
The Cost of Stability in Network Flow Games

Ezra Resnick1, Yoram Bachrach2, Reshef Meir1, and Jeffrey S. Rosenschein1

1 The Hebrew University of Jerusalem, Israel
{ezrar,reshef24,jeff}@cs.huji.ac.il

2 Microsoft Research Ltd., Cambridge, UK
t-yobach@microsoft.com

Abstract. The core of a cooperative game contains all stable distributions of
a coalition’s gains among its members. However, some games have an empty
core, with every distribution being unstable. We allow an external party to offer
a supplemental payment to the grand coalition, which may stabilize the game,
if the payment is sufficiently high. We consider the cost of stability (CoS)—the
minimal payment that stabilizes the game.

We examine the CoS in threshold network flow games (TNFGs), where each
agent controls an edge in a flow network, and a coalition wins if the maximal flow
it can achieve exceeds a certain threshold. We show that in such games, it is coNP-
complete to determine whether a given distribution (which includes an external
payment) is stable. Nevertheless, we show how to bound and approximate the
CoS in general TNFGs, and provide efficient algorithms for computing the CoS
in several restricted cases.

1 Introduction

Many artificial intelligence settings involve multiple self-interested agents. Although
self-interested, the agents may still benefit from cooperation. A natural tool for ana-
lyzing such strategic situations is, of course, cooperative game theory. In cooperative
games, every subset (coalition) of agents can achieve a certain utility by cooperating. A
natural question which arises is how to divide the gains obtained by a coalition among
its members, since the total utility generated by the coalition is (by assumption) of little
interest to each individual agent. Each possible division of the coalition’s gains among
its members is called an imputation.

Cooperative game theory solution concepts seek to define appropriate ways of dis-
tributing a coalition’s gains among its members, so as to meet some desirable criteria. A
prominent solution concept is the core [7], which is the set of all stable imputations—
those where no subset of agents has a rational incentive to split off from the grand
coalition (the set of all agents). Some games have infinitely many imputations in their
core, while others have empty cores. In games where the core is empty, any imputation
would be unstable. Thus, as opposed to normal-form games where the existence of a
stable solution in the form of a (mixed-strategy) Nash equilibrium is guaranteed, some
cooperative domains are inherently unstable.

We examine the possibility of stabilizing a cooperative game using external payments,
based on a model introduced by Bachrach et al [1]. In this model, an external party is

R. Královič and D. Niwiński (Eds.): MFCS 2009, LNCS 5734, pp. 636–650, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

The Cost of Stability in Network Flow Games 637

interested in inducing all the agents to cooperate. This is done by offering the grand
coalition a supplemental payment, given to the grand coalition as a whole, and provided
only if this coalition is formed. The game’s cost of stability (CoS) is the minimal external
payment that allows a stable division of the grand coalition’s adjusted gains.

In this work we consider games defined over network flow domains, where agents
must cooperate to allow flow through the network. Such games can model situations
where some commodity (traffic, liquid, information) flows through a network with var-
ious capacity constraints, and different entities own the different links (roads, pipes,
cables) along the way. Such games have been studied in several works [8, 9, 2, 4]. We
examine threshold network flow games (TNFGs), where each agent controls an edge in
the network, and a coalition “wins” if the maximal flow it allows from the source ver-
tex to the sink vertex exceeds a certain threshold. Computing the core of such a game
enables finding a stable distribution of the rewards obtained from operating the network
among the various agents. However, in many such games the core would be empty. In
fact, we will see that unless there exists some veto agent, without which no coalition can
achieve the required flow, the game’s core would be empty and no imputation would be
stable. There might exist some external party (e.g., a government) that would be will-
ing to pay in order to ensure the cooperation of all agents in allowing flow through the
network. Naturally, this external party would want to minimize its costs.

We explore the CoS in TNFGs. We show that it is coNP-complete to determine
whether a given profit division, allowed by some external payment, makes a certain
TNFG stable. Despite this hardness result, we nevertheless show how to bound and
approximate the CoS in general TNFGs, and provide efficient algorithms for computing
the CoS and finding optimal super-imputations in several restricted forms of TNFGs.
We give an upper bound on the CoS in TNFGs based on the max-flow value of the
network, which can also be used to approximate the CoS. We consider the CoS in
connectivity games, a restricted form of TNFGs, and show that in these games the CoS
is equal to the max-flow value of the network. We generalize this result, considering
TNFGs with equal edge capacities. We also consider the case of serial TNFGs, built
by serially connecting several component TNFGs. We show that the CoS of a serial
TNFG is equal to the minimal CoS among the component TNFGs, and that this value
may be computed efficiently if the number of edges in each component is not too large.
Finally, we consider the relationship between the CoS in TNFGs and the CoS in another
well-known cooperative domain—weighted voting games.

2 Preliminaries

We now define certain game-theoretic concepts necessary for our analysis of the cost of
stability. We also define the domain on which we will be concentrating, the threshold
network flow game.

2.1 Cooperative Games

A (transferable utility) cooperative game (also called a coalitional game) is defined by
specifying the collective utility that can be achieved by every coalition of agents. In this
work, the term game always refers to a cooperative game.

638 E. Resnick et al.

Definition 1. A cooperative game consists of a finite set of agents N and a function
v : 2N → R. The function v is called the characteristic function of the game.

The characteristic function maps every coalition of agents to the total utility that can
be achieved by those agents together. In many typical cooperative games, adding more
agents to a coalition never reduces the achievable utility. Such games are called
increasing.

Definition 2. A cooperative game 〈N, v〉 is increasing if v(C′) ≤ v(C) for any C′ ⊆
C ⊆ N .

The TNFG domain considered in this work is one where a coalition can either win or
lose. Such domains can be modeled as simple cooperative games.

Definition 3. A cooperative game 〈N, v〉 is simple if v only takes the values 0 or 1, i.e.,
v : 2N → {0, 1}. We say a coalition C ⊆ N is a winning coalition if v(C) = 1, and it
is a losing coalition if v(C) = 0.

In such games, it is usually assumed that v(∅) = 0 and v(N) = 1. An agent without
which no coalition can win is called a veto agent.

Definition 4. In a simple cooperative game 〈N, v〉, an agent a ∈ N is a veto agent if
for any coalition C ⊆ N it holds that v(C \ {a}) = 0.

2.2 Flow Networks

Flow networks are useful for modeling systems where some fluid commodity travels
through a network with capacity constraints. A flow network consists of a directed
graph 〈V, E〉, with capacities on the edges c : E → R+, a distinguished source vertex
s ∈ V , and a distinguished sink vertex t ∈ V (s 	= t). A flow through the network is
a function f : E → R+ which obeys the capacity constraints and conserves the flow
at each vertex (except for the source and sink), meaning that the total flow entering a
vertex must equal the total flow leaving that vertex. The value of a flow f (denoted |f |)
is the net amount flowing out of the source (and into the sink). A cut of a flow network
is a partition of the vertexes into two subsets S, T (where S ∪ T = V and S ∩ T = ∅)
such that s ∈ S and t ∈ T . The capacity of a cut 〈S, T 〉 is defined as the sum of the
capacities of the edges crossing the cut (from S to T). We call a minimal capacity cut
a min-cut and a maximal value flow a max-flow. The max-flow min-cut theorem states
that in any flow network, the max-flow value is equal to the min-cut capacity.

Max-flow min-cut theorem. The value of a flow f in a flow network is maximal if and
only if there exists a cut of the network with capacity equal to |f |.
Many efficient algorithms for finding a maximal value flow for a given network are
known. Note that if all the edge capacities in a network are integers, the Ford-Fulkerson
algorithm [6] produces an integer max-flow. This implies the following lemma:

Lemma 1. In a flow network 〈V, E, c, s, t〉, if c(e) ∈ N for all e ∈ E then there exists
a max-flow f such that f(e) ∈ N for all e ∈ E.

The Cost of Stability in Network Flow Games 639

A general graph theory problem which may be solved efficiently using flow networks
is that of finding the maximal number of edge-disjoint paths between two vertexes in a
directed graph. This is done by assigning each edge a capacity of 1, and computing the
max-flow value in the resulting flow network.

Lemma 2. Given a flow network 〈V, E, c, s, t〉, if c(e) = 1 for all e ∈ E then the
maximal number of edge-disjoint paths from s to t in the directed graph 〈V, E〉 is equal
to the max-flow value of the flow network.

Proof. Since all capacities are 1, Lemma 1 implies that there exists a max-flow f such
that f(e) = 0 or f(e) = 1 for all e ∈ E. This means that f must define |f | edge-
disjoint paths from s to t (with a flow of 1 through each). There cannot exist more than
|f | edge-disjoint paths, since then we could construct a flow whose value was greater
than |f |, contradicting the assumption that f is a max-flow.

2.3 Threshold Network Flow Games

A threshold network flow game (TNFG) is a cooperative game defined over a flow
network, where each agent controls an edge in the network. Coalitions of agents may
cooperate in order to send a certain flow from the source to the sink, and a coalition
wins if the max-flow value allowed when using only the edges in the coalition exceeds
a certain threshold (this threshold variant of network flow games has been studied by
Kalai and Zemel [8] and Bachrach and Rosenschein [2]).

Definition 5. A threshold network flow domain consists of a flow network 〈V, E, c, s, t〉
and a threshold k ∈ R+.

Definition 6. Given a threshold network flow domain 〈V, E, c, s, t, k〉, a threshold net-
work flow game (TNFG) is the cooperative game 〈N, v〉 where N = E and the char-
acteristic function is defined as:

v(C) =

⎧⎪⎨
⎪⎩

1 if there exists a flow f in the network such that |f | ≥ k and

∀e ∈ E \ C : f(e) = 0
0 otherwise

By definition, TNFGs are simple games. They are also increasing games, since adding
more edges to a coalition can only increase the value of the max-flow. It is easy to check
whether a given coalition is a winning coalition by computing the max-flow value of
the network which contains only the edges in the coalition and checking whether that
value exceeds the threshold.

2.4 Imputations and the Core

The characteristic function of a cooperative game defines only the total gains a coalition
achieves, but does not offer a way of distributing those gains among the agents in the
coalition. Such a division is called an imputation (or a payoff vector).

640 E. Resnick et al.

Definition 7. Given a cooperative game 〈N, v〉, an imputation is a vector p ∈ R
N
+ such

that
∑

a∈N pa = v(N). We call pa the payoff of agent a, and denote the payoff of a
coalition C ⊆ N as p(C) =

∑
a∈C pa.

Cooperative game theory solution concepts offer ways of choosing an imputation, so as
to satisfy some criteria. A basic criterion is individual rationality, which requires that
pa ≥ v({a}) for any agent a ∈ N—otherwise, some agent has an incentive to leave the
coalition and work alone. A stronger criterion is that of coalitional rationality, based
on the notions of blocking coalitions and stable imputations.

Definition 8. In a cooperative game 〈N, v〉, a coalition C ⊆ N blocks an imputation
p if p(C) < v(C).

Definition 9. In a cooperative game 〈N, v〉, an imputation p is stable if it is not blocked
by any coalition, i.e., for every coalition C ⊆ N , p(C) ≥ v(C).

If the coalition C blocks the imputation p, the members of C could leave the grand
coalition, derive the gains of v(C), give each member a ∈ C its previous gains pa—and
still some utility remains, so each agent could get more utility. If an unstable imputation
is chosen, we cannot expect all agents to remain in the grand coalition. The core is the
set of all stable imputations.

Definition 10. The core of a cooperative game is the set of all imputations that are
stable.

Some games have infinitely many imputations in their core, while other games have
empty cores. If we divide the gains of the grand coalition using an imputation in the
core, then no subset of agents has an incentive to break off and work alone. However, if
the core is empty, then any possible division of the grand coalition’s gains is unstable:
there will always be some coalition with an incentive to break away. In simple games,
there is a well-known characterization of the core based on the game’s veto agents: the
core consists of all imputations which divide the grand coalition’s gains only among the
veto agents. Consequently, the core of a simple game (such as a TNFG) is nonempty if
and only if there exists at least one veto agent. Note that we can compute the core of a
TNFG in polynomial time, simply by finding all the veto agents (a given edge is a veto
agent if and only if the coalition of all other edges is a losing coalition).

What should we do if we are faced with a game whose core is empty, but we still
wish to ensure that no coalition has an incentive to leave the grand coalition? In the next
section we suggest a solution, using external payments.

3 The Cost of Stability

We now consider the possibility of stabilizing a cooperative game using external pay-
ments, leading to the definition of the cost of stability, as introduced by Bachrach et
al [1]. If a game is increasing, the maximal utility is achieved by the grand coalition.
However, if the game’s core is empty, it is impossible to distribute the gains of the grand
coalition in a stable manner among the agents. This impedes the agents’ cooperation,

The Cost of Stability in Network Flow Games 641

rendering the grand coalition unstable. Consider an external party that would like to
induce all the agents to cooperate. One way to do this is by offering the grand coalition
a supplemental payment if all agents cooperate. This external payment is offered to the
grand coalition as a whole, and is provided only if this coalition is formed. The adjusted
game is defined based on the original game and the supplemental payment.

Definition 11. Given a cooperative game G = 〈N, v〉 and a supplemental payment
Δ ∈ R+, the adjusted game is the cooperative game G(Δ) = 〈N, v′〉 where the char-
acteristic function is defined as:

v′(C) =

{
v(C) if C 	= N

v(C) + Δ if C = N

We call v′(N) = v(N) + Δ the grand coalition’s adjusted gains. We call a division of
the adjusted gains in the adjusted game a super-imputation.

Definition 12. Given an adjusted game G(Δ) = 〈N, v′〉, a super-imputation is a vec-
tor p ∈ R

N
+ such that

∑
a∈N pa = v′(N) = v(N) + Δ.

We will sometimes talk about super-imputations without explicitly defining the adjusted
game—in such a case the supplemental payment is implied by the sum of the super-
imputation’s payments.

Even if the core of the original game G was empty, the core of the adjusted game
G(Δ) may not be empty—if the supplemental payment is high enough. Naturally, the
external party would prefer to minimize the supplemental payment. The cost of stability
(CoS) is defined as the minimal sum of payments such that a stable super-imputation
exists in the adjusted game.

Definition 13. The cost of stability of a cooperative game G = 〈N, v〉 is defined as
follows:

CoS(G) = min
Δ∈R+

{v(N) + Δ : the core of G(Δ) is nonempty}

Note that for any simple game G, CoS(G) ≥ 1, and CoS(G) = 1 if and only if the core
of G is nonempty. For simple games, we can give additional lower and upper bounds
on the CoS.

Theorem 1. If there exist m pairwise-disjoint winning coalitions in a simple game G =
〈N, v〉, then CoS(G) ≥ m.

Proof. Let C1, . . . , Cm be pairwise-disjoint winning coalitions in G. Let p be a super-
imputation such that p(N) < m. This means there must exist a winning coalition Ci

(1 ≤ i ≤ m) such that p(Ci) < 1 (otherwise we would get p(N) ≥ ∑m
j=1 p(Cj) ≥∑m

j=1 1 = m). This means that Ci blocks p and p is unstable. Therefore, any stable
super-imputation p′ must satisfy p′(N) ≥ m, so CoS(G) ≥ m.

Theorem 2. Let G = 〈N, v〉 be a simple game and let S ⊆ N be a subset of agents. If
every winning coalition C in G satisfies C ∩ S 	= ∅, then CoS(G) ≤ |S|.

642 E. Resnick et al.

Proof. We define a super-imputation p as follows:

∀a ∈ N : pa =

{
1 if a ∈ S

0 otherwise

Any winning coalition includes at least one agent from S, and so is paid at least 1. This
means that p is stable, therefore: CoS(G) ≤ p(N) = |S|.

4 Hardness of Determining Stability of Super-Imputations in
TNFGs

This work focuses on the CoS in TNFGs. We first consider the problem of testing
whether a given super-imputation, allowed by a certain supplemental payment, is ac-
tually stable in a TNFG. We show that this problem is in fact coNP-complete.

Definition 14. TNFG-SUPER-IMPUTATION-STABILITY (TNFG-SIS): Given a
TNFG G = 〈V, E, c, s, t, k〉, a supplemental payment Δ, and a super-imputation p in
the adjusted game G(Δ), decide whether p is stable, i.e., whether there exists some
blocking coalition for p in G(Δ).

Theorem 3. TNFG-SIS is coNP-complete.

Proof. TNFG-SIS is in coNP, since we can easily verify instability: given a potentially
blocking coalition, we can check whether it is a winning coalition and whether the sum
of payments to the coalition members is less than 1, in polynomial time. We show that
TNFG-SIS is coNP-hard by polynomially reducing SUBSET-SUM to the complement
of TNFG-SIS. SUBSET-SUM is a well-known NP-complete problem, where we are
given a set of positive integers A = {a1, . . . , an} and a positive integer b, and are asked
to determine whether there exists a subset A′ ⊆ A such that the sum of the elements in
A′ is exactly b. Given a SUBSET-SUM instance, we construct the following TNFG:

V = {s, t} ∪ {v1, . . . , vn}
E = {(s, vi) : 1 ≤ i ≤ n} ∪ {(vi, t) : 1 ≤ i ≤ n}
∀ 1 ≤ i ≤ n : c(s, vi) = c(vi, t) = ai

k = b

In other words, for each element ai we add a path from s to t with capacity ai,
and we define the threshold to be the target sum b (see Figure 1). We now define a
super-imputation p as follows:

∀ 1 ≤ i ≤ n : p(s,vi) = p(vi,t) =
ai

2(b + 1)

We show that this super-imputation is unstable if and only if the given SUBSET-SUM

instance is a “yes” instance.
First, assume p is unstable. This means there is some winning coalition C such that

p(C) < 1. We can assume that if (s, vi) ∈ C for some 1 ≤ i ≤ n then also (vi, t) ∈ C

The Cost of Stability in Network Flow Games 643

Fig. 1. Reduction of a SUBSET-SUM instance 〈{a1, a2, . . . , an}, b〉 to an instance of TNFG-SIS.
The game’s threshold is b. We consider the stability of a super-imputation giving an edge with
capacity ai a payoff of ai

2(b+1)
.

(otherwise, we could remove (s, vi) from C and C would still block p). Likewise, we
can assume that if (vi, t) ∈ C for some 1 ≤ i ≤ n then also (s, vi) ∈ C. Let I ⊆
{1, . . . , n} be the subset of indexes such that C = {(s, vi) : i ∈ I} ∪ {(vi, t) : i ∈ I}.
We assumed p(C) < 1, so:

1 > p(C) = 2
∑
i∈I

ai

2(b + 1)
⇒ b + 1 >

∑
i∈I

ai

The max-flow value allowed by C is
∑

i∈I ai, and we assumed C is a winning coalition,
so

∑
i∈I ai ≥ b. Altogether, we get:

b + 1 >
∑
i∈I

ai ≥ b

But since all ai are integers, we conclude that
∑

i∈I ai = b, so the given SUBSET-SUM

instance is a “yes” instance.
On the other hand, assume the given SUBSET-SUM instance is a “yes” instance. This

means there is some subset of indexes I such that
∑

i∈I ai = b. Define the coalition
C = {(s, vi) : i ∈ I} ∪ {(vi, t) : i ∈ I}. The max-flow value allowed by C is∑

i∈I ai = b, so C is a winning coalition. However:

p(C) = 2
∑
i∈I

ai

2(b + 1)
=

b

b + 1
< 1

So the coalition C blocks p, and p is unstable.

Another interesting question is whether finding the CoS itself is computationally hard
in TNFGs. The answer to that question is yes, although this result does not follow
from Theorem 3. The proof is based on a reduction from the well-known PARTITION

problem, and is omitted due to space constraints.

644 E. Resnick et al.

5 The Cost of Stability in TNFGs

We now show how to bound and approximate the CoS in general TNFGs, and provide
efficient algorithms for computing the CoS and finding optimal super-imputations1 in
restricted classes of TNFGs.

5.1 Connectivity Games

We first show that the CoS can be computed efficiently in connectivity games, where a
coalition wins if it contains a path from the network’s source to its sink.

Definition 15. A connectivity game is a TNFG where the capacities of all edges are 1
and the threshold is also 1.

Theorem 4. The CoS of a connectivity game is equal to the max-flow value of the
underlying flow network.

Proof. Let C be the set of edges crossing a min-cut in a connectivity game G. Notice
that |C| is equal to the max-flow value of the network due to the max-flow min-cut
theorem (since all capacities are 1). Any winning coalition in G (containing a path from
s to t) must include some edge in C, so from Theorem 2 we get CoS(G) ≤ |C|. On
the other hand, Lemma 2 guarantees the existence of |C| edge-disjoint paths from s to
t, each of which is a winning coalition, so from Theorem 1 we get CoS(G) ≥ |C|. We
conclude that CoS(G) = |C|.

5.2 Bounding the CoS in TNFGs

We now give an upper bound on the CoS in general TNFGs, based on the max-flow
value of the underlying flow network.2

Theorem 5. Let G be a TNFG with threshold k, and let F be the max-flow value of the
underlying flow network. Then CoS(G) ≤ F

k .

Proof. Let E be the edge set of G, and let S be the set of edges crossing a min-cut of
G. We define the super-imputation p as follows:

∀e ∈ E : pe =

{
c(e)
k if e ∈ S

0 otherwise

Notice that due to the max-flow min-cut theorem:

p(E) =
∑
e∈S

c(e)
k

=
F

k

1 A super-imputation is optimal if it is stable and the sum of payments is equal to the CoS.
2 Note that there is a trivial upper bound on the CoS in any simple game—the CoS is never

greater than the number of agents in the game (this is implied by Theorem 2).

The Cost of Stability in Network Flow Games 645

Let C be a winning coalition in G. This means that:∑
e∈C∩S

c(e) ≥ k

And so:

p(C) =
∑
e∈C

pe =
∑

e∈C∩S

c(e)
k

≥ 1

So p is stable and CoS(G) ≤ p(E) = F
k .

A corollary of Theorem 5 is that the ratio between the max-flow value (F) and the
threshold (k) of a TNFG (which is easy to compute) can serve as an approximation
for the game’s CoS (an F

k -approximation). Of course, this approximation is tighter the
smaller the ratio. Also, the proof of Theorem 5 shows us how to efficiently find a stable
super-imputation with adjusted gains equal to this ratio.

5.3 Equal Capacity TNFGs

We now generalize Theorem 4, showing an efficient way to compute the CoS of a TNFG
with equal edge capacities.

Theorem 6. If G is a TNFG where the capacities of all edges are equal to b and the
threshold is rb (for some b ∈ R+ and r ∈ N), then CoS(G) = F

rb , where F is the
max-flow value of the underlying flow network.

Proof. We know that CoS(G) ≤ F
rb by Theorem 5, so it suffices to prove that

CoS(G) ≥ F
rb .3

Denote d = F
b . Note that d ∈ N, since a min-cut in G contains d edges (each with

capacity b). We claim that there must exist d edge-disjoint paths from s to t in G. This
follows from Lemma 2, because if we changed all the capacities in the network to 1, the
max-flow value would be d (any min-cut in the original network is still a min-cut after
the change).

Let C1, . . . , Cd denote edge-disjoint paths from s to t in G. Let p be a stable super-
imputation in G. Since the threshold is rb, any coalition containing r of the paths Ci

(1 ≤ i ≤ d) is a winning coalition. In other words, for any subset of indexes I ⊆
{1, . . . , d} where |I| = r, it must hold that:∑

i∈I

p(Ci) ≥ 1

We can write
(
d
r

)
such inequalities, and each p(Ci) appears in an equal number of them,

so summing all the inequalities yields:

r

d

(
d

r

) d∑
i=1

p(Ci) ≥
(

d

r

)
⇒

d∑
i=1

p(Ci) ≥ F

rb

3 The proof of Theorem 5 also provides an efficient method for finding an optimal super-
imputation in this case.

646 E. Resnick et al.

Since this is true for any stable super-imputationp, we conclude that: CoS(G) ≥ F
rb .

Note that Theorem 4 is actually a special case of Theorem 6, where r = b = 1.

5.4 Serial TNFGs

We now examine the special case of serial TNFGs, built by serially connecting a se-
quence of component TNFGs. Such games can model scenarios where the flow must
pass through a series of bottlenecks. We show that in such a case, the CoS of the entire
sequence is equal to the minimal CoS among the component TNFGs.

Definition 16. Given a set of TNFGs {G1, . . . , Gn} all with the same threshold k, a
serial TNFG is the TNFG with threshold k over the flow network obtained by merging
the sink of Gi with the source of Gi+1 for every 1 ≤ i < n.

Theorem 7. If G is a serial TNFG composed of the TNFGs {G1, . . . , Gn}, then
CoS(G) = min

1≤i≤n
CoS(Gi).

Proof. We will prove the theorem for the case where n = 2, and the general case
follows by induction. Assume w.l.o.g. that CoS(G1) ≤ CoS(G2). Denote by E1 and E2

the edge sets of G1 and G2 respectively, and denote by E = E1 ∪E2 the edge set of G.
Let p′ be an optimal super-imputation in G1 (i.e., p′ is stable and p′(E1) = CoS(G1)).
We define the super-imputation p in G as follows:

∀e ∈ E : pe =

{
p′e if e ∈ E1

0 if e ∈ E2

Notice that p(E) = p′(E1) = CoS(G1). We will show that p is optimal in G, which
implies that CoS(G) = CoS(G1).

First, let C ⊆ E be a winning coalition in G. C must contain a subset C′ ⊆ C ∩ E1

which is a winning coalition in G1. p′ is stable in G1, so p(C) = p′(C′) ≥ 1, meaning
that p is stable in G.

On the other hand, let p̃ be a super-imputation in G such that p̃(E) < p(E) =
CoS(G1). Write p̃(E1) = αp̃(E) and p̃(E2) = (1 − α)p̃(E) for some 0 ≤ α ≤ 1.
Assume w.l.o.g. α > 0. There must exist a winning coalition C1 ⊆ E1 in G1 such that
p̃(C1) < α, otherwise the super-imputation 1

α p̃ would be stable in G1 with adjusted
gains smaller than CoS(G1), which would be a contradiction. Likewise, there must
exist a winning coalition C2 ⊆ E2 in G2 such that p̃(C2) ≤ (1 − α).4 The coalition
C1 ∪ C2 is then a winning coalition in G, but p̃(C1 ∪ C2) < α + (1 − α) = 1. We
conclude that p̃ is unstable in G and so p(E) = CoS(G).

Altogether, this shows that p is optimal in G, which implies that CoS(G) = p(E) =
CoS(G1). So the theorem is proved for the case where n = 2. The general case follows
by induction.

Using Theorem 7, we now show how the CoS of a serial TNFG can be computed effi-
ciently, as long as the number of edges in each component TNFG is not too large.

4 Here the inequality is not strict, since if α = 1 then p̃ is 0 for any coalition in G2.

The Cost of Stability in Network Flow Games 647

Definition 17. A B-bounded serial TNFG is a serial TNFG with components
{G1, . . . , Gn} where the number of edges in each component TNFG Gi (1 ≤ i ≤ n) is
bounded by some constant number B.5

Theorem 8. The CoS of a B-bounded serial TNFG can be computed in polynomial
time.

Proof. Let G be a B-bounded serial TNFG whose component TNFGs are
{G1, . . . , Gn}. We present an algorithm for computing CoS(G) in time linear in n,
although the runtime includes a constant factor which is exponential in B. Therefore,
this algorithm is only tractable if the bound B is small.

For each TNFG Gi, we can describe CoS(Gi) as a linear program. Let Ei denote
the set of edges in Gi. For every e ∈ Ei we define a variable pe. The linear program is:

Minimize:
∑
e∈Ei

pe

Under the constraints:
∀e ∈ Ei : pe ≥ 0
∀C ⊆ Ei :

∑
e∈C

pe ≥ v(C)

Recall that v(C) equals 1 if C is a winning coalition and 0 otherwise. The number
of constraints in the linear program is exponential in |Ei|, but |Ei| is bounded by the
constant B. Linear programs can be solved efficiently, so we can calculate CoS(Gi) in
constant time with respect to n (although exponential with respect to B).

Once we have computed CoS(Gi) for all n component TNFGs, we can get CoS(G)
by using Theorem 7: CoS(G) = min

1≤i≤n
CoS(Gi).

6 Weighted Voting Games and TNFGs

We now examine the relationship between the CoS in TNFGs and in weighted voting
games (WVGs), a well-known game theoretic model of cooperative decision making.6

Definition 18. Given a set of agents N , a weight function w : N → R+ and a threshold
q ∈ R+, a weighted voting game is the simple cooperative game where a coalition
C ⊆ N is a winning coalition if and only if the sum of the weights of the agents in C
exceeds the threshold q, that is w(C) =

∑
a∈C w(a) ≥ q.

We can define a WVG based on any subset of agents in a TNFG: given a TNFG
〈V, E, c, s, t, k〉 and a subset of agents F ⊆ E, we define the WVG WF = 〈F, w, k〉
where w(e) = c(e) for every agent e ∈ F . We also denote the CoS of the new game
WF as CoS(F).

We now show that the CoS of a TNFG is bounded by the CoS of any WVG induced
by the set of edges crossing a cut of the flow network.

5 Note that the number of components n is not bounded.
6 Analysis of the CoS in WVGs is given by Bachrach et al [1].

648 E. Resnick et al.

Theorem 9. Let G = 〈V, E, c, s, t, k〉 be a TNFG instance, let F ⊆ E be the set of
edges crossing a cut of G, and let pF be a super-imputation in the WVG WF . If pF is
stable in WF , then the super-imputation p is stable in G, where p(e) = pF (e) if e ∈ F
and p(e) = 0 otherwise.

As a direct corollary we get that CoS(G) ≤ CoS(F).

Proof. Let C ⊆ E be a winning coalition in G, i.e., the agents in C allow a flow with
value k from s to t. In particular, it must hold that w(F ∩C) = c(F ∩C) ≥ k, so F ∩C
is a winning coalition in WF . Since pF is stable in WF , we know that pF (F ∩C) ≥ 1,
and therefore:

p(C) ≥ p(F ∩ C) = pF (F ∩ C) ≥ 1

So p is stable in G.

We can now supply alternative proofs to some of the theorems in this work using WVGs.
Theorem 5 is a direct corollary of Theorem 9, if we consider the edges crossing a min-
cut of a TNFG. The hardness of TNFG-SIS (Theorem 3) follows from the hardness of
the equivalent problem for WVGs, since we can reduce a WVG to a TNFG: given a
WVG W = 〈N, w, q〉, we define the TNFG GW = 〈V, E, c, s, t, k〉 by setting V =
{s, t}; c = w; k = q and E = N , where all edges are from s to t.7 By similar
arguments to those in the proof of Theorem 9, a super-imputation is stable in W if and
only if it is stable in GW . Bachrach et al. [1] prove that testing for super-imputation
stability in WVGs is coNP-hard, so it follows that TNFG-SIS is coNP-hard as well.

7 Related Work

The concept of the core was introduced by Gillies [7]. Similar concepts are the least-
core and the nucleolus [11], which are guaranteed to be nonempty. A different solution
concept is the Shapley value [12], which aims for fairness rather than stability.

Elkind et al. [3] discuss various solution concepts in WVGs, showing that in this
domain computing the core can be done in polynomial time, while many questions re-
lating to other solution concepts are NP-hard. Elkind and Pasechnik [5] show a pseudo-
polynomial algorithm for computing the nucleolus of WVGs.

Bachrach and Rosenschein [2] examine calculating power indexes in TNFGs. Power
indexes attempt to measure how much “real power” each player has in a given game. It is
shown that for TNFGs, computing the Shapley-Shubik index is NP-hard and computing
the Banzhaf index is #P-complete. However, an efficient algorithm for the restricted
case of connectivity games over bounded layer graphs is provided. Elkind et al. [4]
show how to compute power indexes in the special case of series-parallel TNFGs.

While our work focuses on TNFGs, much research has considered the cardinal net-
work flow game (CNFG), where a coalition’s utility equals the max-flow value it can
achieve. Computing the core in CNFGs can be done in polynomial time; Kalai and
Zemel [8, 9] show that numerous families of CNFGs have nonempty cores.

7 This requires allowing a multigraph, but we could avoid that by splitting every edge into two
equivalent edges.

The Cost of Stability in Network Flow Games 649

Yokoo et al. [13] demonstrate that various cooperative solution concepts (such as the
core, nucleolus and Shapley value) are vulnerable to manipulations in open anonymous
environments. They use a more fine-grained model of cooperative games, where each
agent has a set of skills, and values are defined for different subsets of skills (rather than
subsets of agents). They show that agents may sometimes profit from manipulations
such as submitting false names, collusion, and hiding skills.

Monderer and Tennenholtz [10] investigate the case of an interested party who
wishes to influence the behavior of agents in a game which is not under its control.
The approach taken is close to the one we take here in spirit, although that work deals
with normal-form games, not cooperative games. In that model, the interested party
may commit to making non-negative payments to the agents if certain strategy profiles
are selected. Payments are given to agents individually, but they are dependent on the
strategies selected by all agents. As in our work, it is assumed that the interested party
wishes to minimize its expenses. Determining the optimal monetary offers to be made in
order to implement a desired outcome is shown to be NP-hard in general, but becomes
tractable under certain modifications.

The CoS concept that we use here was first defined by Bachrach et al. [1], who ex-
amined the CoS in WVGs. It was shown that it is coNP-complete to test whether a given
super-imputation in such a game is stable, but the CoS may be computed efficiently if
either the player weights or payments are bounded. An efficient approximation algo-
rithm for the CoS in general WVGs was also given.

8 Conclusion

We examined stabilizing cooperative games using external payments, and considered
the CoS—the minimal total payment that allows a stable division of the grand coali-
tion’s gains among the agents, in the context of network flow games (TNFGs). We
showed that it is coNP-complete to determine whether a given super-imputation in a
TNFG is stable. We provided an upper bound on the CoS based on the network’s max-
flow, which can be used to approximate the CoS. We showed that in connectivity games
and in equal capacity TNFGs , both the CoS and an optimal super-imputation may be
found efficiently. We also showed how to compute the CoS in serial TNFGs with a
small number of edges per component. Finally, we showed that the CoS of any TNFG
can be bounded by the CoS of a WVG induced by some cut of the flow network.

In future work, we could examine the CoS in various other cooperative games. Ad-
ditionally, it might be interesting to define the CoS for any coalition (not only for the
grand coalition), and perhaps for various coalitional structures. Finally, we could inves-
tigate the relationship between the CoS and other cooperative solution concepts such as
the least-core, nucleolus, and Shapley value.

References

[1] Bachrach, Y., Meir, R., Zuckerman, M., Rothe, J., Rosenschein, J.S.: The cost of stability
in weighted voting games (extended abstract). In: The International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS), Budapest, Hungary (May 2009)

650 E. Resnick et al.

[2] Bachrach, Y., Rosenschein, J.S.: Power in threshold network flow games. Journal of Au-
tonomous Agents and Multi-Agent Systems 18(1), 106–132 (2009)

[3] Elkind, E., Goldberg, L.A., Goldberg, P.W., Wooldridge, M.: Computational complexity of
weighted threshold games. In: The National Conference on Artificial Intelligence (AAAI),
pp. 718–723. AAAI Press, Menlo Park (2007)

[4] Elkind, E., Goldberg, L.A., Goldberg, P.W., Wooldridge, M.: A tractable and expressive
class of marginal contribution nets and its applications. In: The International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1007–1014 (2008)

[5] Elkind, E., Pasechnik, D.V.: Computing the nucleolus of weighted voting games. In: The
ACM-SIAM Symposium on Discrete Algorithms, SODA (2009)

[6] Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian Journal of Math-
ematics 8, 399–404 (1956)

[7] Gillies, D.B.: Some theorems on n-person games. PhD thesis. Princeton University, Prince-
ton (1953)

[8] Kalai, E., Zemel, E.: On totally balanced games and games of flow. Discussion Papers 413,
Northwestern University (January 1980)

[9] Kalai, E., Zemel, E.: Generalized network problems yielding totally balanced games. Op-
erations Research 30, 998–1008 (1982)

[10] Monderer, D., Tennenholtz, M.: K-implementation. In: EC 2003: Proceedings of the 4th
ACM conference on electronic commerce, pp. 19–28. ACM, New York (2003)

[11] Schmeidler, D.: The nucleolus of a characteristic function game. SIAM Journal on Applied
Mathematics 17(6), 1163–1170 (1969)

[12] Shapley, L.S.: A value for n-person games. Contributions to the Theory of Games, 31–40
(1953)

[13] Yokoo, M., Conitzer, V., Sandholm, T., Ohta, N., Iwasaki, A.: Coalitional games in open
anonymous environments. In: The National Conference on Artificial Intelligence (AAAI),
pp. 509–515 (2005)

	The Cost of Stability in Network Flow Games
	Introduction
	Preliminaries
	Cooperative Games
	Flow Networks
	Threshold Network Flow Games
	Imputations and the Core

	The Cost of Stability
	Hardness of Determining Stability of Super-Imputations in TNFGs
	The Cost of Stability in TNFGs
	Connectivity Games
	Bounding the CoS in TNFGs
	Equal Capacity TNFGs
	Serial TNFGs

	Weighted Voting Games and TNFGs
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

