
Proof Systems and Transformation Games

Yoram Bachrach1, Michael Zuckerman2, Michael Wooldridge3,
Jeffrey S. Rosenschein2

1 Microsoft Research, Cambridge, UK
2 The Hebrew University of Jerusalem, Israel

3 University of Liverpool, UK

Abstract. We introduce Transformation Games (TGs), a form of coalitional game
in which players are endowed with sets of initial resources, and have capabilities
allowing them to derive certain output resources, given certain input resources.
The aim of a TG is to generate a particular target resource; players achieve this by
forming a coalition capable of performing a sequence of transformations from its
combined set of initial resources to the target resource. After presenting the TG
model, and discussing its interpretation, we consider possible restrictions on the
transformation chain, resulting in different coalitional games. After presenting
the basic model, we consider the computational complexity of several problems
in TGs, such as testing whether a coalition wins, checking if a player is a dummy
or a veto player, computing the core of the game, computing power indices, and
checking the effects of possible restrictions on the coalition. Finally, we consider
extensions to the model in which transformations have associated costs.

1 Introduction

We consider a new model of cooperative activity among self-interested players. In a
Transformation Game (TG), players must cooperate to generate a certain target re-
source. In order to generate the resource, each player is endowed with a certain set
of initial resources, and in addition, each player is assumed to be capable of transfor-
mations, allowing it to generate a certain resource, given the availability of a certain
input set of resources required for the transformation. Coalitions may thus form trans-
formation chains to generate various resources. A coalition of players is successful if
it manages to form a transformation chain that eventually generates the target resource.
Forming such chains is typically complicated, as there are usually constraints on the
structure of the chain. One example is time restrictions, in the form of deadlines. Even
when there is no deadline, short chains are typically preferred, since we might expect
that the more transformations a chain has, the higher the probability of some transfor-
mation failing.

We model restrictions on these chains, and consider game theoretic notions and the
complexity of computing them under these different restrictions. We consider three
types of domains: unrestricted domains, where there is no restriction on the chain;
makespan domains, where each transformation requires a certain amount of time and
the coalition must generate the target resource before a certain deadline; and limited
transformation domains, where the coalition must generate the target resource without

performing more than a certain number of transformations. We also consider two types
of transformations: simple transformations, where a transformation simply allows build-
ing an output resource from one input resource, and complex transformations, where a
transformation may require a set of input resources to generate a certain output resource.

TG can be viewed as a strategic, game-theoretic formulation of proof systems. In
a formal proof system, the goal is to derive some logical statement from some logi-
cal premises by applying logical inference rules. When modelled as a TG, premises
and proof rules are distributed across a collection of agents, and proof becomes a co-
operative process, with different agents contributing their domain expertise (premises)
and capabilities (proof rules). Game theoretic solution concepts such as the Banzhaf
index provide a measure of the relevant significance of agents (and hence premises and
proof rules) in the proof process. Viewed in this way, TGs provide a formal foundation
for cooperative theorem proving systems such as those described in [8, 10], as well as
cooperative problem solving systems in general [12]. (We also believe that TGs can
provide a first step towards providing a cooperative game-theoretic treatment of supply
chains, although we do not explore this issue further within the present paper.)

2 Preliminaries

We briefly discuss basic game theoretic concepts that are later applied in the context
of TGs (see, e.g., [13] for a detailed introduction). A transferable utility coalitional
game is composed of a set I of n players and a characteristic function mapping any
subset (coalition) of the players to a real value v : 2I → R, indicating the total utility
these players can obtain together. The coalition I of all the players is called the grand
coalition. Often such games are increasing, i.e., for all coalitions C′ ⊆ C we have
v(C′) ≤ v(C). In simple games, v only gets values of 0 or 1 (i.e., v : 2I → {0, 1}), and
in this case we say C ⊆ I wins if v(C) = 1 and loses otherwise. We say player i is a
critical in a winning coalition C if the removal of i from that coalition would make it a
losing coalition: v(C) = 1 and v(C \ {i}) = 0.

The characteristic function defines the value a coalition can obtain, but does not
indicate how to distribute these gains to the players within the coalition. An imputation
(p1, . . . , pn) is a division of the gains of the grand coalition among all players, where
pi ∈ R, such that

∑n
i=1 pi = v(I). We call pi the payoff of player ai, and denote the

payoff of a coalition C as p(C) =
∑

i∈{i|ai∈C} pi.
Game theory offers solution concepts, defining imputations that are likely to occur.

A minimal requirement of an imputation is individual-rationality (IR): for every player
ai ∈ C, we have pi ≥ v({ai}). Extending IR to coalitions, we say a coalition B blocks
the imputation (p1, . . . , pn) if p(B) < v(B). If a blocked imputation is chosen, the grand
coalition is unstable, since the blocking coalition can do better by working without the
other players. The prominent solution concept focusing on stability is the core. The core
of a game is the set of all imputations (p1, . . . , pn) that are not blocked by any coalition,
so for any coalition C we have p(C) ≥ v(C).

In general, the core can contain multiple imputations, and can also be empty. An-
other solution, which defines a unique imputation, is the Shapley value.The Shap-
ley value of a player depends on his marginal contribution over all possible coali-

tion permutations. We denote by π a permutation (ordering) of the players, so π :
{1, . . . , n} → {1, . . . , n} and π is reversible, and by Π the set of all possible such
permutations. Denote by Sπ(i) the predecessors of i in π, so Sπ(i) = {j | π(j) < π(i)}.
The Shapley value is given by the imputation sh(v) = (sh1(v), . . . , shn(v)) where
shi(v) = 1

n!

∑
π∈Π [v(Sπ(i) ∪ {i})− v(Sπ(i))].

An important application of the Shapley value is that of power indices, which try to
measure a player’s ability to change the outcome of a game, and are used for example
to measure political power. Another game theoretic concept that is also used to measure
power is the Banzhaf power index, which depends on the number of coalitions in which
a player is critical, out of all the possible coalitions. The Banzhaf power index is given
by β(v) = (β1(v), . . . , βn(v)) where βi(v) = 1

2n−1

∑
S⊆I|ai∈S[v(S)− v(S \ {i})].

3 Transformation Games

Transformation games (TGs) involve a set of players, I = {a1, . . . , an}, a set of re-
sources R = {r1, . . . , rk}, and a certain goal resource rg ∈ R. In these domains, each
player ai is endowed with a set of resources Ri ⊆ R. Players have capabilities that allow
them to generate a target resource when they have certain input resources. We model
these abilities via transformations. A transformation is a pair 〈B, r〉 where B is a sub-
set B ⊆ R, indicating the resources required for the transformation, and r ∈ R is the
resource generated by the transformation. The set of all such possible transformations
(over R) is D. The capabilities of each player ai are given by a set Di ⊆ D. We say a
transformation d = 〈B, r〉 is simple if |B| = 1 (i.e., it generates a target resource given
a single input resource), and complex if |B| > 1. Some caveats are worth highlighting:

First, our model of TGs has no notion of resource quantity. For example, the TG
framework cannot explicitly express constraints such as 4 nails and 5 pieces of wood
are required to build a table. Second, we do not model resource consumption: thus when
a player generates a resource from base resources, the player ends up with both the base
resources and the generated resource. This may at first sight seem a strange modeling
choice, but it is very natural in many settings. For example, consider that derivations as
corresponding to logical proofs. In classical logic proofs, when we derive a lemma φ
from premises ∆, we do not “consume” ∆: both φ and premises ∆ that were used to
derive it can be used as often as required in the subsequent proof.

Formally, then, a TG Γ is a structure Γ = 〈I,R,R1, . . . ,Rn,D1, . . . ,Dn, rg〉 where:
I is a set of players; R is a set of resources; for each ai ∈ I, Ri is the set of resources
with which that player ai is initially endowed; for each ai ∈ I, Di ⊆ D is the set of
transformations that player ai can carry out; and rg ∈ R is a resource representing the
goal of the game. We sometimes consider transformations that require a certain amount
of time. In such settings, let ai be a player with capability d ∈ Di. We denote the time
player ai needs in order to perform the transformation as ti(d) ∈ N.

Given a TG, we can define the set of resources a coalition C ⊆ I can derive. We say
a coalition C is endowed with a resource r, and denote this as has(C, r), if there exists
a player ai ∈ C such that r ∈ Ri. We denote the set of resources a coalition is endowed
with as RC = {r ∈ R | has(C, r)}. We now define an infix relation ⇒ ⊆ 2I × R, with

the intended interpretation that C ⇒ r means that coalition C can produce resource r.
We inductively define the relation⇒ as follows. We have C⇒ r iff either:

– has(C, r) (i.e., the coalition C is directly endowed with resource r); or else
– for some {rb1 , rb2 , . . . , rbm} ⊆ R we have C ⇒ rb1 ,C ⇒ rb2 , . . . ,C ⇒ rbm and for

some player ai ∈ C we have 〈{rb1 , rb2 , . . . , rbm}, r〉 ∈ Di.

Definition 1. Unrestricted-TG: An unrestricted TG (UTG) with the goal resource rg is
the game where a coalition C wins if it can derive rg and loses otherwise: v(C) = 1 if
C⇒ rg and v(c) = 0 otherwise.

We now take into account the total number of transformations used to generate re-
sources, and the time required to generate a resource. We denote the fact that a coalition
C can generate a resource r, using at most k transformations, by C ⇒k r. Consider a
sequence of resource subsets S = 〈R1,R2, . . .Rk〉, such that each Ri contains one ad-
ditional resource over the previous Ri−1 (so Ri = Ri−1 ∪ {r′i}). We say C allows the
sequence S if for any index i, C can generate r′i (the additional item for the next resource
subset in the sequence) given base resources in Ri−1 (so C is capable of a transforma-
tion d = 〈A, r′i〉, where A ⊆ Ri−1). A sequence S = 〈R1,R2, . . .Rk〉 (with k subsets)
that C allows is called a k − 1-transformation sequence for resource r by coalition C if
r ∈ Rk and the first subset in the sequence is the subset of resources the coalition C is
endowed with, R1 = RC (since C requires k−1 transformations to obtain r this way). If
there exists such a sequence, we denote this by C⇒k r. We denote the minimal number
of transformations that C needs to derive r as d(C, r) = min{b | C ⇒b r}, and if C
cannot derive r we denote d(C, r) =∞.

Definition 2. DTG: A transformation restricted TG (DTG) with the goal resource rg

and with the transformation bound k is the game where a coalition C wins if it can
derive rg using at most k transformations and loses otherwise: v(C) = 1 if both C ⇒ rg

and d(C, rg) ≤ k, and otherwise v(c) = 0.

Similarly, we consider the makespan domain, where each transformation requires
a certain amount of time. The main difference between the makespan domain and the
DTG domain is that transformations may be done simultaneously.1 We denote the fact
that a coalition C can generate a resource r in time of at most t by C⇒t r. We define the
notion recursively. If a coalition is endowed with a resource, it can generate this resource
instantaneously (with time limit of 0), i.e., if has(C, r) then C ⇒0 r. Now consider a
coalition C such that C ⇒t1 rb1 ,C ⇒t2 rb2 , . . . ,C ⇒tm rbm , and player ai ∈ C who
is capable of the transformation d = 〈{rb1 , rb2 , . . . , rbm}, r〉 (so d ∈ Di), requiring a
transformation time t, so ti(d) = t. Given a coalition C, we denote the time in which
a coalition can perform a transformation as tC(d) = minai∈C ti(d), the minimal time
in which the transformation can be performed, across all players in the coalition. We
denote the time in which the coalition can obtain all of the base resources rb1 , . . . , rbm

as s = max ti. The final transformation (which generates r) requires a time of t, so
C⇒s+t r. Again, different ways of obtaining the target resource result in different time

1 For example, if it takes 5 hours to convert oil to gasoline and 4 hours to convert oil to plastic, if
we have oil we can obtain both gasoline and plastic in 5 hours, using parallel transformations.

bounds, and we consider the optimal way of obtaining the target resource (the minimal
time a coalition C requires to derive r). If C⇒ r we denote the minimal transformation
time that C needs to derive r as t(C, r) = min{b | C ⇒b r}, and if C cannot derive r
we denote t(C, r) =∞. Similarly to DTGs, we define makespan (time limited) TGs:

Definition 3. TTG: A time limited TG (TTG) with goal resource rg and time limit t is
the game where a coalition C wins if it can derive rg with time of at most t and loses
otherwise: v(C) = 1 if both C⇒ rg and t(C, rg) ≤ t, and otherwise v(c) = 0.

3.1 Transformation Games and Logical Proofs

Structurally, TGs are similar to logical proof systems (see, e.g., [11, p. 48]). In a proof
system in formal logic, we have a set of formulae of some logic, known as the premises,
and a collection of inference rules, the role of which is to allow us to derive new for-
mulae from existing formulae. Formally, if L is the set of formulae of the logic, then an
inference rule ρ can be understood as a relation ρ ⊆ 2L × L. Given a set of premises
∆ ⊆ L and a set of inference rules ρ1 . . . , ρk, a proof is a finite sequence of formulae
φ1, . . . , φl, such that for all i, 1 ≤ i ≤ l, either φi ∈ ∆ (i.e., φi is a premise) or if
there exists some subset ∆′ ⊆ {φ1, . . . , φi−1} and some ρj ∈ {ρ1, . . . , ρk} such that
(∆′, φi) ∈ ρj (i.e., φi can be derived from the formulae preceding φi by some inference
rule). Typical notation is that ∆ `ρ1,...,ρk φ means that φ can be derived from premises
∆ using rules ρ1, . . . , ρk. Such proofs can be modeled in our framework as follows.
Resources R are logical formulae L, and the initial allocation of resources R1, . . . ,Rn

equates to the premises; capabilities D1, . . . ,Dn equate to inference rules. Notice that
the assumption that resources are not “consumed” during the transformation process
is very natural when considered in this setting: in classical logic proofs, premises and
lemmas can be reused as often as required. Clearly the relationship between TGs and
proofs is very natural: such formal proof systems can be directly modeled within our
framework. There are two main differences, however, as follows.

First, in proof systems inference rules are usually given a succinct specification, as
a “pattern” to be matched against premises. The classical proof rule modus ponens, for
example, is usually specified as the following pattern: φ; φ→ψ

ψ , which says that if we
have derived φ, and we have derived that φ→ ψ, then we can derive ψ. Here, φ and ψ
are variables, which can be instantiated with any formula. The second is that we take
a strategic view: a proof modeled within our system is obtained through a cooperative
process. TGs can be understood as a formulation both of cooperative theorem proving
systems [8, 10], as well as cooperative problem solving systems in general [12]. In
such systems, agents have different areas of expertise (= resources) as well as different
capabilities (= transformations). Game theoretic concepts such as the Banzhaf index
provide a measure of how important different premises and inference rules are with
respect to being able to prove a theorem.

4 Problems and Algorithms

Given a TG Γ = 〈I,R,R1, . . . ,Rn,D1, . . . ,Dn, rg〉, the following are natural problems
regarding the game. COALITION-VALUE (CV): given a coalition C ⊆ I, compute

vΓ (C) (i.e., test whether a coalition is successful or not). VETO (VET): given a player
ai, check if it is a veto player, so for any winning coalition C, we have ai ∈ C. DUMMY:
given a player ai, check if it is a dummy player, so for any coalition C, we have vΓ (C∪
{ai}) = vΓ (C). CORE: compute the set of payoff vectors that are in the core, and
return a representation of all payoff vectors in it. SHAPLEY: compute ai’s Shapley
value shi(vΓ). BANZHAF: compute ai’s Banzhaf index βi(vΓ).

We now summarize the results of the present paper, and prove them in the remainder
of the paper. We provide polynomial algorithms for testing whether a coalition wins or
loses (CV) for UTGs, DTGs, and TTGs with simple transformations, and for UTGs and
TTGs with complex transformations, but show that the problem is NP-hard for DTGs
with complex transformations. We provide polynomial algorithms for testing for veto
players and computing the core in all domains where CV is computable in polynomial
time, but show the problem is co-NP-hard in DTGs with complex transformations. We
show that testing for dummy players and computing the Shapley value are co-NP-hard
in all the TG domains defined, and provide a stronger result for the Banzhaf power
index, showing that it is #P-hard in all these domains.2 The following table summarizes
our results regarding TGs with simple transformations.

UTG DTG TTG
CV P P (NPH) P

VETO P P (co-NPH) P
DUMMY co-NPC co-NPC (co-NPH) co-NPC

CORE P P (co-NPH) P
SHAPLEY co-NPH co-NPH co-NPH
BANZHAF #P-Hard #P-Hard #P-Hard

Table 1. Complexity of TG problems. If the results differ for simple and complex transformations,
the results for complex transformations are given in parentheses. Key: P = polynomial algorithm;
co-NPC = co-NP-complete; co-NPH = co-NP-hard.

Theorem 1. CV is in P, for all the following types of TGs with simple transformations:
UTG, DTG, TTG. CV is in P for UTGs and TTGs with complex transformations.

Proof. First consider UTG. Denote the set S of resources with which C is endowed, S =
{r | has(C, r)}. Denote the set of transformations of the players in C as DC = ∪ai∈CDi.
We say that a set of resources S matches a transformation d = 〈B, r〉 ∈ D if B ⊆ S. If
S matches d then using the resources in S the coalition C can also produce r through
transformation d. Consider a basic step of iterating through all transformations in D.
When we find a transformation d = 〈B, r〉 that S matches, we add r to S. A test to see
whether a transformation d matches S can be done in time at most |R|2 (where R is the

2 The complexity class #P expresses the hardness of problems that “count solutions”. Informally
NP deals with whether a solution to a combinatorial problem exists, while #P deals with cal-
culating the number of solutions. Counting solutions generalizes the checking their existence,
so we usually regard #P-hardness as a more negative result than NP-hardness.

set of all resources), so the basic step takes at most |DC| · |R|2 time. If after performing
a basic step no transformation in DC matches S, S holds all the resources that C can
generate, and we stop performing basic steps. If S has changed during a basic step, at
least one resource is added to it. Thus, we perform at most |R| basic steps to compute the
set of all resources C can generate, so S can be computed in polynomial time. We can
then check whether S contains rg. We note that the suggested algorithm works for simple
as well as complex transformations. Now consider TTGs with simple transformations.
We build a directed graph representing the transformations as follows. For each resource
r the graph has a vertex vr, and for each transformation d = 〈rx, ry〉 the graph has an
edge ed from vrx to vry . Given a coalition C we consider GC, the subgraph induced by C.
GC = 〈V,EC〉 contains only the edges of the transformations available to C, so EC =
{
〈
vrx , vry

〉
| 〈rx, ry〉 ∈ DC}. The graph GC is weighted, and the weight of each edge

e = 〈rx, ry〉 is w(e) = minai∈C ti(〈rx, ry〉), the minimal time to derive ry from rx across
all players in the coalition. Denote the weight of the minimal path from ra to rg in GC as
wC(ra, rg). The coalition C is endowed with all the resources in RC and can generate all
of them instantly. The minimal time in which C can generate rg is minra∈RC wC(ra, rg).
For each resource ra ∈ RC, we can compute wC(ra, rg) in polynomial time, so we can
compute in polynomial time the minimal time in which C can generate rg, and test
whether this time exceeds the required deadline.For simple transformations, we can
simulate a DTG domain as a TTG domain, by having each transformation require 1
time unit (and setting the threshold to be the threshold number of transformations3).

Finally, we show how to adapt the algorithm used for UTGs (with either simple
or complex transformations) to be used for TTGs with complex transformations. For
the TTG CV algorithm for a coalition C, for each resource r we maintain m(r), a
bound from above on the minimal time required to produce r. All the m(r) of re-
sources endowed by some player in the coalition C are initialized to 0, and the rest
are initialized to ∞. Our basic step remains iterating through all the transformations
in D. When we find a transformation d = 〈B, r〉 which S matches, where the transfor-
mation requires t(d), we compute the time in which the transformation can be com-
pleted, c(d) = maxb∈Bm(b) + tC(d) (if S does not match a transformation d, we denote
c(d) = ∞). During each basic step, we compute the possible completion times for all
the matching transformations, and apply the smallest one, argmind∈Dc(d). To apply a
transformation d = 〈B, r〉, we simply add r to S, and update m(r) to be c(d). During
each basic step we only apply one transformation (although we scan all the possible
transformations). A simple induction shows that after each basic step, for any resource
r such that m(r) 6= ∞ the value m(r) is indeed the minimal time required to generate
r. Again, the algorithm ends if no transformations were applied during a basic step. As
before, a basic step requires time of |DC| · |R|2 time, and we perform at most |R| basic
steps, so the algorithm requires polynomial time. We can then check whether S contains
rg, and whether m(rg) is smaller than the required time threshold.

Corollary 1. VETO is in P, for all the following types of TGs with simple transforma-
tions: UTG, DTG, TTG, and for UTGs and TTGs with complex transformations.

3 With complex transformations, this is no longer possible, since if a transformation requires
several base resources, the shortest time to produce each of them may be different.

Proof. A veto player ai is present in all winning coalitions: TGs are trivially seen to be
increasing, so simply check whether v(I−ai) = 0.

Now consider the problem of computing the core in TGs with simple transforma-
tions. In simple (0,1-valued) games, a well-known folk theorem tells us that the core of
a game is non-empty iff the game has a veto player. Thus, in simple games, the core can
be represented as a list of the veto players in the game. This gives the following:

Corollary 2. CORE is in P, for all the following types of TGs with simple transforma-
tions: UTG, DTG, TTG, and for UTGs and TTGs with complex transformations.

Theorem 2. DUMMY is co-NP-complete, for all the following types of TGs with simple
transformations: UTGs, DTGs, TTGs, and for UTGs and TTGs with complex transfor-
mations. For DTGs with complex transformations, DUMMY is co-NP-hard.

Proof. Due to Theorem 1, we can verify in polynomial time whether ai is beneficial to C
by testing if v(C∪{ai})−v(C) > 0. Thus DUMMY is in co-NP for UTGs, DTGs, TTGs
with simple transformations, and for UTGs and TTGs with complex transformations.
We reduce SAT to testing if a player in a UTG with simple transformations is not a
dummy (TG-NON-DUMMY). Showing DUMMY is co-NP-hard in UTGs is enough to
show it is co-NP-hard for DTGs and TTGs, since it is possible to set the threshold (of
the maximal allowed transformations or allowed time) so high that the TG is effectively
unrestricted. Hardness results also apply to complex transformations as well, since the
restricted case of simple transformations is hard. Let the SAT instance be φ = c1∧ c2∧
· · · ∧ cm over propositions x1, . . . , xn, where ci = li1 ∨ · · · ∨ lik , where each such lj is
a positive or negative literal, either xk or ¬xk for some proposition xk. The TG-NON-
DUMMY query is regarding the player ay. For each literal (either xi or¬xi) we construct
a player (axi and a¬xi). These players are called the literal players. The generated TG
game has a resource ry, and only ay is endowed with that resource. The game also has
the resource rz, with which all the literal players are endowed. For each proposition xi

we also have a resource rxi . For each clause cj in the formula φ we have a resource rcj .
The goal resource is the resource rg. For each positive literal xi we have transformation
dxi = 〈rz, rxi〉. For each negative literal we have transformation d¬xi = 〈rxi , rg〉. For each
clause cj we have transformation dcj =

〈
rcj , rcj+1

〉
, where for the last clause cm we have

a transformation dcm = 〈rcm , rg〉. Player ay is only capable of d0 = 〈ry, rc1〉. Player axi

is capable of dxi , and player a¬xi is capable of d¬xi . If xi occurs in its positive form in cj

(i.e., cj = xi ∨ li2 ∨ · · ·) then axi is capable of dcj . If xi occurs in its negative form in cj

(i.e., cj = ¬xi ∨ li2 ∨ · · ·) then a¬xi is capable of the dcj .
We identify an assignment with a coalition, and identify a coalition with an as-

signment candidate (which possibly contains both a positive and a negative assign-
ment to a variable, or which possibly does not assign anything to a variable). Let A
be an assignment to the variables in φ. We denote the coalition that A represents as
CA = {axi | A(xi) = T} ∪ {a¬xi | A(xi) = F}. There are only two resources with which
players are endowed: ry and rz. It is possible to generate rg either through a transforma-
tion chain starting with rz, going through rxi (for some variable xi) and ending with rg,
or through a transformation chain starting with ry, going through rc1 , through rc2 , and
so on, until rcm , and finally deriving rg from rcm (no other chains generate rg).

Given a valid assignment A, CA does not allow converting rz to rg, since to do so CA

needs to be able to generate rxi from rz (for some variable xi) and needs to be able to
generate rg from rxi . However, the only player who can generate rxi from rz is axi , and
the only player who can generate rg from rxi is a¬xi , and CA can never contain both axi

and a¬xi (for any xi) by definition of CA. Suppose A is a satisfying assignment for φ.
Let cj be some clause in φ. A satisfies φ, so it satisfies cj through at least one variable
xi. If xi occurs positively in φ, A(xi) = T so axi ∈ CA, and if xi occurs negatively in
φ, A(xi) = F so a¬xi ∈ CA, so we have a player a ∈ C capable of dcj . Thus, CA can
convert rc1 to rc2 , can convert rc2 to rc3 , and so on. Thus, given rc1 , CA can generate rg.
Player ay is endowed with ry, and can generate rc1 from ry, so CA∪{ay} wins. However,
ay /∈ CA, and CA cannot generate rc1 . Since A is a valid assignment, CA cannot generate
rg through a chain starting with rz, so CA is a losing coalition. Thus, ay is not a dummy,
as v(CA ∪ {ay}) − v(CA) = 1. On the other hand, suppose ay is not a dummy, and
is beneficial to coalition C, so C is losing but C ∪ {ay} is winning. Since C loses and
cannot contain both axi and a¬xi (for any xi), as this would allow it to generate rxi from rz

and to generate rg from rxi (and C would win without ay). Consider the assignment A: if
C contains axi we set A(xi) = T , and if C contains a¬xi we set A(xi) = F (if C contains
neither axi nor a¬xi we can set A(xi) = T). Since C ∪ {ay} wins, but cannot generate
rg through a chain starting with rz, it must generate rg through the chain starting with
ry and going through the rcj ’s. Thus, for any clause cj, C contains a player capable of
transformation dcj =

〈
rcj , rcj+1

〉
. That player can only be axi or a¬xi for some proposition

xi. If that player is axi ∈ C then cj has the literal xj (in positive form) and A(xi) = T ,
so A satisfies cj, and if it is a¬xi ∈ C then cj has the literal ¬xj (negative form) and
A(xi) = F, so again A satisfies cj. Thus A satisfies all the clauses in φ.

Theorem 3. For DTGs with complex transformations, CV is NP-hard even for TGs
with a single player, and VETO is co-NP-hard.

Proof. We reduce VERTEX COVER to DTG CV. We are given a graph G = 〈V,E〉
with V = {v1, . . . , vn}, E = {e1, . . . , em} such that ei is from vi,a to vi,b and a target
cover size of k. We construct the following DTG. We have a resource rt and goal re-
source rg, a resource rei for each edge ei, and a resource rvi for each vertex. We have a
transformation from rt to each vertex resource rvi . If ei is from vi,a to vi,b we have two
transformations: from rvi,a to rei , and from rvi,b to rei . We have a complex transformation
from {re1 , . . . , rem} to rg. A single player has rt and all the above transformations. The
target maximal number of transformations for the DTG is k + m + 1. Now, G = 〈V,E〉
has a vertex cover of size k iff the player wins in the game so defined.

Corollary 3. Testing whether the Shapley value or Banzhaf index of a player in TGs
exceeds a certain threshold is co-NP-hard for all the following types of TGs: UTG,
DTG, TTG, with simple or complex transformations.

Proof. Theorem 2 shows DUMMY is co-NP-hard in these domains. However, the
Shapley value or Banzhaf index of a player can only be 0 if the player is a dummy
player. Thus, computing these indices in these domains (or the decision problem of
testing whether they are greater than some value) is co-NP-hard.

Definition 4. #SET-COVER (#SC): We are given a collection C = {S1, . . . , Sn} of sub-
sets. We denote ∪Si∈CSi = S. A set cover is a subset C′ ⊆ C such that ∪Si∈C′ = S. We
are asked to compute the number of covers of S. #SC is a #P-hard problem. Counting
the number of vertex covers, #VERTEX-COVER, is a restricted form of #SC.4

Theorem 4. Computing the Banzhaf index in UTGs, DTGs, and TTGs (with simple or
complex transformations) is #P-hard.

Proof. We reduce a #SC instance to checking the Banzhaf index in a UTG. Consider
the #SC instance with C = {S1, . . . , Sn}, so that ∪Si∈CSi = S. Denote the items in S
as S = {t1, t2, . . . , tk}. Denote the items in Si as Si = {t(Si,1), t(Si,2), . . . , t(Si,ki)}. For
each subset Si of the #SC instance, the reduced UTG has a player aSi . For each item
ti ∈ S the UTG instance has a resource rti . The reduced instance also has a player
apow, the resources r0, rpow and the goal resource rg. For each item ti ∈ S there is
a transformation di =

〈
{rti−1}, rti

〉
. Another transformation is dpow = 〈{rtn}, rg〉, of

which only apow is capable. All players have resource r0. Each player is capable of
the transformation in her subset—for the subset Si = {ti1 , ti2 , . . . , tik}, the player ai is
capable of di1 , di2 , . . . , dik . The query regarding the power index is for player apow. Note
that a coalition C = {ai1 , ai2 , . . . , aik} wins iff it contains both apow and players who
are capable of all d1, d2, . . . , dn. However, to be capable of di the coalition must contain
some aj such that ti ∈ Sj. Consider a winning coalition C = {apow}∪{ai1 , ai2 , . . . , aik},
and denote SC = {Si1 , Si2 , . . . , Sik}. A coalition C wins iff apow ∈ C and SC is a set
cover of S. The Banzhaf index in the reduced game is q

2n−1 , where n is the number of
players and q is the number of winning coalitions that contain apow that lose when apow

is removed from the coalition. No coalition can win without apow, so q is the number
of all winning coalitions, which is the number of set covers of the #SC instance. Thus
we reduced #SC to BANZHAF in a UTG with simple transformations (a restricted case
of complex transformations). We can do the same with DTGs and TTGs with a high
enough threshold. Thus, BANZHAF is #P-hard in all considered TG domains.

5 TGs with Costs

In many domains, transformations have costs. Suppose we wish to derive a resource rg

from base resources R, and can do this either using a powerful but expensive computer
or using a slower but cheaper one. Such tradeoffs are ubiquitous in real-world problem-
solving. We model TGs with costs as follows. Every transformation t has cost c(t) ∈
R+. Given a coalition C and a resource r, we denote by h(C, r) the minimum cost
needed to obtain r from RC, which is the sum of transformation costs in the minimal
sequence of transformations from RC to r. If r cannot be obtained from RC, we set
h(C, r) =∞. The goal resource rg has the value v(rg) ∈ R+.

Definition 5. CTG: A TG with costs (CTG) with the goal resource rg and the cost func-
tion c : D → R+ is the game where the value of a coalition C is the value of the
goal resource rg minus the minimum cost needed to obtain rg from RC—if this latter
difference is positive, and 0 otherwise. Thus, v(C) = max(0, v(rg)− h(C, rg)).

4 [5, 3] consider a related domain (Coalitional Skill Games and Connectivity Games), and also
use #SC to show that computing the Banzhaf index in that domain is #P-complete.

Algorithm 1 computes coalition values in a CTG. We define for every resource r ∈ R
a vertex in a hypergraph, vr. We identify with every transformation t = 〈{r1, . . . , rl}, r〉
an hyperedge et = 〈{vr1 , . . . , vrl}, vr〉. We denote: R – resources, C – coalition, rg

– target resource, DC – C’s transformations. Subprocedure Total-Cost computes the
transformations in the path from RC to r, summing their costs to get the total path cost.

Algorithm 1 Compute Coalitional Value
Procedure Compute-Coalitional-Value (R,C, rg,DC):

1. For all r ∈ RC do λ(vr)← 0
2. For all r ∈ R \ RC do λ(vr)←∞
3. For all r ∈ R do S(vr)← ∅
4. T ← DC (T initially contains all the transformations coalition C has)
5. while T 6= ∅:

(a) t = 〈{r1, . . . , rl}, r〉 ← argmint∈T Total− Cost(t).first)
(b) tc← Total− Cost(t).first, S← Total− Cost(t).second
(c) if tc ==∞ then (remaining transformations unreachable from RC)

i. return max(0, v(rg)− λ(vrg)
(d) if tc < λ(vr) then λ(vr)← tc, S(vr)← S
(e) t← T \ {t}

6. return max(0, v(rg)− λ(vrg))

Procedure Total-Cost (t = 〈{r1, . . . , rl}, r〉

1. if
∑l

i=1 λ(vri) ==∞ then return pair(∞, ∅)
2. S← ∪l

i=1S(vri) ∪ {t}
3. tc←

∑
ti∈S c(ti)

4. return pair(tc, S)

Theorem 5. Algorithm 1 calculates the coalitional value of a coalition C in a CTG.
The proof is omitted for lack of space.

Proposition 1. The DUMMY problem is co-NP-Complete for CTG. SH is co-NP-Hard,
and BZ is #P-Hard for CTG.

Proof. DUMMY ∈ co-NP for CTG, since given a coalition C and a player ai, due to
Theorem 5, it is easy to test whether v(C) < v(C ∪ {ai}) (i.e., that ai is not a dummy
player). UTG is a private case of CTG (set for all the transformations t, c(t) = 0, and
set v(rg) = 1). And so all the hardness results for UTG hold for CTG as well.

6 Related Work and Conclusions

This work is somewhat reminiscent of previous work on multi-agent supply chains.
Although some attention was given to auctions or procurement in such domains, (for
example for forming supply chains [1] or procurement tasks [6]), previous work gave

little attention to coalitional aspects. One exception is [14], which studies stability in
supply chains, but focuses on pair coalitions and situations without side payments.

Previous research considered bounded resources through threshold games, in which
a coalition wins if the sum of their combined resources or maximal flow exceed a stated
threshold [7, 9, 4]. In one sense such games are simpler than TGs, as they consider a
single resource; in another sense they are richer, as different quantities of resource are
considered. Coalitional Resource Games (CRGs) [15] are also related to our work. In
CRGs, players seek to achieve individual goals, and cooperate in order to pool scarce
resources in order to achieve mutually satisfying sets of goals. The main differences are
that in CRGs, players have individual goals to achieve, which require different quanti-
ties of resources; in addition, CRGs do not consider anything like transformation chains
to achieve goals. It would be interesting to combine the models presented in this paper
with those of [15]. TGs can also be considered as descended from Coalitional Skill
Games [3] or related to connectivity and flow games [5, 4]; the main difference is that
this previous work does not consider transformation chains.

Finally, despite our hardness results, power indices can be tractably approximated [2]
and used to determine the criticality of facts and rules in collaborative inference.

References

1. Moshe Babaioff and William E. Walsh. Incentive-compatible, budget-balanced, yet highly
efficient auctions for supply chain formation. Decision Support Systems, 2005.

2. Y. Bachrach, E. Markakis, E. Resnick, A. D. Procaccia, J. S. Rosenschein, and A. Saberi. Ap-
proximating power indices: theoretical and empirical analysis. The Journal of Autonomous
Agents and Multi-Agent Systems, 20(2):105–122, 2010.

3. Y. Bachrach and J. S. Rosenschein. Coalitional skill games. In AAMAS-08, 2008.
4. Y. Bachrach and J. S. Rosenschein. Power in threshold network flow games. The Journal of

Autonomous Agents and Multi-Agent Systems, 18(1):106–132, 2009.
5. Y. Bachrach, J. S. Rosenschein, and E. Porat. Power and stability in connectivity games. In

AAMAS-08, 2008.
6. R. Chen, R. Roundy, R. Zhang, and G. Janakiraman. Efficient auction mechanisms for supply

chain procurement. Manage. Sci., 51(3):467–482, 2005.
7. X. Deng and C. H. Papadimitriou. On the complexity of cooperative solution concepts.

Mathematics of Operations Research, 19(2):257–266, 1994.
8. J. Denzinger and M. Kronenburg. Planning for distributed theorem proving. In Proc. KI-96

(LNAI Volume 1137), pages 43–56, 1996.
9. E. Elkind, L. Goldberg, P. Goldberg, and M. Wooldridge. Computational complexity of

weighted threshold games. In AAAI-2007, 2007.
10. M. Fisher and M. Wooldridge. Distributed problem-solving as concurrent theorem proving.

In Multi-Agent Rationality MAAMAW-97. Springer-Verlag: Berlin, Germany, 1997.
11. M. R. Genesereth and N. Nilsson. Logical Foundations of Artificial Intelligence. Morgan

Kaufmann Publishers: San Mateo, CA, 1987.
12. D. B. Lenat. BEINGS: Knowledge as interacting experts. In IJCAI-75, pages 126–133, 1975.
13. M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.
14. Michael Ostrovsky. Stability in supply chain networks. American Economic Review,

98(3):897–923, June 2008.
15. M. Wooldridge and P. E. Dunne. On the computational complexity of coalitional resource

games. Artificial Intelligence, 170(10):853–871, 2006.

