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Abstract. We study information elicitation mechanisms in which a principal
agent attempts to elicit the private information of other agents using a carefully
selected payment scheme based on proper scoring rules. Scoring rules, like many
other mechanisms set in a probabilistic environment, assume that all participating
agents share some common belief about the underlying probability of events. In
real-life situations however, the underlying distributions are not known precisely,
and small differences in beliefs of agents about these distributions may alter their
behavior under the prescribed mechanism.
We propose designing elicitation mechanisms in a manner that will be robustto
small changes in belief. We show how to algorithmically design such mechanisms
in polynomial time using tools of stochastic programming and convex program-
ming, and discuss implementation issues for multiagent scenarios.

1 Introduction

Game theory and decision theory tools have long been used to predict the behavior of
rational agents in various settings. The common assumptionmade in game theory is that
agents seek to maximize their own gains and do not take any other aspect of encounters
into consideration. In games with an element of chance, which have an outcome that is
not deterministic, a given choice can lead to many outcomes,and there are many ways
to compare among actions. The most commonly used choice is tocompare according
to expected returns from taking the action. Other methods incorporate other measures
such as risk. In any case, agents take into consideration theprobability distribution
for various outcomes of the game, or for the type of opponent they are facing and its
selected actions.

When given the task of designing a system with interactions among agents, the de-
signer faces a different problem. The mechanism must be designed so as to induce a
rational, self-interested agent to behave in a predictable, desirable manner. Themecha-
nism designliterature provides many successful examples of mechanisms that “battle”
the agent’s self interest and successfully achieve outcomes that are more socially ori-
ented, or are beneficial to the designing agent in some way (see [9] for a review).

In this paper we explore mechanisms for information elicitation. We assume that
some principal agent wishes to buy information in a probabilistic environment, perhaps
to predict some future event. In the scenario we shall explore, the information that is
obtained can only be verified probabilistically. Therefore, there is often no clear-cut way
to expose the seller of information as a liar. The proper incentives for truthfulness can



be obtained by carefully selecting the payments to the seller. In cases where common
knowledge of probabilities of events exists, it is easy to design the payment mechanism.

However, in many real-world situations, agents cannot knowthe underlying proba-
bility distributions of a game, but can only assess them by sampling or other methods.
Since the underlying probabilities cannot be directly known, there may be differences
among agents that have access to various sources of information, or that have different
priors over these distributions. The probability an agent assigns to some event is then
better characterized as abelief it holds regarding that event.

This problem is often addressed by direct revelation mechanisms that reveal to the
mechanism all needed information, including the type (or belief) of the participating
agent. The mechanism then takes this information into account and acts optimally on
behalf of the agent, eliminating any need to be untruthful. In information-trade settings
it is unlikely that the seller of information would be interested in direct revelation. Since
information is the primary commodity, revealing more of it to the mechanism is unwise,
and the agent’s beliefs about probabilities contain extra information.

In this sense, information elicitation scenarios are different from classical prefer-
ence elicitation problems. There are other important differences: in preference elicita-
tion scenarios, the participating agents focus less on the correctness of the information
given, and more on the final outcome that is decided. This is often used by the mecha-
nism designer; for example, in an auction scenario, an agentwill not overvalue an item
because it might actually be awarded an item it does not want for an inflated price. In
pure information elicitation, the information the agent gives will not affect the outcome
for him, but may only affect the payment it receives.

We suggest that in cases where there is some uncertainty regarding the beliefs of
agents, information elicitation mechanisms must be designed without full revelation
and furthermore, must be designed for robustness, not only against the manipulations
players may attempt, but also for differences in the beliefsthey may hold. Our contri-
bution in this paper is to define a notion of belief-robustness in information elicitation
mechanisms. We show efficient algorithms for finding robust mechanisms when such
mechanisms are possible, and examine the complications that arise when attempting to
extend the notion to the multiagent case.

2 Related Work and Mathematical Background

Research in artificial intelligence and on the foundations of probability theory [11] has
considered probabilities as beliefs, and several models have been suggested — for ex-
ample, probabilities over probabilities (which stirred much debate and controversy). [3]
examined the case of agents with uncertainty about the utility functions in the world.
In that case, an agent acts according to the “expected expected utility” it foresees as it
takes into consideration its own uncertainty.

The idea of finding robust solutions to problems, obviously,is not new. In control
theory for example, the problem of model uncertainty has been successfully tackled by
implementing robust control systems that rely on feedback to correct any errors in the
system’s behavior [19]. Research into robust solutions wascarried out in many areas.
Examples include genetic algorithms [17], planning [7], and more.



In [4, 13] Conitzer and Sandholm proposed applying algorithmic mechanism design
to specific scenarios as a way of tailoring the mechanism to the exact problem at hand,
and thereby developing superior mechanisms. The designingalgorithm is given an op-
timization problem — find the best possible mechanism (according to some prescribed
criteria) that works for the setting at hand. They show various complexity results for the
mechanism design problem. When solving the design problem, the probability distribu-
tions are considered part of the input and serve as fixed parameters for the optimization.

Other uses for information elicitation exist in multi-party computation [15, 16],
where some function of the agents’ secrets is computed, but agents may have reser-
vations about revealing or computing their own secret. Another area in which informa-
tion elicitation is implemented is polling. It is often of public interest to know which
candidate is going to win in elections, but regular polls arenotoriously inaccurate. To
overcome this poor performance, a different method has beensuggested for the elic-
itation and aggregation of information, namely the information market approach [2,
18]. There, agents are free to buy and sell options that will pay them an amount that
is dependent on the outcome of some event (like some specific candidate winning an
election).

2.1 Strictly Proper Scoring Rules

Scoring rules [5, 14, 6] are used in order to assess and rewarda prediction given in prob-
abilistic form. A score is given to the predicting expert that depends on the probability
distribution the expert specifies, and on the actual event that is ultimately observed. For
a setΩ of possible events andP, a class of probability measures over them, a scoring
rule is then defined as a function of the form:S : P × Ω → R.

A scoring rule is calledstrictly properif the predictor maximizes its expected score
by saying the true probability of the event, and receives a strictly lower score for any
other prediction. That is:Eω∼p[S(p, ω)] ≥ Eω∼p[S(q, ω)] where equality is achieved
iff p = q. [5, 6] show a necessary and sufficient condition for a scoring rule to be
strictly proper which allows easy generation of various proper scoring rules by selecting
a bounded convex function overP. Several commonly known scoring rules are the
spherical scoring ruleS(p, ω) = pω√

P

ω′ p
ω′

2
, the logarithmic scoring ruleS(p, ω) =

log(pω), and the quadratic scoring ruleS(p, ω) = 2pω − ∑
ω′ p2

ω′ .
An interesting use of scoring rules within the context of a multiagent reputation sys-

tem was suggested by [10], who use payments based on scoring rules to create the in-
centive for agents to honestly report about their experience with some service provider.

2.2 Stochastic Programming

Stochastic Programming [8] is a branch of mathematical programming where the math-
ematical program’s variables are not precisely known. A typical stochastic program
formulation consists of a mathematical program composed ofconstraints, a target func-
tion to optimize, and some range of allowed parameters to theproblem with or without
a probability distribution over them. The program is then considered in a two-step man-
ner. The first step involves the determination of the program’s variables, and in the



second step, the parameters to the problem are selected fromthe allowed set. The vari-
ables set in the first stage are then considered within the resulting instantiation of the
problem. Therefore they must be set in a way that will be good for all (or most) possible
problem instances. There are naturally several possible ways to define what constitutes
a good solution to the problem. In this paper, we use the following formulation:

Given a linear programming problem of the form:

min c · x
s.t.

Ax ≥ b

A is considered to be from an allowed set of parametersA. The solutionx to the
mathematical program must be feasible for all possibleA ∈ A. This form of robust
optimization is presented in [1], which discusses the property of the solution and offers
efficient algorithms for solving such problems. In our case,the setA will consist of
the set of possible beliefs of agents, and the variablesx will consist of the payments
given to agents according to the observed outcome and what they have reported. The
mathematical program will be composed of constraints to ensure truth telling, individual
rationality, and effort investment on the part of the agentsinvolved. These constraints
will be solved while optimizing some function — for example,the expected payment
of the mechanism designer can be minimized.

3 The Information Elicitation Scenario

The scoring rule literature usually deals with the case in which the predicting expert is
allowed to give a prediction from a continuous range of probabilities, but we look at
a slightly different problem: we assume each agent (including the principal agent) has
access to a privately-owned random variable that takes a finite number of values only.

Modeling the knowledge of agents in the form of random variables seems natural
when looking at scenarios with multiple agents, since once agents report the value of
the private variable, the principal has a clear and simple way of aggregating their infor-
mation with other agents’ reports. The discrete possibilities also allow us more freedom
in choosing our mechanism, since we do not have to induce truth-telling between in-
finitesimally different probabilities (as in the continuous case), and it will allow us to
tailor the mechanism to the exact scenario at hand. Knowledge that is sold is very of-
ten natural to present discreetly. For example, a person acquiring weather information
could be interested in the temperature forecast for the nextday, but would not really
care if the exact temperature is off by a single degree. The required information in this
case might be given just to make a discreet choice of how warm to dress. Continuous
data would then be made discrete according to the various actions that it implies.

We shall denote the principal agent’s variable byΩ, and the variables of some agent
i by Xi, and assume that it costs the agentci to access its variable and learn its precise
instantiation. Since access to information is costly, the seller may have an incentive to
guess at the information instead of investing the effort to learn the truth. Another possi-
bility is that the seller will miss-report if it believes a lie would help it gain more. The



buyer of information, having only access toΩ (which may be only loosely correlated
with X) might not be able to tell the difference.

The discrete values each variable may take are assumed to be common knowledge.
We also assume that there is an underlying probability distributionPr(Ω,X1, . . . ,Xn)
which (for the time being) we shall consider as known to all participants. The mech-
anism designer needs to decide on a payment scheme which consists of the payment
to each agenti in case of an observation ofω by the principal and the reported ob-
servationsx1, . . . , xn by the agents. We shall denote that payment by:ui

ω,x1,...,xn
. A

payment scheme shall be considered proper if it creates the incentive for agents to enter
the game, invest the effort into revealing their variable, and to tell the true value they
found. These three requirements are defined more precisely below.

3.1 The Single Agent Case

For ease of exposition, we shall first look at the restricted case of a single agent (we
shall return to the multiagent case later). In the case of oneparticipating agent with a
single variable, we need to satisfy three types of constraints in order to have a working
mechanism. For convenience, we drop the indexi of the agent and denote bypω,x the
probabilityPr(Ω = ω,X = x).

1. Truth Telling. Once an agent knows its variable isx, it must have an incentive to
tell the true value to the principal, rather than any liex′.

∀x, x′ s.t. x 6= x′

∑

ω

pω,x · uω,x >
∑

ω

pω,x · uω,x′ (1)

Remember thatpω,x is the probability of what actually occurs, and that the payment
uω,x′ is based only on whatthe agentreported.

2. Individual Rationality. An agent must have a positive expected utility from par-
ticipating in the game: ∑

ω,x

pω,x · uω,x > c (2)

3. Investment. The value of informationfor the agent must be greater than its cost.
Any guess the agent makes without actually computing its value must be less prof-
itable (in expectation) than paying to reveal the true valueof the variable and re-
vealing it:

∀x′

∑

ω,x

pω,x · uω,x − c >
∑

ω,x

pω,x · uω,x′ (3)

Note that all of the above constraints are linear, and can thus be applied within a
linear program to minimize, for example, the expected cost of the mechanism to the
principal agent:

∑
ω,x

pω,x · uω,x.

There are naturally cases when it is impossible to satisfy the constraints. The fol-
lowing proposition gives a sufficient condition for infeasibility in the single agent case:

Proposition 1. If there existx, x′ ∈ X and α ≥ 0 such thatx 6= x′ ∀ω pω,x =
α · pω,x′ , then there is no way to satisfy truth-telling constraints for x and x′ at the
same time.



Proof. When looking at the two truthfulness constraints forx, x′ we get:

0 <
∑

ω

pω,x · (uω,x − uω,x′) < 0 (4)

Which is a contradiction.

We can regard this feasibility condition as a requirement ofindependence between
the vectors~px , (pω1,x . . . pωk,x) of any two differentx, x′. We shall later see that the
dissimilarity between these vectors actually limits the robustness of the mechanism.

Next, we shall see that the condition described above is not only sufficient for in-
feasibility, but it is also necessary. Moreover, once we have a feasible solution, we can
easily turn it into an optimal solution with a cost ofc.

Proposition 2. If the probability vectors~px are pairwise independent, then there is a
solution to the design problem with a mean cost as close toc as desired. This solution
is optimal, due to the individual rationality constraint.

Proof. We can easily build an optimal solution by using a strictly proper scoring rule:

uω,x = α · S(Pr(ω|x), ω) + βω (5)

for some positiveα, and some valueβω. Since the independence relation holds for every
pair x, x′, the probabilitiesPr(ω|x) are distinct and the scoring rule assures us of the
incentive for truth telling regardless of values ofα, βω.

In order to satisfy the investment constraint one can scale the payments until the
value of information for the agent justifies the investment.setting:

α > max
x′

[
c∑

ω,x

pω,x(S(Pr(ω|x), ω) − S(Pr(ω|x′), ω))
] (6)

satisfies that constraint for everyx′. This is also shown in [10].
We have assumed here implicitly that the agent is risk-neutral and does not care

about the risk (which may not always be a suitable assumption). Finally, we can use the
βω values to satisfy the remaining individual rationality constraint tightly.

βω = β > c − α
∑

ω,x

pω,x · S(Pr(ω|x), ω) (7)

We have thus shown a payment scheme with the minimal cost for every elicitation
problem where different observations ofX entail different probability distributions of
ω. Later, we shall see that when considering robust mechanisms, the principal agent
must always pay more than this.

3.2 The MultiAgent Case

When constructing a mechanism with many participating agents, we should naturally
take into consideration the possible actions they are allowed to take. We will assume



here that agents cannot transfer information or utility among themselves, and must act
independently. If agents do act as a single coalition without each being self-interested,
they can be treated as a single agent that has access to many random variables which
it may learn independently. Other behavior models that include tension among agents
within a coalition, or coalition formation questions themselves, are also interesting but
are beyond the scope of this work.

In the multiagent case, the mechanism designer has more freedom in creating the
mechanism. As with the classic mechanism design problem, there is the option of build-
ing a dominant strategy mechanism, or solving with the weaker concept of a Nash
equilibrium. It is possible to design the information elicitation mechanism to work in
dominant strategies, simply by treating the variableXi of each agenti independently
and condition payments to agenti only on its variable and the outcome variableΩ.
The mechanism is then designed for each agent as if it were a single-agent scenario.
However, it is also possible to design the mechanism to work only as a Nash equilib-
rium, and condition the payments to agenti on the reports of all other agents as well.
Each choice yields a different linear program that needs to be solved in order to find
appropriate payments. This gives the designer further degrees of freedom with which
to operate. It is easy to see that there are cases where a dominant strategy mechanism
does not exist, but a mechanism that works in equilibrium does. For example, Table 1
presents such a scenario.

x1 x2 Pr(x1, x2) Pr(ω = 1|x1, x2)

0 0 1/4 0
0 1 1/4 1-ε
1 0 1/4 1
1 1 1/4 ε

The elicitation scenario depicted here describes two random bits, each belonging to a different
agent. The outcome bitΩ is almost the XOR of the bits of the two agents.ε is assumed to be
positive but small.

Table 1.A Two-Agent Elicitation Scenario

A dominant strategy mechanism for agent 2 does not exist, sincePr(Ω = ω|X2 =
1) = Pr(Ω = ω|X2 = 0) which makes it impossible to induce truth telling for the
agent when conditioning the payments only on its report and on ω. Note, however, that
given agent 1’s report,ω is determined almost with certainty. This allows for a simple
mechanism for which truth telling is a Nash equilibrium: both agents get a payment if
the result matches the XOR of their reported bits, and a penalty if it does not.

A Mixture of Solution Concepts A common problem with mechanisms that work
in equilibrium only, is that there may be more than one equilibrium in the game. The
mechanism we have just described is no different. Consider,for example, the case where
ε = 0. The strategy of always saying the opposite of the actual result is also in equilib-
rium when used by both players. A possible solution is to construct a dominant strategy
solution for some players, and design the solution for the other players to ensure that
good behavior is the best response to the dominant strategy of the first group.



For example, we can design a mechanism for the scenario from Table 1 in the case
of a positiveε in the following manner: agent 1’s payments are conditionedonly on its
own reports in such a way as to induce good behavior. Such a mechanism is possible
for agent 1, since the variableΩ is slightly biased to match the variableX1. Since its
payment does not depend on the actions of agent 2, agent 1 has adominant strategy
of truth telling. Agent 2’s payment is then designed with theassumption that agent 1’s
information is known. In that case, agent 2 can rationally decide that agent 1 is going to
tell the truth, and decide to do the same in order to maximize its utility.

This example can be easily generalized to a scenario with more agents. Once some
order≺ is imposed over the agents, the mechanism can be designed so that the payment
to agenti will depend on its own report, onΩ and on any other agentj for whichj ≺ i.
A mechanism designed in such a manner has only a single Nash equilibrium, and is thus
more appealing. The problem is that such a mechanism may not always exist, since we
are conditioning payments on less than all the available information. The order≺ that
is imposed on the agents is also important and different orders may certainly lead to
different mechanisms. Later in this paper we shall discuss another appealing property
of mechanisms constructed in this manner: they lead to finitebelief hierarchies when
agents need to reason about each other’s unknown beliefs.

4 Building Belief-Robust Mechanisms

We shall now relax the assumption of a commonly known probability distribution,
which we have used so far. We will still assume that events aregoverned by some
probability distribution, and that agents have “close” notions of those distributions. We
denote the beliefs of the mechanism designer byp̂ and the belief of a participating agent
byp = p̂+ε, whereε is small according to some norm. We have opted for theL∞ norm1

for this paper, because it is easily described using linear constraints. Other norms may
also be used, and will yield convex optimization problems that are not linear. We now
define the robustness level of a given solution~u for some problem as follows:

Definition 1. We shall say that a givenpayment schemeuω,x is ε-robustfor an elicita-
tion problem with distribution̂pω,x if it is a proper solution to every elicitation problem
with distribution p̂ω,x + εω,x such that‖~ε‖∞ < ε, and is infeasible for at least one
problem instance of any larger norm.

The definition above is very conservative, and requires feasibility for every possible
difference in beliefs. Another possible approach is to givea probability over possible
beliefs of the agents involved and require that the mechanism work well in a large
enough portion of the cases.

Now, notice that if we are given a solution to the mechanism design problem, we
can easily calculate its robustness levelε by solving a linear programming problem for
every constraint. We do this by looking for the worst-caseεω,x, which stands for the
worst possible belief the participating agent may hold. Forexample, we can write the
following program to find the worst case for one of the truth-telling constraints:

1 This norm simply takes the maximum over all coordinates.



min ε

s.t.∑
ω

(p̂ω,x + εω,x)(uω,x − uω,x′) ≤ 0

∀x, ω p̂ω,x + εω,x ≥ 0∑
ω,x

εω,x = 0

∀x, ω −ε ≤ εω,x ≤ ε

In the program above, onlyε andεω,x are variables. Everything else is known and
fixed. The linear problems for other constraints are easily built by substituting the first
constraint above, with the negation of one of the constraints in the original design prob-
lem. Once we have solved similar linear programs for all the constraints in the original
design problem, we simply take the minimalε found for them as the level of robustness
for the solution. The solution also provides us with a problem instance of distanceε for
which the algorithm fails.

We can also try and find a solution with a given robustness level ε using the follow-
ing stochastic program:

min
∑
ω,x

p̂ω,x · uω,x

s.t.
∀x 6= x′

∑
ω

pω,x(uω,x − uω,x′) > 0
∑
ω,x

pω,x · uω,x > c

∀x′
∑
ω,x

pω,x(uω,x − uω,x′) > c

where:
∀x, ω pω,x = p̂ω,x + εω,x

pω,x ≥ 0∑
ω,x

pω,x = 1

−ε ≤ εω,x ≤ ε

Meaning thatp is a distribution that is close tôp up toε, according to theL∞ norm.
The stochastic program presented above is solvable in polynomial time, using con-

vex programming methods. It is shown in [1] that this can be done using standard con-
vex optimization methods, by producing a separation oraclethat efficiently separates
between a given point and the convex set of feasible solutions. Their separation ora-
cle is produced by finding a problem instance from the set of possible instances which
the given point clearly violates. We have already seen that this counterexample can be
found in polynomial time by solving a linear program for every constraint in the original
formulation, and taking the worst case among all programs.

Now that we know how to solve the problem in polynomial time, what kind of so-
lutions can we expect to see? We have already seen that for theprogram instance for
which∀ω, x εω,x = 0 (which corresponds to the original, non-robust design problem),
the mechanism designer must pay at leastc, and that a mechanism that pays infinitesi-
mally more thanc always exists (if any mechanism exists). A robust payment scheme,
however, is required to cope withany possible belief variation Therfore, the payment



the buyer must pay will be at least as bad as that of any specificproblem instance, and
possibly even worse.

We can examine the robust problem formulation itself and show that here the prin-
cipal must pay more than in the non-robust case. Let us assumethat we were given a
solution with a target function ofγ =

∑
ω,x

p̂ω,x · uω,x. Since it is not possible (due to

the other constraints) that alluω,x are 0, then there exists a perturbation of beliefsεω,x

which is negative for the largestuω,x and is positive for the smallest one, which then
yields a strictly lower payment thanγ according to the belief of a participating agent.
Therefore, in order to satisfy the individual rationality constraint,γ must be strictly
larger thanc, which means that the mechanism designer must pay more in expectation.

Definition 2. We define therobustness levelε∗ of the problem̂p as the supremum of all
solution robustness levelsε for which the stochastic program is solvable:

ε∗ , sup
~u

{ε|~u is anε-robust solution tôp} (8)

We shall now show that the robustness level of the problem in the single-agent case
is determined solely by the truth-telling constraints, andis thus independent of the effort
the selling agent invests in learning the information.

Proposition 3. If a given solutionuω,x is ε-robust with respect to the truth-telling con-
straints only, then it can be transformed into anε-robust solution to the entire design
problem.

Proof. We achieve this by simply scaling the solution to give robustness for the in-
vestment constraint and shifting it to add robustness to theincentive compatibility con-
straint. Since the solution isε-robust for the truth-telling constraints we have:

∀~ε s.t. ‖~ε‖ < ε ∀x 6= x′

∑

ω

pω,x(uω,x − uω,x′) > 0. (9)

If we sum overx we get:
∑

ω,x

pω,x(uω,x − uω,x′) > δx′,~ε > 0. (10)

Now multiplying everyuω,x by a factorα = max
x′,~ε

c
δ

x′~ε

will not hurt any of the truth-

telling constraints, but will yield:

∀~ε ∀x′

∑

ω,x

pω,x(uω,x − uω,x′) > c (11)

which satisfies all of the investment constraints, for any possible belief change.
Next, the solution can be shifted to satisfy the individual rationality constraint, with-

out hurting the robustness with regards to the previous constraints. We can simply add
a constantβ to every payment:

β > c − min
ω,x

[uω,x]. (12)



We will thus get a solutionu∗ that satisfies

∀ω, x u∗

ω,x > c (13)

and therefore satisfies
∑

ω,x

pω,x · u∗

ω,x >
∑

ω,x

pω,x · c = c (14)

for all possible belief changes, which means thatu∗ is ε-robust.

4.1 Robustness Level in 2-Dimensional Case

In cases where there are only two outcomesΩ that the principal can see, there is a
simple way to find the robustness level of the problem. In thiscase, the vectors~px are
all two-dimensional. If a mechanism exists at all (with any robustness level) then they
are pairwise independent, and therefore are spread over thefirst quadrant of the plane.
Figure 1 depicts a scenario in two dimensions, whereX takes 3 values.

The 2 axes correspond with the probabilities of the two possible results so allprobability vectors
are in the 2D plane.

Fig. 1. An Elicitation Scenario with 2 Possible Results

If we examine the truth telling constraints in vector form:

∀x, x′ ~px · (~ux − ~ux′) > 0 (15)

and define~vx,x′ = ~ux − ~ux′ , we can see that the constraints amount to finding linear
separators between the vectors~px. With this geometric interpretation in mind, a robust
solution is one where perturbing the vectors~px slightly will not make them cross over to
the other side of the hyper-plane defined by~vx,x′ . This amounts to finding large-margin
separators between the vectors — these are separators that are of maximal distance from
the points they separate.

In the two dimensional case, as vectors are spread out on the plane, it is most im-
portant to separate adjacent vectors well as these vectors are the ones closest together.
The separation between non-adjacent vectors is always better. We shall not show the
full proof of this here (due to lack of space), but instead only outline some propositions
that lead to the proof. The next proposition will show us thatin 2 dimensions, the best
separating hyper-plane is the same no matter which norm we use:



Proposition 4. If points~p1, ~p2 ∈ R
2 are separated by a plane~v1,2 for which~v1,2 ·(~p1+

~p2) = 0, then the distance of both points from the separating plane is equal under any
metricLi.

Now, without loss of generality, we can assume the vectors~p1 . . . ~pn are ordered in
a clockwise direction. We can then findn−1 vectors of the form~vi,i+1 which are linear
separators betweeni, i + 1. We choose them to be the best linear separators possible
between the two points. This is achieved by a vector for which~vi,i+1 · (~pi + ~pi+1) = 0.
In two dimensions, this condition determines~vi,i+1 up to a scaling factor that does not
change the separating plane.

The truth-telling constraints forx = i, x′ = i + 1 can now be satisfied by setting
the payments to satisfy~vi,i+1 = (~ui − ~ui+1). This can easily be done by arbitrarily
setting~u1 = ~0, and then proceeding to set the remaining vectors in sequence, where
~ui+1 is set according to the equation with~vi,i+1. Now that we have set all the payments,
we also have to show that this scheme satisfies all the other truth-telling constraints, for
non-consecutive values ofx, x′, and that it satisfies them in a robust way. The relation-
ship between separating planes is given by~vi,j = −~vj,i and~vi,j = ~vi,k + ~vk,j .

The following proposition leads to the conclusion that setting the payments only
according to consecutive points works for the other points as well:

Proposition 5. If for all i the separator defined by~vi,i+1 separates~pi from ~pi+1 cor-
rectly then the distance of point~pi from the separator~vi,i+1 is smaller than its distance
from the separator~vi,j for all j > i + 1.

Similarly, the distance of point~pi from~vi,i−1 is smaller than its distance from~vi,j

for all j < i − 1.

We have therefore seen that the actual limitation on the robustness of the mechanism
is the distance between consecutive vectorspi andpi+1 (or more precisely, the distance
between them and the optimal separating plane between them)in the two-dimensional
case. Taking the best separators between them leads to the most robust feasible solution
for all of the truth-telling constraints, which in turn can be transformed into a feasible
solution to the full robust design problem.

4.2 Robust Mechanisms for Multiple Agents

Designing robust mechanisms for multiple agents is a far more complex issue. The
designer must now take into account not only the possible beliefs of agents about the
probabilities of events, but also their beliefs about the beliefs of other agents. This is
especially true when constructing a mechanism that will work only at an equilibrium.
In order for an agent to believe that some strategy is in equilibrium, it must also be
convinced that its counterparts believe that their strategies are in equilibrium, or are
otherwise optimal. This will only occur if the agent believes that they believe that it
believes that its strategy is in equilibrium — and so on to infinity.

Any uncertainty about the beliefs of other agents grows withevery step up the belief
hierarchy. If agent A knows that all agents have some radiusε of uncertainty in beliefs,
and its view of the world consists of some probability distributionp it assigns to events,



then it is possible that agent B believes the distribution isp′ and further believes that
agent A believes the distribution is somep′′ which is at a distance of up to2ε from p.
With an infinite belief hierarchy, it is therefore possible to reach any probability if we
go high enough in the hierarchy.

A possible solution to this problem is to use the mixture of solution concepts we
have seen before. If each agent’s payment only depends on theactions of agents before
it according to some order≺, then it only needs to take their beliefs into consideration
when deciding on a strategy. The necessary belief hierarchyis then finite, which limits
the possible range of beliefs about beliefs. The most extreme case of this is to design
the mechanism for dominant strategies only. Naturally, a solution constructed in such a
way may be less efficient or may not exist at all.

One may alternatively consider bounded rational agents that are only capable of
looking some finite distance into the hierarchy as possible subjects for the mechanism
design. An extreme example would be agents that believe thateveryone else shares
their basic belief about the world, and do not reason about the beliefs of others at all
(but may, in fact, have different beliefs).

It is also interesting to note, that when agents have some common shared model
of the world, and with it some common prior over the possible beliefs of one another,
then as [12] shows, the iterated expectations each of them considers in its infinite belief
hierarchy converge to the same value. This hints at the fact thatin expectationthe beliefs
in the hierarchy drift towards the shared prior.

5 Conclusions and Future Work

We have discussed discrete information elicitation mechanisms and have shown that
such mechanisms can be efficiently designed to be robust to a wide range of beliefs held
by the participating agents. The robust mechanisms are naturally more expensive than
their non-robust counterparts. We also discussed some of the complications arising from
designing the mechanism for multiple participants, and have shown some cases under
which these complications can be handled easily. Further exploration in that direction,
and especially an attempt to cope with the infinite belief hierarchies implied by the Nash
equilibrium concept, is still required. It would also be interesting to try and build other
belief-robust mechanisms, perhaps in the setting of preference elicitation.

Another interesting direction to explore is the area of collusion among agents. If
agents share information and payments among themselves, itis going to be harder to
design working mechanisms. Here, there are several levels of cooperation possible for
the agents, ranging from only helping other agents if there is personal gain in it, to
helping other agents in case it is beneficial to the coalitionas a whole. Exploring the
information elicitation problem from a coalition formation point of view would also be
interesting, as it can be expected that as agents reveal the values of their variables, the
coalitions they would want to join (in order to manipulate the mechanism) may change
depending on the result.

We have used tools of stochastic programming to solve for robust solutions, but
have only scratched the surface of potential uses of these tools. Other alternative prob-
lem formulations can be explored, especially formulationsthat include more detailed



information about the possible beliefs of agents. These would fit quite well into the
mainstream work done in stochastic programming.

Finally, it would be interesting to explore the area of partially-effective mechanisms.
These may fail to induce truth telling by agents in some cases, and only work well with
some probability. One might explore the tradeoff between the confidence level of the
designer in the mechanism, and its robustness and cost.
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