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Previous work [15, 16, 18] discussed inter-agent negotiation protocols. One of
the main assumptions there was that the agents’ goals remain fixed—the agents
cannot relax their initial goals. Goals can be achieved only as a whole and
cannot be partially achieved.
Our purpose here is to give a general solution to the negotiation problem in
non-cooperative domains where agents can relax their initial goals. An agree-
ment may lead to a situation in which one or both goals are only partially
achieved. We present a negotiation protocol that can be used in a general non-
cooperative domain that includes goal relaxation. When goals are fixed, agents
are negotiating only over a joint plan that achieves both goals. When goals can
be relaxed, however, they are negotiating both over what parts of their goals
will be satisfied, and (in parallel) over the joint plan that will be implemented
to satisfy those parts.
Finally, we present several approaches to the goal relaxation problem and give
some examples of domains in which each of the different approaches can be used.

1 Introduction

The subject of negotiation has been of continuing interest in the distributed artificial intel-
ligence (DAI) community [13, 10, 7, 1, 6]. Some researchers, especially those concerned
with “cooperative distributed problem solving,” [2, 8] see negotiation as an important
mechanism for assigning tasks to agents, for resource allocation, and even for deciding
which problem-solving tasks to undertake. Much of this work relies as least partially
on the assumption that the negotiation is taking place among agents that have been
centrally designed to coexist in a single system; these agents are predisposed towards
cooperative activity. At least implicitly, there is some notion of global utility that the
system, through its design, is trying to maximize. Real conflict can exist, however, even
among these agents, as a result of conflicting local goals.



Other researchers have focused on negotiation that might take place among agents that
serve the interests of truly distinct parties [12, 14, 5, 15]. The agents are autonomous
in the sense that they have their own utility functions, and no global notion of utility
(not even an implicit one) plays a role in their design. Negotiation can be used to share
the work associated with carrying out a joint plan (for the agents’ mutual benefit), or
to resolve outright conflict arising from limited resources (again, to the agents’ mutual
benefit). An autonomous agent in this context is assumed to be acting rationally only
when it maximizes its own utility; in cooperative distributed problem solving, an agent
might rationally make a decision that lowers its own utility for the global good.
Thus, despite the large amount of DAI research on this topic, there does not yet exist a
universally accepted definition of what the word negotiation even means. As Gasser points
out in [3], “negotiation [is] a term that has been used in literally dozens of different ways
in the DAI literature.” Nevertheless, it is clear to the DAI community as a whole that
the operation of cooperating, intelligent autonomous agents would be greatly enhanced if
they were able to communicate their respective desires and compromise to reach mutually
beneficial agreements.
The work described in this article follows the general direction of [12, 15] in treating
negotiation in the spirit of game theory, while altering game theory assumptions that are
irrelevant to DAI.
Previous work [15, 16, 18] discussed inter-agent negotiation protocols. One of the main
assumptions there was that the agents’ goals remain fixed—the agents cannot relax their
initial goals. Goals can be achieved only as a whole and cannot be partially achieved.
In order to cope with essential conflict between two agents’ goals, we presented in [18] a
negotiation protocol that allows the agents to reach an agreement in which they cooperate
until a certain point, and then they flip a coin in order to decide which agent is going to
continue the plan to achieve its goal. In conflict situations, only one agent will achieve
its goal (with some probability).
Our purpose here is to give a general solution to the negotiation problem in non-cooperative
domains where agents can relax their initial goals. An agreement may lead to a situation
in which one or both goals are only partially achieved. We present here a negotiation
protocol that can be used in a general non-cooperative domain that includes goal relax-
ation. Then we present several approaches to the goal relaxation problem and give some
examples of domains in which each of the different approaches can be used.

2 Worth Function

Two autonomous agents A and B share the same world. The initial state of the world
is s. Let ST stand for the set of all possible states of the world. Each agent has a single
goal gi : i ∈ {A,B}.
Definition 1

• A goal is a closed formula in first-order logic (i.e., no free variables).

• A world state w will be said to satisfy the goal g if w |= g.



• The worth of the goal gi to agent i is Wi ∈ IR, which is also the maximum expected
cost that agent i is willing to pay in order to achieve his goal.

Intuitively, each agent has only one goal that totally describes what he wants to achieve
(of course, this goal may be a conjunction of subgoals).
The ability of an agent to relax his goal presupposes that there exist world states, other
than those states that satisfy his goal, that are worth something to him. Thus, funda-
mental to the idea of goal relaxation is the existence of a Worth function over possible
world states:

Worthi: ST → IR.

We will assume that the Worth function is defined for all states.
If a state f ∈ ST satisfies gi (i.e., f |= gi) then Worthi(f) = Wi, otherwise Worthi(f) <
Wi. Worthi(f) is an indication of what “part” of the goal gi has been achieved, or how
“close” state f is to the achievement of the whole goal. If 0 < Worth(f) < Wi, we will
say that the state f partially achieves gi.
Our assumption from previous work, that no goal relaxation could occur, was actually a
subcase of our current approach—there, the Worth function was a two-valued function,
defined as follows:

Worthi(f) =

{
Wi if f |= gi

0 otherwise.

This means that there does not exist a state that partially satisfies gi. In the general
case, Worthi can be any real function that is bounded by Wi.

1

3 General Definitions

Both agents have the same set of operations OP that they can perform. Operations o in
OP move the world from one state to another; they can be concatenated into plans .

Definition 2 Plans

• A one-agent plan to move the world from state s to state f in ST is a list [o1, o2, . . . , on]
of operations from OP such that f = on(on−1(. . . o1(s) . . .)).

• A joint plan to move the world from state s to state f in ST is a pair of one-agent
plans (PA, PB) and a schedule.

A schedule is a partial order over the union of actions in the two one-agent plans. It
specifies that some actions cannot be taken until other actions are completed. Because
it is a partial order, it of course allows simultaneous actions by different agents. If the
initial state of the world is s and each agent i executes plan Pi according to the schedule,
then the final state of the world will be f . We will sometimes write J to stand for a joint
plan (PA, PB). J(s) will stand for the final state f .

1There may be situations where no world state fully satisfies gi—the goal can be only partially
achieved. In this case ∀f ∈ ST : Worthi(f) < Wi.



Definition 3 Costs

• There exists a cost function over plans.

• For each one-agent plan P = [o1, o2, . . . , on], Cost(P ) =
∑n

k=1 Cost([ok]).

• For each joint plan J = (PA, PB), Costi(J) is defined to be Cost(Pi).

The above definition of the cost of a plan is not critical to the subsequent discussion (for
example, whether or not the cost of a plan depends on the plan’s initial state). The cost
function may, in fact, have parameters other than the plan itself, such as the initial state,
day of the week, and other domain dependent variables. What is important is the ability
of an agent to measure the cost of a one-agent plan, and his ability to measure the cost
of one agent’s part of a joint multi-agent plan.

Definition 4 s → f is the minimal Cost one-agent plan that moves the world from state
s to state f .

• If a plan like this does not exist then s → f will stand for some constant plan ��
which costs infinity.

• If s = f then s → f will stand for the empty plan Λ which costs 0.

4 Underlying Assumptions

In [15], we introduced several assumptions, some of which are in force for our discussion
here as well (the final assumption was implicit in previous work):2

1. Utility Maximizer: Each agent wants to maximize his expected utility.

2. Complete Knowledge: Each agent knows all relevant information.

3. No History: There is no consideration given by the agents to the past or future;
each negotiation stands alone.

4. Bilateral Negotiation: In a multi-agent encounter, negotiation is done between
a pair of agents at a time.

5 One Agent Best Plan

If agent i is alone in the world, and only needs to achieve his own goal, he would bring
the world to a final state f that maximizes his utility. Utility of an agent in general is
the difference between the worth of a final state and the cost that an agent has to pay in
order to bring the world to this final state.

2The relaxation of the Complete Knowledge assumption, in specific circumstances, was treated in [15,
17]. Future work will further examine the consequences of removing one or more of these assumptions,
such as the No History assumption and the Bilateral Negotiation assumption.



If agent i were alone in the world, he would bring the world to a state fi that satisfies
the following condition:

Worthi(fi)− Cost(s → fi) = max
f∈ST

(Worthi(f)− Cost(s → f)) .

We use Ui to stand for Worthi(fi) − Cost(s → fi), which is the maximum utility that
agent i could achieve if he were alone in the world and tried to achieve only his own goal.

6 Negotiation over Relaxed Goals

Definition 5 If there does not exist a world state that satisfies (partially or fully) both
agents’ goals, i.e., ¬∃f(∀i Worthi(f) > 0), then we will call this a conflict situation.

In non-conflict situations, the agent may negotiate over joint plans J that move the world
from state s to state J(s). To overcome the problem of indivisible operations, they may
negotiate over mixed joint plans.

Definition 6 Deals

• A mixed joint plan is written as (PA, PB): p where (PA, PB) is a joint plan, and
0 ≤ p ≤ 1 ∈ IR. Its semantics is that the agents will perform the joint plan
(PA, PB) with probability p, or the symmetric joint plan (PB, PA) with probability
1− p.

• If δ = (J : p) is a mixed joint plan, then Costi(δ) is defined to be pCosti(J) + (1 −
p)Costj(J) (j stands for i’s opponent). δ(s) will stand for J(s).

The agents are going to negotiate over two separate items:

1. What will be the final state of the world?

2. How will they share the work of bringing the world to this final state?

The utility for an agent of a mixed joint plan is simply the difference between the final
state’s worth to him, and the expected work to which the deal commits him.

Definition 7

• If δ is a mixed joint plan, then Utilityi(δ) is defined to be Worthi(δ(s))− Costi(δ).

• A mixed joint plan δ is individual rational if, for all i, Utilityi(δ) ≥ 0.

• A mixed joint plan δ is pareto optimal if there does not exist another mixed joint
plan that dominates it—there does not exist another mixed joint plan that is better
for one of the agents and not worse for the other.

• The negotiation set NS is the set of all the mixed joint plans that are both individual
rational and pareto optimal.



The definitions of individual rational, pareto optimal, and the negotiation set NS are
standard definitions from game theory and bargaining theory (see, for example, [9, 11, 4]).
This negotiation protocol is not general enough to be used in conflict situations because
NS might be empty. Even in non-conflict situations NS can be empty. If all the states
that satisfy (partially or fully) both goals are too expensive to reach, then the negotiation
set may be empty even though it is not a conflict situation.
A more general negotiation protocol would be to negotiate over deals that are pairs of
mixed joint plans.

Definition 8

• A Deal is (δA, δB, q) where δi are mixed joint plans and 0 ≤ q ≤ 1 ∈ IR is the
probability that the agents will perform δA (they will perform δB with probability
1− q).

• Utilityi(δA, δB, q) = q(Worthi(δi(s))−Costi(δi))−(1−q)(Worthi(δj(s))−Costi(δj)).

Theorem 1 If for each i, Worthi is a positive function, then NS = ∅.

Proof. If Worthi is a positive function then Ui ≥ 0 because in the worst case fi = s (this
means that s → fi = Λ); thus Ui = Worth(s)−0 ≥ 0. To show that NS = ∅ it is sufficient
to show that there exists an individual rational deal. The deal ((s → fA,Λ): 1, (Λ, s →
fB): 0, q) for any 0 ≤ q ≤ 1 is individual rational because ∀i: Utilityi((s → fA,Λ): 1, (Λ, s→
fB): 0, q) = qUi + (1− q)Worthi(fj) ≥ 0.

When the Worth functions are not positive, then the negotiation set may be empty. If
both agents’ Worth functions have some (common) lower bound, we can normalize the
two Worth functions and the Cost function by using a linear transformation, such that
both Worth functions will be positive.

7 Examples of Worth Functions

Having presented the general framework for negotiation and goal relaxation, we shall now
look at several domains and examine how each might dictate a different specific approach
to the goal relaxation problem. These different approaches are manifested in alternate
Worth functions for the various domains, because of domain-specific attributes as to what
constitutes a goal.

7.1 Subgoals Set

An agent i may have a set of distinct subgoals or tasks {gk
i | k = 1 . . . ni} that he has

to achieve. Each subgoal gk
i ’s worth to him is W k

i . In this case, his overall goal is a
conjunction of subgoals, gi =

∧ni
k=1(g

k
i ). The worth of gi for agent i is

∑ni
k=1(W

k
i ). The

worth function in this case might be defined as

Worth(f) =
∑

f |=gk
i

(W k
i ).



Example: The Blocks World Domain
There is a table and a set of blocks. A block can be on the table or on some other block,
and there is no limit to the height of a stack of blocks. However, on the table there are only
a bounded number of slots into which blocks can be placed. There are two operations in this
world: PickUp(i) — Pick up the top block in slot i (can be executed whenever slot i is not
empty), and PutDown(i) — Put down the block which is currently being held into slot i.
An agent can hold no more than one block at a time. Each operation costs 1. Let the initial
state of the world be as shown in Figure 1.

s = B
1

W
2

R
3 4

Figure 1: The Initial State of the World

Agent A has two subgoals: g1
A is “The Black box is clear at slot 2, but not on the table”

and g2
A is “The White box is alone at slot 3”. The worth of the two subgoals is W 1

A = 4 and
W 2

A = 6. If Agent A were alone in the world, he would bring the world to one of the states
in Figure 2.

f3 =
1

R
B

2
W
3 4

f2 = B
1 2

W
3

R
4

f1 =
1

W

B

2
R
3 4

Figure 2: The Possible Final States

Agent A is indifferent between f1, f2 and f3 because in all cases his utility is 2.

• f1 |= g1
A therefore WorthA(f1) = 4. Cost(s → f1) = 2, therefore the utility of agent

A from f1 is 2 = (4− 2).

• f2 |= g2
A therefore WorthA(f2) = 6. Cost(s → f2) = 4, therefore the utility of agent

A from f2 is 2 = (6− 4).

• f3 |= g1
A ∩ g2

A therefore WorthA(f3) = 10 = (6 + 4). Cost(s → f3) = 8, therefore the
utility of agent A from f3 is 2 = (10− 8).



Agent A is indifferent between f1, f2 and f3 even though f3 fully satisfies his goal, and f1

and f2 only partially satisfy his goal. This is due to the definition of WorthA—an agent
gets positive utility from achieving a subgoal, and zero utility from unachieved subgoals.
There can be domains where an agent gets some penalty (negative utility) from un-
achieved subgoals. Let Ck

i be the penalty that agent i gets when his subgoal gk
i is not

achieved (it is convenient to think of penalties as negative numbers). We could then
redefine the worth function to be

Worth(f) =
∑

f |=gk
i

W k
i +

∑
f �|=gk

i

Ck
i .

In the previous example, if C1
A, C

2
A < 0 then agent A prefers f3 over f1 and f2.

Example: Let the initial state of the world be as in Figure 3.

s = B

W

1
R
2 3 4

Figure 3: The Initial State of the World

• Agent A has two subgoals: g1
A is “The Black box is on the White box at slot 1” and

g2
A is “The Red box is clear at slot 3”. The worth of the two subgoals is W 1

A = 10 and
W 2

A = 4. The penalties for unachieved goals are C1
A = C2

A = 2.

• Agent B has two subgoals: g1
B is “The Black box is on the White box at slot 1” and

g2
B is “The Red box is clear at slot 4”. The worth of the two subgoals are W 1

B = 10
and W 2

B = 4. The penalties for unachieved goals are C1
B = C2

B = 2.

The agents share one subgoal (g1
A = g1

B) and have a conflict over the other subgoals. If each
agent were alone in the world, in order to fully achieve his goal he would have a cost of at
least 10 = (8 + 2), which would give him a utility of Ui = 4 = (10 + 4) − 10. Both goals
cannot be fully achieved at the same time, but they can be partially achieved. The best joint
plan T that achieves the swap in slot 1 (g1

A and g1
B) costs 2 for each agent. They will agree

on the deal (δA, δB, 0.5) where the joint plan δi is the concatenation of T , and the one-agent
plan where i moves the Red box in order to achieve g2

i . The two possible final states can be
seen in Figure 4.

∀i Utilityi(δA, δB, 0.5) = 0.5(Worthi(δi(s))− Costi(δi)

+0.5(Worthi(δj(s))− Costi(δj)

= 0.5((10 + 4)− (2 + 2)) + 0.5((10− 2)− 2)

= 8

∀i Utilityi(δA, δB, 0.5) > Ui—even though the two goals can be only partially achieved,
there exists a deal that is better for both agents than full achievement of their own goal by
themselves.



δB(s) = W

B

1 2 3
R
4

δA(s) = W
B

1 2
R
3 4

Figure 4: The Possible Final States

7.2 Distance Between States

One possible approach to the definition of the Worth function is to use some measurement
of the distance of any state t from a state that achieves the full goal. We present here
two examples showing different approaches to the measurement of this distance.

7.2.1 The One-Agent Plan Metric

Definition 9 The distance between two world states s, f ∈ ST will be marked as d(s, f),
and will be defined as Cost(s → f).

The distance between state s and state f is the cost of the minimal one-agent plan that
moves the world from state s to state f . This definition can be thought of (informally)
as a metric over ST; it is reflexive and satisfies the triangle inequality.

• Reflexivity — ∀t ∈ ST: d(t, t) = 0.

• Triangle inequality — ∀s, t, f ∈ ST: d(s, t) + d(t, f) ≥ d(s, f).

This distance measure, however, is not necessarily symmetric:

• Symmetric — ∀t, f ∈ ST d(t, f) = d(f, t). This is true when talking about metrics,
but in our domain it is not always true—nor do we need it to be true.

Using this distance measure, we can define the Worth function to be

Worth(t) = Wi −min
f |=gi

(d(t, f)).

7.2.2 The Delivery Problem

To illustrate the use of the above definition of Worth, we here introduce the Delivery
Problem domain, which is an extension to the Postmen Problem introduced in [15].
There is a weighted graph G = G(V,E). Each v ∈ V represents a warehouse, and each
e ∈ E represents a road. The weight function w:E → IR is the distance of any given
road. For each edge e ∈ E, w(e) is the “length” of e or the “cost” of e. Each agent has to
do some deliveries of containers between those warehouses. In order to do the deliveries,



agents can rent trucks. A truck can carry up to 4 containers. Each warehouse has a
limited capacity.
The operations that can be done in this domain are:

• Load(c, t) — loads a container c on a truck t. The preconditions are:

– Container c and truck t are at the same warehouse h.

– Truck t has less then 4 containers on board.

The results of the operation are:

– Warehouse h has one container less.

– Truck t has one container more.

A Load operation costs 1.

• Unload(c, t) — unloads a container c from a truck t. The preconditions are:

– Container c is on truck t.

– Truck t is at some warehouse h.

– Warehouse h is not full.

The results of the operation are:

– Warehouse h has one container more.

– Truck t has one container less.

The Unload operation costs 1.

• Drive(t, h) — Drives truck t to warehouse h. No preconditions for this operation.
The result is that truck t is at warehouse h. The cost of this operation is equal to
the distance (i.e., the minimal weighted path) between the current position of truck
t and warehouse h.

There is another activity that needs to be taken into account: consumers come from time
to time to take containers from the warehouses.
Agents can cooperate by using the same truck for delivery of both agents’ containers.
The only conflict that can occur is when the two agents need to deliver containers to the
same warehouse, and there is not enough space for all the containers. In this case, one
or both agents would not be able to fully achieve his goal; the goal may be completed
later when some containers have been “consumed,” i.e., removed from the warehouse by
a consumer.
The one-agent plan metric is a reasonable heuristic measure to use when an agent whose
goal has not been fully achieved can later achieve his whole goal. The one-agent distance
as defined in this domain, for example, is an upper bound on how much the agent will
need to spend to achieve his goal, when (or if) that achievement becomes possible.

Example: A Simple Delivery Problem



x

c2 c4
c1 c3

30
y
(2)

10
z
(2)

Figure 5: Simple Delivery Problem

Consider the graph in Figure 5. The weight (length) of each edge is written beside it. There
is a place for only 2 more containers in warehouses y and z.
gA is to deliver two containers c1 and c2 from x to z. gB is to deliver container c3 from x to
y, and c4 from x to z. WA = WB = 50.
If A were alone in the world, he could achieve his goal by renting a truck t1 in warehouse x to
take his 2 containers to z. The best one-agent plan to do this is (Load(c1, t1),Load(c2, t1),
Drive(t1, z),Unload(c1, t1),Unload(c2, t1)). This would give him a utility of UA = 50− (1+
1 + 40 + 1 + 1) = 6.
If B were alone in the world he could achieve his goal by renting a truck t2 in ware-
house x to take his two containers to y and z. The best one-agent plan to do this is
(Load(c3, t2),Load(c4, t2),Drive(t2, y),Unload(c3, t2),Drive(t2, z),Unload(c4, t)).
This would give him a utility of UB = 50− (1 + 1 + 30 + 1 + 10 + 1) = 6.
The two goals cannot both be fully satisfied, because there isn’t room for 3 additional con-
tainers in warehouse z. However, the agents can cooperate by using only one truck to make
a partial delivery of the 4 containers.
The agents will agree to rent only one truck at x which will be loaded with the 4 containers—
each will rent the truck with probability 0.5. The truck will unload container c3 at y. c4 or
c1 (each with probability 0.5) will also be unloaded at y. The truck will continue to z where
the rest of the containers will be unloaded. Each agent has a 0.5 chance of fully achieving his
goal. In both cases each agent is expected to pay half of the cost of the whole journey. If the
agent’s goal is only partially achieved, he will be at a “distance” of 12 from the achievement
of his whole goal (one Load, a drive of length 10, and one Unload). The Utility for both
agents from this deal is: Utilityi = 0.5× (50− 12) + 0.5× 50− 0.5× 40− 4 = 19.

7.2.3 Probability Distance

Instead of using a metric over ST, we can define distance between world states and goals.

Definition 10 The distance between a state t ∈ ST and the goal gi, signified as d(t, gi),
is defined to be 1− p where p is the probability that gi will be achieved from state t.

The Worth function in this case will be defined as

Worth(t) = (1− d(t, gi))Wi.

These definitions can be used in a domain that includes nondeterministic operations, that
is, carrying out an action will send the world into one of several possible states, with some
probability distribution. The existence of such operations would change our definition



of a “plan” and the definition of a “joint plan” (for example, the schedule should be
sensitive to the actual results of actions), which might result in a very different definition
of a “deal.” Discussion of this topic is beyond the scope of this article, and will be treated
in future work.

8 Conclusion

We have presented a general solution to the negotiation problem in non-cooperative do-
mains where agents can relax their initial goals (an agreement may lead to a situation in
which one or both goals are only partially achieved). We presented a negotiation proto-
col that can be used in a general non-cooperative domain that includes goal relaxation.
When goals can be relaxed, agents are negotiating both over what parts of their goals
will be satisfied, and (in parallel) over the joint plan that will be implemented to satisfy
those parts.
In a domain where goals can be relaxed, a specific Worth function over states should
be defined, in order to provide a way of evaluating deals that only partially achieve an
agent’s goals. Several domain-dependent approaches can be used in defining the Worth
function. We here presented several different definitions of the Worth function, including
one for a domain in which a goal can be a set of independent subgoals, and one in which
a conflict can be later resolved (and distance between world states is thus an appropriate
measure).
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