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Abstract. We study information elicitation mechanisms in which a principal
agent attempts to elicit the private information of other agents using autigref
selected payment scheme based on proper scoring rules. Scdesdike many
other mechanisms set in a probabilistic environment, assume that alletitig
agents share some common belief about the underlying probability ofseve
real-life situations however, the underlying distributions are not knownigpely,
and small differences in beliefs of agents about these distributions lteayheir
behavior under the prescribed mechanism.

We propose designing elicitation mechanisms in a manner that will be rabust
small changes in belief. We show how to algorithmically design such meshan
in polynomial time using tools of stochastic programming and convex progr
ming, and discuss implementation issues for multiagent scenarios.

1 Introduction

Game theory and decision theory tools have long been usesdicpthe behavior of
rational agents in various settings. The common assumptaite in game theory is that
agents seek to maximize their own gains and do not take amy aipect of encounters
into consideration. In games with an element of chance, wha&ve an outcome that is
not deterministic, a given choice can lead to many outcoares there are many ways
to compare among actions. The most commonly used choicecisnipare according
to expected returns from taking the action. Other methodsrporate other measures
such as risk. In any case, agents take into consideratioprftability distribution
for various outcomes of the game, or for the type of opporteey aire facing and its
selected actions.

When given the task of designing a system with interactionsrepagents, the de-
signer faces a different problem. The mechanism must bguediso as to induce a
rational, self-interested agent to behave in a predictaldsirable manner. Thaecha-
nism desigriterature provides many successful examples of mechartsat “battle”
the agent'’s self interest and successfully achieve outsdhe are more socially ori-
ented, or are beneficial to the designing agent in some wa)[9$éor a review).

In this paper we explore mechanisms for information eliiita We assume that
some principal agent wishes to buy information in a prolistiilenvironment, perhaps
to predict some future event. In the scenario we shall egplitre information that is
obtained can only be verified probabilistically. Therefahere is often no clear-cut way
to expose the seller of information as a liar. The properritices for truthfulness can



be obtained by carefully selecting the payments to therséfieeases where common
knowledge of probabilities of events exists, it is easy tsigiethe payment mechanism.

However, in many real-world situations, agents cannot ktt@wnderlying proba-
bility distributions of a game, but can only assess them loypdimg or other methods.
Since the underlying probabilities cannot be directly knpthere may be differences
among agents that have access to various sources of infonnat that have different
priors over these distributions. The probability an agessigns to some event is then
better characterized adalief it holds regarding that event.

This problem is often addressed by direct revelation mashaithat reveal to the
mechanism all needed information, including the type (direBeof the participating
agent. The mechanism then takes this information into atdcaund acts optimally on
behalf of the agent, eliminating any need to be untruthfuinformation-trade settings
itis unlikely that the seller of information would be intsted in direct revelation. Since
information is the primary commaodity, revealing more ofithe mechanism is unwise,
and the agent’s beliefs about probabilities contain extfarimation.

In this sense, information elicitation scenarios are défe from classical prefer-
ence elicitation problems. There are other important difiees: in preference elicita-
tion scenarios, the participating agents focus less ondirectness of the information
given, and more on the final outcome that is decided. Thistenafsed by the mecha-
nism designer; for example, in an auction scenario, an agidmot overvalue an item
because it might actually be awarded an item it does not veardrf inflated price. In
pure information elicitation, the information the agentes will not affect the outcome
for him, but may only affect the payment it receives.

We suggest that in cases where there is some uncertaintsdiegdhe beliefs of
agents, information elicitation mechanisms must be desigmithout full revelation
and furthermore, must be designed for robustness, not @alinst the manipulations
players may attempt, but also for differences in the belieéy may hold. Our contri-
bution in this paper is to define a notion of belief-robustn@sinformation elicitation
mechanisms. We show efficient algorithms for finding robusthanisms when such
mechanisms are possible, and examine the complicatiohariba when attempting to
extend the notion to the multiagent case.

2 Related Work and Mathematical Background

Research in artificial intelligence and on the foundatioingrobability theory [11] has
considered probabilities as beliefs, and several modeis baen suggested — for ex-
ample, probabilities over probabilities (which stirredehwdebate and controversy). [3]
examined the case of agents with uncertainty about theéyufiinctions in the world.
In that case, an agent acts according to the “expected edpatitity” it foresees as it
takes into consideration its own uncertainty.

The idea of finding robust solutions to problems, obviouisiyyot new. In control
theory for example, the problem of model uncertainty hasitseecessfully tackled by
implementing robust control systems that rely on feedbaatotrect any errors in the
system’s behavior [19]. Research into robust solutions seased out in many areas.
Examples include genetic algorithms [17], planning [7]] amore.



In [4, 13] Conitzer and Sandholm proposed applying algorithmechanism design
to specific scenarios as a way of tailoring the mechanisme@xact problem at hand,
and thereby developing superior mechanisms. The desighgagithm is given an op-
timization problem — find the best possible mechanism (atingrto some prescribed
criteria) that works for the setting at hand. They show wasicomplexity results for the
mechanism design problem. When solving the design problerprobability distribu-
tions are considered part of the input and serve as fixed deastor the optimization.

Other uses for information elicitation exist in multi-patomputation [15, 16],
where some function of the agents’ secrets is computed, derita may have reser-
vations about revealing or computing their own secret. Aaparea in which informa-
tion elicitation is implemented is polling. It is often of Iplic interest to know which
candidate is going to win in elections, but regular polls mwtoriously inaccurate. To
overcome this poor performance, a different method has baggested for the elic-
itation and aggregation of information, namely the infotima market approach [2,
18]. There, agents are free to buy and sell options that \ayl fnhem an amount that
is dependent on the outcome of some event (like some speaiftidate winning an
election).

2.1 Strictly Proper Scoring Rules

Scoring rules [5, 14, 6] are used in order to assess and renaetliction given in prob-
abilistic form. A score is given to the predicting expertttHapends on the probability
distribution the expert specifies, and on the actual eventstultimately observed. For
a setf? of possible events ang, a class of probability measures over them, a scoring
rule is then defined as a function of the forth: P x 2 — R.

A scoring rule is calledtrictly properif the predictor maximizes its expected score
by saying the true probability of the event, and receivesietist lower score for any
other prediction. That isE,,~,[S(p,w)] > E.,~p[S(¢,w)] where equality is achieved
iff p = ¢. [5,6] show a necessary and sufficient condition for a sgprire to be
strictly proper which allows easy generation of variouggercscoring rules by selecting
a bounded convex function ovér. Several commonly known scoring rules are the
spherical scoring rulé'(p, w) Ee_ the logarithmic scoring rulé(p,w) =

log(p.,), and the quadratic scoring rulp, w) = 2p,, — >__, P2,

An interesting use of scoring rules within the context of dtragent reputation sys-
tem was suggested by [10], who use payments based on scolé&sgio create the in-
centive for agents to honestly report about their expedemith some service provider.

2.2 Stochastic Programming

Stochastic Programming [8] is a branch of mathematicaljamogiing where the math-
ematical program’s variables are not precisely known. Aidgipstochastic program
formulation consists of a mathematical program composetdastraints, a target func-
tion to optimize, and some range of allowed parameters tprbielem with or without

a probability distribution over them. The program is thensidered in a two-step man-
ner. The first step involves the determination of the progarariables, and in the



second step, the parameters to the problem are selectedHecatiowed set. The vari-
ables set in the first stage are then considered within thatirgs instantiation of the
problem. Therefore they must be set in a way that will be gooafl (or most) possible
problem instances. There are naturally several possib}s wedefine what constitutes
a good solution to the problem. In this paper, we use theatig formulation:

Given a linear programming problem of the form:

minc-x
S.t.
Ax > b

A is considered to be from an allowed set of parameter$he solutionz to the
mathematical program must be feasible for all possible A. This form of robust
optimization is presented in [1], which discusses the pitypa the solution and offers
efficient algorithms for solving such problems. In our cabe, setA will consist of
the set of possible beliefs of agents, and the variabledll consist of the payments
given to agents according to the observed outcome and wawnthidve reported. The
mathematical program will be composed of constraints taesuth telling, individual
rationality, and effort investment on the part of the agémislved. These constraints
will be solved while optimizing some function — for examptbe expected payment
of the mechanism designer can be minimized.

3 The Information Elicitation Scenario

The scoring rule literature usually deals with the case iictvkhe predicting expert is
allowed to give a prediction from a continuous range of pbilitees, but we look at
a slightly different problem: we assume each agent (inalgidihe principal agent) has
access to a privately-owned random variable that takesta finmber of values only.

Modeling the knowledge of agents in the form of random vdeialseems natural
when looking at scenarios with multiple agents, since o report the value of
the private variable, the principal has a clear and simplaefaggregating their infor-
mation with other agents’ reports. The discrete possidlialso allow us more freedom
in choosing our mechanism, since we do not have to induck-teliing between in-
finitesimally different probabilities (as in the continuooase), and it will allow us to
tailor the mechanism to the exact scenario at hand. Knowl¢idat is sold is very of-
ten natural to present discreetly. For example, a personiraitg weather information
could be interested in the temperature forecast for the dayt but would not really
care if the exact temperature is off by a single degree. Ttpgimed information in this
case might be given just to make a discreet choice of how wardngss. Continuous
data would then be made discrete according to the varioimadhat it implies.

We shall denote the principal agent’s variablefByand the variables of some agent
1 by X;, and assume that it costs the agenb access its variable and learn its precise
instantiation. Since access to information is costly, #lées may have an incentive to
guess at the information instead of investing the efforetoh the truth. Another possi-
bility is that the seller will miss-report if it believes aliwould help it gain more. The



buyer of information, having only access f(which may be only loosely correlated
with X') might not be able to tell the difference.

The discrete values each variable may take are assumed tortrean knowledge.
We also assume that there is an underlying probabilityitigion Pr(£2, X4, ..., X,,)
which (for the time being) we shall consider as known to altipgants. The mech-
anism designer needs to decide on a payment scheme whicistsaofsthe payment
to each agent in case of an observation af by the principal and the reported ob-
servationsr, ..., z, by the agents. We shall denote that paymenty; . . A
payment scheme shall be considered proper if it createsteeiive for agents to enter
the game, invest the effort into revealing their variable] & tell the true value they
found. These three requirements are defined more preciskwb

3.1 The Single Agent Case

For ease of exposition, we shall first look at the restrictagecof a single agent (we
shall return to the multiagent case later). In the case ofpamgcipating agent with a
single variable, we need to satisfy three types of cong@mnorder to have a working
mechanism. For convenience, we drop the indekthe agent and denote lpy, , the
probability Pr(2 = w, X = z).

1. Truth Telling. Once an agent knows its variablezisit must have an incentive to
tell the true value to the principal, rather than anydie

Vo,x' st. xz#2 pr,r Uy g > Zp%x U7 (1)
w w

Remember thai,, ., is the probability of what actually occurs, and that the pegtn
u, 5 iS based only on whahe agenteported.

2. Individual Rationality. An agent must have a positive expected utility from par-
ticipating in the game:

pr,:z: : uw,z >c (2)
w,x

3. Investment. The value of informatiorfor the agent must be greater than its cost.
Any guess the agent makes without actually computing itsevadust be less prof-
itable (in expectation) than paying to reveal the true valfithe variable and re-

vealing it:
VI/ pr,r Uy, — C > pr,m * Uy ,a! (3)
w,T w,T

Note that all of the above constraints are linear, and cas iruapplied within a
linear program to minimize, for example, the expected césh® mechanism to the

principal agent” py.4 - U o

There are néturally cases when it is impossible to satigfyctinstraints. The fol-
lowing proposition gives a sufficient condition for infelaiity in the single agent case:

Proposition 1. If there existr, 2’ € X anda > 0 such thatr # 2/ Yw p,. =
a - Py, then there is no way to satisfy truth-telling constrainis £ and 2’ at the
same time.



Proof. When looking at the two truthfulness constraints:for’ we get:

0< D Do (e = Uer) <0 (@)

w

Which is a contradiction.

We can regard this feasibility condition as a requiremenhdépendence between
the vectorgy, £ (Pwy .z - - - Py ) OF @ny two differentz, 2’. We shall later see that the
dissimilarity between these vectors actually limits thieustness of the mechanism.

Next, we shall see that the condition described above is migtsufficient for in-
feasibility, but it is also necessary. Moreover, once weelhambeasible solution, we can

easily turn it into an optimal solution with a cost af

Proposition 2. If the probability vectorg),, are pairwise independent, then there is a
solution to the design problem with a mean cost as clogea®desired. This solution
is optimal, due to the individual rationality constraint.

Proof. We can easily build an optimal solution by using a strictlgger scoring rule:

Uy = - S(Pr(w|z),w) + Lo (5)

for some positiver, and some valug,,. Since the independence relation holds for every
pair z, «’, the probabilitiesPr(w|z) are distinct and the scoring rule assures us of the
incentive for truth telling regardless of valuesafs,, .

In order to satisfy the investment constraint one can steepiyments until the
value of information for the agent justifies the investmestting:

] (6)

c
o > max]|

@’ g;ﬁpw,x(S(Pr(w\x),w) — S(Pr(wlz’),w))

satisfies that constraint for every. This is also shown in [10].

We have assumed here implicitly that the agent is risk-aéatnd does not care
about the risk (which may not always be a suitable assumjpfiamally, we can use the
B, values to satisfy the remaining individual rationality stmaint tightly.

Bo=08>c— apr,m - S(Pr(w|z),w) @)

w,T

We have thus shown a payment scheme with the minimal costéy elicitation
problem where different observations &f entail different probability distributions of
w. Later, we shall see that when considering robust mechanidra principal agent
must always pay more than this.

3.2 The MultiAgent Case

When constructing a mechanism with many participating agem¢ should naturally
take into consideration the possible actions they are alibte take. We will assume



here that agents cannot transfer information or utility agithemselves, and must act
independently. If agents do act as a single coalition witleaeh being self-interested,
they can be treated as a single agent that has access to maayraariables which
it may learn independently. Other behavior models thauiheltension among agents
within a coalition, or coalition formation questions thesh&s, are also interesting but
are beyond the scope of this work.

In the multiagent case, the mechanism designer has momofrea creating the
mechanism. As with the classic mechanism design problesre ik the option of build-
ing a dominant strategy mechanism, or solving with the weakecept of a Nash
equilibrium. It is possible to design the information etition mechanism to work in
dominant strategies, simply by treating the variakileof each agent independently
and condition payments to agenbnly on its variable and the outcome varialske
The mechanism is then designed for each agent as if it wenegéeshgent scenario.
However, it is also possible to design the mechanism to walk as a Nash equilib-
rium, and condition the payments to agémn the reports of all other agents as well.
Each choice yields a different linear program that needstedived in order to find
appropriate payments. This gives the designer furtheredsgof freedom with which
to operate. It is easy to see that there are cases where aatdrsirategy mechanism
does not exist, but a mechanism that works in equilibriunsdéer example, Table 1
presents such a scenario.

z1|z2|Pr(z1, x2)|Pr(w = 1|z1, z2)
0|0 1/4 0
0|1 1/4 1-€
1|0 1/4 1
1|11 1/4 €

The elicitation scenario depicted here describes two random bits, eachddetpto a different
agent. The outcome bi® is almost the XOR of the bits of the two agenrtss assumed to be
positive but small.

Table 1. A Two-Agent Elicitation Scenario

A dominant strategy mechanism for agent 2 does not existegm (2 = w| X, =
1) = Pr(2 = w|X, = 0) which makes it impossible to induce truth telling for the
agent when conditioning the payments only on its report and.dNote, however, that
given agent 1's reporty is determined almost with certainty. This allows for a sienpl
mechanism for which truth telling is a Nash equilibrium: lbagents get a payment if
the result matches the XOR of their reported bits, and a peifid does not.

A Mixture of Solution Concepts A common problem with mechanisms that work
in equilibrium only, is that there may be more than one efyriim in the game. The
mechanism we have just described is no different. Condimtezxample, the case where
e = 0. The strategy of always saying the opposite of the actualtriessalso in equilib-
rium when used by both players. A possible solution is to tonsa dominant strategy
solution for some players, and design the solution for tiemplayers to ensure that
good behavior is the best response to the dominant strafelyg @irst group.



For example, we can design a mechanism for the scenario fatre T in the case
of a positivee in the following manner: agent 1's payments are conditioomlg on its
own reports in such a way as to induce good behavior. Such hanemn is possible
for agent 1, since the variabl@ is slightly biased to match the variahl,. Since its
payment does not depend on the actions of agent 2, agent 1dw@siaant strategy
of truth telling. Agent 2's payment is then designed with #ssumption that agent 1's
information is known. In that case, agent 2 can rationallyidiethat agent 1 is going to
tell the truth, and decide to do the same in order to maxintgzatility.

This example can be easily generalized to a scenario witle mgents. Once some
order< is imposed over the agents, the mechanism can be designeat siod payment
to agent will depend on its own report, of? and on any other agepitfor which j < i.

A mechanism designed in such a manner has only a single Nagtbeggm, and is thus
more appealing. The problem is that such a mechanism maywaysexist, since we
are conditioning payments on less than all the availablerinition. The ordek that
is imposed on the agents is also important and differentreramy certainly lead to
different mechanisms. Later in this paper we shall discussheer appealing property
of mechanisms constructed in this manner: they lead to fietef hierarchies when
agents need to reason about each other’s unknown beliefs.

4 Building Belief-Robust Mechanisms

We shall now relax the assumption of a commonly known prditahdistribution,
which we have used so far. We will still assume that eventsgakerned by some
probability distribution, and that agents have “close”ion$ of those distributions. We
denote the beliefs of the mechanism designes bypd the belief of a participating agent
by p = p-+e, wheree is small according to some norm. We have opted forthenorm'
for this paper, because it is easily described using lineastraints. Other norms may
also be used, and will yield convex optimization problenst #ire not linear. We now
define the robustness level of a given solutibfor some problem as follows:

Definition 1. We shall say that a givgpayment scheme,, ., is e-robustfor an elicita-
tion problem with distributiorp,, ., if it is a proper solution to every elicitation problem
with distributionp,, ,, + €, . such that||é]|.c < ¢, and is infeasible for at least one
problem instance of any larger norm.

The definition above is very conservative, and requiresiiéisg for every possible
difference in beliefs. Another possible approach is to giyarobability over possible
beliefs of the agents involved and require that the mechamisrk well in a large
enough portion of the cases.

Now, notice that if we are given a solution to the mechanissigifeproblem, we
can easily calculate its robustness lewvbly solving a linear programming problem for
every constraint. We do this by looking for the worst-case, which stands for the
worst possible belief the participating agent may hold. &ample, we can write the
following program to find the worst case for one of the trughing constraints:

! This norm simply takes the maximum over all coordinates.



min e
s.t.
E(ﬁw,x + €w,w)(uw,w - uw,w’) <0

w

vaw ﬁw,a: + €w,x >0
> €wae=0
w,x

Ve, w —€ <€, qp <€

In the program above, onkyande, , are variables. Everything else is known and
fixed. The linear problems for other constraints are easillf by substituting the first
constraint above, with the negation of one of the conssamthe original design prob-
lem. Once we have solved similar linear programs for all ihrstraints in the original
design problem, we simply take the miniredbund for them as the level of robustness
for the solution. The solution also provides us with a prabiaestance of distancefor
which the algorithm fails.

We can also try and find a solution with a given robustnesd keusing the follow-
ing stochastic program:

min Z ﬁw,w F Uy, x

w,x

S.t.
Vo 7é ! pr,x(uw,w - uw,l‘/) >0

Z Puw,x * Uy ,x >c

w,x
va! Z pw,m(uw,w - uw,m’) >c

w,x
where:
\V/J), W Puw,x = ﬁw,w + €u,x
Puwz =0
Z Pw,x = 1
w,x

—€< €, <€

Meaning thap is a distribution that is close @up toe, according to thd.., norm.

The stochastic program presented above is solvable in polial time, using con-
vex programming methods. It is shown in [1] that this can beedasing standard con-
vex optimization methods, by producing a separation orticde efficiently separates
between a given point and the convex set of feasible sokitibheir separation ora-
cle is produced by finding a problem instance from the set e§itde instances which
the given point clearly violates. We have already seen thiatcdounterexample can be
found in polynomial time by solving a linear program for eveonstraint in the original
formulation, and taking the worst case among all programs.

Now that we know how to solve the problem in polynomial timénawkind of so-
lutions can we expect to see? We have already seen that fpralgeam instance for
whichVw, z €, , = 0 (which corresponds to the original, non-robust design lerob,
the mechanism designer must pay at leasind that a mechanism that pays infinitesi-
mally more than: always exists (if any mechanism exists). A robust paymemeise,
however, is required to cope witiny possible belief variation Therfore, the payment



the buyer must pay will be at least as bad as that of any specdidem instance, and
possibly even worse.

We can examine the robust problem formulation itself andhstiat here the prin-
cipal must pay more than in the non-robust case. Let us asthah&e were given a
solution with a target function of = >_ p., 4 - uw .. Since it is not possible (due to

the other constraints) that all, ,, are 0,’then there exists a perturbation of beligfs
which is negative for the largest, , and is positive for the smallest one, which then
yields a strictly lower payment thapaccording to the belief of a participating agent.
Therefore, in order to satisfy the individual rationalitgnstraint,y must be strictly
larger tharc, which means that the mechanism designer must pay more @ctatjon.

Definition 2. We define theobustness levef* of the problenyp as the supremum of all
solution robustness levetdor which the stochastic program is solvable:

€* = sup{e|i is ane-robust solution tg} (8)
@
We shall now show that the robustness level of the problerndrsingle-agent case

is determined solely by the truth-telling constraints, entius independent of the effort
the selling agent invests in learning the information.

Proposition 3. If a given solution, , is e-robust with respect to the truth-telling con-
straints only, then it can be transformed into anmobust solution to the entire design
problem.

Proof. We achieve this by simply scaling the solution to give robass for the in-
vestment constraint and shifting it to add robustness tinitentive compatibility con-
straint. Since the solution isrobust for the truth-telling constraints we have:

Ve st |lél <e Vx#£a pr,m(uwym — Uy ar) > 0. 9)

If we sum overz we get:

pr,a:(uw,m - uw,:r’) > 6r’,€' > 0. (10)

w,x

Oure

Now multiplying everyu,, ., by a factora. = max - will not hurt any of the truth-
telling constraints, but will yield: 7

Ve V! pr,a:(uw7:v - uw,ac’) >c (11)

which satisfies all of the investment constraints, for angsilae belief change.

Next, the solution can be shifted to satisfy the individaianality constraint, with-
out hurting the robustness with regards to the previoustraings. We can simply add
a constanfs to every payment:

8>c— ILllil[uwm] 12)



We will thus get a solution* that satisfies

Vo, ug,, >c (13)
and therefore satisfies
pr,m Uy, > pr,x c=c¢ (14)
w,T w,T

for all possible belief changes, which means ti¥ats e-robust.

4.1 Robustness Level in 2-Dimensional Case

In cases where there are only two outconfigshat the principal can see, there is a
simple way to find the robustness level of the problem. In ¢ase, the vectors, are

all two-dimensional. If a mechanism exists at all (with anpustness level) then they
are pairwise independent, and therefore are spread ovéirdhquadrant of the plane.
Figure 1 depicts a scenario in two dimensions, wheérakes 3 values.

(0]

P

The 2 axes correspond with the probabilities of the two possible results pmhkbility vectors
are in the 2D plane.

Fig. 1. An Elicitation Scenario with 2 Possible Results

If we examine the truth telling constraints in vector form:
Vo, 2" Py (Uy — Uy) >0 (15)

and definey, ,» = 4, — 4., we can see that the constraints amount to finding linear
separators between the vectgrs With this geometric interpretation in mind, a robust
solution is one where perturbing the vectggsslightly will not make them cross over to
the other side of the hyper-plane definedihy, . This amounts to finding large-margin
separators between the vectors — these are separatorsetbibzaximal distance from
the points they separate.

In the two dimensional case, as vectors are spread out orghe,pt is most im-
portant to separate adjacent vectors well as these vectihe@ones closest together.
The separation between non-adjacent vectors is alwaysrb@te shall not show the
full proof of this here (due to lack of space), but instead/anltline some propositions
that lead to the proof. The next proposition will show us iha® dimensions, the best
separating hyper-plane is the same no matter which norm e us



Proposition 4. If pointsp;, p» € R? are separated by a plang » for which@; - (p7 +
pa) = 0, then the distance of both points from the separating plarezjual under any
metricL;.

Now, without loss of generality, we can assume the vegiprs. p,, are ordered in
a clockwise direction. We can then find- 1 vectors of the formy; ;1 which are linear
separators between: + 1. We choose them to be the best linear separators possible
between the two points. This is achieved by a vector for whigh; - (p; + p;+1) = 0.

In two dimensions, this condition determings.; up to a scaling factor that does not
change the separating plane.

The truth-telling constraints far = i, 2’ =1 + 1 can now be satisfied by setting
the payments to satisf, ;11 = (d; — @;+1). This can easily be done by arbitrarily
settingi, = 0, and then proceeding to set the remaining vectors in sequeriere
;11 is set according to the equation wit}); ;. Now that we have set all the payments,
we also have to show that this scheme satisfies all the otltértelling constraints, for
non-consecutive values of 2/, and that it satisfies them in a robust way. The relation-
ship between separating planes is givervpy = —v; ; andv; ; = ¥; j + Uk ;-

The following proposition leads to the conclusion thatiegtthe payments only
according to consecutive points works for the other poiatwell:

Proposition 5. If for all ¢ the separator defined by, ;,, separate; from p;,; cor-
rectly then the distance of poip} from the separatof; ;1 is smaller than its distance
from the separatof; ; for all j > i+ 1.

Similarly, the distance of poinf; from ¥; ;_; is smaller than its distance from ;
forall j <i—1.

We have therefore seen that the actual limitation on thestoless of the mechanism
is the distance between consecutive vecipandp;; (or more precisely, the distance
between them and the optimal separating plane between thehg two-dimensional
case. Taking the best separators between them leads to theahost feasible solution
for all of the truth-telling constraints, which in turn cas transformed into a feasible
solution to the full robust design problem.

4.2 Robust Mechanisms for Multiple Agents

Designing robust mechanisms for multiple agents is a farenommplex issue. The
designer must now take into account not only the possibliefsadf agents about the
probabilities of events, but also their beliefs about thieke of other agents. This is
especially true when constructing a mechanism that willkwaly at an equilibrium.
In order for an agent to believe that some strategy is in daiwim, it must also be
convinced that its counterparts believe that their stiagegre in equilibrium, or are
otherwise optimal. This will only occur if the agent belisvihat they believe that it
believes that its strategy is in equilibrium — and so on tanityi

Any uncertainty about the beliefs of other agents grows ety step up the belief
hierarchy. If agent A knows that all agents have some radaisincertainty in beliefs,
and its view of the world consists of some probability datitionp it assigns to events,



then it is possible that agent B believes the distributiop’ iand further believes that
agent A believes the distribution is somé which is at a distance of up & from p.
With an infinite belief hierarchy, it is therefore possibtereach any probability if we
go high enough in the hierarchy.

A possible solution to this problem is to use the mixture dtison concepts we
have seen before. If each agent’s payment only depends actibes of agents before
it according to some ordex, then it only needs to take their beliefs into consideration
when deciding on a strategy. The necessary belief hierasdnen finite, which limits
the possible range of beliefs about beliefs. The most extrease of this is to design
the mechanism for dominant strategies only. Naturally,latm constructed in such a
way may be less efficient or may not exist at all.

One may alternatively consider bounded rational agentsateonly capable of
looking some finite distance into the hierarchy as possibigests for the mechanism
design. An extreme example would be agents that believeetfatone else shares
their basic belief about the world, and do not reason abaub#iefs of others at all
(but may, in fact, have different beliefs).

It is also interesting to note, that when agents have somanmmshared model
of the world, and with it some common prior over the possil#édfs of one another,
then as [12] shows, the iterated expectations each of thesiders in its infinite belief
hierarchy converge to the same value. This hints at thetiatittexpectatiorihe beliefs
in the hierarchy drift towards the shared prior.

5 Conclusions and Future Work

We have discussed discrete information elicitation meisimas and have shown that
such mechanisms can be efficiently designed to be robustidearange of beliefs held
by the participating agents. The robust mechanisms arealigtmmore expensive than
their non-robust counterparts. We also discussed some obtiplications arising from
designing the mechanism for multiple participants, ancetghown some cases under
which these complications can be handled easily. Furth@oeation in that direction,
and especially an attempt to cope with the infinite beliefdriehies implied by the Nash
equilibrium concept, is still required. It would also bedresting to try and build other
belief-robust mechanisms, perhaps in the setting of peatar elicitation.

Another interesting direction to explore is the area of usibn among agents. If
agents share information and payments among themselisgyatng to be harder to
design working mechanisms. Here, there are several levelsoperation possible for
the agents, ranging from only helping other agents if therpersonal gain in it, to
helping other agents in case it is beneficial to the coalitisra whole. Exploring the
information elicitation problem from a coalition formatigoint of view would also be
interesting, as it can be expected that as agents reveaalhesvof their variables, the
coalitions they would want to join (in order to manipulate thechanism) may change
depending on the result.

We have used tools of stochastic programming to solve fonsbbolutions, but
have only scratched the surface of potential uses of thed® ©ther alternative prob-
lem formulations can be explored, especially formulatitiveg include more detailed



information about the possible beliefs of agents. Theseldvfitiquite well into the
mainstream work done in stochastic programming.

Finally, it would be interesting to explore the area of glyieffective mechanisms.
These may fail to induce truth telling by agents in some gasadonly work well with
some probability. One might explore the tradeoff betweendbnfidence level of the
designer in the mechanism, and its robustness and cost.
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