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We consideEffort Gamesa game-theoretic model of cooperation in open environments, whictaisant of
the principal-agent problem from economic theory. In our multiagentaio, a common project depends on
various tasks; carrying out certain subsets of the tasks completesdjeetmuccessfully, while carrying out
other subsets does not. The probability of carrying out a task is highen wte agent in charge of it exerts
effort, at a certain cost for that agent. A central authority, called timeipal, attempts to incentivize agents to
exert effort, but can only reward agents based on the successaeritihe project.

We model this domain as a normal form game, where the payoffs &br steategy profile are defined based
on the different probabilities of carrying out each task and on the bodlezction that defines which task
subsets complete the project, and which do not. We view this boolean furstiarsimple coalitional game,
and call this game the underlying coalitional game. We sugge#$trihe of Myopia(PoM) as a measure of the
influence the model of rationality has on the minimal payments the princgsatdimake in order to motivate
the agents in such a domain to exert effort.

We consider the computational complexity of testing whether exertingtéffar dominant strategy for an
agent, and of finding a reward strategy for this domain, using eitld@ngnant strategy equilibriuror using
iterated elimination of dominated strategied/e show these problems are generally #P-hard, and that they are
at least as computationally hard as calculating the Banzhaf power indeximtterlying coalitional game. We
also show that in a certain restricted domain, where the underlying coalitjaree is a weighted voting game
with certain properties, it is possible to solve all of the above problems impaotial time. We give bounds on
PoM in weighted voting effort games, and provide simulation results daggPoM in another restricted class
of effort games, namely effort games played over Series-Pa@Giéghs.
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1 Introduction

The computational aspects of many game theoretic concapesdeen thoroughly studied in recent years, as they
are significant for many real-world domains, including &g, voting, and electronic commerce. A key issue
in many such domains is constructing a proper reward scheraehtieve the desired behavior of self-interested
agents.

There are many such examples: auction theory is sometineedaislesign auctions that maximize the revenue
of the auctioneer; social choice theory attempts to desigohanisms that give agents incentives to truthfully
reveal their preferences so that an optimal social choingide; solution concepts in coalitional game theory are
used to make sure that rewards are distributed in a fair nmaongo that the coalitions that are formed are stable.
The computational aspects of such concepts are criticadgsn order to use them in practice, one must find a
tractable way to compute them.

1.1 Our Setting

In this paper, we deal with the computational complexity ofling a reward scheme &ffort gamesn open
environments. These games are a particular model of a pahagent problem. In our model, the mechanism’s
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purpose is to incentivize agents to exert effort when waylon a common project. Completing the project re-
quires the performance of various tasks. Some of the subfstiits tasks are “winning” subsets —when these tasks
are completed, the project succeeds; some subsets aneg’l@sibsets — when only these tasks are completed,
the project fails.

A self-interested agent is in charge of each task. This aggmexert effort, which increases the probability
that its task will be completed successfully. However, thisrtion of effort has a certain cost for the agent. On
the other hand, the task has a certain probability of beimgpteted successfully even if the agent in charge of it
does not exert any effort. A natural way to reward agents setan the effort they have exerted. However, in
open environments this information is sometimes not abkilto the mechanism. These environments are open
in the sense that a mechanism can only get information abeusuccess of an entire project, and cannot get
information about the performance of agents in the variagkg required for this project, or whether they have
exerted effort or not. Thus, the mechanism can only rewagdigents based on the success of the entire project.
We consider the computational complexity of finding a rewsrideme, so that all agents have incentives to exert
effort and so that the project is successful.

One example of such a situation is maintenance efforts. i@en$or example, a communication network with
a source node and a target node, where agents are in chargéntémance tasks for the links between the nodes
of the network. If no maintenance effort is expended on g lirkas some probability < 1 of functioning, but if
a maintenance effort is made for the link, it functions withigher probabilitys > «. Consider a mechanism in
charge of sending some information between source and t8rigis mechanism only knows whether it succeeded
in sending the information, but if that attempt fails, may kiwow which links failed or if they failed due to lack
of maintenance. Examining the links to see which of thenetaihay be very costly, and even if the mechanism
could know which links worked and which failed, it cannot telr sure whether a link failed because it was
poorly maintained.

Another example is voting domains, which we consider in i8acd. Consider a domain where a decision
is made by a certain voting protocol, where only the resufiublished, and not the votes of the participants.
Suppose that some outsider has a certain desired outepared attempts to use several lobbying agents, each
able to convince a certain voter to vote for the desired auecoWhen such a lobbying agent exerts effort, her
voter votes forz with a high probability3, but this effort has a certain cost for that agent. If thatnaghirks
(does not exert effort), her voter only has a probabilityvof. 5 to vote forx. The outsider wants to make sure
some of the agents exert effort. However, she cannot teliiwagent has exerted effort, or even what each voter
voted for. She can only know whethemwas chosen or not.

In the above examples, the interested party, catedprincipal cannot observe the agents’ decisions about
whether to expend effort. The only information availablettis the overall result of the project. However, the
agents have a certain cost to exerting efforts, and requiertain reward as an incentive for making such an
effort. The principal cannot offer any reward based on wéietin agent has exerted effort or not, since it does
not have that information. It can, however, offer the agentertain reward conditional on the project’s being
successful. Since agents have a certain capability ofasang the probability of obtaining this outcome, they
may exert effort in order to get their reward. However, theyld only do so if the expected reward from exerting
effort is greater than the cost of that effort for them.

The principal thus offers a reward vector= (r4,...,r,), where for alli, »; > 0. If the project succeeds,
the reward of agent; is r;, and if the project fails then for all; the reward ofz; is 0. Consider a principal that
wants to motivate a certain subset of the agents to exert &f0f course, it can offer each agent in this subset a
reward that is high enough to make sure it is worthwhile fenthto exert effort no matter what the other agents
do. However, we assume that the principal wants to minintiz¢dtal rewards given when the project succeeds,
> i Ti-

In this paper, we examine several domains that can be modsledffort games. We begin with a simple
voting domain where voters vote on a certain decision, utigeweighted voting model. Each voter has a certain
weight, and a decision is carried out if the sum of weightshef ¥oters who vote for accepting the decision
exceeds a certain threshold. In this domain, each agenpabtaof affecting the vote of a certain voter, and
may increase the probability that that voter would choosactept the decision. However, affecting the voters

1) In some domains considered in this paper, the mechanism wamtstieateall the agents to exert effort. It is also possible that the
mechanism wouldhoosewhich agent subset to incentivize, based on a target fumébiowhich it wants to optimize.
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is costly for the agents. The principal wishes to maximize ghobability of accepting the decision. However,
the principal cannot observe whether a certain agent hateex¢s influence, or even what a certain voter has
voted for. The principal can only observe the outcome of thteée voting procedure, whether the decision has
been accepted or not. The principal can incentivize agerggert their influence by promising each such agent
a certain reward if the decision is accepted.

The voting effort game is described in Section 5. We examaversl reward schemes for this domain, each
with different assumptions regarding the rational behawfdhe agents. We show that when we assume a simple
model of rational behavior for the agents, motivating thenexert effort is quite costly for the principal. Sur-
prisingly, when we assume a different model of rationalityene the agents make more sophisticated decisions,
it turns out to be cheaper for the principal to motivate thang the total rewards they obtain are smaller. We
define the Price of Myopia (PoM), which quantifies the ratibAeen the total costs for the principal under these
two models of rationality.

Besides examining the weighted voting domain, we examirerticplar extension of it, namely effort games
over series parallel graphs (SPGs). SPGs allow us to represme complex effort games. Voting effort games
may be viewed as just one type of a connection, a series ctiongio SPG effort games. SPG effort games also
allow parallel connections, reflecting the fact that onendgan substitute for another agent. The SPG effort game
model is discussed in Section 7, where we give some resuisoilations regarding the costs of the principal in
certain SPG effort games.

The most general form of effort games are general effort gamleere we express the domain as a coalitional
game. We define the general effort game model in Section B aaalyze the computational complexity of
finding out whether a certain reward vector makes it the dantistrategy of a certain agent to exert effort. We
also analyze the computational complexity of constructimgward vector that guarantees that a certain subset
of agents exert effor?.

2 Related Work

In this paper we consideffort gameswhich model domains where agents are working in teams, laytmot
exert effort when their decisions are unobservable. Theseaths have a moral hazard problem (where free-
riding may cause the teams to function in a sub-optimal way)l, a central authority in charge of a project may
decide to reward agents depending only on whether the pitgsended successfully or not. Such considerations
are also discussed in [8].

A model very similar to ours appears in [15]. That paper ades a simple situation, where a set of identical
agents are working on a common project. Each agent may effert er not. Similarly to our model, each
agent is in charge of a certain task, which has a probabifitg = 1 of succeeding when effort is exerted,
and some probabilityr of succeeding even if the agent shirked. However, that pdefnes a veryestricted
effort game, where in the underlying coalitional game thiy arinning coalition is the grand coalitioh, where
« is the same for all agents, and where a task is always condplgten the agent in charge exerts effort, so
(6 = 1. [15] considers a principal who attempts to incentivizetladl agents to exert effort, and shows a certain,
easily calculable, reward vector which is an iterative elimtion of dominated strategies implementation. Since
agents in that domain are identical, yet the rewards arerdift, it shows that a certain discrimination allows the
principal to minimize her payments while still having thejerct succeed with a probability of 1. Our model of
effort games extends that model, by allowing different sth®f the tasks to complete the project. The focus
of [15] is on the economic question of discrimination in sisdttings, whereas our paper concentrates on the
computational features of effort games, and their relatopower indices.

Effort games can be seen as a restricted case of the modetdi@fifil]. That work also considers a domain
where a principal employs agents in a joint project. The comtiheme of this paper and [1] is that the actions
taken by the agents affect the probability that the progsticcessful. However, the model of [1] is more general
— it allows agents to take more than one action, and eaclegyratrofile results in a certain distribution over the

2) The complexity results obviously depend on the represemtafithe function that decides which agent subsets are ngremd which
are losing (sometimes called the characteristic functionpalitional function). The weighted voting domains and SR@gs described here
have very concise representations (for more details we tieéareader to the papers mentioned in the related work discyss Section 2).
However, the hardness results given later show that cestalilems in effort games are harder than computing the Banoiwagiindex, and
thus hold foranyrepresentation where it is hard to compute the Banzhaf powdexi
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possible outcomes for the joint project. Since we considesgaicted form, hardness results regarding the general
domain may not apply to our domain, and indeed we are ableotade polynomially computable formulas for
some restricted domains. One major difference between odehand the model of [1] is the choice of a solution
concept. [1] focuses on a Nash Equilibrium, while the curpaper focuses on the stronger notion of a dominant
strategy equilibrium and on iterated elimination of dont@whstrategies equilibrium. Thus, our probabilistic
model can be represented within “combinatorial agencyt vize have different assumptions about the rational
behavior of the agents, which are reflected in the solutiowwept used. These different solution concepts change
the complexity of inducing incentives, so our results ang different from those in that stream of related work.

Another paper similar to ours in spirit is [11]. It considens interested party who wishes to influence the
behavior of agents in a game, without directly enforcingréideehavior. We also consider an interested party
that commits to making a positive monetary transfer. Howebe approach in [11] is very different from ours.
It shows how an interested party can affect the agents’ behby committing to a monetary transfethen the
agents behave in a certain desired walhis means the reward is contingent on the strategies thetabave
used. This promise of a monetary transfer can indeed afiecagents’ behavior. However, in our paper we do
not assume the interested party is capabldictly monitoringthe agents’ behavior, so the monetary transfer
can only be based on thimal outcomeof the game, rather than the strategy profile the agents gexqblarhus,
our setting is grincipal-agentsetting. We also do not assume the outcome of the game idldidetermined by
the agents’ behavior. Rather, the game has several possittiemes, and therobability that each such outcome
would occur depends on the strategy profile.

The effort game model defined in this paper relies on both e@djye and non-cooperative game theoretic
models. Dominant strategy equilibria, Nash equilibriad #erated elimination of strictly dominated strategies
are all known solution concepts. Our model and the concebieoPrice of Myopia (PoM) focus on iterated elim-
ination of dominated strategies. The computational corifyl®f iterated elimination of dominated strategies
has been less studied than the complexity of Nash equilipfjastudies the complexity of iteratively eliminating
solutions. [9] examines elimination of dominated stratedn the restricted case of binmatrix games. [4] shows
how to compute non-iterated dominance in polynomial tirheoigh linear programming), but provides hardness
results for testing whether there exists a path of iteraliedreations that eventually eliminates a given strategy.
[4] also considers testing strategy dominance relatiof&alyesian games.

In this paper we show the relation between schemes that énalgents to exert effort in various cooperative
domains and power indices. The concept of power indicesnatigd from work on cooperative game theory.
One prominent solution concept for coalitional games is tidhe Shapley value, due to a seminal paper by
Shapley [13]. The Shapley-Shubik index [14], an applicabbthe Shapley value [13], has been used to measure
power in committees and politics. The Banzhaf power indégiated in [3]. Several papers have dealt with the
computational complexity of calculating power indices. §bows that computing the Shapley value in weighted
majority games is #P-complete. [10] has shown that calitigahe Banzhaf index in weighted voting games is
NP-complete. [2] has considered the problem of calculdtiegBanzhaf power index inetwork flow gamedn
this coalitional game, which models a certain problem irnwoek reliability, agents control links in a network
flow graph, and a coalition wins if it manages to allow a cerfiw between a source vertex and a target vertex.
It was shown for that domain that calculating the Banzhaéingd #P-complete, but gave a polynomial algorithm
for a certain restricted case.

A certain restricted case of effort games that we consid@visnpaper is Series-Parallel Graphs (SPGs). In [6]
the authors apply their results on marginal contributiots te derive an algorithm for computing the Shapley
value and the Banzhaf index in SPGs. Their algorithm workaroarbitrary flow value in SPGs and is exponential
in the flow value. However, when applied to connectivity game SPGs (like the ones defined in Section 7), the
algorithm is polynomial, since the flow value there is 1.

3 The Formal Model

3.1 Preliminaries

We now define several game theoretic notions required fonidgfieffort games. The definition of effort games
relies on the definition of both normal form games and simphditonal games.
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Definition 3.1 An n-player normal form games given by a set of agents (playefsy {a1, ..., a,}, and for
each agent; a (finite) set of pure strategies, and a utility (payoff) function; : S; x So x --- x S, — R.
Fi(s1,...,sy) denotesy;’s utility when each playes; plays strategy;.

For brevity, we denote the set of strategy profiles= S; x Sy x --- x S,,, and denote items X as
ceX (0 =(s1,...,8,), Wheres; € 5;).

We also denote:_; = Sy x -+ x S;_1 x S;41 x --- x S, and given an incomplete strategy profile
o_; = (81, R T - 7 T IO Sn) €X_;,we denOtQU,i, Si) = (81, ce ey 81,85, Sit 1y Sn) S

Given a normal form gamé’, we say agent;’s strategys, € S; strongly dominates, € S; if a;'s utility is
higher when using, than when using,, no matter what strategies the other agents use.

Definition 3.2 Given a normal form gamé&', we say ageni;’s strategysx € .5; strictly dominates;, € .5; if
the following holds: For any incomplete strategy protile; € £_; we haveF;((o_;, sx)) > Fi((c_s, sy)).

Definition 3.3 Given a normal form gamé/, we say agent;’s strategys, is a;'s dominant strategyf it
dominates all other strategiese S;.

Given a certain game, game theoretic solution conceptsfgpetch outcomes are reasonable, under various
assumptions of rationality and common knowledge. In thisepawe will deal with two solution concepts:
dominant strategy equilibrium, and iterated eliminatidmlominated strategies. Given a certain game, an agent
a; may or may not have a dominant strategy. One known game tiesodution concept is a dominant strategy
equilibrium. This concept definessinglereasonable strategy profile (and derived payoffs) for cegames.

Definition 3.4 Given a normal form gamé&’, we say a strategy profile = (s1,...,s,) € ¥ is adominant
strategy equilibriunif for any agenta;, strategys; is a dominant strategy far;.

Another solution concept is that térated elimination of dominated strategids iterated dominance, strictly
dominated strategies are removed from the game, and norlbage any effect on future dominance relations.
A certain strategy, € .S; may not dominate, € .S;, because, performs better against, € ¥_;. However,
if one of the strategies ia, is removed, that profile is no longer applicable,sganay now dominate, . Itis a
well-known fact that if we remove dominated strategieslur@timore dominated strategies remain, in the end the
remaining strategies for each player will be the same, dégss of the order in which strategies are removed [12].
Some authors refer to this as the fact that iterated (stt@t)inance is path-independent.

The heart of a general effort game is a boolean function theities which task subsets complete the common
project successfully, and which task subsets do not. Ouittsedepend on viewing this boolean function as a
simple coalitional game. We now define a simple coalitiorzaihg®)

Definition 3.5 A coalitional games a domain that consists of a set of tasksand a characteristic function
mapping any subset of the tasks to a real valu@” — R, indicating the total utility of a project that achieves
exactly these tasks.

In asimplecoalitional gamey only gets values of 0 or (: 27 — {0,1}). We say a subse&t’ C T wins
if v(C) = 1, and say itosesif v(C) = 0. We denote the set of all subsets of tasks that win the simgieeg
asTwin = {T" C T|v(T") = 1}. A taskt is critical in a winning subseC if the task’s removal from that
coalition makes it losev(C) = 1, v(C \ {t}) = 0. A game isincreasingif for all subsetsC” C C' C T we have
v(C") < v(C). We will assume achieving more tasks is always better foptiogect, so games are increasing.
Thus, if a certain subset of tasksC 7" wins, every superset @f also wins.

We now define the weighted voting game, which is a famous géweretic model of cooperation in political
bodies. In this game, each agent has a weight, and a coaitiagents wins the game if the sum of the weights
of its members exceeds a certain threshold.

Definition 3.6 A weighted voting gamis a simple coalitional game with tasks (agerts)= (t1,...,t,),
a vector of weights = (w1, ..., w,) and a thresholg. We sayt,; has the weightv;. Given a coalition”' C T
we denote the weight of the coalitian(C) = >, (;;,ccy wi- A coalition C winsthe game (s@(C) = 1) if
w(C') > ¢, andlosesthe game (s@(C) = 0) if w(C) < q.

A question that arises in the context of simple games, aneléslly weighted voting games, is that of measur-
ing the influence a certain task (player) has on the outcontigeojame. One approach to measuring this notion

3) Rather than defining the function over agents, as typicallyedn definitions for coalitional games, we call the playerthis game
tasks, to keep our terminology consistent with the rest optieer.
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is power indices. A possible definition of the power of an ddeits a priori probability of having a significant
impact on the outcome of the game. Different definitions afrigicant impact” have resulted in the definition
of different power indices, one of which is the Banzhaf infi&gx

Definition 3.7 TheBanzhaf indeis a power index that depends on the number of coalitions inlwdn agent
is critical, out of all possible coalitions. Itis given Ii(v) = (51 (v), ..., 8.(v)) where

5:(0) = 5y Sscryeslv(8) — v(S\ {i})]

The Banzhaf power index reflects the assumption that thetagee independent in their choices. Another
prominent power index, the Shapley-Shubik power indexsdu reflect such an assumption. This property of
the Banzhaf index is similar to some of the assumptions ofeffames.

3.2 The Effort Game Model
We now define effort game models and related problems.

Definition 3.8 An effort game domaiis a domain that consists of the following: A det= {a4,...,a,} of
n agents; a set of tasks,T" = {t1,...,t,}; a simple coalitional gamé& with task sefl’, such thatT'| = n, and
with the value function : 27 — {0, 1}; a set of success probability paiis;, 51), (az, 32), . - ., (an, 3,) SO
thato;, 8; € R, and thaD) < «; < 3; < 1; a set of effort exertion costs, ..., ¢, € R, so that; > 0.

Informally, this domain is interpreted as follows. A jointoject depends on the completion of certain tasks.
Achieving some of the subsets of tasks completes the prejecessfully, and some fail, as determined by the
simple coalitional gamé;. An agentq; is responsible for each such task That agent may exert effort, which
gives the task a probability gf; to be completed. However, exerting effort costs that agerreain utility ¢;.

If the agent shirks (does not exert effort), then the ageesdwt incur the cost;, and the task has a lower
probability o; of being completed.

We now formally describe the domain. Each of the agepts I is responsible for the tagk € 7'. For each
coalition of agents” C I, we denote the set of tasks owned by these ageéfd§ = {¢; € T'|a; € C} . We say
the common project is successful if a subset of ta8ks. T is achieved, so that(7”) = 1 (so7” is winning
in G). Each agent can either choose to exert effort or shirk. énetffiort games model, we assume the tasks
succeed or faiindependentlpf one another. If; exerts effort, task; is completed with probability;. If it does
not exert effort (and shirks instead), taisks completed with a lower probability; < 3;. However, each agent
has a cost for exerting effor¢; > 0, which is deducted from the utility obtained by the agentpi&se that the
agents inC' exert effort, and that the agentsin\, C' do not. GivenC' we know the probability that each task is
completed: ifa; € C thent; is completed with probability;. If a; ¢ C, ¢; is completed with probability;.

Given the coalition of agents that contribute effart, we denote the probability that a certain tasks
completed ag,(C), defined as follows:

ﬂ,‘ if tiEC,
i(C) = .

Consider a subset of tasks C T. Given the coalitionC of agents that exert effort, we can calculate the
probability that exactly the tasks iif are the ones achieveBrc (") = [T, pi(C) - [1,, g7 (1 - pi(C)). We
can calculate the probability thatywinning subset of tasks is achieved, and denote this by

Prc(Win) = ZTweTwm Pro(Ty).

In our model we have a central authority (called phimcipal) interested in successfully completing the common
project. The principal attempts to make sure a certain subsgents exert effort, and needs to reward the agents
so they will exert effort despite their cost of doing so. Shestdesigns eeward schemebut attempts to minimize
her costs.

Let C C I be the coalition of agents that have exerted effort, @htbe the set of achieved tasks. On the
one hand, 7" may not contain all the tasks of the agents that have exeffed, esince if 3; < 1, a task has
a probability of failing even when the agent exerts efforin e other hand]” may contain some tasks for
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which agents did not exert effort, sincedf > 0, a task has a probability of succeeding even if an agent does
not exert effort. We assume that the principal knows whetheproject succeeded or not (whethé?”) = 1
orv(T") = 0), knowsc;, «;, 5; of all the agents, but does not know whether an agetias exerted effort (so

a; € C) or shirked (saz; ¢ C). Thus it cannot reward only those agents that have exefted.elt can only
promise each agent a certain reward; if the project succeeds, and a reward of O if it does not. Thecjmal

can choose among various reward vectoss (ry, ..., 7,).

Given the reward vector = (rq,...,7,), and given that the agents that exert effort@re 1, a;’s expected
reward ise; (C) = ZTweTwin Preo C(Tyw) - ;. Agenta,; has a cost; of exerting effort. It can choose between two
strategies — exert effort, or shirk. Exerting effort inges the expected reward, but has a egasif a; shirks she
does not incur the cost, but her expected reward is smaller. The effort game is thmaldform game obtained
due to a certain reward vecterchosen by the principal.

Definition 3.9 An Effort Gameis the normal form gamé:.(r) defined on the above domain with a simple
coalitional game~ and a reward vector = (r4,...,r,), as follows.

In G.(r) agenta; has two strategiesS, = {exert,shirk}. Denote byX the set of all strategy profiles
¥ =5 x---x S,. Given a strategy profile = (s1,...s,) € X, we denote the coalition of agents that exert
effortin o by C, = {a; € I|s; = exert}. To fully define the game, we must also define the payoff fumctif
each agenft; : ¥ — R. The payoffs depend on the reward vecatot (rq,...,r,): the payoff of each agent in
strategy profiles is her expected reward minus the cost of the effort exertedsT

Fi(o) ei(Cy) —¢; if s; =exert,
i\0) = .
e;(Cy) if s; = shirk.

G. depends om, so we denote iG.(r).

Given a simple coalitional gam@, each reward vectar defines a different effort gamé,(r). Given an
effort game, the principal may want to make sure a certaigetdsl the agents exert effort, and it is up to him to
choose a reward vector that achieves this, under certaimgs®ns on the rational behavior of these agents. The
strategies used by the agents are determined by a cgéaia theoretic solution concef@uch solution concepts
typically define different possible strategy profiles. A egd vector that guarantees that a certain coalitin
exerts effort, under a certain solution concept, is an itieesinducing scheme faf”.%

Definition 3.10 An Incentive-Inducing Scheme for a CoalitiéH in the Effort Game?,, is a reward vector
r = (r1,...,m,), such that in the effort gam@.(r), in any strategy profiles € ¥ allowable by the solution
concept, the agents i@’ exert effort, saC’ C C,.

Although there may be many possible incentive-inducingareMvectors, the principal is self-interested, and
attempts to minimize the total of rewards it pays, ; r;.

Given an effort game domaifi, and a coalition of agents” C I that the principal wants to exert effort, we
now define two types of incentive-inducing schemes: a domis@ategy scheme, and an iterated elimination of
dominated strategies scheme.

Definition 3.11 A Dominant Strategy Incentive-Inducing Schemeois a reward vector = (ry,...,r,)
such that for any,; € C” exerting effort is a dominant strategy foy.

Definition 3.12 An lterated Elimination of Dominated Strategies Incentinelticing Scheme faf” is a re-
ward vectorr = (rq,...,r,) such that in the effort gam@.(r), after any sequence of eliminating dominated
strategies, for any; € C’, the only remaining strategy fa; is to exert effort.

3.2.1 Strategy Changes and Expected Rewards

We now consider the effects of strategy changes and the ®dpeavards. We only specify some notation we
need later in the paper, and state some theorems we lateThisdull proofs are found in Appendix 9, and are
given for completenesy.

4) several papers regarding “combinatorial agency” [1] hacei$ed on a Nash equilibrium domain. We survey some of this waBlet-
tion 2. In this paper, we focus on a dominant strategy implentientzand on an iterated elimination of dominated strategiggementation.

5) These theorems or ones very similar to the ones presented feegivan in [1], and are only given here to help the readeryfull
understand our other results.
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We first define the following relation regarding effort exemtin strategy profiles. LeD be an effort game
domain, andr = (ry,...,7,) be a reward vector. Let;,00, € X be two strategy profiles id+.(r), so
o1 = (511,51,2,---,51,n) @ndoa = (s21,522,...,52,,). We sayo; is more exertingthano,, and denote
o1 >, o2 if the following holds: all the agents that exert effortap also exert effort inr;, and at least one agent
that exerts effort inr; does not exert effort iary, so for alla; we have thak, ; = exert impliess; ; = exert,
and for somey; we haves, ; = shirk ands; ; = exert.

For some of our results, we use the fact that the expecteddeia given agent increases when more of the
other agents exert effort (no matter whether that agentegéort himself or not). We provide several theorems
regarding this. First, if a&ingle agent that shirked decides to exert effort, the expectednd=wof all agents
increase.

Theorem 3.13 Let D be an effort game domaim, = (ry,...,r,) be a reward vector, and; be a certain
agent in that domain. Let;,0, € ¥ be two strategy profiles id.(r) so that for alla; # a; we have that
01,j = 02,5, and thato ; = exert andoy ; = shirk. Then for allj we have that;(C,,) > €;(C,,).

The expected reward of any agent increases when more ofttbeaxjents exert effort.

Theorem 3.14 Let D be an effort game domain,= (r4,...,r,) be a reward vector, and; be an agent in
that domain. Letr;, 02 € X be two strategy profiles iti.(r) so thatoy > o2, and so thav; ; = o2 ;. Then
ei(cfﬁ) > ei(CUz)'

The above Theorems 3.13 and 3.14 have considered the edpewi@rds given a certain strategy profile, but
can also be stated with regard to the probability of havindrenimg task subset.

Corollary 3.15 If o¢1,0, € ¥ are strategy profiles such that for all; # a; we have that; ; = o9 ;, and
thato, ; = exert andoy; = shirk, then for allj we have

> oryeTum P10, (Tw) > Xog emy, Pre,, (Tw) -

If o1, 09 are strategy profiles such that >, o5 and such that; ; = o2 ;, then

ZTweT Prcﬁl (TW) > ZTweT PrC'a2 (TW) :

win win

Proof. We simply consider Theorems 3.13 and 3.14 for the waseer; = 1. O

4 The Complexity of Incentives

Given an effort game, agents naturally consider whethey gieuld exert effort, and the principal naturally
considers how it should incentivize a certain subset of tyents to exert effort, while minimizing the sum
of rewards it must give. Different assumptions the princhms about the rational behavior of the agents are
reflected in the solution concept it uses. We now formallynieathe above problems. In the rest of this section,
we consider an effort game domain, with agentsI = {ay,...,a,}, where each; is responsible for task
t; € T. The underlying coalitional game &, with the value functiony : 27 — {0,1}. The set of success
probabilities is(a1, 81), - . ., (an, 8r), and the effort exertion costs arg . . . , ¢;,.

The following problems concern a reward vector= (rq,...,r,), the effort gameG.(r), and a target
agenta;.

Definition 4.1 DSE (DOMINANT STRATEGY EXERT): GivenG,(r), is “exert” a dominant strategy
for a;?

Definition 4.2 IEE (ITERATED ELIMINATION EXERT): GivenG,(r), is “exert” the only remaining strat-
egy fora; after iterated elimination of dominated strategies? Thémns that i®Y is the set of strategy profiles
remaining after a sequence of iterated elimination, themufy strategy profile’ = (o, ...,0,) € ¥/ we have
o} = exert.

The following problems concern the effort game dom&inand a coalitiorC'.

Definition 4.3 D-INI (DOMINANT INDUCING INCENTIVES): Given D, compute a dominant strategy
incentive-inducing scheme= (rq,...,r,) for C (see Definition 3.11).
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Definition 4.4 IE-INI (ITERATED ELIMINATION INDUCING INCENTIVES): Given D, compute an iter-
ated elimination of dominated strategies incentive-imdgischeme: = (rq, ..., r,) for C (see Definition 3.12).

We are typically interested in incentive-inducing schemes(ry, . . ., r,,) thatminimizethe sum of payments,
r =Y ., ri. Inmany cases, it is always possible to find an incentiveidiiy scheme given that the sum of
payments used, is high enough, and the focus is on minimizing this sum ofhpagts. We denote the problems
of finding incentive-inducing schemes thainimizethe sum of payments as MD-INI and MIE-INI (for a
dominant strategy implementation and an iterated elinonamplementation, respectively). The computational
complexity of these problems in various domains is inveséd in the following sections.

5 Inducing Incentives in Unanimous Weighted Voting Games

We first consider a restricted class of effort games, callehimous weighted voting domains (or unanimous
domains for short), and show how to find a dominant strateggritive-inducing scheme, or an iterated elimi-
nation of dominated strategies incentive-inducing schentbese domains. The domain highlights the relation
between power in the underlying coalitional game, in thisecthe weighted voting game, and the incentives for
the resulting effort game domain. Unanimous domains arstacted case of weighted voting domains. In these
domains, in order to form a successful coalitiafi,the agents must reach a consensus about a course of action.
Unanimous domains can model joint decision making, whegeatients mustnanimouslydecide on a course
of action. Such domains can also model situation that hatleimgpto do with voting, when a certain project
requires a set of tasks, wheat the tasks must be completed in order to succeed in the entijech

Consider a joint project, where each agepis in charge of a task, and wheai# the tasks must be completed
in order for the project to succeed. A task is completed sssfuly with probability «, and agent; may
increase the probability of succeeding in the task she i©iange of tos, at a certain cost; of exerting effort.
Formally unanimous effort games are defined as follows. Tierying coalitional gamé&- has the tasks
T = (t1,...,t,). A coalition of tasksC' C T wins in G if it contains all the tasks and loses otherwise, so
v(T) = 1, and for allC' # T we havev(C') = 0. The success probability pairs adentical for all tasks:

(1 =, 01 = 0), (e =, 082 = 0),...,(a, = ,B, = B). Agenta; is in charge oft;, and has an effort
exertion cost of;.

Weighted voting games where a decision is passed only ifgghtsunanimouslyote for it offer another
motivation for the above definitions. In general voting gainenains, voters decide on a course of action using
weighted voting. Each voter has a weight, and a decisionegaéshe total weight of the agents that vote for
it exceeds a certain threshold. We consideanimousdomains, where although the voters may have different
weights (voter has weighto;), the quota is so high that in fact the decision can only pds=nall of the agents
vote for it: we assume that the quota for passing the decisigr= }_""_, w;. Thus, in this restricted setting, all
the voters have equal power (so the Banzhaf power index isétre for all the agents, even though they have
different weights). We use effort games to model lobbyirfgrés, where an interested party attempts to make
sure the voters do indeed reach a unanimous decision atedettired course of action, and employs lobbying
agents, who attempt to influence the voters. Suppose eaehhas a probability ofv to vote in favor of the
decision. A lobbying agent; may increase the probability of votey voting in favor of the decision tg > «,
at a certain cost of exerting effori,. In our domain, we will assume the effort exertion cost igymmional to the
voter’s weight, s@; = w;.?

Consider a principal, that wants to maximize the probahditthe project completing successfully (or, in the
case of a weighted voting domain, making sure the decisipagsed). The principal wants all the agents to exert
effort, to maximize the probability of all the tasks compigtsuccessfully (or to make sure the voters would have
a high probability of accepting the decision). Observe theva effort game domail. Given a reward vector
r = (ry,...,7r,) We get the effort gamé&/,(r). We show how to compute both a dominant strategy incentive-
inducing scheme (D-INI) and an iterated elimination of doatéed strategies incentive-inducing scheme (IE-INI)
in this domain. We also show how to find such an IE-INI vectr;utttninimizesZ?=1 ;.

We first show how to calculate theinimalrewardr; that makes exerting effort a dominant strategydpm
the above domain.

6) Thus, in unanimous weighted voting domains, the weights amplgianother name for the effort exertion costs.
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o
Lemma5.11If r, > ———M—

R R
minimal reward that makes exerting effort a dominant stygtfor a;.

, then exerting effort is a dominant strategy &y and this reward is the

Proof. As seen in Theorem 7.3, the condition for exertingrétbeing a dominating strategy fag is that
for everyc® € ¥_,,

Ci
T > :
ZTweTwin (Prcag (Tw) — PrCUg (Tw))

However, in this domain, the only winning task subsefjso we can restate this as

(&
T Z .
(Prc,q (T') = Prc,. (1)

Since the only difference betweetj andc? is thata, exerts effort in the first and shirks in the second, we have

Prcag (T) = Po-a(T) -6 and Prcdg (T) = Po-a(T) CQ.

The notationP,. 1) denotes the probability of completifiggiven apartial strategy profiler® € X_; (similar
to the notation used in Theorem 3.13). Thus, an equivalamdition for having exerting effort be the dominant
strategy for; is that for every® € ¥_; we have

(&

T Z .
Pre,.(T) - (8 — )

Eacho® € ¥_,; thus requires a different minimal rewargd and the smallePr¢_., (T'), the higher; must be.
In our domainPrc, ., (T') is smallest when all the agents shirkdf, soC,. = () andPrc,, (T) = a1 O

The above lemma allows us to solve MD-INI in this domain inyma@mial time — we have a simple formula
for the minimal reward vectar which is a dominant strategy incentive-inducing scheme.

Corollary 5.2 MD-INI is in P for the effort game in the above unanimous weighted votingailo. The
reward vector* = ( “ Cn ) is a dominant strategy incentive-inducing scheme.

ar T (B—a) an T (3 a)
Proof. An MD-INI solution is a reward vector that makes exeyteffort the dominant strategy for each of
the agents. Due to Lemma 5:%, is indeed such a vector. We also note that ik < ’ shirking is
« —

n—1,
the better strategy far; under the strategy profile where all the other agents shirthesabove* is the dominant
strategy incentive-inducing scheme whictmimimalin terms of_""_, ;. This direct formula can be calculated
in polynomial time. O

We now consider IE-INI, computing an iterated eliminatididlominated strategies incentive-inducing scheme
in this domain. We show that such a scheme can significandlyceethe total rewards_;_, r;. We suggest an
IE-INI procedure for this domain.

Due to Lemma 5.1, if; > , then exerting effort is a dominant strategy fqr Thus, after

Ci
a1 (G- a)
one step of elimination of dominated strategiesis sure to exert effort in the game. Consider an agentvho
knowsa; would exert effort. We denote the set of strategy profilescvimiss both the strategies foy anda;
as¥_yijp = X1 X - X Sjoq X Siypr X -0 x 851 x Sj11 xS, Similarly to the notation in Theorem 3.13,
we denote the probability of completifg. C 7' given apartial strategy profiles? ¥ _{i,;y = (missing the
strategies of both; anda;) as

Pro , (1) = [t e geet; 1) PR(CO) - T eomra e, 1) (1 = PR(C))

We note that this probability ignores the question of whether t; were completed (even thought; € T%)
and only takes into consideration the taskgin\ {¢;,¢;}. The following lemma shows that the fact that one
agent is sure to exert effort makes it cheaper to make suteemagent exerts effort.
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Lemma 5.3 Let a;,a; be two agents, and;,r; be their rewards so that; > 1# and that
) - an—1. —
rj > 5 ﬂcﬂ @ . Then under iterated elimination of dominated strategiks,only remaining strategy
a"= - b (p—«

for botha; anda; is to exert effort.

Proof. We follow steps similar to Lemma 5.1. Singeexerts effort, the condition for exerting effort being a
dominating strategy fou; (after eliminating shirking as a strategy fej) is that for every® € ¥ _{i;} we have

¢

;> .
T Pro B (8- )

Similarly to Theorem 7.3, each® € ¥_y; ;; requires a different minimal reward;, and the smaller
Prc_, (T), the higherr; must be. AgainPrc , (T') is smallest when all the agents shirkdf, soC,v = ()

andPrcgb (T) = o™ 2. Thus, ifa; is known to exert effort, a reward; > guarantees that

Cj
an=2. - (8- a)

exerting effort is a dominant strategy foy. O

We now consider an iterated elimination of dominated sffiateincentive-inducing scheme (IE-INI). We first
choose an ordering of the agents. We then go through the sagetttis order, and find the minimal reward
required to make exerting effort a dominant strategy foheafc¢hem, given that its predecessors exert effort as
well. Denote byr a permutation (reordering) of the agents{so{1,...,n} — {1,...,n} andr is reversible).
We denote byl the set of all such permutations(:) is the location of; in the new ordering of the agents. In
the generated reward scheme, the strategy “shirké fey is eliminated during roundof strategy elimination.

Theorem 5.4 IE-INI is in P for the effort game in the above-mentioned specific weigitédg domain. Any
reordering of the agents € II, a reward vector,, where the following holds for any agenf is an iterated
elimination incentive-inducing scheme:

rﬂ(i) > - Cﬂ-(l) .
2 e ()

Proof. The above definition requirement for the first agetti@reorderingg; such that = = (1), is exactly
as required in Lemma 5.1, and for the second agent exactiylasmima 5.3. We can continue the process again.
Consider the case where the following two equations hold:

C; C
! and r; >

T > J

2 T (G=a) 7 G- (F—a)

If these two hold, we can calculate the minimal rewagdhat makes exerting effort a dominant strategy for
yet another agent,,. Similarly to the proof of Lemma 5.3, we can see that

Cl
Tk >

SR (Boa)

By induction and using the same proof technique as in Lemi@ane can see that the following reward makes
“exert” a dominant strategy far, ;) afteri rounds of eliminating dominated strategies:

rﬂ(i) > - Cﬂ-(l) .
2 e (- a)

This direct formula can be calculated in polynomial time. O

We note that each reorderingof the agents results in a different reward vector. The jpalds typically
interested in minimizing_;._, r;, or in other words, the principal typically needs to solveBMNI (rather than
IE-INI). We show that the best ordering is according to therdag' exertion costs; = w;.

Theorem 5.5 MIE-INI is in P for the effort game in the above unanimous weighted votingaiio. The
reward vector-, that minimize$ ", r; is achieved by sorting agents by their weights= ¢;, from smallest to
largest.
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Proof. Leta = (a;,, @iy, - -, Giy_y, Qiy s Qi oy Qigyss - - - @5, ) @Nd
b = (Giy, iny ooy Qip_ 15 Qi Qi 5 Gy s - - -5 G4, ) DE twO reorderings of the agents that are identical except
for switching places between the adjacent anda;,,,. Letr® = (r{,...,r2),r* = (r},...,72), be the

resulting reward vectors for these orderings, as in Thedien It suffices to show that ib;, > w;,,, then
Sorrh < Y re, since if this holds, we have a “bubble sort” sequence ofcheis of agent pairs that
monotonically drops the total rewards paid, and ends in thderong of the agents according to their weight.
Consider an agent; which is in thek’th location in the sequence. That is, the rewards for alldgents in
locationsl, 2, ...,k — 1 are such that aftét — 1 rounds of elimination of dominated strategies, they arswai¢

to exert effort.

Due to Theorem 5.4, the required reward for it is

Ci

S T (Ba)

Moving it to thek + 1 location would make this required reward be

T

The ratio between the two required rewards is 2o

Denote byA the required reward foi;, when he is in thé:'th location, soAgq is the required reward when
he is in thek + 1'th location. Denote by3 the required reward fat;, ., when he is in thé'th location, soBq
is the required reward when he is in ther- 1'th location. Thus switching the agent’s location in the seace
changes the total rewards from+ Bq to Aq + B. We note thatd > B, due to the equation of Theorem 5.4.
Sinceq < 1 and sinced > B, the change in reward + Bq — (Aq + B) is positive, so we can improve the
principal’s situation by switching these agents. Thug, > w;, , ,, and then_"" | rb < S O

We have thus shown that in this domain we can compute MIE-IN$drting the agents according to their
weights (and thus their costs of exerting efforts), and gighre equation from Theorem 5.4 to construct the
reward vectof)

6 Price of Myopia

We have examined two incentive-inducing schemes for thamdsvin effort games: the Dominant Strategy
Incentive-Inducing Scheme (DS), and the Iterated Elimdmaiof Dominated Strategies Incentive-Inducing
Scheme (IE). Each of these solution concepts representfeeedi model of rationality that the agents employ.
A dominant strategy implementation uses payments that sualesthe agents exert effort no matter what they be-
lieve the other agents might do. In such an implementatioagent may assume anything about the behavior of
the other agents, and would still find it profitable to exefortf) An iterated elimination implementation models
agents that make more complex assumptions about the belwditieeir counterparts. We show that when we
assume agents follow the more sophisticated deliberatimregs of iterated elimination of dominated strategies,
it is cheaper for the principal to motivate them, and thelt@aards they obtain are smaller.

Let us denote byRpg the minimal sum of the rewardﬂ?:1 r;) such that for all agents;, r; is a DS, and
denote byR;g the minimal sum of the rewards such that for all agents; is an IE. Obviously,Rps > Rig
(since in the IE we are taking into account only a subset aftesgies). The natural question here is how large

7) Note that in Section 7.2 we discuss effort games g@@eralweighted voting games, and show that in that domain it is N-tar
find an IE-INI, since it is NP-hard to compute the Banzhaf poimdex in weighted voting games. However, the current secisousses
unanimousveighted voting games, where the threshold is so high thairthewinning coalition is that oéll the agents. In this domain, all
agents have the same Banzhaf power index, which can be daltuising a direct formula, and indeed, for this domain we hbea/s that
MIE-INI is in P.

8) In this sense, a dominant strategy implementation is “safetrfigopic agents. This is the reason we choose the name “the grice o
myopia”. Note however that we consider the ratio between a dantistrategy implementation and isgrated eliminationmplementation.
Other possibilities (other than a dominant strategy sahytéwe the best or worst Nash equilibrium, which we do not exarimirthis paper.
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the ratio Rps /R can be. We call the latter ratio the Price of Myopia (PdM\Ve study this question in the
context of effort games such as in the previous section, evinethe underlying coalitional game with task &t
a coalition of task€’ C 7' wins if it contains all the tasks, and loses otherwise. Adl #iyents have the same cost
for exerting efforte, and the success probability pairs are identical for aksds, 3). We prove the following
results:
. . R
Theorem 6.1 For the above setting with agents,R—DS <n.
1E

Proof. Leta; be a player. According to Lemma 5.1, exerting effort is a dwnt strategy fot; if and only

if the following holds:

c

P> —
VST a)
Since this is true for all the playets, then
n cn
@ Bos = 25m173 = T (5= a)

By Theorem 5.4 we can obtain an iterated elimination insertiducing scheme by taking any reordering of
the agentsr € II, and a reward vector, where for any agent; we have

c
N> - - .
Tr(j) = an=i - Bi-1.(B—a)

Since all the costs are the same, for all the reorderingshe vectors-, are permutations of each other, and in
particular the sum of the rewards for Iterated Eliminatinodntive-Inducing Scheme does not depend 080
settingr to be the identity permutation, we have

c n 1

(2) Rip =357 = 5 Yim Giige=s -
Combining (1) and (2) together, we have
cn n
3) Rps _ (6 —a)ant _ an—1 _ n _ n
RIE c n 1 n 1 a”_l OLJ L

mzjzlm Zj:lW Z?ZIW ZJ 1 gj-1

j—1 i1 i1
Observe that;% =1forj=1 andﬁ > 0 for j > 2. Thus we geE] 1T > 1. Hence we obtain
& <
- n.

R

Jj=1 Bi—1
O
Theorem 6.2 Consider a sequence of effort games for i = 1,2,.... In each effort game); all agents

have identical success probability paifs;, 3;) and the cost of exerting effort Suppose thaim; .., a; = 0.
Also suppose that there exists sofhe 0, such that for alk, 3; > (3, and denote by% the sum of the rewards
for DS for gameD;, and byRIE the sum of the rewards foE for the gameD;. Then:

Rpy _
Ry

9) The reason for the name is that the dominant strategy model assaageats only take into account “short term” or myopic consid-
erations, and do not take into account “longer term” consitiens, as done in the iterated elimination model. When thecip@h assumes
agents only have simple and short term considerations hedsddo overpay them.
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Proof. We suppose that in sequence of effort gamgs
4) lim; oo ; =0

and there existg > 0 such that

(5) foralli, 8, > .
Then by equation (3) for aflwe have the following:
Rg)s n
R%g Zn O‘g_l
j=1 5171
From (4) and (5) we conclude that for al>> 2 we have
j—1
Thus we get that
. n n
lim;_, o ——= =7 =N
wool bl
Zj:l ﬂj—l
O
Theorem 6.3 Consider again the sequence of effort gamigdor i = 1,2,.... Suppose that the following
holds:
Qg
Bi
Then the following also holds:
(@)
lim;_, oo R?g =1.
RIE
Proof. Suppose thatin sequence of gabgslim; ., «;/5; = 1. Then by (3):
(@)
hmHmR—](Dg = limy e ——— = = = 1.
R s a?_l +...+
J= ﬁi
O

7 Effort Games Over Series-Parallel Graphs

The previous sections have dealt with a restricted form fafregames, weighted voting effort games, where
the underlying game was a weighted voting game. We now gkreeur discussion to a wider class of games,
defined by Series-Parallel Graphs (SPGs). We first define SPGs

In this context the term graph refers to a multigraph. A Tvesriinal Graph (TTG) is a graph with two
distinguished vertices; andt calledsourceandsink respectively. Thearallel composition? = P(X,Y) of
two TTGs X andY is a TTG created from the disjoint union of grapkisandY by merging the sources of
andY to create the source éf and merging the sinks of andY” to create the sink aP. Theseries composition
S =5(X,Y)oftwo TTGsX andY is a TTG created from the disjoint union of grapkisandY” by merging
the sink of X with the source ol". The source ofX becomes source d? and the sink oft” becomes the sink
of P. A two-terminal series-parallel graph (TTSPG) is a gragt thay be constructed by a sequence of series
and parallel compositions starting from a set of copies dfigls-edge grapli, with assigned terminals.
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Definition 7.1 A graph is calledseries-parallel(SPG), if it is a TTSPG when some two of its vertices are
regarded as source and sink.

We now study the connectivity effort game, which generalimaanimous weighted voting effort gantds.
We are given an SPG' = (V, E') which represents a communication network. For each edge E there is
an agent:; responsible for maintenance tasks #@r a; can exert an effort at the certain caestto maintain the
link ¢;, and then it will have the probability of functioning. Otherwise, when the agent does not exedreff
to maintain the link, it will have the probability < g of functioning. The winning coalitions in our game are
those who contain a path from the source node to the sink niddée that a special case of this setting is the
weighted voting effort game, where the quota for acceptigdecision isy = >, w;: it is a special case of
SPG where all the compositions are series compositions.eMenthe SPG setting is much more general, as it
allows parallel connections)

7.1 Price of Myopia in SPG Domains: Simulation Results

We now present the results of several simulations we havedaut in order to investigate the price of myopia
in SPG effort games. We first describe our simulation setting

All our experiments were carried out on SPGs with 7 edgesseltomposition is described by the following
binary tree. The leaves of the tree represent edg®s . ., 7. Every inner node of the tree represents a TTSPG
which is a series or parallel composition of TTSPGs reprieskby its children.

Fig. 1: Binary tree representing the SPGs used in the sifookat

Among these SPGs we have sampled uniformly at random SPG#ing ghe probability of% for series
composition and the same probability for parallel compasiat each inner node of the above tree. We have
computed the PoM forx = 0.1,0.2,...,0.8 and = a + 0.1,a + 0.2,...,0.9 where the costs; have been
sampled uniformly at random ij#.0, 100.0). For each paif«, 5) 500 experiments have been made in order to
find the average PoM, and the standard deviation of the Pol r&sults of the experiments are summarized in
the tables below:

10) Note that connectivity games only generalieanimousveighted voting domains, and ng¢neralweighted voting domains.
1D 1n fact, SPGs can allow us to conjunctions and disjunctidniasks to be accomplished that are “winning”, and is, in teisse, quite
a general language for expressing many simple coalitional game
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The average PoM:

apB| 02| 03| 04 0.5 0.6 0.7 0.8 0.9
0.1 | 422 | 9.43 | 16.26 | 25.27| 38.04 | 58.04 | 94.45| 177.85
0.2 2.27| 415 | 6.70 | 10.12| 14.98 | 22.64| 37.64
0.3 176 | 282 | 425 | 6.21 | 9.08 | 14.12
0.4 154 | 226 | 3.22 | 455 | 6.67
0.5 141 | 195 | 267 | 3.71
0.6 133 | 1.76 | 2.34
0.7 128 | 1.64
0.8 1.24

The standard deviation of the PoM:

a | 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 | 3.05| 10.23| 21.85| 39.99| 69.40| 119.72| 221.13| 472.22
0.2 1.00 | 3.01 | 6.30 | 11.43| 19.68 | 34.17 | 65.05
0.3 0.57 | 1.60 | 3.27 | 592 | 10.39 | 19.52
0.4 039 | 1.07 | 2.14 3.91 7.28
0.5 0.30 | 0.80 1.60 3.02
0.6 0.25 0.65 1.32
0.7 0.22 0.56
0.8 0.20

We give here an informal discussion of the simulation rasults one can see from the first table, the higher
the distance between and 3, the higher the PoM is, so when there are large differencéiseiprobabilities,
it really matters which model of rational behavior we choo$his also makes the structure of the graph more
important. These results somehow fit our expectationsedine smaller the difference betweerand 3, the
smaller is the difference between exerting effort and $igrkand the less significant is the knowledge whether
some players exert effort or not.

We now prove that in parallel connection the reward in leddElimination Inducing Scheme does not drop,
or in other wordsRps/Rig = 1.

Theorem 7.2 Let G beSPGwhich is obtained by parallel composition of a set of copiesiimgle-edge graphs
K. As before each agent is responsible for a single edge, andrnvg coalition is one which contains a path
(an edgg connecting the source and target vertices. Then, in thetiootaf Theoren6.1, we haveRpgs = Rig.

Proof. By Theorem 7.3 the condition for exerting effort lmpandominant strategy far; is that

Ci
(6) foreveryo® € ¥_; :r; > :
2Tl (P10 (Tw) = Preg (Tw))

Since the only set of edges that is noffig;, is the empty set, we have

C; Ci

2oty eTun (P10, (Tw) — Pre,. (Tw)) T1- Pre,.(0) — (1= Prc,.(0))

Denote byzx; the probability that the edgewill exist unders?, i.e.,
«; if agenti shirks,
Ti = .
G; if agenti exerts effort.
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Then we have

&
" T Pre,, )~ (1- Pro,, ()
¢
(7) T a0 —ay) (=B — (A — [y, —ay) - (1 — )

H?:Lj;éi(l — ;) (Bi — i)

The above inequality must hold for each profilé, i.e., for every choice ot;, the smallef [(1 — z;) is, the
biggerr; should be [[(1 — ;) is the smallest when for ajl, ; = 3;, and so condition (6) is equivalent to the
condition

Ci

e H?:l,j;éi(l — B;)(Bi — i) .

Now suppose that; is known to exert effort. The condition for exerting effodibg a dominating strategy for
a; is that for every® € ©_; ;1 we have

> Cj )
T HZ:l,k;ﬁi,j(l —x)(1 = Bi)(Bj — ay)

This is equivalent to

T

> € .
T ey (1= BR)(B5 — )

Similarly, it is proven by induction that for each reordeyiof the playersr, the following reward is an Iterated
Elimination Incentive-Inducing Scheme:

Ty

Cr (i)
Tr(i) = T .
O Tty (1= B7) (Brii) — @)

Note that in Dominant Strategies Incentive-Inducing Sohehe reward is also (as the reward of the first
player):

Cr (i)

H?:l,j;ﬁw(i)(l - ﬂj)(ﬂw(i) - aw(i)) .
Thus we gefRps = Rig. |

7.2 Rewards and the Banzhaf Power Index

We now generalize the discussion to general effort gamesreMie underlying coalitional game may be any
simple coalitional game. We show the relation between tiepdexity of the problems defined in Section 4, and
power indices in the underlying coalitional game.

Theorem 7.3 Let D be an effort game domain, where fgrwe haver; = 0 and3; = 1, and for alla; # a;

we haven; = f§; = % and letr = (rq,...,r,) be a reward vector. Exerting effort is a dominant strategy fo
a; in Go(r) if and only ifr; > ﬂc(i ] (whereg; (v) is the Banzhaf power index tfin the underlying coalitional
AC

game(G, with the value functiom).

Proof. Agenta; only has two strategies i@.(r): S; = {exert, shirk}. As in Definition 3.9,a;’s payoff
in G.(r) when exerting effort is;(C,) — ¢;, ande;(C,) when not exerting effort. Given an incomplete
strategy profilec®, (with a strategy missing for;), we denote its completion with, exerting effort as
o% = (o_;,8; = exert), and its completion when; shirks asc? = (o_;,s; = shirk). ¢% andc? are two

€

complete strategy profiles, which are identical in all stgéds, except that af;.
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For exerting effort to be a dominant strategys payoff when exerting effort must be greater than its payof
when shirking, no matter what the other agents do. Thus, Xertiag effort to be a dominant strategy the

following must hold: forall incomplete strategy profiles® ; we have that;(Cya) — ¢; > €;(Coa).
Ci

Bi(v)
Doty ety Ti PTC,a (Tw) = ¢ > X og emy Ti Pro,q (Tw)

or more briefly as

We show that the above condition holds if and only;if> . The above condition can be restated as

Ci
r; > .
e, (Pros (Tw) — Prc.., (1)

It remains to show that

ZTweTwin (Prcag (TW) - Prcgg (TW)) = ﬁi(v) .

Let Ty, € Twin be a task subset so thate T,,. Sincea; = 0 and3; = 1 and since for any # i we have

1
aj = = 3 for anyo®, we have
Prcaa (TW> = (%)n—l and PI‘CUa (Tw) =0.
On the other hand, I€f,, € Ty, be a task subset so that¢ T,. Due to the same reason, for any, we have

Prcaa (Tw> = O and PI‘COQ (TW) — (%)'Il—l .

We thus get:
Z:TWQTWin (PrCag (TW) - Prcag (TW))
= ZTweTwmm €T, (Prcag (Tw) — PrCag (Tw)) + ETweTwh,mgTw (PrCag (Tw) — Prcag (Tw))
= ZTweTwinltieTw((%)n_l - O> + ZTWGTwi;1|t1‘¢Tw (O - (%)n—l)
= (%)n_l ’ [ZTweTwmltieTw L- ZTw¢Twm|t,;eTw 1}
Note that the final equality requires thats increasing, so every winning coalitign thata; ¢ C also wins
whena; is added to that coalition, 6 U {a, } also wins. O

Consider an effort game domaip, the reward vector, and the resulting effort gant@,(r). We now show
that DSE, testing whether exerting effort is a dominanttegya for a certain agent;, is at least as hard com-
putationally as calculating the Banzhaf power index in thdarlying coalitional gamé:. Since calculating the
Banzhaf index is known to be #P-hard in various domains (set@ 2), this shows that in general DSE is also
#P-hard.

Theorem 7.4 DSEis as hard computationally as calculating the Banzhaf poweex of its underlying coali-
tional gameG.

Proof. Consider a simple coalitional garewith a characteristic function. We reduce the problem of

calculating; (v), the Banzhaf index of agehtin G, to a polynomial number of DSE problems. There 2ite!

. 2 .
possible valueg;(v) can take:an1 ) ST i 1. We perform a binary search on the correct valug;of

by using DSE queries. We construct an effort game domainctraains an agert; for each task; in G. The
success probabilities far; area; = 0 and; = 1. For all other agenta; # a; the success probabilities are
o; = 3; = 3. The effort exertion costs are = 1 for all the agents. The first DSE query is regarding the reward
vector ofr = (ry = 0,7, =0,...,7-1 = 0,7, =2-¢;,r;41 = 0,...,7, = 0). Due to Theorem 7.3, if the

Ci

Bi(v)

DSE — answer is “yes”, the following must hold; = 2 - ¢; >

, or equivalentlys; (v) > % Similarly,
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. 1 . .
to test if 3; > T we simply test DSE with the reward vector = 0,70 = 0,...,7,-1 = 0,7, = k - ¢,

rit1 = 0,...,7, = 0. Thus, we are able to find; in O(log,(2"~!)) = O(n), so a polynomial procedure for
DSE can be used to construct a polynomial procedure for lzing the Banzhaf power index in the underlying
game. O

One domain of coalitional games where calculating the Bahpbwer index is known to be NP-hard is
weighted voting games [5]. Thus, in an effort game where tigedying coalitional game is a weighted voting
game, it is NP-hard to test whether exerting effort is a damirstrategy.

8 Conclusions and Future Work

We defined the effort game model of cooperation. We startestinyying effort games where the underlying
coalitional game is a restricted class of weighted votingngg We have shown that for this domain, we can
answer several questions regarding the incentives in paiyad time. Namely, we have discussed how to compute
optimal reward schemes in such effort-weighted voting game

We defined the Price of Myopia (PoM), that quantifies by how Imilie principal must overpay agents when
assuming they only have “myopic” considerations, and glediresults regarding PoM in weighted voting effort
games. We have generalized weighted voting effort game#dd games over Series-Parallel Graphs (SPGs),
and gave simulation results regarding PoM in that domain els Wrinally, we have discussed how a general
effort game relies on an underlying coalitional game, arah& that the complexity of testing whether exerting
effort is a dominant strategy is at least as hard as calogldtie Banzhaf power index in the underlying game.
Defining the relation between computing incentives in anrefjame and calculating the Banzhaf index in the
underlying game allows us to easily use complexity hardresdts regarding power indices to show complexity
results in effort games.

It remains an open problem to examine the complexity of imtpécentives for other classes of underlying
games. It also remains an open problem to consider theaelagtween the computational complexity of in-
ducing effort in effort games, and the computational coxipteof other problems in the underlying coalitional
game. For example, we believe that inducing incentives forteflames is at least as hard computationally as
various counting problems. Given our hardness resultsdoeral effort games, it will be interesting to see if
incentive-inducing schemes can be approximated in polyalaime. It would also be interesting to study the
price of myopia in various classes of effort games.

9 Appendix — Strategy Changes and Expected Rewards: Proofs

For the sake of completeness, and in order to ease the reaflthis paper, we now provide proofs for the
theorems in Section 3.2.1. Similar results may be found imesof the papers mentioned in Section 2.

We begin with the proof of Theorem 3.13.

Theorem 9.1 Let D be an effort game domain,= (r4, ..., r,) be a reward vector, and; be a certain agent
in that domain. Letr1, 02 € X be two strategy profiles i6'.(r) so that for alla; # a; we have that ; = o2 ;,
and thato; ; = exert ando, ; = shirk. Then for allj we have that;(C,,) > ¢;(Cy,).

Proof. The only difference between ando, is the strategy used hy;, who shirks inos but exerts ef-
fort in 1. Agenta; is in charge of task;. C, is the set of agents that exert effort in strategy prafileso
Co'l = 00-2 U {(lz}

Consider a task subs@t. If t; ¢ T, denoteT¢ = T, U {t;}, and ift; € T, denoteT? = T, \ {t;}.
The notation in Section 3.2 denoted the probability thatctyathe tasks in7T, are the ones achieved as
Pro(Tx) = [, er, pi(C) - I, ¢7, (1 — pi(C)). We note that it; € Tk, then

Pre, (T) = I1i,erqey) Pi(Cod) - T ecmma ey (1 = Pi(Coy)) - Bi
> 1yerae) Pi(Con) Iy ey gy (1= pi(Ca)) - e
= PI‘CU2 (TX)

Thus, ift; € Ty, thenPr¢, (Tx) > Pre,, (T%).
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We denote the probability of completifi§ given apartial strategy profiler_; (with a missing strategy fat;)
asPre, (Ix) = Htje(Tx\{ti})pj(C) . HtjE(T\Tx\{ti})(l —p;(C)). We note that this probability ignores the
question of whethet; was completed (even if € T) and only takes into consideration the taskgin\ {¢;}.
Given this notation, we can see that for any task subsete have that

PI"CU1 (TX) + PI‘C(71 (Tf) = Pl"ca_i (TX) -6 + Prca_i (Tx) . (1 — ﬂz)
= Prc, | (Tx) - o + Pre, . (Tx) - (1 — o)
— Prc,, (T) + Pre,, (T2).

In Section 3.2 we defined the expected rewar¢&€'s) = > ;. . Pre(Ty) - ri. We have assumed the
underlying coalitional gamé/ is increasing (Section 3), so if a task sub$gtwins, so does any superset of it,
soif T, C Ty thenT, € Twin = T, € Twin. Consider awinningtask subsef, € Ty,. Eithert;, € Ty,
ort; ¢ Ty. If t; ¢ T, thenT¢ is also winning and’? € Ty, sinceT, € Tyin andG is increasing (and
T, C T4). Thus, for any winning task subs®}, € T, eithert; € T, or T is also winning, sS@'¢ € Tyin.
Sinceey(Co) =1k 1 cr... Pro, (Tw), we can express it as:

ex(Co) = 11-((3 Xony erremum|retumaraerwing (P10, (L) +Pre, (L)) + X0, eqrrer, o jnery Pre. (Tw))-
Since when moving fronT,, to C,, the first sum remains the same and the second increases, weHhaav
erx(Cyy) > er(Cy,). We chosey, to be any agent, so this holds for all agents. O

We now provide the proof for Theorem 3.14.

Theorem 9.2 Let D be an effort game domaim, = (r4,...,7,) be a reward vector, and; be an agent in
that domain. Let,0, € X be two strategy profiles i (r) so thato, >, o2, and so thatry ; = o2;. Then
6i(0<71) > 6i(0<72)'

Proof. Sincer; >, o2, the only difference between, ando, are several agents that exert efforbinbut
shirk ino. It is thus possible to create a series of strategy profiles. o] <e 05 <e ... <e 0} <e 01, SUCh
thato; ando’; | are identical, except for one agent that shirksjrbut exerts effort iy’ ;. We can then apply
Theorem 3.13, and get thait(C%H) > ¢;(Cy ), and thak; (Cy,) > e;(Cy,). O

’
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