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We considerEffort Games, a game-theoretic model of cooperation in open environments, which is avariant of
the principal-agent problem from economic theory. In our multiagent domain, a common project depends on
various tasks; carrying out certain subsets of the tasks completes the project successfully, while carrying out
other subsets does not. The probability of carrying out a task is higher when the agent in charge of it exerts
effort, at a certain cost for that agent. A central authority, called the principal, attempts to incentivize agents to
exert effort, but can only reward agents based on the success of theentire project.

We model this domain as a normal form game, where the payoffs for each strategy profile are defined based
on the different probabilities of carrying out each task and on the boolean function that defines which task
subsets complete the project, and which do not. We view this boolean functionas a simple coalitional game,
and call this game the underlying coalitional game. We suggest thePrice of Myopia(PoM) as a measure of the
influence the model of rationality has on the minimal payments the principal has to make in order to motivate
the agents in such a domain to exert effort.

We consider the computational complexity of testing whether exerting effort is a dominant strategy for an
agent, and of finding a reward strategy for this domain, using either adominant strategy equilibriumor using
iterated elimination of dominated strategies. We show these problems are generally #P-hard, and that they are
at least as computationally hard as calculating the Banzhaf power index in the underlying coalitional game. We
also show that in a certain restricted domain, where the underlying coalitional game is a weighted voting game
with certain properties, it is possible to solve all of the above problems in polynomial time. We give bounds on
PoM in weighted voting effort games, and provide simulation results regarding PoM in another restricted class
of effort games, namely effort games played over Series-ParallelGraphs.
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1 Introduction

The computational aspects of many game theoretic concepts have been thoroughly studied in recent years, as they
are significant for many real-world domains, including auctions, voting, and electronic commerce. A key issue
in many such domains is constructing a proper reward scheme to achieve the desired behavior of self-interested
agents.

There are many such examples: auction theory is sometimes used to design auctions that maximize the revenue
of the auctioneer; social choice theory attempts to design mechanisms that give agents incentives to truthfully
reveal their preferences so that an optimal social choice ismade; solution concepts in coalitional game theory are
used to make sure that rewards are distributed in a fair manner, or so that the coalitions that are formed are stable.
The computational aspects of such concepts are critical, since in order to use them in practice, one must find a
tractable way to compute them.

1.1 Our Setting

In this paper, we deal with the computational complexity of finding a reward scheme ineffort gamesin open
environments. These games are a particular model of a principal-agent problem. In our model, the mechanism’s
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purpose is to incentivize agents to exert effort when working on a common project. Completing the project re-
quires the performance of various tasks. Some of the subsetsof the tasks are “winning” subsets – when these tasks
are completed, the project succeeds; some subsets are “losing” subsets – when only these tasks are completed,
the project fails.

A self-interested agent is in charge of each task. This agentcan exert effort, which increases the probability
that its task will be completed successfully. However, thisexertion of effort has a certain cost for the agent. On
the other hand, the task has a certain probability of being completed successfully even if the agent in charge of it
does not exert any effort. A natural way to reward agents is based on the effort they have exerted. However, in
open environments this information is sometimes not available to the mechanism. These environments are open
in the sense that a mechanism can only get information about the success of an entire project, and cannot get
information about the performance of agents in the various tasks required for this project, or whether they have
exerted effort or not. Thus, the mechanism can only reward the agents based on the success of the entire project.
We consider the computational complexity of finding a rewardscheme, so that all agents have incentives to exert
effort and so that the project is successful.

One example of such a situation is maintenance efforts. Consider, for example, a communication network with
a source node and a target node, where agents are in charge of maintenance tasks for the links between the nodes
of the network. If no maintenance effort is expended on a link, it has some probabilityα < 1 of functioning, but if
a maintenance effort is made for the link, it functions with ahigher probabilityβ > α. Consider a mechanism in
charge of sending some information between source and target. This mechanism only knows whether it succeeded
in sending the information, but if that attempt fails, may not know which links failed or if they failed due to lack
of maintenance. Examining the links to see which of them failed may be very costly, and even if the mechanism
could know which links worked and which failed, it cannot tell for sure whether a link failed because it was
poorly maintained.

Another example is voting domains, which we consider in Section 5. Consider a domain where a decision
is made by a certain voting protocol, where only the result ispublished, and not the votes of the participants.
Suppose that some outsider has a certain desired outcomex, and attempts to use several lobbying agents, each
able to convince a certain voter to vote for the desired outcome. When such a lobbying agent exerts effort, her
voter votes forx with a high probabilityβ, but this effort has a certain cost for that agent. If that agent shirks
(does not exert effort), her voter only has a probability ofα < β to vote forx. The outsider wants to make sure
some of the agents exert effort. However, she cannot tell which agent has exerted effort, or even what each voter
voted for. She can only know whetherx was chosen or not.

In the above examples, the interested party, calledthe principal, cannot observe the agents’ decisions about
whether to expend effort. The only information available toit is the overall result of the project. However, the
agents have a certain cost to exerting efforts, and require acertain reward as an incentive for making such an
effort. The principal cannot offer any reward based on whether an agent has exerted effort or not, since it does
not have that information. It can, however, offer the agentsa certain reward conditional on the project’s being
successful. Since agents have a certain capability of increasing the probability of obtaining this outcome, they
may exert effort in order to get their reward. However, they would only do so if the expected reward from exerting
effort is greater than the cost of that effort for them.

The principal thus offers a reward vectorr = (r1, . . . , rn), where for alli, ri ≥ 0. If the project succeeds,
the reward of agentai is ri, and if the project fails then for allai the reward ofai is 0. Consider a principal that
wants to motivate a certain subset of the agents to exert effort.1) Of course, it can offer each agent in this subset a
reward that is high enough to make sure it is worthwhile for them to exert effort no matter what the other agents
do. However, we assume that the principal wants to minimize the total rewards given when the project succeeds,
∑n

i=1 ri.
In this paper, we examine several domains that can be modeledas effort games. We begin with a simple

voting domain where voters vote on a certain decision, underthe weighted voting model. Each voter has a certain
weight, and a decision is carried out if the sum of weights of the voters who vote for accepting the decision
exceeds a certain threshold. In this domain, each agent is capable of affecting the vote of a certain voter, and
may increase the probability that that voter would choose toaccept the decision. However, affecting the voters

1) In some domains considered in this paper, the mechanism wants tomotivateall the agents to exert effort. It is also possible that the
mechanism wouldchoosewhich agent subset to incentivize, based on a target function for which it wants to optimize.
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is costly for the agents. The principal wishes to maximize the probability of accepting the decision. However,
the principal cannot observe whether a certain agent has exerted its influence, or even what a certain voter has
voted for. The principal can only observe the outcome of the entire voting procedure, whether the decision has
been accepted or not. The principal can incentivize agents to exert their influence by promising each such agent
a certain reward if the decision is accepted.

The voting effort game is described in Section 5. We examine several reward schemes for this domain, each
with different assumptions regarding the rational behavior of the agents. We show that when we assume a simple
model of rational behavior for the agents, motivating them to exert effort is quite costly for the principal. Sur-
prisingly, when we assume a different model of rationality where the agents make more sophisticated decisions,
it turns out to be cheaper for the principal to motivate them,and the total rewards they obtain are smaller. We
define the Price of Myopia (PoM), which quantifies the ratio between the total costs for the principal under these
two models of rationality.

Besides examining the weighted voting domain, we examine a particular extension of it, namely effort games
over series parallel graphs (SPGs). SPGs allow us to represent more complex effort games. Voting effort games
may be viewed as just one type of a connection, a series connection, in SPG effort games. SPG effort games also
allow parallel connections, reflecting the fact that one agent can substitute for another agent. The SPG effort game
model is discussed in Section 7, where we give some results ofsimulations regarding the costs of the principal in
certain SPG effort games.

The most general form of effort games are general effort games, where we express the domain as a coalitional
game. We define the general effort game model in Section 3.2, and analyze the computational complexity of
finding out whether a certain reward vector makes it the dominant strategy of a certain agent to exert effort. We
also analyze the computational complexity of constructinga reward vector that guarantees that a certain subset
of agents exert effort.2)

2 Related Work

In this paper we considereffort games, which model domains where agents are working in teams, but may not
exert effort when their decisions are unobservable. These domains have a moral hazard problem (where free-
riding may cause the teams to function in a sub-optimal way),and a central authority in charge of a project may
decide to reward agents depending only on whether the project has ended successfully or not. Such considerations
are also discussed in [8].

A model very similar to ours appears in [15]. That paper considers a simple situation, where a set of identical
agents are working on a common project. Each agent may exert effort or not. Similarly to our model, each
agent is in charge of a certain task, which has a probability of β = 1 of succeeding when effort is exerted,
and some probabilityα of succeeding even if the agent shirked. However, that paperdefines a veryrestricted
effort game, where in the underlying coalitional game the only winning coalition is the grand coalitionI, where
α is the same for all agents, and where a task is always completed when the agent in charge exerts effort, so
β = 1. [15] considers a principal who attempts to incentivize allthe agents to exert effort, and shows a certain,
easily calculable, reward vector which is an iterative elimination of dominated strategies implementation. Since
agents in that domain are identical, yet the rewards are different, it shows that a certain discrimination allows the
principal to minimize her payments while still having the project succeed with a probability of 1. Our model of
effort games extends that model, by allowing different subsets of the tasks to complete the project. The focus
of [15] is on the economic question of discrimination in suchsettings, whereas our paper concentrates on the
computational features of effort games, and their relationto power indices.

Effort games can be seen as a restricted case of the model defined in [1]. That work also considers a domain
where a principal employs agents in a joint project. The common theme of this paper and [1] is that the actions
taken by the agents affect the probability that the project is successful. However, the model of [1] is more general
– it allows agents to take more than one action, and each strategy profile results in a certain distribution over the

2) The complexity results obviously depend on the representation of the function that decides which agent subsets are winning and which
are losing (sometimes called the characteristic function, orcoalitional function). The weighted voting domains and SPG games described here
have very concise representations (for more details we referthe reader to the papers mentioned in the related work discussion, in Section 2).
However, the hardness results given later show that certainproblems in effort games are harder than computing the Banzhaf power index, and
thus hold foranyrepresentation where it is hard to compute the Banzhaf power index.
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possible outcomes for the joint project. Since we consider arestricted form, hardness results regarding the general
domain may not apply to our domain, and indeed we are able to provide polynomially computable formulas for
some restricted domains. One major difference between our model and the model of [1] is the choice of a solution
concept. [1] focuses on a Nash Equilibrium, while the current paper focuses on the stronger notion of a dominant
strategy equilibrium and on iterated elimination of dominated strategies equilibrium. Thus, our probabilistic
model can be represented within “combinatorial agency”, but we have different assumptions about the rational
behavior of the agents, which are reflected in the solution concept used. These different solution concepts change
the complexity of inducing incentives, so our results are very different from those in that stream of related work.

Another paper similar to ours in spirit is [11]. It considersan interested party who wishes to influence the
behavior of agents in a game, without directly enforcing agent behavior. We also consider an interested party
that commits to making a positive monetary transfer. However, the approach in [11] is very different from ours.
It shows how an interested party can affect the agents’ behavior by committing to a monetary transferwhen the
agents behave in a certain desired way. This means the reward is contingent on the strategies the agents have
used. This promise of a monetary transfer can indeed affect the agents’ behavior. However, in our paper we do
not assume the interested party is capable ofdirectly monitoringthe agents’ behavior, so the monetary transfer
can only be based on thefinal outcomeof the game, rather than the strategy profile the agents employed. Thus,
our setting is aprincipal-agentsetting. We also do not assume the outcome of the game is directly determined by
the agents’ behavior. Rather, the game has several possibleoutcomes, and theprobability that each such outcome
would occur depends on the strategy profile.

The effort game model defined in this paper relies on both cooperative and non-cooperative game theoretic
models. Dominant strategy equilibria, Nash equilibria, and iterated elimination of strictly dominated strategies
are all known solution concepts. Our model and the concept ofthe Price of Myopia (PoM) focus on iterated elim-
ination of dominated strategies. The computational complexity of iterated elimination of dominated strategies
has been less studied than the complexity of Nash equilibria. [7] studies the complexity of iteratively eliminating
solutions. [9] examines elimination of dominated strategies in the restricted case of binmatrix games. [4] shows
how to compute non-iterated dominance in polynomial time (through linear programming), but provides hardness
results for testing whether there exists a path of iterated eliminations that eventually eliminates a given strategy.
[4] also considers testing strategy dominance relations inBayesian games.

In this paper we show the relation between schemes that induce agents to exert effort in various cooperative
domains and power indices. The concept of power indices originated from work on cooperative game theory.
One prominent solution concept for coalitional games is that of the Shapley value, due to a seminal paper by
Shapley [13]. The Shapley-Shubik index [14], an application of the Shapley value [13], has been used to measure
power in committees and politics. The Banzhaf power index originated in [3]. Several papers have dealt with the
computational complexity of calculating power indices. [5] shows that computing the Shapley value in weighted
majority games is #P-complete. [10] has shown that calculating the Banzhaf index in weighted voting games is
NP-complete. [2] has considered the problem of calculatingthe Banzhaf power index innetwork flow games. In
this coalitional game, which models a certain problem in network reliability, agents control links in a network
flow graph, and a coalition wins if it manages to allow a certain flow between a source vertex and a target vertex.
It was shown for that domain that calculating the Banzhaf index is #P-complete, but gave a polynomial algorithm
for a certain restricted case.

A certain restricted case of effort games that we consider inthis paper is Series-Parallel Graphs (SPGs). In [6]
the authors apply their results on marginal contribution nets to derive an algorithm for computing the Shapley
value and the Banzhaf index in SPGs. Their algorithm works onan arbitrary flow value in SPGs and is exponential
in the flow value. However, when applied to connectivity games on SPGs (like the ones defined in Section 7), the
algorithm is polynomial, since the flow value there is 1.

3 The Formal Model

3.1 Preliminaries

We now define several game theoretic notions required for defining effort games. The definition of effort games
relies on the definition of both normal form games and simple coalitional games.
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Definition 3.1 An n-player normal form gameis given by a set of agents (players)I = {a1, . . . , an}, and for
each agentai a (finite) set of pure strategiesSi, and a utility (payoff) functionFi : S1 × S2 × · · · × Sn −→ R.
Fi(s1, . . . , sn) denotesai’s utility when each playeraj plays strategysj .

For brevity, we denote the set of strategy profilesΣ = S1 × S2 × · · · × Sn, and denote items inΣ as
σ ∈ Σ (σ = (s1, . . . , sn), wheresi ∈ Si).

We also denoteΣ−i = S1 × · · · × Si−1 × Si+1 × · · · × Sn, and given an incomplete strategy profile
σ−i = (s1, . . . , si−1, si+1, . . . , sn) ∈ Σ−i we denote(σ−i, si) = (s1, . . . , si−1, si, si+1, . . . sn) ∈ Σ.

Given a normal form gameG, we say agentai’s strategysx ∈ Si strongly dominatessy ∈ Si if ai’s utility is
higher when usingsx than when usingsy, no matter what strategies the other agents use.

Definition 3.2 Given a normal form gameG, we say agentai’s strategysx ∈ Si strictly dominatessy ∈ Si if
the following holds: For any incomplete strategy profileσ−i ∈ Σ−i we haveFi((σ−i, sx)) > Fi((σ−i, sy)).

Definition 3.3 Given a normal form gameG, we say agentai’s strategysx is ai’s dominant strategyif it
dominates all other strategiessi ∈ Si.

Given a certain game, game theoretic solution concepts specify which outcomes are reasonable, under various
assumptions of rationality and common knowledge. In this paper, we will deal with two solution concepts:
dominant strategy equilibrium, and iterated elimination of dominated strategies. Given a certain game, an agent
ai may or may not have a dominant strategy. One known game theoretic solution concept is a dominant strategy
equilibrium. This concept defines asinglereasonable strategy profile (and derived payoffs) for certain games.

Definition 3.4 Given a normal form gameG, we say a strategy profileσ = (s1, . . . , sn) ∈ Σ is adominant
strategy equilibriumif for any agentai, strategysi is a dominant strategy forai.

Another solution concept is that ofiterated elimination of dominated strategies. In iterated dominance, strictly
dominated strategies are removed from the game, and no longer have any effect on future dominance relations.
A certain strategysx ∈ Si may not dominatesy ∈ Si, becausesy performs better againstσa ∈ Σ−i. However,
if one of the strategies inσa is removed, that profile is no longer applicable, sosx may now dominatesy. It is a
well-known fact that if we remove dominated strategies until no more dominated strategies remain, in the end the
remaining strategies for each player will be the same, regardless of the order in which strategies are removed [12].
Some authors refer to this as the fact that iterated (strict)dominance is path-independent.

The heart of a general effort game is a boolean function that decides which task subsets complete the common
project successfully, and which task subsets do not. Our results depend on viewing this boolean function as a
simple coalitional game. We now define a simple coalitional game.3)

Definition 3.5 A coalitional gameis a domain that consists of a set of tasks,T , and a characteristic function
mapping any subset of the tasks to a real valuev : 2T −→ R, indicating the total utility of a project that achieves
exactly these tasks.

In a simplecoalitional game,v only gets values of 0 or 1 (v : 2T −→ {0, 1}). We say a subsetC ⊆ T wins
if v(C) = 1, and say itlosesif v(C) = 0. We denote the set of all subsets of tasks that win the simple game
asTwin = {T ′ ⊆ T |v(T ′) = 1}. A task t is critical in a winning subsetC if the task’s removal from that
coalition makes it lose:v(C) = 1, v(C \ {t}) = 0. A game isincreasingif for all subsetsC ′ ⊆ C ⊆ T we have
v(C ′) ≤ v(C). We will assume achieving more tasks is always better for theproject, so games are increasing.
Thus, if a certain subset of tasksC ⊆ T wins, every superset ofC also wins.

We now define the weighted voting game, which is a famous game-theoretic model of cooperation in political
bodies. In this game, each agent has a weight, and a coalitionof agents wins the game if the sum of the weights
of its members exceeds a certain threshold.

Definition 3.6 A weighted voting gameis a simple coalitional game with tasks (agents)T = (t1, . . . , tn),
a vector of weightsw = (w1, . . . , wn) and a thresholdq. We sayti has the weightwi. Given a coalitionC ⊆ T
we denote the weight of the coalitionw(C) =

∑

i∈{i|ti∈C} wi. A coalitionC wins the game (sov(C) = 1) if
w(C) ≥ q, andlosesthe game (sov(C) = 0) if w(C) < q.

A question that arises in the context of simple games, and especially weighted voting games, is that of measur-
ing the influence a certain task (player) has on the outcome ofthe game. One approach to measuring this notion

3) Rather than defining the function over agents, as typically done in definitions for coalitional games, we call the players in this game
tasks, to keep our terminology consistent with the rest of thepaper.
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is power indices. A possible definition of the power of an agent is its a priori probability of having a significant
impact on the outcome of the game. Different definitions of “significant impact” have resulted in the definition
of different power indices, one of which is the Banzhaf index[3].

Definition 3.7 TheBanzhaf indexis a power index that depends on the number of coalitions in which an agent
is critical, out of all possible coalitions. It is given byβ(v) = (β1(v), . . . , βn(v)) where

βi(v) =
1

2n−1

∑

S⊆T |i∈S [v(S) − v(S \ {i})].

The Banzhaf power index reflects the assumption that the agents are independent in their choices. Another
prominent power index, the Shapley-Shubik power index, does not reflect such an assumption. This property of
the Banzhaf index is similar to some of the assumptions of effort games.

3.2 The Effort Game Model

We now define effort game models and related problems.

Definition 3.8 An effort game domainis a domain that consists of the following: A setI = {a1, . . . , an} of
n agents; a set ofn tasks,T = {t1, . . . , tn}; a simple coalitional gameG with task setT , such that|T | = n, and
with the value functionv : 2T −→ {0, 1}; a set of success probability pairs(α1, β1), (α2, β2), . . . , (αn, βn) so
thatαi, βi ∈ R, and that0 ≤ αi < βi ≤ 1; a set of effort exertion costsc1, . . . , cn ∈ R, so thatci > 0.

Informally, this domain is interpreted as follows. A joint project depends on the completion of certain tasks.
Achieving some of the subsets of tasks completes the projectsuccessfully, and some fail, as determined by the
simple coalitional gameG. An agentai is responsible for each such taskti. That agent may exert effort, which
gives the task a probability ofβi to be completed. However, exerting effort costs that agent acertain utilityci.
If the agent shirks (does not exert effort), then the agent does not incur the costci, and the task has a lower
probabilityαi of being completed.

We now formally describe the domain. Each of the agentsai ∈ I is responsible for the taskti ∈ T . For each
coalition of agentsC ⊆ I, we denote the set of tasks owned by these agentsT (C) = {ti ∈ T |ai ∈ C} . We say
the common project is successful if a subset of tasksT ′ ⊆ T is achieved, so thatv(T ′) = 1 (soT ′ is winning
in G). Each agent can either choose to exert effort or shirk. In the effort games model, we assume the tasks
succeed or failindependentlyof one another. Ifai exerts effort, taskti is completed with probabilityβi. If it does
not exert effort (and shirks instead), taskti is completed with a lower probabilityαi < βi. However, each agent
has a cost for exerting effort,ci > 0, which is deducted from the utility obtained by the agent. Suppose that the
agents inC exert effort, and that the agents inI \ C do not. GivenC we know the probability that each task is
completed: ifai ∈ C thenti is completed with probabilityβi. If ai /∈ C, ti is completed with probabilityαi.

Given the coalition of agents that contribute effort,C, we denote the probability that a certain taskti is
completed aspi(C), defined as follows:

pi(C) =

{

βi if ti ∈ C,

αi if ti /∈ C.

Consider a subset of tasksT ′ ⊆ T . Given the coalitionC of agents that exert effort, we can calculate the
probability that exactly the tasks inT ′ are the ones achieved:PrC(T ′) =

∏

ti∈T ′ pi(C) ·
∏

ti /∈T ′(1−pi(C)). We
can calculate the probability thatanywinning subset of tasks is achieved, and denote this by

PrC(Win) =
∑

Tw∈Twin
PrC(Tw).

In our model we have a central authority (called theprincipal) interested in successfully completing the common
project. The principal attempts to make sure a certain subset of agents exert effort, and needs to reward the agents
so they will exert effort despite their cost of doing so. She thus designs areward scheme, but attempts to minimize
her costs.

Let C ⊆ I be the coalition of agents that have exerted effort, andT ′ be the set of achieved tasks. On the
one hand,T ′ may not contain all the tasks of the agents that have exerted effort, since if βi < 1, a task has
a probability of failing even when the agent exerts effort. On the other hand,T ′ may contain some tasks for
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which agents did not exert effort, since ifαi > 0, a task has a probability of succeeding even if an agent does
not exert effort. We assume that the principal knows whetherthe project succeeded or not (whetherv(T ′) = 1
or v(T ′) = 0), knowsci, αi, βi of all the agents, but does not know whether an agentai has exerted effort (so
ai ∈ C) or shirked (soai /∈ C). Thus it cannot reward only those agents that have exerted effort. It can only
promise each agentai a certain rewardri if the project succeeds, and a reward of 0 if it does not. The principal
can choose among various reward vectorsr = (r1, . . . , rn).

Given the reward vectorr = (r1, . . . , rn), and given that the agents that exert effort areC ⊆ I, ai’s expected
reward isei(C) =

∑

Tw∈Twin
PrC C(Tw) ·ri. Agentai has a costci of exerting effort. It can choose between two

strategies – exert effort, or shirk. Exerting effort increases the expected reward, but has a costci. If ai shirks she
does not incur the costci, but her expected reward is smaller. The effort game is the normal form game obtained
due to a certain reward vectorr chosen by the principal.

Definition 3.9 An Effort Gameis the normal form gameGe(r) defined on the above domain with a simple
coalitional gameG and a reward vectorr = (r1, . . . , rn), as follows.

In Ge(r) agentai has two strategies:Si = {exert, shirk}. Denote byΣ the set of all strategy profiles
Σ = S1 × · · · × Sn. Given a strategy profileσ = (s1, . . . sn) ∈ Σ, we denote the coalition of agents that exert
effort in σ by Cσ = {ai ∈ I|si = exert}. To fully define the game, we must also define the payoff function of
each agentFi : Σ → R. The payoffs depend on the reward vectorr = (r1, . . . , rn): the payoff of each agent in
strategy profileσ is her expected reward minus the cost of the effort exerted. Thus:

Fi(σ) =

{

ei(Cσ) − ci if si = exert ,

ei(Cσ) if si = shirk .

Ge depends onr, so we denote itGe(r).

Given a simple coalitional gameG, each reward vectorr defines a different effort gameGe(r). Given an
effort game, the principal may want to make sure a certain subset of the agents exert effort, and it is up to him to
choose a reward vector that achieves this, under certain assumptions on the rational behavior of these agents. The
strategies used by the agents are determined by a certaingame theoretic solution concept. Such solution concepts
typically define different possible strategy profiles. A reward vector that guarantees that a certain coalitionC ′

exerts effort, under a certain solution concept, is an incentive-inducing scheme forC ′.4)

Definition 3.10 An Incentive-Inducing Scheme for a CoalitionC ′ in the Effort GameGe is a reward vector
r = (r1, . . . , rn), such that in the effort gameGe(r), in any strategy profileσ ∈ Σ allowable by the solution
concept, the agents inC ′ exert effort, soC ′ ⊆ Cσ.

Although there may be many possible incentive-inducing reward vectors, the principal is self-interested, and
attempts to minimize the total of rewards it pays,

∑n
i=1 ri.

Given an effort game domainGe and a coalition of agentsC ′ ⊆ I that the principal wants to exert effort, we
now define two types of incentive-inducing schemes: a dominant strategy scheme, and an iterated elimination of
dominated strategies scheme.

Definition 3.11 A Dominant Strategy Incentive-Inducing Scheme forC ′ is a reward vectorr = (r1, . . . , rn)
such that for anyai ∈ C ′ exerting effort is a dominant strategy forai.

Definition 3.12 An Iterated Elimination of Dominated Strategies Incentive-Inducing Scheme forC ′ is a re-
ward vectorr = (r1, . . . , rn) such that in the effort gameGe(r), after any sequence of eliminating dominated
strategies, for anyai ∈ C ′, the only remaining strategy forai is to exert effort.

3.2.1 Strategy Changes and Expected Rewards

We now consider the effects of strategy changes and the expected rewards. We only specify some notation we
need later in the paper, and state some theorems we later use.The full proofs are found in Appendix 9, and are
given for completeness.5)

4) Several papers regarding “combinatorial agency” [1] have focused on a Nash equilibrium domain. We survey some of this work in Sec-
tion 2. In this paper, we focus on a dominant strategy implementation, and on an iterated elimination of dominated strategies implementation.

5) These theorems or ones very similar to the ones presented here are given in [1], and are only given here to help the reader fully
understand our other results.
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We first define the following relation regarding effort exertion in strategy profiles. LetD be an effort game
domain, andr = (r1, . . . , rn) be a reward vector. Letσ1, σ2 ∈ Σ be two strategy profiles inGe(r), so
σ1 = (s1,1, s1,2, . . . , s1,n) andσ2 = (s2,1, s2,2, . . . , s2,n). We sayσ1 is more exertingthanσ2, and denote
σ1 >e σ2 if the following holds: all the agents that exert effort inσ2 also exert effort inσ1, and at least one agent
that exerts effort inσ1 does not exert effort inσ2, so for allai we have thats2,i = exert impliess1,i = exert,
and for someaj we haves2,j = shirk ands1,j = exert.

For some of our results, we use the fact that the expected reward of a given agent increases when more of the
other agents exert effort (no matter whether that agent exerts effort himself or not). We provide several theorems
regarding this. First, if asingleagent that shirked decides to exert effort, the expected rewards of all agents
increase.

Theorem 3.13 Let D be an effort game domain,r = (r1, . . . , rn) be a reward vector, andai be a certain
agent in that domain. Letσ1, σ2 ∈ Σ be two strategy profiles inGe(r) so that for allaj 6= ai we have that
σ1,j = σ2,j , and thatσ1,i = exert andσ2,i = shirk. Then for allj we have thatej(Cσ1

) > ej(Cσ2
).

The expected reward of any agent increases when more of the other agents exert effort.

Theorem 3.14 Let D be an effort game domain,r = (r1, . . . , rn) be a reward vector, andai be an agent in
that domain. Letσ1, σ2 ∈ Σ be two strategy profiles inGe(r) so thatσ1 >e σ2, and so thatσ1,i = σ2,i. Then
ei(Cσ1

) > ei(Cσ2
).

The above Theorems 3.13 and 3.14 have considered the expected rewards given a certain strategy profile, but
can also be stated with regard to the probability of having a winning task subset.

Corollary 3.15 If σ1, σ2 ∈ Σ are strategy profiles such that for allaj 6= ai we have thatσ1,j = σ2,j , and
thatσ1,i = exert andσ2,i = shirk, then for allj we have

∑

Tw∈Twin
PrCσ1

(Tw) >
∑

Tw∈Twin
PrCσ2

(Tw) .

If σ1, σ2 are strategy profiles such thatσ1 >e σ2 and such thatσ1,i = σ2,i, then

∑

Tw∈Twin
PrCσ1

(Tw) >
∑

Tw∈Twin
PrCσ2

(Tw) .

P r o o f. We simply consider Theorems 3.13 and 3.14 for the casewhereri = 1.

4 The Complexity of Incentives

Given an effort game, agents naturally consider whether they should exert effort, and the principal naturally
considers how it should incentivize a certain subset of the agents to exert effort, while minimizing the sum
of rewards it must give. Different assumptions the principal has about the rational behavior of the agents are
reflected in the solution concept it uses. We now formally frame the above problems. In the rest of this section,
we consider an effort game domainD, with agentsI = {a1, . . . , an}, where eachai is responsible for task
ti ∈ T . The underlying coalitional game isG, with the value functionv : 2T −→ {0, 1}. The set of success
probabilities is(α1, β1), . . . , (αn, βn), and the effort exertion costs arec1, . . . , cn.

The following problems concern a reward vectorr = (r1, . . . , rn), the effort gameGe(r), and a target
agentai.

Definition 4.1 DSE (DOMINANT STRATEGY EXERT): GivenGe(r), is “exert” a dominant strategy
for ai?

Definition 4.2 IEE (ITERATED ELIMINATION EXERT): GivenGe(r), is “exert” the only remaining strat-
egy forai after iterated elimination of dominated strategies? This means that ifΣ′ is the set of strategy profiles
remaining after a sequence of iterated elimination, then for any strategy profileσ′ = (σ′

1, . . . , σ
′
n) ∈ Σ′ we have

σ′
i = exert.

The following problems concern the effort game domainD, and a coalitionC.

Definition 4.3 D-INI (DOMINANT INDUCING INCENTIVES): Given D, compute a dominant strategy
incentive-inducing schemer = (r1, . . . , rn) for C (see Definition 3.11).
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Definition 4.4 IE-INI (ITERATED ELIMINATION INDUCING INCENTIVES): Given D, compute an iter-
ated elimination of dominated strategies incentive-inducing schemer = (r1, . . . , rn) for C (see Definition 3.12).

We are typically interested in incentive-inducing schemesr = (r1, . . . , rn) thatminimizethe sum of payments,
r =

∑n
i=1 ri. In many cases, it is always possible to find an incentive-inducing scheme given that the sum of

payments used,r, is high enough, and the focus is on minimizing this sum of payments. We denote the problems
of finding incentive-inducing schemes thatminimizethe sum of paymentsr as MD-INI and MIE-INI (for a
dominant strategy implementation and an iterated elimination implementation, respectively). The computational
complexity of these problems in various domains is investigated in the following sections.

5 Inducing Incentives in Unanimous Weighted Voting Games

We first consider a restricted class of effort games, called unanimous weighted voting domains (or unanimous
domains for short), and show how to find a dominant strategy incentive-inducing scheme, or an iterated elimi-
nation of dominated strategies incentive-inducing schemein these domains. The domain highlights the relation
between power in the underlying coalitional game, in this case the weighted voting game, and the incentives for
the resulting effort game domain. Unanimous domains are a restricted case of weighted voting domains. In these
domains, in order to form a successful coalition,all the agents must reach a consensus about a course of action.
Unanimous domains can model joint decision making, where the agents mustunanimouslydecide on a course
of action. Such domains can also model situation that have nothing to do with voting, when a certain project
requires a set of tasks, whereall the tasks must be completed in order to succeed in the entire project.

Consider a joint project, where each agentai is in charge of a task, and whereall the tasks must be completed
in order for the project to succeed. A task is completed successfully with probabilityα, and agentai may
increase the probability of succeeding in the task she is in charge of toβ, at a certain costci of exerting effort.
Formally unanimous effort games are defined as follows. The underlying coalitional gameG has the tasks
T = (t1, . . . , tn). A coalition of tasksC ⊆ T wins in G if it contains all the tasks and loses otherwise, so
v(T ) = 1, and for allC 6= T we havev(C) = 0. The success probability pairs areidentical for all tasks:
(α1 = α, β1 = β), (α2 = α, β2 = β), . . . , (αn = α, βn = β). Agentai is in charge ofti, and has an effort
exertion cost ofci.

Weighted voting games where a decision is passed only if all agentsunanimouslyvote for it offer another
motivation for the above definitions. In general voting gamedomains, voters decide on a course of action using
weighted voting. Each voter has a weight, and a decision passes if the total weight of the agents that vote for
it exceeds a certain threshold. We considerunanimousdomains, where although the voters may have different
weights (voteri has weightwi), the quota is so high that in fact the decision can only pass whenall of the agents
vote for it: we assume that the quota for passing the decisionis q =

∑n
i=1 wi. Thus, in this restricted setting, all

the voters have equal power (so the Banzhaf power index is thesame for all the agents, even though they have
different weights). We use effort games to model lobbying efforts, where an interested party attempts to make
sure the voters do indeed reach a unanimous decision about the desired course of action, and employs lobbying
agents, who attempt to influence the voters. Suppose each voter has a probability ofα to vote in favor of the
decision. A lobbying agentai may increase the probability of votervi voting in favor of the decision toβ > α,
at a certain cost of exerting effort,ci. In our domain, we will assume the effort exertion cost is proportional to the
voter’s weight, soci = wi.6)

Consider a principal, that wants to maximize the probability of the project completing successfully (or, in the
case of a weighted voting domain, making sure the decision ispassed). The principal wants all the agents to exert
effort, to maximize the probability of all the tasks completing successfully (or to make sure the voters would have
a high probability of accepting the decision). Observe the above effort game domainD. Given a reward vector
r = (r1, . . . , rn) we get the effort gameGe(r). We show how to compute both a dominant strategy incentive-
inducing scheme (D-INI) and an iterated elimination of dominated strategies incentive-inducing scheme (IE-INI)
in this domain. We also show how to find such an IE-INI vector that minimizes

∑n
i=1 ri.

We first show how to calculate theminimal rewardri that makes exerting effort a dominant strategy forai in
the above domain.

6) Thus, in unanimous weighted voting domains, the weights are simply another name for the effort exertion costs.
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Lemma 5.1 If ri ≥
ci

αn−1 · (β − α)
, then exerting effort is a dominant strategy forai, and this reward is the

minimal reward that makes exerting effort a dominant strategy forai.

P r o o f. As seen in Theorem 7.3, the condition for exerting effort being a dominating strategy forai is that
for everyσa ∈ Σ−i,

ri ≥
ci

∑

Tw∈Twin
(PrCσa

e
(Tw) − PrCσa

s
(Tw))

.

However, in this domain, the only winning task subset isT , so we can restate this as

ri ≥
ci

(PrCσa
e
(T ) − PrCσa

s
(T ))

.

Since the only difference betweenσa
e andσa

s is thatai exerts effort in the first and shirks in the second, we have

PrCσa
e
(T ) = Pσa(T) · β and PrCσa

s
(T ) = Pσa(T) · α .

The notationPσa(T) denotes the probability of completingT given apartial strategy profileσa ∈ Σ−i (similar
to the notation used in Theorem 3.13). Thus, an equivalent condition for having exerting effort be the dominant
strategy forai is that for everyσa ∈ Σ−i we have

ri ≥
ci

PrCσa (T ) · (β − α)
.

Eachσa ∈ Σ−i thus requires a different minimal rewardri, and the smallerPrCσa (T ), the higherri must be.
In our domain,PrCσa (T ) is smallest when all the agents shirk inσa, soCσa = ∅ andPrCσa (T ) = αn−1.

The above lemma allows us to solve MD-INI in this domain in polynomial time – we have a simple formula
for the minimal reward vectorr which is a dominant strategy incentive-inducing scheme.

Corollary 5.2 MD-INI is in P for the effort game in the above unanimous weighted voting domain. The

reward vectorr∗ = (
c1

αn−1 · (β − α)
, . . . ,

cn

αn−1 · (β − α)
) is a dominant strategy incentive-inducing scheme.

P r o o f. An MD-INI solution is a reward vector that makes exerting effort the dominant strategy for each of

the agents. Due to Lemma 5.1,r∗ is indeed such a vector. We also note that ifri <
ci

αn−1 · (β − α)
, shirking is

the better strategy forai under the strategy profile where all the other agents shirk, so the abover∗ is the dominant
strategy incentive-inducing scheme which isminimal in terms of

∑n
i=1 ri. This direct formula can be calculated

in polynomial time.

We now consider IE-INI, computing an iterated elimination of dominated strategies incentive-inducing scheme
in this domain. We show that such a scheme can significantly reduce the total rewards

∑n
i=1 ri. We suggest an

IE-INI procedure for this domain.

Due to Lemma 5.1, ifri ≥
ci

αn−1 · (β − α)
, then exerting effort is a dominant strategy forai. Thus, after

one step of elimination of dominated strategies,ai is sure to exert effort in the game. Consider an agentaj , who
knowsai would exert effort. We denote the set of strategy profiles which miss both the strategies forai andaj

asΣ−{i,j} = Σ1 × · · · × Si−1 × Si+1 × · · · × Sj−1 × Sj+1 × Sn. Similarly to the notation in Theorem 3.13,
we denote the probability of completingTx ⊆ T given apartial strategy profileσb ∈ Σ−{i,j} = (missing the
strategies of bothai andaj) as

PrC
σb

(Tx) =
∏

tk∈(Tx\{ti,tj})
pk(C) ·

∏

tk∈(T\Tx\{ti,tj})
(1 − pk(C)) .

We note that this probability ignores the question of whether ti or tj were completed (even thoughti, tj ∈ Tx)
and only takes into consideration the tasks inTx \ {ti, tj}. The following lemma shows that the fact that one
agent is sure to exert effort makes it cheaper to make sure another agent exerts effort.
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Lemma 5.3 Let ai, aj be two agents, andri, rj be their rewards so thatri ≥
ci

αn−1 · (β − α)
and that

rj ≥
cj

αn−2 · β · (β − α)
. Then under iterated elimination of dominated strategies,the only remaining strategy

for bothai andaj is to exert effort.

P r o o f. We follow steps similar to Lemma 5.1. Sinceai exerts effort, the condition for exerting effort being a
dominating strategy foraj (after eliminating shirking as a strategy forai) is that for everyσb ∈ Σ−{i,j} we have

rj ≥
cj

PrC
σb (T ) ·β · (β − α)

.

Similarly to Theorem 7.3, eachσb ∈ Σ−{i,j} requires a different minimal rewardrj , and the smaller
PrC

σb
(T ), the higherrj must be. Again,PrC

σb
(T ) is smallest when all the agents shirk inσb, soCσb = ∅

andPrC
σb

(T ) = αn−2. Thus, ifai is known to exert effort, a rewardrj ≥
cj

αn−2 · β · (β − α)
guarantees that

exerting effort is a dominant strategy foraj .

We now consider an iterated elimination of dominated strategies incentive-inducing scheme (IE-INI). We first
choose an ordering of the agents. We then go through the agents in this order, and find the minimal reward
required to make exerting effort a dominant strategy for each of them, given that its predecessors exert effort as
well. Denote byπ a permutation (reordering) of the agents (soπ : {1, . . . , n} −→ {1, . . . , n} andπ is reversible).
We denote byΠ the set of all such permutations.π(i) is the location ofai in the new ordering of the agents. In
the generated reward scheme, the strategy “shirk” foraπ(i) is eliminated during roundi of strategy elimination.

Theorem 5.4 IE-INI is in P for the effort game in the above-mentioned specific weightedvoting domain. Any
reordering of the agentsπ ∈ Π, a reward vectorrπ where the following holds for any agentai is an iterated
elimination incentive-inducing scheme:

rπ(i) ≥
cπ(i)

αn−i · βi−1 · (β − α)
.

P r o o f. The above definition requirement for the first agent inthe reordering,ai such thati = π(1), is exactly
as required in Lemma 5.1, and for the second agent exactly as in Lemma 5.3. We can continue the process again.
Consider the case where the following two equations hold:

ri ≥
ci

αn−1 · (β − α)
and rj ≥

cj

αn−2 · β · (β − α)
.

If these two hold, we can calculate the minimal rewardrk that makes exerting effort a dominant strategy for
yet another agent,ak. Similarly to the proof of Lemma 5.3, we can see that

rk ≥
ck

αn−3 · β2 · (β − α)
.

By induction and using the same proof technique as in Lemma 5.3, we can see that the following reward makes
“exert” a dominant strategy foraπ(i) afteri rounds of eliminating dominated strategies:

rπ(i) ≥
cπ(i)

αn−i · βi−1 · (β − α)
.

This direct formula can be calculated in polynomial time.

We note that each reorderingπ of the agents results in a different reward vector. The principal is typically
interested in minimizing

∑n
i=1 ri, or in other words, the principal typically needs to solve MIE-INI (rather than

IE-INI). We show that the best ordering is according to the agents’ exertion costsci = wi.

Theorem 5.5 MIE-INI is in P for the effort game in the above unanimous weighted voting domain. The
reward vectorrπ that minimizes

∑n
i=1 ri is achieved by sorting agents by their weightswi = ci, from smallest to

largest.
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P r o o f. Leta = (ai1 , ai2 , . . . , aik−1
, aik

, aik+1
, aik+2

, . . . , ain
) and

b = (ai1 , ai2 , . . . , aik−1
, aik+1

, aik
, aik+2

, . . . , ain
) be two reorderings of the agents that are identical except

for switching places between the adjacentaik
and aik+1

. Let ra = (ra
1 , . . . , ra

n), rb = (rb
1, . . . , r

b
n), be the

resulting reward vectors for these orderings, as in Theorem5.4. It suffices to show that ifwik
> wik+1

, then
∑n

i=1 rb
i <

∑n
i=1 ra

i , since if this holds, we have a “bubble sort” sequence of switches of agent pairs that
monotonically drops the total rewards paid, and ends in the ordering of the agents according to their weight.
Consider an agentai which is in thek’th location in the sequence. That is, the rewards for all theagents in
locations1, 2, . . . , k − 1 are such that afterk − 1 rounds of elimination of dominated strategies, they are allsure
to exert effort.

Due to Theorem 5.4, the required reward for it is

ri ≥
ci

αn−k · βk−1 · (β − α)
.

Moving it to thek + 1 location would make this required reward be

ri ≥
ci

αn−k−1 · βk · (β − α)
.

The ratio between the two required rewards isq =
α

β
< 1.

Denote byA the required reward foraik
when he is in thek’th location, soAq is the required reward when

he is in thek + 1’th location. Denote byB the required reward foraik+1
when he is in thek’th location, soBq

is the required reward when he is in thek + 1’th location. Thus switching the agent’s location in the sequence
changes the total rewards fromA + Bq to Aq + B. We note thatA > B, due to the equation of Theorem 5.4.
Sinceq < 1 and sinceA > B, the change in rewardA + Bq − (Aq + B) is positive, so we can improve the
principal’s situation by switching these agents. Thus,wik

> wik+1
, and then

∑n
i=1 rb

i <
∑n

i=1 ra
i .

We have thus shown that in this domain we can compute MIE-INI by sorting the agents according to their
weights (and thus their costs of exerting efforts), and using the equation from Theorem 5.4 to construct the
reward vector.7)

6 Price of Myopia

We have examined two incentive-inducing schemes for the rewards in effort games: the Dominant Strategy
Incentive-Inducing Scheme (DS), and the Iterated Elimination of Dominated Strategies Incentive-Inducing
Scheme (IE). Each of these solution concepts represents a different model of rationality that the agents employ.
A dominant strategy implementation uses payments that makesure the agents exert effort no matter what they be-
lieve the other agents might do. In such an implementation, an agent may assume anything about the behavior of
the other agents, and would still find it profitable to exert effort.8) An iterated elimination implementation models
agents that make more complex assumptions about the behavior of their counterparts. We show that when we
assume agents follow the more sophisticated deliberation process of iterated elimination of dominated strategies,
it is cheaper for the principal to motivate them, and the total rewards they obtain are smaller.

Let us denote byRDS the minimal sum of the rewards (
∑n

j=1 rj) such that for all agentsai, ri is a DS, and
denote byRIE the minimal sum of the rewards such that for all agentsai, ri is an IE. Obviously,RDS ≥ RIE

(since in the IE we are taking into account only a subset of strategies). The natural question here is how large

7) Note that in Section 7.2 we discuss effort games overgeneralweighted voting games, and show that in that domain it is NP-hard to
find an IE-INI, since it is NP-hard to compute the Banzhaf powerindex in weighted voting games. However, the current sectiondiscusses
unanimousweighted voting games, where the threshold is so high that theonly winning coalition is that ofall the agents. In this domain, all
agents have the same Banzhaf power index, which can be calculated using a direct formula, and indeed, for this domain we have shown that
MIE-INI is in P.

8) In this sense, a dominant strategy implementation is “safe” formyopic agents. This is the reason we choose the name “the price of
myopia”. Note however that we consider the ratio between a dominant strategy implementation and aniterated eliminationimplementation.
Other possibilities (other than a dominant strategy solution) are the best or worst Nash equilibrium, which we do not examine in this paper.
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the ratioRDS/RIE can be. We call the latter ratio the Price of Myopia (PoM).9) We study this question in the
context of effort games such as in the previous section, where in the underlying coalitional game with task setT ,
a coalition of tasksC ⊆ T wins if it contains all the tasks, and loses otherwise. All the agents have the same cost
for exerting effortc, and the success probability pairs are identical for all tasks (α, β). We prove the following
results:

Theorem 6.1 For the above setting withn agents,
RDS

RIE
< n .

P r o o f. Letaj be a player. According to Lemma 5.1, exerting effort is a dominant strategy foraj if and only
if the following holds:

rj ≥
c

αn−1 · (β − α)
.

Since this is true for all the playersaj , then

(1) RDS =
∑n

j=1 rj =
cn

αn−1 · (β − α)
.

By Theorem 5.4 we can obtain an iterated elimination incentive-inducing scheme by taking any reordering of
the agentsπ ∈ Π, and a reward vectorrπ where for any agentaj we have

rπ(j) ≥
c

αn−j · βj−1 · (β − α)
.

Since all the costsc are the same, for all the reorderingsπ the vectorsrπ are permutations of each other, and in
particular the sum of the rewards for Iterated Elimination Incentive-Inducing Scheme does not depend onπ. So
settingπ to be the identity permutation, we have

(2) RIE =
∑n

j=1 rj =
c

β − α

∑n
j=1

1

βj−1αn−j
.

Combining (1) and (2) together, we have

(3)
RDS

RIE
=

cn

(β − α)αn−1

c

β − α

∑n
j=1

1

βj−1αn−j

=

n

αn−1

∑n
j=1

1

βj−1αn−j

=
n

∑n
j=1

αn−1

βj−1αn−j

=
n

∑n
j=1

αj−1

βj−1

.

Observe that
αj−1

βj−1
= 1 for j = 1 and

αj−1

βj−1
> 0 for j ≥ 2. Thus we get

∑n
j=1

αj−1

βj−1
> 1. Hence we obtain

n

∑n
j=1

αj−1

βj−1

< n.

Theorem 6.2 Consider a sequence of effort gamesDi for i = 1, 2, . . .. In each effort gameDi all agents
have identical success probability pairs(αi, βi) and the cost of exerting effortc. Suppose thatlimi→∞ αi = 0.

Also suppose that there exists someβ > 0, such that for alli, βi ≥ β, and denote byR(i)
DS the sum of the rewards

for DS for gameDi, and byR(i)
IE the sum of the rewards forIE for the gameDi. Then:

limi→∞
R

(i)
DS

R
(i)
IE

= n .

9) The reason for the name is that the dominant strategy model assumes agents only take into account “short term” or myopic consid-
erations, and do not take into account “longer term” considerations, as done in the iterated elimination model. When the principal assumes
agents only have simple and short term considerations he is forced to overpay them.
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P r o o f. We suppose that in sequence of effort gamesDi,

(4) limi→∞ αi = 0

and there existsβ > 0 such that

(5) for all i, βi ≥ β .

Then by equation (3) for alli we have the following:

R
(i)
DS

R
(i)
IE

=
n

∑n
j=1

αj−1
i

βj−1
i

.

From (4) and (5) we conclude that for allj ≥ 2 we have

limi→∞
αj−1

i

βj−1
i

= 0 .

Thus we get that

limi→∞
n

∑n
j=1

αj−1
i

βj−1
i

=
n

1
= n.

Theorem 6.3 Consider again the sequence of effort gamesDi for i = 1, 2, . . .. Suppose that the following
holds:

limi→∞
αi

βi
= 1 .

Then the following also holds:

limi→∞
R

(i)
DS

R
(i)
IE

= 1 .

P r o o f. Suppose that in sequence of gamesDi, limi→∞ αi/βi = 1. Then by (3):

limi→∞
R

(i)
DS

R
(i)
IE

= limi→∞
n

∑n
j=1

αj−1
i

βj−1
i

=
n

1 + . . . + 1
= 1 .

7 Effort Games Over Series-Parallel Graphs

The previous sections have dealt with a restricted form of effort games, weighted voting effort games, where
the underlying game was a weighted voting game. We now generalize our discussion to a wider class of games,
defined by Series-Parallel Graphs (SPGs). We first define SPGs.

In this context the term graph refers to a multigraph. A Two-Terminal Graph (TTG) is a graph with two
distinguished vertices,s andt calledsourceandsink, respectively. Theparallel compositionP = P (X,Y ) of
two TTGsX andY is a TTG created from the disjoint union of graphsX andY by merging the sources ofX
andY to create the source ofP and merging the sinks ofX andY to create the sink ofP . Theseries composition
S = S(X,Y ) of two TTGsX andY is a TTG created from the disjoint union of graphsX andY by merging
the sink ofX with the source ofY . The source ofX becomes source ofP and the sink ofY becomes the sink
of P . A two-terminal series-parallel graph (TTSPG) is a graph that may be constructed by a sequence of series
and parallel compositions starting from a set of copies of a single-edge graphK2 with assigned terminals.
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Definition 7.1 A graph is calledseries-parallel(SPG), if it is a TTSPG when some two of its vertices are
regarded as source and sink.

We now study the connectivity effort game, which generalizes unanimous weighted voting effort games.10)

We are given an SPGG = (V,E) which represents a communication network. For each edgeei ∈ E there is
an agentai responsible for maintenance tasks forei. ai can exert an effort at the certain costci to maintain the
link ei, and then it will have the probabilityβ of functioning. Otherwise, when the agent does not exert effort
to maintain the link, it will have the probabilityα < β of functioning. The winning coalitions in our game are
those who contain a path from the source node to the sink node.Note that a special case of this setting is the
weighted voting effort game, where the quota for accepting the decision isq =

∑n
i=1 wi: it is a special case of

SPG where all the compositions are series compositions. However, the SPG setting is much more general, as it
allows parallel connections.11)

7.1 Price of Myopia in SPG Domains: Simulation Results

We now present the results of several simulations we have carried out in order to investigate the price of myopia
in SPG effort games. We first describe our simulation settings.

All our experiments were carried out on SPGs with 7 edges, whose composition is described by the following
binary tree. The leaves of the tree represent edges1, 2, . . . , 7. Every inner node of the tree represents a TTSPG
which is a series or parallel composition of TTSPGs represented by its children.

Fig. 1: Binary tree representing the SPGs used in the simulations

Among these SPGs we have sampled uniformly at random SPGs by giving the probability of 1
2 for series

composition and the same probability for parallel composition at each inner node of the above tree. We have
computed the PoM forα = 0.1, 0.2, . . . , 0.8 andβ = α + 0.1, α + 0.2, . . . , 0.9 where the costsci have been
sampled uniformly at random in[0.0, 100.0). For each pair(α, β) 500 experiments have been made in order to
find the average PoM, and the standard deviation of the PoM. The results of the experiments are summarized in
the tables below:

10) Note that connectivity games only generalizeunanimousweighted voting domains, and notgeneralweighted voting domains.
11) In fact, SPGs can allow us to conjunctions and disjunctions of tasks to be accomplished that are “winning”, and is, in this sense, quite

a general language for expressing many simple coalitional games.
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The average PoM:

α β 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 4.22 9.43 16.26 25.27 38.04 58.04 94.45 177.85

0.2 2.27 4.15 6.70 10.12 14.98 22.64 37.64

0.3 1.76 2.82 4.25 6.21 9.08 14.12

0.4 1.54 2.26 3.22 4.55 6.67

0.5 1.41 1.95 2.67 3.71

0.6 1.33 1.76 2.34

0.7 1.28 1.64

0.8 1.24

The standard deviation of the PoM:

α β 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 3.05 10.23 21.85 39.99 69.40 119.72 221.13 472.22

0.2 1.00 3.01 6.30 11.43 19.68 34.17 65.05

0.3 0.57 1.60 3.27 5.92 10.39 19.52

0.4 0.39 1.07 2.14 3.91 7.28

0.5 0.30 0.80 1.60 3.02

0.6 0.25 0.65 1.32

0.7 0.22 0.56

0.8 0.20

We give here an informal discussion of the simulation results. As one can see from the first table, the higher
the distance betweenα andβ, the higher the PoM is, so when there are large differences inthe probabilities,
it really matters which model of rational behavior we choose. This also makes the structure of the graph more
important. These results somehow fit our expectations, since the smaller the difference betweenα andβ, the
smaller is the difference between exerting effort and shirking, and the less significant is the knowledge whether
some players exert effort or not.

We now prove that in parallel connection the reward in Iterated Elimination Inducing Scheme does not drop,
or in other words,RDS/RIE = 1.

Theorem 7.2 Let G beSPGwhich is obtained by parallel composition of a set of copies of single-edge graphs
K2. As before each agent is responsible for a single edge, and a winning coalition is one which contains a path
(an edge) connecting the source and target vertices. Then, in the notation of Theorem6.1, we haveRDS = RIE.

P r o o f. By Theorem 7.3 the condition for exerting effort being a dominant strategy forai is that

(6) for everyσa ∈ Σ−i : ri ≥
ci

∑

Tw∈Twin
(PrCσa

e
(Tw) − PrCσa

s
(Tw))

.

Since the only set of edges that is not inTwin is the empty set, we have

ci
∑

Tw∈Twin
(PrCσa

e
(Tw) − PrCσa

s
(Tw))

=
ci

1 − PrCσa
e
(∅) − (1 − PrCσa

s
(∅))

.

Denote byxi the probability that the edgei will exist underσa, i.e.,

xi =

{

αi if agenti shirks,

βi if agenti exerts effort.
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Then we have

(7)

ri ≥
ci

1 − PrCσa
e
(∅) − (1 − PrCσa

s
(∅))

=
ci

1 −
∏n

j=1,j 6=i(1 − xj) · (1 − βi) − (1 −
∏n

j=1,j 6=i(1 − xj) · (1 − αi))

=
ci

∏n
j=1,j 6=i(1 − xj)(βi − αi)

.

The above inequality must hold for each profileσa, i.e., for every choice ofxi, the smaller
∏

(1 − xj) is, the
biggerri should be.

∏

(1 − xj) is the smallest when for allj, xj = βj , and so condition (6) is equivalent to the
condition

ri ≥
ci

∏n
j=1,j 6=i(1 − βj)(βi − αi)

.

Now suppose thatai is known to exert effort. The condition for exerting effort being a dominating strategy for
aj is that for everyσb ∈ Σ−{i,j} we have

rj ≥
cj

∏n
k=1,k 6=i,j(1 − xk)(1 − βi)(βj − αj)

.

This is equivalent to

rj ≥
cj

∏n
k=1,k 6=j(1 − βk)(βj − αj)

.

Similarly, it is proven by induction that for each reordering of the playersπ, the following reward is an Iterated
Elimination Incentive-Inducing Scheme:

rπ(i) =
cπ(i)

∏n
j=1,j 6=π(i)(1 − βj)(βπ(i) − απ(i))

.

Note that in Dominant Strategies Incentive-Inducing Scheme the reward is also (as the reward of the first
player):

cπ(i)
∏n

j=1,j 6=π(i)(1 − βj)(βπ(i) − απ(i))
.

Thus we getRDS = RIE.

7.2 Rewards and the Banzhaf Power Index

We now generalize the discussion to general effort games, where the underlying coalitional game may be any
simple coalitional game. We show the relation between the complexity of the problems defined in Section 4, and
power indices in the underlying coalitional game.

Theorem 7.3 LetD be an effort game domain, where forai we haveαi = 0 andβi = 1, and for allaj 6= ai

we haveαj = βj =
1

2
, and letr = (r1, . . . , rn) be a reward vector. Exerting effort is a dominant strategy for

ai in Ge(r) if and only ifri >
ci

βi(v)
(whereβi(v) is the Banzhaf power index ofti in the underlying coalitional

gameG, with the value functionv).

P r o o f. Agentai only has two strategies inGe(r): Si = {exert, shirk}. As in Definition 3.9,ai’s payoff
in Ge(r) when exerting effort isei(Cσ) − ci, and ei(Cσ) when not exerting effort. Given an incomplete
strategy profileσa

−i (with a strategy missing forai), we denote its completion withai exerting effort as
σa

e = (σ−i, si = exert), and its completion whenai shirks asσa
s = (σ−i, si = shirk). σa

e andσa
s are two

complete strategy profiles, which are identical in all strategies, except that ofai.
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For exerting effort to be a dominant strategy,ai’s payoff when exerting effort must be greater than its payoff
when shirking, no matter what the other agents do. Thus, for exerting effort to be a dominant strategy the
following must hold: forall incomplete strategy profilesσa

−i we have thatei(Cσa
e
) − ci > ei(Cσa

s
).

We show that the above condition holds if and only ifri >
ci

βi(v)
. The above condition can be restated as

∑

Tw∈Twin
ri PrCσa

e
(Tw) − ci >

∑

Tw∈Twin
ri PrCσa

s
(Tw)

or more briefly as

ri >
ci

∑

Tw∈Twin
(PrCσa

e
(Tw) − PrCσa

s
(Tw))

.

It remains to show that
∑

Tw∈Twin
(PrCσa

e
(Tw) − PrCσa

s
(Tw)) = βi(v) .

Let Tw ∈ Twin be a task subset so thatti ∈ Tw. Sinceαi = 0 andβi = 1 and since for anyj 6= i we have

αj = βj =
1

2
, for anyσa

−i we have

PrCσa
e
(Tw) = (1

2 )n−1 and PrCσa
s
(Tw) = 0 .

On the other hand, letTw ∈ Twin be a task subset so thatti /∈ Tw. Due to the same reason, for anyσa
−i we have

PrCσa
e
(Tw) = 0 and PrCσa

s
(Tw) = (1

2 )n−1 .

We thus get:
∑

Tw∈Twin
(PrCσa

e
(Tw) − PrCσa

s
(Tw))

=
∑

Tw∈Twin|ti∈Tw
(PrCσa

e
(Tw) − PrCσa

s
(Tw)) +

∑

Tw∈Twin|ti /∈Tw
(PrCσa

e
(Tw) − PrCσa

s
(Tw))

=
∑

Tw∈Twin|ti∈Tw
(( 1

2 )n−1 − 0) +
∑

Tw∈Twin|ti /∈Tw
(0 − ( 1

2 )n−1)

= (1
2 )n−1 · [

∑

Tw∈Twin|ti∈Tw
1 −

∑

Tw /∈Twin|ti∈Tw
1]

= βi(v) .

Note that the final equality requires thatv is increasing, so every winning coalitionC thatai /∈ C also wins
whenai is added to that coalition, soC ∪ {ai} also wins.

Consider an effort game domainD, the reward vectorr, and the resulting effort gameGe(r). We now show
that DSE, testing whether exerting effort is a dominant strategy for a certain agentai, is at least as hard com-
putationally as calculating the Banzhaf power index in the underlying coalitional gameG. Since calculating the
Banzhaf index is known to be #P-hard in various domains (see Section 2), this shows that in general DSE is also
#P-hard.

Theorem 7.4 DSEis as hard computationally as calculating the Banzhaf powerindex of its underlying coali-
tional gameG.

P r o o f. Consider a simple coalitional gameG with a characteristic functionv. We reduce the problem of
calculatingβi(v), the Banzhaf index of agentti in G, to a polynomial number of DSE problems. There are2n−1

possible valuesβi(v) can take:
1

2n−1
,

2

2n−1
,

3

2n−1
, . . . , 1. We perform a binary search on the correct value ofβi,

by using DSE queries. We construct an effort game domain, that contains an agentaj for each tasktj in G. The
success probabilities forai areαi = 0 andβi = 1. For all other agentsaj 6= ai the success probabilities are
αj = βj = 1

2 . The effort exertion costs areci = 1 for all the agents. The first DSE query is regarding the reward
vector ofr = (r1 = 0, r2 = 0, . . . , ri−1 = 0, ri = 2 · ci, ri+1 = 0, . . . , rn = 0). Due to Theorem 7.3, if the

DSE – answer is “yes”, the following must hold:ri = 2 · ci >
ci

βi(v)
, or equivalentlyβi(v) >

1

2
. Similarly,
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to test if βi >
1

k
, we simply test DSE with the reward vectorr1 = 0, r2 = 0, . . . , ri−1 = 0, ri = k · ci,

ri+1 = 0, . . . , rn = 0. Thus, we are able to findβi in O(log2(2
n−1)) = O(n), so a polynomial procedure for

DSE can be used to construct a polynomial procedure for calculating the Banzhaf power index in the underlying
game.

One domain of coalitional games where calculating the Banzhaf power index is known to be NP-hard is
weighted voting games [5]. Thus, in an effort game where the underlying coalitional game is a weighted voting
game, it is NP-hard to test whether exerting effort is a dominant strategy.

8 Conclusions and Future Work

We defined the effort game model of cooperation. We started bystudying effort games where the underlying
coalitional game is a restricted class of weighted voting games. We have shown that for this domain, we can
answer several questions regarding the incentives in polynomial time. Namely, we have discussed how to compute
optimal reward schemes in such effort-weighted voting games.

We defined the Price of Myopia (PoM), that quantifies by how much the principal must overpay agents when
assuming they only have “myopic” considerations, and provided results regarding PoM in weighted voting effort
games. We have generalized weighted voting effort games to effort games over Series-Parallel Graphs (SPGs),
and gave simulation results regarding PoM in that domain as well. Finally, we have discussed how a general
effort game relies on an underlying coalitional game, and showed that the complexity of testing whether exerting
effort is a dominant strategy is at least as hard as calculating the Banzhaf power index in the underlying game.
Defining the relation between computing incentives in an effort game and calculating the Banzhaf index in the
underlying game allows us to easily use complexity hardnessresults regarding power indices to show complexity
results in effort games.

It remains an open problem to examine the complexity of inducing incentives for other classes of underlying
games. It also remains an open problem to consider the relation between the computational complexity of in-
ducing effort in effort games, and the computational complexity of other problems in the underlying coalitional
game. For example, we believe that inducing incentives in effort games is at least as hard computationally as
various counting problems. Given our hardness results for general effort games, it will be interesting to see if
incentive-inducing schemes can be approximated in polynomial time. It would also be interesting to study the
price of myopia in various classes of effort games.

9 Appendix – Strategy Changes and Expected Rewards: Proofs

For the sake of completeness, and in order to ease the readingof this paper, we now provide proofs for the
theorems in Section 3.2.1. Similar results may be found in some of the papers mentioned in Section 2.

We begin with the proof of Theorem 3.13.

Theorem 9.1 LetD be an effort game domain,r = (r1, . . . , rn) be a reward vector, andai be a certain agent
in that domain. Letσ1, σ2 ∈ Σ be two strategy profiles inGe(r) so that for allaj 6= ai we have thatσ1,j = σ2,j ,
and thatσ1,i = exert andσ2,i = shirk. Then for allj we have thatej(Cσ1

) > ej(Cσ2
).

P r o o f. The only difference betweenσ1 andσ2 is the strategy used byai, who shirks inσ2 but exerts ef-
fort in σ1. Agent ai is in charge of taskti. Cσ is the set of agents that exert effort in strategy profileσ, so
Cσ1

= Cσ2
∪ {ai}.

Consider a task subsetTx. If ti /∈ Tx, denoteT d
x = Tx ∪ {ti}, and if ti ∈ Tx denoteT d

x = Tx \ {ti}.
The notation in Section 3.2 denoted the probability that exactly the tasks inTx are the ones achieved as
PrC(Tx) =

∏

ti∈Tx
pi(C) ·

∏

ti /∈Tx
(1 − pi(C)). We note that ifti ∈ Tx, then

PrCσ1
(Tx) =

∏

tj∈(Tx\{ti})
pj(Cσ1

) ·
∏

tj∈(T\Tx\{ti})
(1 − pi(Cσ1

)) · βi

>
∏

tj∈(Tx\ti)
pj(Cσ1

) ·
∏

tj∈(T\Tx\{ti})
(1 − pi(Cσ1

)) · αi

= PrCσ2
(Tx).

Thus, if ti ∈ Tx, thenPrCσ1
(Tx) > PrCσ2

(Tx).
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We denote the probability of completingTx given apartial strategy profileσ−i (with a missing strategy forai)
asPrCσ

−i
(Tx) =

∏

tj∈(Tx\{ti})
pj(C) ·

∏

tj∈(T\Tx\{ti})
(1 − pj(C)). We note that this probability ignores the

question of whetherti was completed (even ifti ∈ Tx) and only takes into consideration the tasks inTx \ {ti}.
Given this notation, we can see that for any task subsetTx we have that

PrCσ1
(Tx) + PrCσ1

(T d
x ) = PrCσ

−i
(Tx) · βi + PrCσ

−i
(Tx) · (1 − βi)

= PrCσ
−i

(Tx) · αi + PrCσ
−i

(Tx) · (1 − αi)

= PrCσ2
(Tx) + PrCσ2

(T d
x ).

In Section 3.2 we defined the expected reward asei(Cσ) =
∑

Tw∈Twin
PrC(Tw) · ri. We have assumed the

underlying coalitional gameG is increasing (Section 3), so if a task subsetTa wins, so does any superset of it,
so if Ta ⊂ Tb thenTa ∈ Twin ⇒ Tb ∈ Twin. Consider awinning task subsetTw ∈ Twin. Either ti ∈ Tw

or ti /∈ Tw. If ti /∈ Tw, thenT d
w is also winning andT d

w ∈ Twin sinceTw ∈ Twin andG is increasing (and
Tw ⊂ T d

w). Thus, for any winning task subsetTw ∈ Twin eitherti ∈ Tw or T d
w is also winning, soT d

w ∈ Twin.
Sinceek(Cσ) = rk ·

∑

Tw∈Twin
PrCσ

(Tw), we can express it as:
ek(Cσ) = rk·((

1
2

∑

Tw∈{T ′∈Twin|T ′∈Twin∧T ′d∈Twin}(PrCσ
(Tw)+PrCσ

(T d
w)))+

∑

Tw∈{T ′∈Twin|ti∈T ′} PrCσ
(Tw)).

Since when moving fromCσ2
to Cσ1

the first sum remains the same and the second increases, we have that
ek(Cσ1

) > ek(Cσ2
). We choseak to be any agent, so this holds for all agents.

We now provide the proof for Theorem 3.14.

Theorem 9.2 Let D be an effort game domain,r = (r1, . . . , rn) be a reward vector, andai be an agent in
that domain. Letσ1, σ2 ∈ Σ be two strategy profiles inGe(r) so thatσ1 >e σ2, and so thatσ1,i = σ2,i. Then
ei(Cσ1

) > ei(Cσ2
).

P r o o f. Sinceσ1 >e σ2, the only difference betweenσ1 andσ2 are several agents that exert effort inσ1 but
shirk in σ2. It is thus possible to create a series of strategy profilesσ2 <e σ′

1 <e σ′
2 <e . . . <e σ′

k <e σ1, such
thatσ′

j andσ′
j+1 are identical, except for one agent that shirks inσ′

j but exerts effort inσ′
j+1. We can then apply

Theorem 3.13, and get thatei(Cσ′

j+1
) > ei(Cσ′

j
), and thatei(Cσ1

) > ei(Cσ2
).
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