended Markov tracking

Determining, from observations, the behavioral trends of
an environment during interaction is known to be a hard
problem. It is universally treated by complex models that re-
quire significant amounts of data and involve a large com-
putational burden [11, 3, 10]. However, most of the time
interaction is either short-lived or, although internally com-
plex, exhibits simple external trends. Thus, a simple Marko-
vian model will often be sufficient for our needs.

2.1. Model

A Markovian environment is described by a tuple�������	��
���
������������ , where:� � is the set of all possible environment states;� ��� is the initial state of the environment (which can
also be viewed as a distribution over � );� � is the set of all possible actions applicable in the en-
vironment;



� 
 is the environment’s probabilistic transition func-
tion: 
����������! #"$�&% . That is, 
#"'�)('* +,���)% is the
probability that the environment will move from state� to state �-( under action + ;� 
 is the set of all possible observations. This is what
the sensor input would look like for an outside ob-
server;� � is the observation probability function: �.���/��0�1�2�3 4"'
�% . That is, �5"768* �-($��+9���)% is the proba-
bility that one will observe 6 given that the environ-
ment has moved from state � to state �)( under action+ .

In current approaches, “tracking” would mean a con-
tinual estimation of the system state as seen through the
distortion of observations. We find this approach insuffi-
cient, since it disregards the purpose of continual tracking:
rather than understanding where the system is moving, it is
of greater importance to know how it is moving. In other
words, instead of tracking system state, we need to track
the way the system changes, i.e., the dynamics of the sys-
tem.

The original reason for tracking system state was due
to a set of preferences over the state; in dynamic systems,
however, there exists an additional preference, a preference
over system transitions. This preference is basically a de-
mand, or limitation, on the exhibited system state dynam-
ics. The way a system changes is the target of the track-
ing approach proposed here. We would like to know what
kind of behavior the system exhibits, that is, under a Marko-
vian environment description, we would like to keep an es-
timate :�; �<���� #"$�&% .
2.2. Tracking and Evaluation

We propose to track the system’s exhibited dynamics by
continual updating of the model, subject to keeping a con-
servative distance between old and new models. In other
words, given our previous system dynamics estimate :�; ,
we seek a new estimate ; that can account for the observa-
tion at hand, while staying as close as possible to :�; .

The distance between old and new system estimates
is performed using the Kullback-Liebler (KL) divergence
function [5]: ;>=@? "BADCFEG%&HJI)KLAM"7N9%PORQTS AM"UNV%EW"UNV%YX

From the information theory point of view, this is the
price one will have to pay for using distribution E to en-
code a source distributed by A . In our case, the old estimate
is the encoding we use, while the new estimate represents
the true source distribution. In a sense, we measure the “re-
gret” of using an old estimate in light of new evidence and a

new estimate of the system dynamics. Since we seek a con-
servative update, we would like the regret to be minimized.

However, to complete the measure and system dynam-
ics tracking, one has to maintain one auxiliary kind of in-
formation: beliefs about the current system state. Initial be-
liefs are given by the definition in the environment tuple.
Assume that at some stage we believe AJZJ #"'�[% , and we
obtain an observation 61Z�
 after action + . Then we can
update our beliefs using the Bayesian formula:\AD"'�)%&]J�5"768* �T��+W%YI_^a`>
#"'�P* +,��� ( %bAD"'� ( % X

Notice that, although action is present in computations
of the state estimator, it serves as an input to the procedure,
and not as an unknown parametric component.

Given that we keep track of our beliefs about the envi-
ronment state, we can do the same with regard to the ob-
served dynamics. Our prior beliefs in this case might obvi-
ously depend on the domain, but in the absence of any other
preference, one commonly accepted prior belief is the uni-
form distribution. That is, we assume at the beginning that
anything can happen in the environment with equal like-
lihood. The other popular alternative is a ‘static’ environ-
ment, that is, the assumption that the system state does not
change.

When we update our beliefs about the system dynamics:�; "'� ( * �)% (the observed system dynamics), we would like
the new version of it, ; "$�-(c* �)% , to explain what happened in
the system from our point of view:

\AM"'�d(R%eHLf ^ ; "'�-($* �)%bAD"'�)% ,
where AD"agh% and

\Ai"_g % are, respectively, the old and the new es-
timations of the system state. Obviously, though, we do not
want to wander too far from our current beliefs about sys-
tem dynamics. Thus the update is a solution to the follow-
ing optimization problem:; "'�-(c* �-%&HLjGk�Sml>nRop&q ^c`$r ^csPt ;>=@? "'uv"$�-($* �)%FC :�; "'�-($* �)%_%�wyx q ^cs� X z{X| � ( \AM"'� ( %&HJf ^ uv"'� ( * �)%UAM"'�)%| � f ^ ` uv"$�-($* �)%&H~}

Notice that one explanation is trivial: it is the matrix� � H " \Ai� X�XRX � \A9% , composed of the newly observed sys-
tem state distribution for columns. However it is not op-
timal, relative to our prior system dynamics :�; . Fortu-
nately, the set of all feasible explanations for the change
of system state distribution forms a convex hull. It is possi-
ble to construct a linear base for the space of neutral matri-
ces: � 
���Z����9�W�V"b��%�* z Z�
����}���
/H��� ��
L�DA�H0��8� , thus
expressing ; as a linear sum: ; Hm���@� f�y�T��� � 
 � , where� � � � �y�T� are some real coefficients. This allows us to refor-



mulate the optimization problem as:; H�jTk�S l>n�o���<�c�_�7�F�9�,��� � �)� ; =@? "'���@� f�y�T��� � 
 � C :�; %¡  x q ^cs� X z{X����� f�y�T� � � 
 � � �
It is possible to explicitly construct the � 
 � � base as

the tensor product of sets of vectors perpendicular to �}
and �A . Although ;>=@? is not a true metric over the space
of probability distributions, its convexity and the linear-
ity of constraints over � � allow the problem to be effi-
ciently solved using relatively standard numerical optimiza-
tion techniques, e.g., gradient descent.

Notice that the Kullback-Leibler extension for Marko-
vian dynamics

t ; =@? "'uv"$�-($* �)%FC :�; "'�-($* �)%_%�wyx q ^cs can also
provide failure detection for controllers. This was used in
a Strategic/Tactical planning architecture that we have de-
veloped (described below), providing empirical support for
the validity of this tracking approach.

3. An Application to Tactical Planning

The Strategic/Tactical framework of planning consists of
two continually interacting layers:� The strategic layer of the planner is concerned with the

following question: given a high level goal, what kind
of system dynamics will suffice to achieve it;� The tactical layer of the planner has no concern what-
soever with the high level goal. Rather, it attempts to
ensure that the system dynamics of the changing state
indeed match the one desired by the strategic layer.

Failure of the tactical layer is reported back to the strategic
layer, forming a continuous loop of plan enhancement.

Although the Strategic/Tactical paradigm of planning is
evident in many old and new planners [7, 1, 14, 9], we be-
lieve it is necessary to shift attention to the abilities and re-
sponsibilities of the tactical layer, which typically is present
only in a degenerate sense within existing planners.

To enhance the Tactical layer, we used extended Markov
tracking as presented above (Section 2) with a novel notion
of the planning goal. Instead of using the classical POMDP
approach (reward function and expected accumulated re-
ward) to guide action selection, we made action selection
be directly dependent on system dynamics. The Strategic
layer thus provides a tactical target, a distribution (or a pref-
erence function) ¢ �£�0�¤ #"$�&% , while the Tactical layer
(through system-dynamics tracking) has to ensure wise ac-
tion selection.

Denote by ¥ "�¦A§�'Ai� :�; % the procedure of obtaining the
optimal explanation for transition between belief states A

and ¦A with respect to the dynamics-prior :�; . Then, the ac-
tion of choice in our extended Tactical layer is:+8¨�H©jTk�Sªl>nRo« t ; =@? " ¥ "7
 « Ai�7AM� :�; %�C ¢ %_wyx
where 
 « is the environment transition function restricted to
action + ( 
 « A thus becomes a matrix applied on a vector).

The overall tactical algorithm may be written as follows:

0. Initialize estimators:� the system state estimator A,�¬"'�)%&HL����Z­ #"$�&% ,� system dynamics estimator:�; � "�¦�P* �)%[H�A ¢)® 6 ¢ "�¦�P* �)%
Set time to z H � .

1. Select action + ¨ to apply using the following computa-
tion:� For each action +¯Z°� predict the future state dis-

tribution ¦A «�U±M² H�
 « �MAY� ;� For each action, compute; « H ¥ "�¦A «�U±M² �7A,��� :�; �y%� Select + ¨ HLjGk�Sªl>n�o« t ;>=@? " ; « C ¢ %�wyx �
2. Apply the selected action + ¨ and receive an observa-

tion 6#Z­
 .

3. Compute A �U±D² due to the Bayesian update.

4. Compute :�; �U±M²@H ¥ "³A,�U±M²)�'AY��� :�; �c% .
5. Set z �hH z ��} , goto 1.

In essence, the tactical algorithm above utilizes extended
Markov tracking both to guide its action selection, and to
ensure that the exhibited behavior indeed concurs with the
given preference ¢ �<���� #"$�&% .
3.1. Evaluation

To see how the system tracking and the overall tacti-
cal layer performed, we designed a simple experiment, pre-
sented below in Section 3.2. First, however, consider the
evaluation criteria that are worthwhile to apply on the ex-
perimental data. Since the system in question is stochastic
by nature, a probabilistic evaluation of performance has to
be applied. The following criteria were used to compare dif-
ferent tactical solutions:

Definition 1 Let ´ �µ denote the set of all possible values
of divergence from the tactical target obtained by tactics ¶
during the first · steps. Define a probability distribution of
the divergence due to ´ �µ as: µ "7+¸�1N­��¹¡%&H�º �-» Z ´ �µ * +¯� » �¼¹ �· X



Definition 2 For two different tactics ¶ ² and ¶F½ and a
threshold value ¾ , we say that ¶ ² outperforms ¶�½ (in · steps)
if : µ�¿ "UN�� ¾ %4� : µaÀ "7N¼� ¾ % . That is, one is less likely to
break some divergence limit ¾ using tactics ¶ ² , than using
tactics ¶ ½ .
Definition 3 For two tactics ¶ ² and ¶F½ , denote ; ² and ;>½
as the probability distributions of the divergence due to ¶ ²
and ¶F½ , respectively. We say that ¶ ² definitely outperforms¶F½ if : " ; ²�� ;�½ %£� ²½ .

As one support for this approach to comparison, con-
sider [6], where the same technique was used to balance
exploration and exploitation in a stochastic domain.

The second question regarding evaluation of our track-
ing technique concerns the distance measure between ob-
served and required dynamics. Optimization applied dur-
ing system tracking rules out the extended Kullback-Leibler
divergence from being used during evaluation. Instead, we
view system dynamics as linear transformations, and mea-
sure cumulative distance between image vectors:ÁÂ C¡��Ã�Ä�Å�Ã�C ½FÆ � X

In addition, a domain-specific measure of success was
applied in our experiment set, to demonstrate the validity of
comparison.

3.2. Experimental Data

Since no truly tactical alternative solution currently ex-
ists, we used a standard POMDP solver [4] as a point of ref-
erence for our technique.

Experiments were carried out in the Drunk Man Walk
domain (among others); see Figure 1. This is a classic ex-
ample for Markov chain discussions: a man stumbles along
a path between his home and nettle bushes, making random
steps left (home) and right (away from home).

Figure 1. Drunk Man walk state diagram. Pa-
rameter � is subject to action effect. A is the
stabilization parameter.

The setup was modified to allow stochastic control—
actions can be applied to tilt the probability balance between
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Figure 2. Divergence from Global Goal (mid-
way point)
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Figure 3. Tactical Distance Divergence

left and right steps, but the number of steps is non-trivial (in
our experiments 1/4 of the path could be passed in a single
epoch). In addition, the true position of the man was veiled
by the observation set—which is the same size as the set of
possible positions. The observation probabilities essentially
just “blur” the system state. The task was to keep the man
as far away from home and nettle bushes alike. The classic
delayed reward schema, where one is rewarded if the man
reached the middle of the path, was translated into a transi-
tion preference matrix for our tactical layer. The compari-
son was done based on the distribution of distance from the
path midpoint.



The exact setting is as follows:� Denote by · the number of steps between home and
nettle.� Denote the number of possible directional inclinations
by Ç	È�TÉ-Ê ; together with one neutral action it forms a
set of Ç �GÉ)ÊËHJÌ�� Ç	È�TÉ-Ê ��} possible actions.� Denote by A,� the initial predisposition of the drunk
man to stay put.� Denote by ¾ the number of probabilistic steps taken
by the drunk man under the influence of a single ac-
tion application.� Then the probability vector of left, zero, and right steps
respectively "BAiÍ[�7AM�7A ± % is computed for each action}5Î ® Î Ç �GÉ)Ê , using the following formulas:Ç H " ® Ä Ç È�GÉ)Ê Ä�}-%�Ï Ç È�TÉ-ÊA H A � }@Ä�* Ç *Ì� H Ç �©}ÌA Í H � ��"a}@ÄÐA9%A ± H "a}@Ä � %i��"_}@Ä�AV%

In the experiment set, which resulted in the data shown
in Figure 2 and Figure 3, the parameters where set to:Ç	È�GÉ)Ê HJÑW� · Hm}-Ì8�7AY��H ²Ò , and ¾ HLÓ . Preference over the

state transitions was set to : "{¦N�* NV%�H2Ô ²_±iÕÖ q K s ¦N�H�× �G±M²½JØÕÖ q K s 6 z_ÙYÚ ¢)Û�® � Ú ,

where Ü "UN9% is a normalization factor. The classical POMDP
solution used the same preference as a reward function, and
attempted to accumulate as large a reward as possible over
a preset number of steps. The observation set was equally
large as the system state set, and probabilities were set so
that observation was equally distributed over the immedi-
ate neighborhood of the man’s true position.

The tactical layer definitely outperformed the classical
POMDP solution. Figure 3 shows statistics of the tactical
and classical POMDP solutions with respect to the tactical
distance. It can easily be seen that the divergence of the tac-
tical solution from the required transition preference will
be, with high probability, less than the divergence exhib-
ited by the classical POMDP solution. However, since tacti-
cal distance is a new concept, the success of the tactical so-
lution was verified using another measure. Figure 2 shows
the cumulative probability that the Drunk Man will be away
from the midpoint along the path. It can easily be seen that
the proposed tactical solution once again is more likely to
be close to the midpoint (distance zero) than the classical
POMDP solution. It is also important to note that the tac-
tical layer in these experiments was applied in an on-line
fashion, while the POMDP solution was obtained offline

with prior knowledge of the problem horizon (which im-
proved its performance).

4. Related work

Although the choice above in Section 2 of the Kullback-
Liebler distance may seem arbitrary, it is inspired by work
in information theory [12, 13] and information gathering [2,
8].

Tishby et al. [12, 13] proposed a novel method for dis-
tributional clustering and relevant quantization. In [13],
Tishby, Pereira and Bialek developed an elegant theoreti-
cal schema for preserving maximum relevant information,
when it has to be transmitted via a third party. For example,
image-based face recognition has two stages: image “com-
pression” into features, then face recognition based on the
features. [13] provides an exact, self-consistent set of equa-
tions that allow optimal creation of feature coding, so that
information relevant to face recognition will be maximally
preserved in the derived features.

Later work [12] provides a practical algorithm for devel-
oping the feature set itself, also through a widely applica-
ble mathematical construction. In our work, we used simi-
lar mathematical tools. However, there is an important dif-
ference in the focus of our approach. Tishby’s team was in-
terested in the optimization of coding for some given envi-
ronment, while our work deals with the inverse concept—
change the world to fit some preset coding (our action capa-
bilities and target).

An information-theoretic approach to control was also
used by the research group of Durrant-Whyte [2, 8]. In this
work, multi-robot sensor systems are discussed and put into
the framework of decentralized data fusion. As a conse-
quence, control becomes a function of predicting informa-
tion gain from an action, and choosing the best prospect. Al-
lowing non-frequent exchange of observation information,
a successful control schema is obtained. Having said that,
it is important to notice that the goal of their systems is in-
formation itself. In our work, we tend toward more general
systems, where information is only a key to better control,
not the ultimate goal.

5. Conclusions and Future work

We have introduced extended Markov tracking of system
dynamics, along with divergence and distance measures that
provide a basis for plan failure detection. The on-line nature
of the tracking mechanism, and its connection with system
interaction, allowed us to integrate it into a hierarchal con-
tinual planning architecture.

In spite of the fact that belief update may generally be
hard to perform, for discrete systems the proposed method



is completely tractable. Moreover, extended Markov track-
ing does not introduce any substantial additional compu-
tational complexity, even in the continuous case, since the
main computational leverage comes from system state up-
date, already present in most tracking systems.

Although a formal proof of efficiency is not yet avail-
able, experimental data supports the validity of the extended
Markov-tracking technique presented here. It also demon-
strates that system-dynamics tracking can significantly im-
prove continual planning performance.

We plan to expand our experimental investigation and to
introduce the technique into multiagent domains. In addi-
tion, further investigation of the tracking technique’s the-
oretical and on-line properties, such as its competitiveness
and stability, are among the many points of analysis that re-
main for future work.
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