
February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

When to Apply the Fifth Commandment: The Effects of Parenting on Genetic and
Learning Agents

Michael Berger Jeffrey S. Rosenschein
School of Engineering and Computer Science

Hebrew University
Hebrew University, School of Engineering and Computer Science,

Givat Ram, Jerusalem 91904 Israel
Telephone: ++972-2-658-5353

Fax: ++972-2-658-5439
{mberger,jeff}@cs.huji.ac.il

(Received 00 Month 200x; In final form 00 Month 200x)

This article explores hybrid agents that use a variety of techniques to improve their performance in an environment overtime. We considered, specifically,
genetic-learning-parenting hybrid agents, which used a combination of a genetic algorithm, a learning algorithm (in our case, reinforcement learning), and a
parenting algorithm, to modify their activity. We experimentally examined what constitutes the best combination of weights over these three algorithms, as a
function of the environment’s rate of change.

For stationary environments, a genetic-parenting combination proved best, with genetics being given the most weight.For environments with low rates of
change, genetic-learning-parenting hybrids were best, with learning having the most weight, and parenting having at least as much weight as genetics. For
environments with high rates of change, pure learning agents proved best. A pure parenting algorithm operated extremely poorly in all settings.

Keywords:
Parenting; Genetic Algorithms; Learning; Q-learning; Monte Carlo

1 Introduction

1.1 Genetic and Learning Algorithms

Among the most prominent types of heuristic algorithms usedin dealing with NP-hard problems are genetic al-
gorithms. Genetic algorithms operate by representing every possible solution to a given problem as a series of
“genes”. Multiple agents, each containing its own series ofgenes, start working to solve the problem. As in bi-
ological evolution, these genes are developed over many generations by a repeated process of genetic crossovers,
mutations, evaluations, and “survival of the fittest”. Overtime, the developed genes contain information that is gath-
ered over these multiple generations, and hopefully, they eventually provide an optimal or near-optimal solution to
the problem.

The main disadvantage of genetic algorithms is that they aremainly suitable for dealing with stationary problems.
Problems, however, may be of a dynamic nature, i.e., have a hidden parameter, or state, that occasionally changes.
In such dynamic situations, when a change occurs in the problem’s state, genetic algorithms tend to collapse and
start over again, searching for a new optimal solution, often without much success (Cobb and Grefenstette, 1993).

A modification that can help genetic algorithms handle dynamic problems is to combine them with a learning
algorithm. Such an approach has been used in developing bothagents that handle stationary environments (Hinton
and Nowlan, 1996; Nolfi et al., 1994; Parisi and Nolfi, 1996) and agents that handle dynamic environments (Littman,
1996; Littmann and Ackley, 1991; Nolfi and Floreano, 1999; Nolfi and Parisi, 1997; Todd and Miller, 1991).

For more precise interpretation of the term “learning”, we need to first examine the termmemory of evolution.
Memory of evolution simply refers to memory that can be directly transferred from an individual in one generation
to an individual in the subsequent generation. Note that genetic information is not included in memory of evolution,
as the genetic information contains only implicit instructions and not a history of events. Thus, an assumption
about the presence or absence of memory of evolution is crucial in the interpretation of the term “learning”. If

1



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

2 Michael Berger

memory of evolution is assumed to be present, any learning process started at one generation can be continued in
the next. Otherwise, any learning process started at one generation must come to an end at that same generation.
As the absence of memory of evolution correctly describes natural evolution, and as natural evolution has been the
dominant paradigm for artificial evolution, any further interpretation of the term “learning” in this article should
assume the absence of memory of evolution (Sebag et al., 1997).

Genetic algorithms and learning algorithms are inherentlydifferent, in that genetic algorithms gather information
over many generations, while learning algorithms gather information only over a single generation. Herein lies the
flexibility of learning—as long as genetic effects are neutralized, learning is unbiased by information gathered in
previous generations, and is therefore more suitable for dealing with a dynamic problem, where information from
previous generations might not be relevant. On the other hand, a learning process might actually be missingsome
important information from previous generations, causingit to be more wasteful in relearning information, and
ultimately less accurate (Mayley, 1996).

1.2 Parenting Algorithms

Let us informally define a current decision’s level ofsubstantiationto be determined by the amount of information
gathered as a basis for reaching that decision. Let us also informally define a current decision’s level ofrelevance
to be determined by the level of similarity between the current environment and the environment at the time the
information was gathered. Let us also say that an algorithm’s levels of substantiation and relevance are determined
by the levels of substantiation and relevance attained by the decisions that are taken when using that algorithm.

In the discussion above of algorithms that deal with dynamicproblems, two extremes have been presented: a
genetic algorithm, which has a high level of substantiationbut a low level of relevance, and a learning algorithm,
which has a low level of substantiation but a high level of relevance. One might consider how algorithms that are
“in-between” might fare—specifically, for a problem with the following two conditions:

• Condition C1: The problem state can only change to a state adjacent to it in the state space, with adjacency
defined by some metric over that space.

• Condition C2:The problem has a very low (but positive) rate of dynamic change.

For such problems, it seems that the an in-between algorithmmight have a higher level of substantiation than
learning, while still preserving an adequate level of relevance, becauseC1 andC2 combined imply that a current
problem state is somewhat similar to problem states that were encountered over the last few generations.

Thus, we introduce the notion of parenting. We define aparenting algorithmas one in which agents follow in-
structions from their parents, i.e., agents of the previousgeneration, and the parents determine their instructions ac-
cording to what they themselves had learned over thecompletecourse of their generation—a posteriori. In contrast
to learning agents, parenting agents do not execute their own actions according to what they learn for themselves.

A parenting algorithm has higher substantiation than a learning algorithm. Thus, it avoids decisions based on mo-
mentary experience, which might be more prone to error—especially in early stages (Johnston, 1996). Conversely,
a parenting algorithm has lower substantiation than a genetic algorithm, because its information is gathered over
the span of a single generation, and not over many generations. Thus, a parenting algorithm is more prone to error
than a genetic algorithm.

As for relevance, in a given generation, a parenting algorithm has lower relevance than a learning algorithm,
because its information is gathered in the previous generation and not in the current one. Conversely, a parenting
algorithm has higher relevance than a genetic algorithm, because its information is unbiased by whatever happened
in generations before the previous one.

A parenting algorithm seems to fit the definition of an “in-between” algorithm. Can it help handle a problem that
fulfills conditionsC1 andC2? This question constitutes one focus of this article.

1.3 Overview of the Article

In Section 2, we describe the overall environment of our experiments, and what constituted our goal for the agents.
In Section 3, the hybrid agents themselves are presented, along with their genetic, learning, and parenting aspects.
Section 4 describes the various experimental runs that weremade, while Section 5 presents the results of those



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

Jeffrey S. Rosenschein 3

experiments. Section 6 gives an overview of related work. Our conclusions are discussed in Section 7.

2 Environment and Task

2.1 Environment

We define around to be the basic time unit. The environment consists of a rectangular grid, with dimensions
wEnv × hEnv. The grid contains agents and food. In every round, each agent can either “eat” or “starve”. This
environment is generally similar to that used in Nolfi et al. (1994).

In each round, each square on the grid may contain any number of agents, and it may or may not contain unlimited
food—unlimited in the sense that when food is present in a square, all agents in that square are said to have eaten
(unlike Nolfi et al. (1994)). The reason for making food unlimited is to avoid dependencies between the actions and
performance of different agents, thus avoiding the complexity of social interactions. At the end of a round, an agent
may travel to an adjacent square or stay put.

The appearance or non-appearance of food is actually controlled by structures in the environment to which agents
are oblivious. These arefood patches. A food patch is a positive probability functionPFood defined over a group
of adjacent squares on the grid. Ifs is a square, thenPFood(s) defines the probability that in a given round, food
will appear in squares. If several food patches,PFood1

. . . PFoodk
, have a non-empty domain intersection, then for

each squares in that intersection,PFood(s) is defined asmaxk
i=1 PFoodi

(s). The environment containsnEnv
Patch food

patches.
A fundamental attribute of the environment isαEnv, which is the probability that in a given round, the food

patches move (i.e., their domains move). When this occurs,all food patches move one square, each in its own
random direction (EAST, SOUTH, WEST, NORTH).

One last important property of the environment is that it is cyclic. This is true both for movements of agents and
of food patches. This means that a movement from a square residing on the edge in the direction of the edge results
in re-appearance on the other side of the grid. The grid was defined as cyclic so that all squares in it would be
homogeneous (thus inner squares, edge squares and corner squares all have the same importance).

2.2 Mapping the Environment to an Abstract Problem

If we define an abstract problem as that of finding food in an environment that has a pre-determined set ofn food
patches, each with a pre-determined shape, then a given position of all food patches actually constitutes one state
of that problem. For food patchi, let (xFoodi

, yFoodi
) be any representational point from within it.

A metric can then be defined on the2n-dimensional space of these states by defining any vectorv in that space,
v ≡ (x1, y1, . . . , xn, yn), to denote the positions of the representational points of all food patches in that state, i.e.,
∀i (xFoodi

= xi ∧ yFoodi
= yi). Thus, the environment presented above in Section 2.1 fulfills conditionC1. For

very low positive values ofαEnv, it fulfills condition C2as well.

2.3 Task

The goal in our experiments has been to synthesize an agent that enjoys a maximaleating-rate—the fraction of
rounds in which it eats, out of the total number of rounds. This task definition requires more detail, in two respects:
1) how to integrate agent generations in the definition, and 2) how to measure the success of agents.

An integration of agent generations in the task definition isrequired since the development of genetic agents and
parenting agents does not occur in a single agent’s lifetime, but over many lifetimes. Thus, the concept ofgeneration
is defined: a generation of agents is a group of agents that start their life in the environment simultaneously, and end
their life in the environment simultaneously. To avoid having some agents receive unfair advantages over others, all
agents of the same generation start at the same position, a position that is randomly determined for each generation.

It is also important to note that the environment is completely oblivious to the concept of generations. This means
that the position of food patches is not reset at the start of anew generation—the environment is “continuous” across
generations.



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

4 Michael Berger

When considering how to measure agent success, such measurement must not consist of only the initial genera-
tion; agents that develop over multiple generations must beallowed time to develop. Also, the measurement must
include a large enough number of generations so as to increase the statistical validity of the results.

Having presented those aspects above that required more detail, a more accurate task can now be formulated. For
a given agent generation, let aBER (best eating-rate)be defined as the maximal eating-rate of all agents in that
generation (a similar metric for success was used in Sebag etal. (1997)). In a run ofnTask

GenRun agent generations,
each consisting ofnTask

Ag agents that live fornTask
Rnd rounds, let the measure of successλ be defined as the average

over the BERs of the lastnTask
GenTest generations. Our goal is then to develop agents that maximizeλ.

3 Agents

The agents used in our experiments are hybrids of a genetically-developing agent, a self-learning agent, and a
parenting agent. Before defining these agent types, a few definitions are in order.

3.1 Definitions

• Perception:An element of the set:

{0, . . . , wEnv − 1} × {0, . . . , hEnv − 1} × {0, 1}

Indicates a position (of the agent) on the grid, and whether the agent found food in that position.
• Reward:That part of the perception which indicates whether the agent found food (reward is 1) or not (reward

is 0).
• Action: A direction of movement (for the agent to move next). One of EAST, SOUTH, WEST, NORTH, HALT.
• Memory: A sequence containing the agent’s last perception-action pairs. A memory of lengthm will contain

the last perception, preceded by the previousm − 1 perception-action pairs. Note that in principle, there are
(

2 · hEnv · wEnv
)m

· 5m−1 possible memories of lengthm. However, since movement in our environment is
deterministic, the number of possible memories of lengthm is

(

2 · hEnv · wEnv
)

· 5m−1.
• MAM: Memory-Action Mapper. Receives a memory as input, and returns an action as output. The MAM actually

constitutes an agent’s policy.
• ASF: Action-Selection Filter. Receives several actions as input (i.e., action suggestions), and returns one of them

as output.

3.2 Genetic Agents

A genetic agent is one that selects its actions according to its predetermined gene sequence, and can mate with other
genetic agents to produce new offspring that contain their own gene sequences (Axelrod, 1997).

A genetic agent holds a memory of lengthmGen. In addition, the genetic agent employs genes, with each gene
composed of akeyand avalue. The key is a possible memory, and the value is a possible action.

The MAM of a genetic agent is a gene sequence, containing one gene for each possible memory. The position
of a gene in the sequence is defined uniquely by its key (i.e., the gene sequences of all genetic agents in the same
environment and with the same memory length contain genes with an identical order of keys).

The MAM of a genetic agent is created when the agent is created, and it is never updated afterwards. When the
MAM receives a memory as input, it maps it to the returned action by finding the key that matches the memory,
and then returning its accompanying value.

Genetic algorithms employ generations of genetic agents, letting each agent run in the environment and then
producing a new generation of agents by mating agents from the current generation. Conventionally, the mating
stage consists of two parts:generational selectionandoffspring creation. Here, only offspring creation is imple-
mented within the genetic agent. As for generational selection, it is implemented elsewhere, and is described in
Section 3.5.1.



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

Jeffrey S. Rosenschein 5

Figure 1. Genetic Sequence Example (mGen = 1)

(a)

Key Value
...

...
(5,7) NORTH
(5,8) NORTH
(5,9) SOUTH
(6,0) WEST
(6,1) HALT
(6,2) WEST

...
...

Key Value
...

...
(5,7) EAST
(5,8) NORTH
(5,9) WEST
(6,0) HALT
(6,1) NORTH
(6,2) SOUTH

...
...

(b)

Key Value
...

...
(5,7) NORTH
(5,8) NORTH

(5,9) WEST
(6,0) HALT
(6,1) NORTH

(6,2) WEST
...

...

Key Value
...

...
(5,7) EAST
(5,8) NORTH

(5,9) SOUTH
(6,0) WEST
(6,1) HALT

(6,2) SOUTH
...

...

(c)

Key Value
...

...
(5,7) NORTH
(5,8) SOUTH
(5,9) WEST
(6,0) HALT
(6,1) NORTH
(6,2) EAST

...
...

Key Value
...

...
(5,7) EAST
(5,8) NORTH
(5,9) SOUTH
(6,0) HALT
(6,1) HALT
(6,2) SOUTH

...
...

This figure follows the changes that are undergone by a specific segment of a gene sequence.(a) shows the segment
in the genes of both parents, prior to mating.(b) shows the segments after the crossover stage. A double-line
marks the places where a crossover occurred.(c) shows the segments after the mutation stage. Text in bold denotes
positions where a mutation occurred.

An illustration of the mating process of two genetic agents appears in Figure 1. Whenever two genetic agents
mate, they create two offspring, the MAMs of which are created as follows. First, a copy is created for each of the
gene sequences of the parents. We will denote the sequence copies asS1 andS2. A simultaneous scan is then started
overS1 andS2, gene by gene. Letgi

j denote the gene of sequence copySi at positionj. As previously explained,
g1
j andg2

j have the same key. For anyj, when the scan reaches positionj, the following events may occur:

• Crossover:This event occurs with probabilityPGen
Cros. When it occurs, all genes at positionsk ≥ j are swapped

betweenS1 andS2 (i.e., the complete sub-sequences of genes starting atg1
j andg2

j ).

• Mutation: This is an event that occurs with probabilityPGen
Mut for each of the sequences. When it occurs for

sequenceSi, the value of genegi
j changes to a randomly selected value (action).

After the scan is complete, the offspringi receives sequencei as the gene sequence in its MAM.



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

6 Michael Berger

3.3 Learning Agents

A learning agent is an agent that selects its actions according to a learning algorithm. The most appropriate type
of learning algorithm for this environment is reinforcement learning (Littman, 1996), in which agents receive after
every action a signal that informs them how good their choiceof action was (here, the presence or absence of food
in their position). The reinforcement learning algorithm that was selected for the learning agent was Q-learning
with Boltzmann exploration (Sandholm and Crites, 1996).

The learning agent holds a memory of lengthmLrn. When the agent’s MAM receives memory as input, it maps
it to the returned action according to the Q-learning with Boltzmann exploration algorithm.

In the general Q-learning algorithm, an agent tries to maximize rewards that it receives from the environment
by improving its action selection. Q-learning’s strategy for attaining this goal is to evaluate actions according to
the expected discounted sum of future rewards that these actions are likely to yield under the most optimistic
assumptions that can be derived from present knowledge.
Let rj denote the reward given at learning stepj. Then at learning stepn, the discounted sum of future rewards is
defined as

∑

∞

i=0 γirn+i, where0 ≤ γ < 1 is the discount factor.γ is a pre-determined parameter, which determines
the importance of the reward at the current learning-step, compared to the importance of all future rewards (a value
of 0 means that the agent only values its current reward; values approaching 1 mean that the agent attributes more
and more importance to future rewards).

The Q-learning algorithm works by estimating the expected discounted sum of future rewards for all possible
actions, in light of the current memory. Lets denote a memory, and leta denote an action. Then the valueQ(s, a)
(termed aQ-value) is defined as the expected discounted sum of future rewards obtained by taking actiona when the
memory containss, and following an optimal policy thereafter (this is the “most-optimistic assumption” mentioned
earlier). In our setting, all Q-values are initialized to0.5, to prevent bias in the initial selection of actions.

Q-learning uses an additional pre-determined parameter, which is termed the “learning rate”. This parameter can
receive values between 0 and 1. The learning rate determineshow quickly Q-learning converges to final memory-
action evaluations—the higher the learning rate, the quicker the convergence.

Formally, the Q-learning algorithm is defined as follows:

(i) Initialize Q-values to arbitrary values.
(ii) From the current memorys, select an actiona. This will cause receipt of an immediate payoffr, and arrival at

a next memorys′.
(iii) UpdateQ(s, a) based on this experience as follows:

∆Q(s, a) = αLrn

[

r + γLrn max
b

Q(s′, b) − Q(s, a)

]

whereαLrn is the learning rate andγLrn is the discount factor.
(iv) Go to 2.

An illustration of the Q-table use and update appears in Figure 2.
For a current memorys, what action should be selected next? One trivial answer is to select the action with the

highest Q-value fors, thus “exploiting” the Q-value. However, according to Sandholm and Crites (1996) (and, in
another context, Carmel and Markovitch (1999)), the algorithm operates better if an element of exploration is added
to action-selection, thus improving the comparison that a Q-learning agent makes among different actions.

In Sandholm and Crites (1996), a Boltzmann exploration method was selected. According to this method, every
possible actionai has the following probability to be selected:

p(ai) =
e

Q(s,ai)

t

∑

a e
Q(s,a)

t

wheret is a computational parameter that controls the amount of exploration, and in learning stepn, t = fLrn
Temp(n).

t is an annealing temperature that decreases over time, thus increasing exploitation and decreasing exploration (the
action with the highest Q-value receives probabilities that approach 1). Also, a freezing temperaturetLrn

Freeze has



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

Jeffrey S. Rosenschein 7

Figure 2. Q-Table Example (mLrn = 1)

(a)

Key NORTH EAST SOUTH WEST HALT
...

...
...

...
...

...
(4,7) 0.10 0.20 0.15 0.13 0.08

...
...

...
...

...
...

(5,7) 0.12 0.33 0.79 0.12 0.30
...

...
...

...
...

...

(b)

Key NORTH EAST SOUTH WEST HALT
...

...
...

...
...

...
(4,7) 0.10 0.60 0.15 0.13 0.08

...
...

...
...

...
...

(5,7) 0.12 0.33 0.79 0.12 0.30
...

...
...

...
...

...
This figure shows an example of the use and update of a Q-table.Assume thatαLrn = 0.3, γLrn = 0.8, and the
agent is in position (4,7).(a) shows the agent’s Q-table before selecting the the next action. (b) shows the Q-table
after the agent selected action EAST and moved to (5,7) (which would occur for example if there is no exploration,
since EAST is the action with the highest Q-value for (4,7)).Assume that the agent’s reward for this action was 1.
Then the table cell in bold gets updated as follows:∆Q = 0.3 · [1 + 0.8 · 0.79 − 0.2] ≈ 0.4

been defined, so that whent < tLrn
Freeze, exploration (which is better for early steps) ceases completely, and full

exploitation kicks in.

3.4 Parenting Agents

A parenting agent is an agent that differentiates betweenlearningexperiences from the environment, andperform-
ing actionsbased on that experience. In fact, when a parenting agent decides on an action to perform, its experience
has absolutely no weight in that decision. Instead, the agent turns to another parenting agent, its “parent”, and seeks
advice about what action to perform. The parent, in turn, uses its own experience to return an answer. Note that the
parent is an agent that interacted with the environment in the previous generation, but no longer does so.

A group of methods that seems appropriate for such parentingagents is Monte Carlo methods, or MC-methods
for short (Sutton and Barto, 1998). MC-methods are used for evaluating and improving policies, i.e., memory-action
mappings. In contrast to Q-learning, with MC-methods the evaluation and improvement are performed after com-
pleteepisodesof rounds, and not after every single round. In the current context, an episode is simply a generation.
This was the reason for preferring MC-methods over Q-learning for the parenting algorithm—MC-methods are
more suitable for creating policies that take into account several dynamic states of the environment in the course
of a generation, thus avoiding convergence of policy according to a single state at the end of that generation. This
allows a bird’s-eye view of what wereon averagethe “correct” actions during the previous generation, lessening
the chance for errors, which is a characteristic that we would like the parenting algorithm to have.

In the evaluation stage, the mapping of each possible memoryto each possible action is evaluated. The evaluation
produces a value, termed anMC-value. Let s be a memory anda an action. The MC-value of(s, a) is the average
of rewards in all rounds following the agent’s encounter of memorys and selection ofa as the next action. In our
setting, all MC-values are initialized to0.5, to prevent bias in the initial relative evaluation of actions.

The MC-value definition above leaves one open question: Whathappens if the agent encountered memorys and
responded with actiona more than once? MC-methods typically use one of two approaches:

(i) Set the MC-value to the average of rewards received in allrounds following the agent’s first encounter of(s, a).
This is termed afirst-visit MC-method.



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

8 Michael Berger

(ii) For every encounter of the agent with(s, a), calculate the average of rewards received in all rounds following
that encounter. Then, set the MC-value to the average of these averages. This is termed anevery-visitMC-
method.

The advantage of a first-visit MC-method is that the computation of MC-values is based on the largest possible
sample of data. However, we chose to use an every-visit MC-method, because in our case, the environment may be
dynamic; specifically, the environment may change significantly between the parent’s first encounter with(s, a) and
the end of the parent’s generation. An illustration of the evaluation stage for parenting agents appears in Figure 3.

Figure 3. Parenting Agent’s Evaluation Example (mPar = 1)

(4,7) (4,8) (4,7) (4,6) (4,7) (5,7) (4,7) (3,7) (4,7) (4,7) (4,8)
(S,1) (N,0) (N,0) (S,0) (E,1) (W,1) (W,0) (E,1) (H,0) (S,1)

(4,7) (3,7) (4,7) (4,8) (4,7) (4,6) (4,7) (5,7) (4,7) (4,7) (3,7)
(W,0) (E,0) (S,1) (N,0) (N,1) (S,0) (E,0) (W,1) (H,1) (W,1)

(a)

Key NORTH EAST SOUTH WEST HALT
...

...
...

...
...

...
(4,7) 0.5 0.667 0.75 0.5 0.5

...
...

...
...

...
...

Key NORTH EAST SOUTH WEST HALT
...

...
...

...
...

...
(4,7) 0.667 0.75 0.625 0.75 1

...
...

...
...

...
...

(b)
This figure shows an example of the use of an MC-table by parents. (a) shows the history of two parents. The top
row is the parent’s position, and the bottom row is the resultant action and reward received from that action.(b)
shows the calculated MC-tables as a result of each parent’s history (respectively). Cells in bold denote memories
that occurred more than once (and hence their MC-values werecalculated according to the every-visit principle). If
these parents had a common offspring that is located at (4,7), the first parent would suggest it move SOUTH, while
the second parent would suggest it HALT.

In the improvement stage, the parenting agent stores in its MAM a mapping of memories to actions, to be
used only by the agent’s offspring. Any possible memorys is mapped to an actiona∗ by simply selecting
a∗ = arg maxa MC (s, a). Since this mapping is computed from scratch, without taking into account the mapping
of the parenting agent’s parent, this method is termed anoff-line MC-method.

In addition to the MAM, the parenting agent holds a memory of lengthmPar. Also, the parenting agent has an
ASF component.

So far, the functions of parents and offspring have been discussed, without mentioning the number of parents that
each offspring has. In this experiment, we used one of nature’s models—every offspring has two parents. If they
both give the offspring advice, which advice does it take? Inprinciple, this is controlled by the ASF component.
In our experiments, each of a given offspring’s parents has an equal chance for its advice to be accepted by the
offspring.

One important point is the exploration issue. As noted in Sutton and Barto (1998), MC-methods usually require
exploration for them to be effective. Otherwise, deterministic policies lead to the exploration of only a single
action for every memory. However, the intention here was purposely to develop a “pure” parenting function, where
the parent always gives advice that it deems the best—i.e., the most exploitive one. In contrast to learning, here
exploration is not essential, because a parenting agent does not start its life with zero-experience—it has its parents’



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

Jeffrey S. Rosenschein 9

experience.
That said, there is still some degree of non-determinism that slips in through the back door, in three spots:

(i) A parenting agent’s ASF does not always select the same parent.
(ii) A given memory could have more than one action with a maximal MC-value (in which case, an action is chosen

for advice by selecting randomly from among these actions).
(iii) A complex agent might not always use the parenting agent to execute an action (see Section 3.5).

In concluding this section, it is important to re-iterate the most important difference between learning agents and
parenting agents: Learning agents select actions on-the-fly, according to their own experience. Parenting agents
select actions according to their parents’ experience, with complete information about the eventual rewards that
their parents received after selecting their actions.

3.5 Complex Agents and Processes

As mentioned above, the agents that are situated in our environment are actually hybrids of genetic, learning, and
parenting agents. The agent types mentioned in Sections 3.2, 3.3 and 3.4 are not situated directly in the environment.
Rather, the agent population is made up of agents that are termedcomplex agents. Each complex agent contains
within it an instance of each of the mentioned types (genetic, learning, and parenting), in a subsumption archi-
tecture (Brooks, 1986). As such, it can be said that each complex agent contains threeinner agents—one genetic
agent, one learning agent, and one parenting agent. The complex agent mediates between the genetic, learning, and
parenting agents, on the one hand, and the environment, on the other. The complete processes of mating, receiving
a perception, and executing an action are detailed in the following subsections.

3.5.1 Mating. At the end of a generation’s run, the performance of each complex agent is evaluated by its eating-
rate. The evaluations’ averagem and standard deviationd are calculated, and the agents are classified in strata of
width d aroundm. Each agent is then awarded mating rights, determined by itsstratum. Mating rights specify the
number of matings to which the agent is entitled. This is the generational selection part of the genetic algorithm,
which was mentioned in Section 3.2.

Specifically, mating rights are awarded as follows (Axelrod, 1997): first, all agents that have an eating-rate of
at leastm + d receive two mating rights. Afterwards, the strata are passed in descending order, and as long as
the sum of awarded mating rights is smaller thannTask

Ag , all agents in the next lower stratum receive one mating
right. Finally, mating pairs are determined randomly, while assuring that no agent participates in more matings
than entitled to, and that the total number of offspring is equal tonTask

Ag . Note that this method preserves, to a high
degree, the following principles:

• Survival of the fittest.Agents that exhibit good performance (compared to others) receive a mating right, and
those with exceptional performance receive an extra matingright.

• Genetic variance.It is not the case that only those agents with exceptional performance receive mating rights.
Thus, we avoid putting all of our eggs into one basket.

The mating process of two individual agents is depicted in Figure 4. Two complex agents mate and create two
offspring by mating their respective inner genetic agents,as well as their respective inner parenting agents, and then
encapsulating the inner offspring in new complex agent offspring (in the figure, only one of the new offspring is
shown, for the sake of clarity). There are three points that should be noted:

(i) The inner genetic offspring receives genetic information from its parents during mating, while the inner parent-
ing offspring does not.

(ii) Let function g(c) mark the inner genetic agent of complex agentc. Let functionp(c) mark the inner parenting
agent of complex agentc. Let functionsP1(a) andP2(a) mark the first and second parent of any agenta. Let
functionC(a) mark the complex agent containing inner agenta. Then for every complex agentc:

(P1 (p (c)) , P2 (p (c))) = (p (C (P1 (g (c)))) , p (C (P2 (g (c)))))



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

10 Michael Berger

Figure 4. Mating Flow

In other words, in any complex offspring, the parents of its inner parenting agents are those associated with the
parents of the inner genetic agents—i.e., the inner parenting agents take advice from their real parents, and not
from foster parents.

(iii) The inner learning agents of the complex offspring have absolutely no association with the inner learning agents
of the complex parents.

3.5.2 Receiving a Perception.The process of receiving a perception is depicted in Figure 5. When the complex
agent receives a perception, it passes it on to the inner genetic, learning, and parenting agents. The genetic agent
updates its memory accordingly. The learning agent updatesits memory and its MAM. The parenting agent updates
its memory and its MAM (this is equivalent to updating the MAMonly at the generation’s end, because the MAM
is not used during the current generation).



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

Jeffrey S. Rosenschein 11

Figure 5. Perception Flow



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

12 Michael Berger

Note that the parents from the previous generation are completely unaware of the perception—they do not learn
any new information.

Figure 6. Action Flow



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

Jeffrey S. Rosenschein 13

3.5.3 Executing an Action. The flow of the action execution process is depicted in Figure6. When the complex
agent is about to execute an action, it asks its inner agents to suggest it.

The genetic agent feeds its memory to its MAM, and suggests the returned action as the action to execute.
The learning agent feeds its memory to its MAM, and suggests the returned action as the action to execute.
The parenting agent feeds its memory as input to each of its parents’ MAMs. The returned actions are fed through

the parenting agent’s ASF, and the parenting agent suggeststhe action selected by its ASF as the action to execute.
The actions suggested by the inner agents are fed to the complex agent’s ASF, which selects the genetic agent’s

suggestion with probabilityPComp
Gen , the learning agent’s suggestion with probabilityP

Comp
Lrn , and the parenting

agent’s suggestion with probabilityPComp
Par . The complex agent executes the action selected by its ASF, and also

perceives it by causing the inner agents to perceive it in theusual manner (see above, Section 3.5.2).
Note that the flow of perceptions and actions in the complex agent is a general one, and it could be used to

combine any number of given algorithms (as long as each algorithm has an inner agent that executes it). Any
algorithms used will update their own internal structures correctly, but they are not guaranteed to have their own
suggested action executed in every round. The effect of thisfact on different algorithms may vary.

4 Runs

Sections 2 and 3 specified all the different parameters that determine the behavior of the agent and its environment.
This section specifies which parameters were set to constantvalues, which were treated as independent variables,
which constituted the dependent variables, and finally summarizes the number of runs performed.

4.1 Constants

4.1.1 Task.

• nTask
Ag = 20.

This value has been selected because it was used by the genetic algorithm implementation in Axelrod (1997),
and seems to provide a sufficient genetic base.

• nTask
GenRun = 9500.

This value has been determined experimentally to allow for enough generations for a genetic algorithm to be
effective whenαEnv = 0, and to also allow for a sufficient number of generations for testing.

• nTask
GenTest = 1000.

This value has been determined experimentally to smooth outthe measured results and to prevent flukes from
having a noticeable effect.

• nTask
Rnd = 30000.

This value has been determined experimentally to allow for enough rounds for a Q-learning algorithm to be
effective.

4.1.2 Environment.

• hEnv = 20.
wEnv = 20.
These values have been selected to allow for a large enough grid so that search for food patches would not be
trivial, and to allow for a large enough set of possible perceptions.

• nEnv
Patch = 1.

This value has been selected to allow an easier analysis of the results.
The single food patch is defined in relation to a central pointcPatch = (xcPatch

, ycPatch
). For a point(x, y), let

dc
(x,y) be defined as :

max

(

min
(

|x − xcPatch
| ,

∣

∣x − xcPatch
− wEnv

∣

∣

)

,min
(

|y − ycPatch
| ,

∣

∣y − ycPatch
− hEnv

∣

∣

)

)

.

dc
(x,y) denotes the larger between the horizontal distance betweencPatch and (x, y) and the vertical distance



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

14 Michael Berger

betweencPatch and(x, y), taking into account that the environment is cyclic. Then, the single food patch function
is defined as follows:

PEnv
Food1

(x, y) = 0.2 ·
⌊

22−dc
(x,y)

⌋

In effect, this describes a 5x5 food patch. Its peak is at the center with a value of 0.8. All squares in the inner
frame have a value of 0.4. All squares in the outer frame have avalue of 0.2.

4.1.3 Genetic agents.

• mGen = 1.
This value has been selected experimentally, because higher values increase the number of possible memories,
and hence the number of genes, causing the genetic algorithmto have a much slower convergence rate when
αEnv = 0.

• PGen
Cros = 0.02.

PGen
Mut = 0.005.

These values were selected in the general vicinity of valuesfrom Axelrod (1997) and Cobb and Grefenstette
(1993), and they have been fine-tuned experimentally.

4.1.4 Learning agents.

• mLrn = 1.
This value has been selected experimentally, because higher values increase the number of possible memories,
causing the Q-learning algorithm to “spread out” too much byupdating each Q-value less often.

• αLrn = 0.2.
γLrn = 0.95.
fLrn

Temp(n) = 5 · 0.999n.
These values have been selected because they were used by theQ-learning algorithm implementation in Sand-
holm and Crites (1996).

• tLrn
Freeze = 0.2.

This value has been selected in light of the selected values for nTask
Rnd andfLrn

Temp, so that exploration would stop
after a small but significant fraction of rounds (3910 rounds, or approximately the first 13% of rounds in every
generation).

4.1.5 Parenting agents.

• mPar = 1.
This value has been selected experimentally, because higher values increase the number of possible memories,
causing the Monte Carlo algorithm to “spread out” too much byupdating each MC-value less often.

4.2 Independent Variables

The parameters that constituted independent variables were as follows:αEnv, P
Comp
Gen , P

Comp
Lrn , P

Comp
Par . For shorter

notation,(G,L,P ) will sometimes be used instead of(PComp
Gen , P

Comp
Lrn , P

Comp
Par ); the two are synonymous.

4.3 Dependent Variables

The only dependent variable isλ.



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

Jeffrey S. Rosenschein 15

4.4 Summary of Runs

For a givenαEnv, all values of(G,L,P ) that fulfill the following conditions were tested:

(i) P
Comp
Gen ≥ 0, P

Comp
Lrn ≥ 0, P

Comp
Par ≥ 0.

(ii) P
Comp
Gen + P

Comp
Lrn + P

Comp
Par = 1.

(iii) P
Comp
Lrn = 0.1 · n,

P
Comp
Gen = 0.1 · k ·

(

1 − P
Comp
Lrn

)

; n, k ∈ N .

Under the above conditions, there are 11 different values thatPComp
Lrn can receive (i.e.,0, 0.1, . . . ,1). For each such

value, there are 11 values thatP
Comp
Gen can receive, except forPComp

Lrn = 1, wherePComp
Gen can receive only one value

(0). Therefore, for a givenαEnv, there are 111 values of(G,L,P ) that fulfill the above conditions.
There were7 different values ofαEnv that were tested:0, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1. Since each com-

bination ofαEnv and(G,L,P ) was tested (in one run), this amounted to a total of777 runs.

5 Results

This section details the performance of agents by analyzingthe value ofλ and the eating-rates in general.

5.1 Scale ofλ

First, it is worth noting the scale by which a value ofλ should be evaluated. The food patch had a peak of0.8. Thus,
an agent that can direct itself to that peak would be expectedto have an eating-rate of about0.8. Therefore, an agent
could be considered “perfect” if it has an eating-rate of0.8. Even though a higher value is possible, because the
food patch is a probabilistic function, for the purpose of defining a scale this fact is negligible.

5.2 Main Results

Table 1. Result Summary of Runs

(G,L,P )

αEnv (1,0,0) (0,1,0) (0,0,1) Best(G,L,P ) Bestλ

0 0.2425 0.7233 0.0746 (0.7, 0, 0.3) 0.7988
10−6 0.2139 0.7188 0.0730 (0.2, 0.6, 0.2) 0.7528
10−5 0.1806 0.6912 0.0670 (0, 0.9, 0.1) 0.7011
10−4 0.1550 0.5454 0.0520 (0.03, 0.9, 0.07) 0.6021
10−3 0.1462 0.3252 0.0291 (0.02, 0.8, 0.18) 0.3647
10−2 0.0805 0.1834 0.0167 (0, 1, 0) 0.1834
10−1 0.0366 0.0698 0.0177 (0, 1, 0) 0.0698

Table 1 summarizes the main results—theλ-value of the pure agent types and the best performer for eachvalue
of αEnv. Two points are derived from this table:

• Not surprisingly,λ becomes degraded asαEnv rises.
• The performance of agents can be classified according to three ranges ofαEnv: 0, (0,K] and[K, 10−1], where

10−3 ≤ K ≤ 10−2.

5.3 Pure Parenting (P Comp
P ar = 1)

Pure parenting is ineffective. This is evident from Table 1,and though it is true for all tested values ofαEnv, it is
most striking in Figure 8 (parenting probability is implicit in the figure sincePComp

Gen + P
Comp
Lrn + P

Comp
Par = 1).



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

16 Michael Berger

A probable explanation for this degraded performance is thedecision not to include exploration in the parenting
agent’s algorithm. Indeed, a closer look at the eating-rates of pure parenting agents lends support to this explanation.
The eating-rates go through a two-generation cycle. As an example, forαEnv = 0, the eating-rates of all agents
in one generation usually have values between0.005 and0.025, while in the next generation almost all eating-
rates are0 (nicknamed a “zero-generation”). This cycle repeats. The zero-generations occasionally have up to four
eating-rates higher than0.05, and there are rare zero-generations with one or two medium or high eating-rates. This
behavior is demonstrated for a sample range of generations in Figure 7.

5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050
0

0.01

0.02

0.03

Generation

Ea
tin

g−
Ra

te

Figure 7. 75th Percentile of Eating-Rates for Pure Parenting Agents (αEnv = 0)

Lack of exploration could be the culprit. What seems to be happening is that in the non-zero-generation, agents
start a search for food, which is beneficial to a certain extent. However, the search is not good enough for the MC-
method to consider it a success (since the initial MC-valuesare0.5). Therefore, the offspring in the next generation,
which is a zero-generation, receive advice from the parentsnot to go where the parents went, i.e., abandon the
parents’ search. The obedient offspring do just that, and search in other directions, which are usually barren. Now,
the offspring in the next non-zero-generation will receivetruly valuable advice, not to go in the barren directions.
However, for every memory, the non-zero-generation agentsstill face three or four other directions in which they
can go, so they will be able to start a beneficial search, but only to a certain extent. Hence, the cycle.

5.4 Runs withα
Env

= 0

The results for the runs withαEnv = 0 are summarized in Table 2, and they are represented visuallyin Figure 8.
The points that can be derived from these results are as follows:

• The highestλ-value,0.7988, is achieved for(G,L,P ) = (0.7, 0, 0.3). Taking into account the scale that was
mentioned earlier (0.8 being achieved by a perfect agent), this means that the vast majority of generations that
eventually evolved for this(G,L,P ) have each contained a near-perfect agent—over a span of1000 generations!

• Surprisingly, pure genetic agents perform poorly, while the hybrids of genetic agents with learning and parenting
agents achieve a very highλ. Still, in view of what is known of genetic algorithms, and since the environment
is stationary, the pure genetic agent is expected to have eventually achieved a near-perfectλ had it been given
enough generations to develop. Indeed, Hinton and Nowlan (1996) demonstrated that “learning” organisms can
evolve much faster than their non-“learning” equivalents.And according to Littman (1996), evolution and “learn-
ing” complement each other. On the one hand, “learning” may assist evolution by making near-perfect individ-
uals receive high fitness scores, since such individuals adapt, via “learning”, to exhibit optimal behavior. On the
other hand, evolution accelerates “learning” by making individuals nearly perfect to begin with. This interaction



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

Jeffrey S. Rosenschein 17

Table 2. λ for αEnv
= 0

P
Comp
Lrn

P
Comp

Gen

1−P
Comp

Lrn

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.0746 0.1074 0.2241 0.4866 0.7736 0.7715 0.7626 0.7538 0.7448 0.7373
0.1 0.0988 0.1032 0.2470 0.7093 0.7792 0.7717 0.7627 0.7531 0.7445 0.7375
0.2 0.1567 0.1515 0.4812 0.7816 0.7805 0.7746 0.7659 0.7547 0.7451 0.7368
0.3 0.2629 0.3432 0.7380 0.7877 0.7821 0.7773 0.7706 0.7574 0.7472 0.7369
0.4 0.3552 0.6807 0.7834 0.7890 0.7858 0.7841 0.7776 0.7636 0.7495 0.7373
0.5 0.6457 0.7523 0.7851 0.7903 0.7871 0.7846 0.7797 0.7719 0.7560 0.7378 0.7233
0.6 0.7542 0.7770 0.7870 0.7896 0.7887 0.7868 0.7830 0.7763 0.7613 0.7362
0.7 0.7988 0.7824 0.7865 0.7893 0.7893 0.7883 0.7842 0.7785 0.7634 0.7363
0.8 0.7982 0.7849 0.7880 0.7900 0.7898 0.7881 0.7856 0.7811 0.7721 0.7360
0.9 0.7953 0.7867 0.7894 0.7906 0.7906 0.7868 0.7838 0.7820 0.7745 0.7345

1 0.2425 0.7948 0.7915 0.7869 0.7796 0.7736 0.7668 0.7569 0.7447 0.7368

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

Learning Prob.Genetic Prob.

Su
cc

es
s 

(L
am

bd
a)

Figure 8. λ for αEnv = 0

between evolution and “learning” was first applied to natural evolution, and is termed theBaldwin Effect(Bald-
win, 1896). In our experiments, “learning” is manifested both by learning agents and by parenting agents. Note
that the acceleration of “learning” by evolution explains why parenting has such a positive contribution to the
genetic-parenting hybrid, compared to the poor performance of pure parenting agents.

• Generally, for a givenPComp
Par , λ rises asPComp

Lrn decreases.

• WhenP
Comp
Par reaches values as high as0.6–0.7, λ drops sharply from values above0.7 to values in the range

0.35–0.5 and lower. So here, not only is pure parenting catastrophic,but also a high enough degree of parenting
causes a severe drop in performance.

5.5 Runs with a Low PositiveαEnv

The results for the runs withαEnv ∈ {10−6, 10−5, 10−4, 10−3} can be classified together. The results for these
values ofαEnv are summarized in Tables 3, 4, 5, and 6, and they are represented visually in Figures 9, 10, 11, and
12 (respectively). The points that can be derived from the results for theseαEnv-values are as follows:

• As expected, pure genetic agents perform much worse than pure learning agents.
• Pure learning agents are not the best performers. They are outperformed by hybrids where the following condi-

tions hold:
(i) P

Comp
Lrn > P

Comp
Gen + P

Comp
Par



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

18 Michael Berger

Table 3. λ for αEnv
= 10

−6

P
Comp
Lrn

P
Comp

Gen

1−P
Comp

Lrn

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.0730 0.1102 0.2341 0.4547 0.7439 0.7516 0.7514 0.7432 0.7387 0.7337
0.1 0.0906 0.1070 0.2459 0.4162 0.7248 0.7366 0.7439 0.7354 0.7263 0.7272
0.2 0.1428 0.1408 0.2803 0.6201 0.7111 0.7346 0.7338 0.7287 0.7348 0.7216
0.3 0.1886 0.2125 0.4540 0.6256 0.7388 0.7350 0.7230 0.7389 0.7259 0.7204
0.4 0.2905 0.4339 0.5361 0.6640 0.7255 0.7525 0.7311 0.7318 0.7323 0.7270
0.5 0.3516 0.4756 0.5898 0.6723 0.7374 0.7255 0.7528 0.7313 0.7246 0.7125 0.7188
0.6 0.4049 0.5101 0.6547 0.7029 0.7248 0.7418 0.7286 0.7382 0.7156 0.7153
0.7 0.5549 0.6005 0.6620 0.7096 0.7320 0.7085 0.7470 0.7096 0.7217 0.7216
0.8 0.5663 0.5891 0.6327 0.6869 0.7226 0.7386 0.7156 0.7342 0.7135 0.7097
0.9 0.5181 0.6060 0.7244 0.7031 0.7196 0.7166 0.7330 0.7281 0.7362 0.7192

1 0.2139 0.6298 0.6073 0.7278 0.7137 0.7369 0.7160 0.7135 0.6980 0.7190

Table 4. λ for αEnv
= 10

−5

P
Comp
Lrn

P
Comp
Gen

1−P
Comp
Lrn

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.0670 0.1163 0.2338 0.3910 0.5970 0.6702 0.6824 0.6943 0.6987 0.7011
0.1 0.0789 0.1125 0.2396 0.4014 0.5765 0.6567 0.6745 0.6764 0.6976 0.6981
0.2 0.0822 0.1279 0.2530 0.4071 0.5635 0.6399 0.6607 0.6811 0.6897 0.6953
0.3 0.1308 0.1558 0.2904 0.4141 0.6032 0.6336 0.6535 0.6772 0.6836 0.6918
0.4 0.1571 0.2168 0.3288 0.4423 0.5670 0.6367 0.6478 0.6664 0.6745 0.6889
0.5 0.1234 0.2433 0.3395 0.4785 0.5778 0.6300 0.6660 0.6555 0.6740 0.6878 0.6912
0.6 0.1919 0.3134 0.4130 0.5540 0.5990 0.6364 0.6517 0.6643 0.6712 0.6863
0.7 0.2504 0.3374 0.4127 0.5286 0.5589 0.6260 0.6416 0.6484 0.6681 0.6818
0.8 0.2288 0.3973 0.4783 0.5716 0.5937 0.6032 0.6593 0.6482 0.6723 0.6802
0.9 0.3085 0.4670 0.4585 0.5399 0.5583 0.5849 0.6281 0.6325 0.6532 0.6643

1 0.1806 0.5329 0.5166 0.5296 0.5039 0.5880 0.5654 0.6060 0.6279 0.6537

Table 5. λ for αEnv
= 10

−4

P
Comp
Lrn

P
Comp

Gen

1−P
Comp

Lrn

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.0520 0.1233 0.2317 0.3236 0.4163 0.4816 0.5304 0.5641 0.5823 0.5987
0.1 0.0445 0.1157 0.2272 0.3360 0.4182 0.4903 0.5321 0.5644 0.5897 0.6019
0.2 0.0462 0.1204 0.2282 0.3332 0.4166 0.4856 0.5334 0.5626 0.5818 0.5994
0.3 0.0533 0.1239 0.2325 0.3277 0.4116 0.4805 0.5274 0.5640 0.5850 0.6021
0.4 0.0570 0.1353 0.2321 0.3330 0.4028 0.4777 0.5209 0.5546 0.5816 0.5989
0.5 0.0765 0.1461 0.2411 0.3430 0.4127 0.4772 0.5216 0.5519 0.5803 0.5909 0.5452
0.6 0.0685 0.1678 0.2530 0.3371 0.4020 0.4683 0.5167 0.5447 0.5683 0.5912
0.7 0.0893 0.1700 0.2907 0.3477 0.4136 0.4670 0.5058 0.5359 0.5616 0.5820
0.8 0.0703 0.2008 0.2824 0.3486 0.4121 0.4584 0.4925 0.5326 0.5582 0.5705
0.9 0.0890 0.2411 0.3127 0.3729 0.4124 0.4564 0.4673 0.5038 0.5415 0.5591

1 0.1550 0.4180 0.4163 0.4269 0.4266 0.4369 0.4482 0.4712 0.5023 0.5431

(ii) P
Comp
Par ≥ P

Comp
Gen

In other words, the best performers are those hybrids where learning predominates (but is not absolute), and
parenting has at least as much weight as genetics. ForαEnv ∈ {10−5, 10−4, 10−3}, the inequality of the second
condition is a strong one—the best performer contains a mix where parenting has more than twice the weight of
genetics. Presumably, forαEnv = 10−6 environment changes occur at such a low rate that genetics can handle
them well (one change every331

3 generations on average).
The result forαEnv = 10−6 might actually imply that the shift from the best performer type forαEnv = 0 to the
best performer type for low positiveαEnv-values is a gradual one, rather than an abrupt one. ForαEnv = 0,
the best performer hasPComp

Lrn = 0 andP
Comp
Par < P

Comp
Gen . ForαEnv ∈ {10−5, 10−4, 10−3}, all best perform-

ers havePComp
Lrn ≥ 0.8 andP

Comp
Par > 2 · P

Comp
Gen . Therefore, the best performer forαEnv = 10−6, which has

P
Comp
Lrn = 0.6 andP

Comp
Par = P

Comp
Gen , can be considered “in-between” these two states.



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

Jeffrey S. Rosenschein 19

Table 6. λ for αEnv
= 10

−3

P
Comp
Lrn

P
Comp

Gen

1−P
Comp

Lrn

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.0291 0.0930 0.1565 0.2200 0.2623 0.2959 0.3246 0.3456 0.3580 0.3505
0.1 0.0254 0.0919 0.1623 0.2225 0.2702 0.3102 0.3350 0.3519 0.3647 0.3566
0.2 0.0261 0.0925 0.1615 0.2231 0.2730 0.3090 0.3408 0.3571 0.3601 0.3530
0.3 0.0292 0.0911 0.1607 0.2209 0.2714 0.3037 0.3354 0.3580 0.3641 0.3561
0.4 0.0314 0.0947 0.1635 0.2222 0.2702 0.3039 0.3329 0.3556 0.3634 0.3560
0.5 0.0343 0.0974 0.1624 0.2191 0.2634 0.3008 0.3343 0.3480 0.3574 0.3522 0.3252
0.6 0.0382 0.1002 0.1605 0.2144 0.2648 0.2957 0.3272 0.3519 0.3524 0.3492
0.7 0.0402 0.1018 0.1623 0.2161 0.2579 0.2935 0.3207 0.3365 0.3530 0.3465
0.8 0.0430 0.1143 0.1737 0.2160 0.2589 0.2861 0.3157 0.3270 0.3431 0.3395
0.9 0.0461 0.1324 0.1862 0.2228 0.2573 0.2836 0.3025 0.3222 0.3265 0.3336

1 0.1462 0.2943 0.3000 0.3072 0.3028 0.3068 0.3110 0.3222 0.3219 0.3303

0

0.5

1

00.10.20.30.40.50.60.70.80.91
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Learning Prob.
Genetic Prob.

Su
cc

es
s 

(L
am

bd
a)

Figure 9. λ for αEnv = 10−6

Unfortunately, the possibility of this gradual trend forαEnv < 10−6 cannot be further explored experimentally
with the given parameter values. The reason is that the random variable that denotes the number of food patch
movements throughout the lastnEnv

GenTest generations is a binomial one. For high enoughαEnv-values, it is ap-
proximately a normal distribution, but already forαEnv = 10−5 and more so forαEnv = 10−6, the distribution
is not so close to normal anymore (this can be seen visually bycomparing the jerkiness of the graphs in Figures 9
and 10 to the relative smoothness of all other graphs).

• The best performers are not the only ones that are better thanpure learners. Best performers are surrounded by an
(experimentally) continuous environment1 of performers, all of which perform better than pure learning agents.
This is important, because it indicates that it is not a matter of chance or a fluke that the best performers in our
experiments performed better than pure learning agents. Table 7 summarizes these continuous environments.

• The best performers ofαEnv-values10−3 and10−4 perform significantly better than the pure learning agent
(12.1% and 10.4% higher, respectively). ForαEnv-values10−5 and10−6, the difference is less significant (1.4%
and 4.7% higher, respectively).



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

20 Michael Berger

0

0.5

1

00.10.20.30.40.50.60.70.80.91

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Learning Prob.

Genetic Prob.

Su
cc

es
s 

(L
am

bd
a)

Figure 10.λ for αEnv = 10−5

0

0.5

1

00.20.40.60.81
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Learning Prob.Genetic Prob.

Su
cc

es
s 

(L
am

bd
a)

Figure 11.λ for αEnv = 10−4

Table 7. Environments of Performers that are Better than Pure Learning Agents

Best Performer P
Comp
Lrn

P
Comp

P ar

1−P
Comp

Lrn

αEnv (PComp
Lrn ,

P
Comp

Par

1−P
Comp

Lrn

) in Environment in Environment

10−6 (0.6,0.5) 0.5–0.7 0–0.6
0.4–0.7 0.3–0.6

10−5 (0.9,1) 0.8–0.9 0.9–1
10−4 (0.9,0.7) 0.8–0.9 0.2–1

0.7–0.9 0.5–1
10−3 (0.8,0.9) 0.7–0.9 0.2–1



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

Jeffrey S. Rosenschein 21

0

0.5

1

00.10.20.30.40.50.60.70.80.91
0

0.1

0.2

0.3

0.4

Learning Prob.
Genetic Prob.

Su
cc

es
s 

(L
am

bd
a)

Figure 12.λ for αEnv = 10−3

Table 8. λ for αEnv
= 10

−2

P
Comp
Lrn

P
Comp

Gen

1−P
Comp

Lrn

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.0167 0.0427 0.0600 0.0787 0.0887 0.1017 0.1087 0.1162 0.1208 0.1247
0.1 0.0186 0.0430 0.0624 0.0785 0.0934 0.1006 0.1144 0.1174 0.1221 0.1289
0.2 0.0195 0.0432 0.0618 0.0789 0.0932 0.1054 0.1142 0.1182 0.1223 0.1260
0.3 0.0211 0.0440 0.0632 0.0796 0.0956 0.1060 0.1146 0.1167 0.1237 0.1261
0.4 0.0230 0.0447 0.0640 0.0793 0.0933 0.1037 0.1119 0.1201 0.1225 0.1258
0.5 0.0256 0.0453 0.0652 0.0812 0.0948 0.1047 0.1128 0.1182 0.1222 0.1282 0.1834
0.6 0.0273 0.0448 0.0636 0.0811 0.0946 0.1049 0.1131 0.1189 0.1238 0.1276
0.7 0.0278 0.0465 0.0647 0.0793 0.0919 0.1030 0.1132 0.1181 0.1216 0.1253
0.8 0.0293 0.0492 0.0671 0.0812 0.0942 0.1059 0.1115 0.1181 0.1252 0.1318
0.9 0.0323 0.0573 0.0744 0.0865 0.0963 0.1070 0.1122 0.1202 0.1267 0.1318

1 0.0805 0.1319 0.1513 0.1576 0.1599 0.1607 0.1555 0.1523 0.1484 0.1437

Table 9. λ for αEnv
= 10

−1

P
Comp
Lrn

P
Comp

Gen

1−P
Comp

Lrn

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.0177 0.0253 0.0287 0.0320 0.0351 0.0367 0.0382 0.0401 0.0423 0.0461
0.1 0.0190 0.0256 0.0292 0.0325 0.0351 0.0374 0.0396 0.0405 0.0425 0.0462
0.2 0.0221 0.0258 0.0290 0.0321 0.0350 0.0379 0.0395 0.0413 0.0427 0.0457
0.3 0.0227 0.0259 0.0294 0.0321 0.0356 0.0378 0.0402 0.0412 0.0431 0.0459
0.4 0.0233 0.0262 0.0297 0.0324 0.0356 0.0376 0.0399 0.0411 0.0430 0.0461
0.5 0.0232 0.0260 0.0298 0.0329 0.0357 0.0386 0.0401 0.0415 0.0434 0.0464 0.0698
0.6 0.0231 0.0265 0.0297 0.0331 0.0362 0.0382 0.0399 0.0415 0.0438 0.0463
0.7 0.0226 0.0267 0.0304 0.0332 0.0364 0.0387 0.0410 0.0422 0.0439 0.0466
0.8 0.0303 0.0283 0.0313 0.0349 0.0371 0.0392 0.0412 0.0425 0.0446 0.0477
0.9 0.0317 0.0299 0.0341 0.0374 0.0388 0.0415 0.0430 0.0441 0.0458 0.0485

1 0.0366 0.0450 0.0541 0.0551 0.0556 0.0560 0.0542 0.0526 0.0514 0.0521

5.6 Runs with a Higher PositiveαEnv

The results for the runs withαEnv ∈ {10−2, 10−1} can be classified together. The results for theseαEnv-values are
summarized in Tables 8 and 9, and they are represented visually in Figures 13 and 14 (respectively). The points that

1The term “environment” in this bullet refers to a mathematical environment, not the environment in which the agents operate.



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

22 Michael Berger

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.05

0.1

0.15

0.2

0.25

Learning Prob.Genetic Prob.

Su
cc

es
s 

(L
am

bd
a)

Figure 13.λ for αEnv = 10−2

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Learning Prob.Genetic Prob.

Su
cc

es
s 

(L
am

bd
a)

Figure 14.λ for αEnv = 10−1

can be derived from the results for these values ofαEnv are as follows:

• As expected, pure genetic agents perform much worse than pure learning agents.
• Pure learning agents are the best performers.
• For any givenPComp

Lrn , a hybrid withP
Comp
Par = 0 performs better than any other hybrid with the sameP

Comp
Lrn . In

other words, even very small amounts of parenting hinder theperformance of agents.

5.7 A Qualitative Angle

In Sections 5.4, 5.5, and 5.6, the discussion centered around λ, which is an aggregate measure of BERs (in the last
1000 generations). However, it is also worth exploring the qualitative behavior of BERs that lies behindλ. This
section describes the different behaviors of the BER graphsfor different types of best performers, and examines the
effects of adding a parenting element to a pure learning agent.



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

Jeffrey S. Rosenschein 23

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

BE
R

Figure 15. BER of Best Performer forαEnv = 0

5.7.1 BERs of Best Performers.For αEnv = 0, the BER graph for the best performer is shown in Figure 15.
This genetic-parenting hybrid evolves over a short period of about100 generations, and then reaches a very high
performance with occasional drops. These drops in performance become rarer as generations pass, and the main,
crisp graph line indicates a pretty high consistency in performance. For the last 1000 generations, the measurement
period ofλ, σ2 = 4.72 · 10−5.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

BE
R

Figure 16. BER of Pure Genetic Agent forαEnv = 0

When comparing the BER graph of the best performer with the BER graph of a pure genetic agent (Figure 16), it
is evident that parenting carries out two roles. First, it manages to nudge genetics so that it converges quickly in the
correct direction. Second, it provides a safety net in latergenerations, in the sense that even when performance falls,
it does not fall too deep (with extremely high probability).These roles have already been mentioned in Section 5.4.

As it turns out, learning provides the same roles as parenting (see Figure 17), which means that learning, instead
of parenting, can be added to genetics. While this does slightly hurt the average of BERs in later generations
(λ = 0.7948 instead of0.7988), it greatly improves the minimum of BERs in these generations (with extremely



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

24 Michael Berger

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

BE
R

Figure 17. BER of(G, L, P ) = (0.9, 0.1, 0) for αEnv = 0

high probability). The loss inλ is caused by the fact that the main band of the graph in Figure 17 is wider than
in Figure 15. To translate the meaning of a “main band” into numerical variance, we considered the graph in
Figure 17 to be made up of a single main band with no results outside that band. The minimum of this graph in
the measurement period was0.7606. Thus we compared the variance of all results larger than or equal to0.7606
in both graphs. This meant that in Figure 15 there were6 rouge results (out of1000), that were not included in the
definition of the “main band” (this is visually apparent fromthe figure). For Figure 17,σ2 = 3.07 · 10−5. While
smaller than the originalσ2 = 4.72 · 10−5 measured for Figure 15, it is larger than the variance of the main
band in that figure—σ2 = 1.54 · 10−5. This is caused by the inevitable need of the learning agent to relearn
information each new generation and to perform exploration, while a parenting agent performs no exploration at all.
As seen here, lack of exploration in parenting also has a disadvantage in that there is a small chance that it would
lead agents in a wrong direction, as manifested by the rogue results. But ultimately, in this scenario, the benefits of
parenting’s lack of exploration still outweigh those of learning in the long run.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

BE
R

Figure 18. BER of Best Performer forαEnv = 10−6



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

Jeffrey S. Rosenschein 25

ForαEnv = 10−6, the BER graph for the best performer is shown in Figure 18. This genetics-learning-parenting
hybrid that has a fair amount of genetics has the advantage ofa relatively high starting-point, since the genetics are
boosted by learning and parenting (see Section 5.4). This performer manages to evolve from its high starting-point
to a very high position (between0.7 and0.8), and hold its ground there for a short while. Performance drops occur
at a higher rate than they do for the BER performance ofαEnv = 0, and sometimes the drops bring down the
performance for longer than an instant (presumably, when the food patch moves). However, learning and parenting
act like a safety net, ensuring that the performance drops are not too steep, and genetics always fight (successfully)
to bring the performance back up to very high levels.σ2 = 0.0015.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

BE
R

Figure 19. BER of Best Performer forαEnv = 10−4

For αEnv ∈ {10−5, 10−4, 10−3}, a representative BER graph for the best performer is shown in Figure 19 (for
αEnv = 10−4). This genetics-learning-parenting hybrid has minute (orno) amounts of genetics. Therefore, the
BER graph does not show an element of evolution—the end of thegraph is not much higher than its start. On the
other hand, parenting and learning provide a safety net thatis manifested by the fact that all BER values are higher
than0.3, and a vast majority of them are also higher than0.4. The graph is very shaky, and the width of its main
band is about0.2. σ2 = 0.0038.

For αEnv ∈ {10−2, 10−1}, a representative BER graph for the best performer is shown in Figure 20 (for
αEnv = 10−2). The best performer is a pure learning agent—and thus, the BER graph does not show any el-
ement of evolution. Here too, learning provides a safety net, which is manifested by the fact that all BER values are
higher than0.1. This graph is not as shaky as was the case forαEnv ∈ {10−5, 10−4, 10−3}—the width of its main
band is about0.1. σ2 = 4.88 · 10−4.

5.7.2 The Effects of Parenting on Learning.Section 5.5 has shown that the best performer for lowαEnv-values is
one where learning predominates but is not absolute, and parenting predominates the rest. Section 5.6 has shown
that for higherαEnv-values, parenting hinders performance, and pure learningis best.

The effect of parenting on learning can be isolated when comparing the performance of(G,L,P ) =
(0, 1, 0) with that of (G,L,P ) = (0, 0.9, 0.1). This is presented in Figures 21, 22, 23, 24, 25, and 26.
Note that forαEnv ∈ {10−6, 10−5, 10−4, 10−3} performance is improved by adding parenting, while for
αEnv ∈ {10−2, 10−1} performance is worsened.



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

26 Michael Berger

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

BE
R

Figure 20. BER of Best Performer forαEnv = 10−2

Figure 21. BER of(G, L, P ) = (0, 1, 0) (left) and(G, L, P ) = (0, 0.9, 0.1) (right) for αEnv = 10−6

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

BE
R

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

BE
R

Figure 22. BER of(G, L, P ) = (0, 1, 0) (left) and(G, L, P ) = (0, 0.9, 0.1) (right) for αEnv = 10−5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

BE
R

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

BE
R

6 Related Work

Related work can be divided into two types. The first type is research that relates to methods that have certain
aspects similar to parenting. The second type is research that simulates combinations of genetic algorithms and
learning algorithms only.



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

Jeffrey S. Rosenschein 27

Figure 23. BER of(G, L, P ) = (0, 1, 0) (left) and(G, L, P ) = (0, 0.9, 0.1) (right) for αEnv = 10−4

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

BE
R

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

BE
R

Figure 24. BER of(G, L, P ) = (0, 1, 0) (left) and(G, L, P ) = (0, 0.9, 0.1) (right) for αEnv = 10−3

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

BE
R

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

BE
R

Figure 25. BER of(G, L, P ) = (0, 1, 0) (left) and(G, L, P ) = (0, 0.9, 0.1) (right) for αEnv = 10−2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

BE
R

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

BE
R

Figure 26. BER of(G, L, P ) = (0, 1, 0) (left) and(G, L, P ) = (0, 0.9, 0.1) (right) for αEnv = 10−1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

BE
R

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

BE
R



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

28 Michael Berger

6.1 Notions Similar to Parenting

A notion that is somewhat related to parenting is taken from the realm of teamwork—training a new worker on
a team to fulfill the job of an older worker that left the team (except here the whole team gets replaced at once).
This scenario is dealt with in Denzinger and Ennis (2002), where the notions of genetics, parenting, and learning
are replaced by notions of abilities, seed strategy, and online learning, respectively. The abilities determine what a
worker can perform. The seed strategy is a strategy that the worker starts with, but it does not cover all situations—it
is only a guideline. Online learning fills in the blanks. Whena new worker is brought in to replace an old worker,
the new worker receives the seed strategy of the old worker, which is analogous to parenting. Also, an interesting
parallel between our research and Denzinger and Ennis (2002) is that in the latter, a new worker can replace an
old worker only if it has similar abilities; In our research,as mentioned in Section 3.5.1, the parenting in complex
agents is performed by real parents, i.e., parents that share genetic material similar to that of the offspring.

Parenting is also somewhat reminiscent of the idea of layered learning Whiteson and Stone (2003). In layered
learning, an agent is composed of layers, that are sorted according to their “proximity” to the environment. The
layer that is closest to the environment learns first. Afterwards, it trains the next level, which now becomes the
learning layer. This process is repeated, with every learning layer turning into a training layer for the subsequent
layer. One of the training methods is pruning of the output set—which is similar to what occurs in parenting (each
parent provides only one allowed action). However, there are several important differences between parenting and
layered learning:

• In parenting, all “layers” (agents) are applied to the same task. In layered learning, layers are applied to different
tasks. In this sense, parenting can be said to represent a specific case of layered learning.

• Parenting always deals with no more than two “layers” (whichare different agents), while layered learning holds
on to previous layers. As a consequence, parenting is extendible to any number of generations, in contrast to
layered learning (because of memory limitations).

• In pure parenting, the child “layer” (agent) does not learn at all, while in layered learning each layer learns.
However, this difference does not exist in non-pure parenting where some learning is performed, in which case
the child “layer” (agent) learns as well.

In parenting, all “layers” (agents) are of identical proximity to the environment.

6.2 Other Combinations of Genetic Algorithms with Learning

All research mentioned in this subsection explored learning. However, it appears that what was referred to in this
article as parenting might also be branded as a type of “learning” in the work mentioned in this subsection, in
that parenting is also a type of local search for a solution that operates side by side with global search, which is
performed by a genetic algorithm.

Hinton and Nowlan (1996) presents an extreme example of a stationary environment. In this environment, organ-
isms have20 switches that they have to either connect or disconnect. Organisms receive additional mating awards
only if they set the switches in a single (fixed) pattern, out of the 220 possible patterns. During their lifetime, the
organisms have1000 attempts to find the correct setting. The organisms carry a gene for each switch, with three
possible values: 1 (connected), 0 (disconnected) and “?”(to be learned). The organisms “learn” by selecting random
values for the switches that correspond to genes marked with“?”. It was found that when the organisms were al-
lowed to learn, the evolved populations contained organisms that reached the correct solution much faster than in
the case where organisms were not allowed to learn.

Nolfi et al. (1994) presents a more “natural” example of a stationary environment, which is similar to the one
we used. The environment is a two-dimensional grid, in whichagents search for pieces of food that are located
in an environment. The input given to an agent is the positionof the food element nearest to it. In contrast to our
model, when food is eaten by an agent, it disappears. This is adisadvantage from an analysis standpoint because
it influences the performance of agents; thus, we could have an agent that performs well, but that did not find
food just because others beat him to it. Agents receive mating rights according to the amount of food that they
find during their lifetime. Here too, a combination of a genetic algorithm with learning evolved faster than a pure
genetic algorithm. Also, it was shown that the genetic algorithm improves learning by evolving individuals that
have a predisposition for learning to behave efficiently.



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

Jeffrey S. Rosenschein 29

Nolfi and Parisi (1997) presents a different “natural” environment, which is dynamic. In this environment there
is a grid with a single target area, which contains food. The grid is surrounded by walls, and if the agent hits a
wall, it gets stuck in it. This fact complicates analysis of performance, and we avoided this in our environment
by eliminating walls altogether and making the environmentcyclic. In Nolfi and Parisi (1997), there are actually
two types of walls, which activate the proximity sensors of agents from different distances. The environment in
every even generation is surrounded by the first type of walls, while the environment in every odd generation is
surrounded by the second type. This is what makes the environment dynamic. However, there are two important
differences from our environment. First, this environmentchanges only between generations, and not within them
as in our environment. Second, the change in this environment is deterministic, unlike in ours. Again, the results
were similar—learning speeded up evolution, while the genetic algorithm improved learning.

7 Conclusions

Returning to the original abstract question raised in Section 1.2, let us define an agent’s algorithm A to be an
action-augmentorof an agent’s algorithm B if the following conditions hold: (1) both algorithms are always used
for receiving perceptions; (2) B is applied for executing anaction in most steps; (3) A is applied for executing an
action in at least 50% of the other steps.

The main results of our experiments can be rephrased as follows:

• When the environment is stationary, parenting can provide apositive contribution when used as an action-
augmentor for genetics. Note that in such an environment, conditionsC1 andC2 (from Section 1.2) basically
hold, although without the condition ofC2 that the rate of dynamic change bepositive(but zero is indeed very
low).

• When the environment has a very low rate of dynamic change, parenting can provide a positive contribution
when used as an action-augmentor for learning. Note that in such an environment, conditionsC1 andC2 both
hold.

• When the environment has a higher rate of dynamic change, parenting loses its effectiveness, and pure learning
is the best performer. Note that in such an environment, condition C2does not hold.

In all cases, pure parenting performs extremely poorly.
When the environment is stationary, learning too can provide a similar positive contribution when used as an

action-augmentor for genetics. Thus, the contribution of parenting is unique only to environments with a low posi-
tive rate of dynamic change—i.e., where conditionsC1 andC2 both hold (fully).

While this article only presents a single testbed, the conclusions presented above may very well be applicable to
many settings. Continuing with the abstract solution presented above, when a task is given in an agent-environment
setting and the agent has a large enough number of rounds to solve the problem, one suggested method for devel-
oping suitable agents would be to reduce the task to the setting discussed in this article, as follows:

(i) Divide the sequence of rounds into generations. Each generation should be sufficiently long, and there should
be a sufficient number of generations.

(ii) Define a metric over the state of the environment.
(iii) Calculate the expectancy of the “rate of change” in theenvironment’s state, with respect to the metric.
(iv) Categorize the expectancy of the “rate of change”. If itis 0, use a genetic-learning combination (as suggested

here and in Hinton and Nowlan (1996); Nolfi et al. (1994); Nolfiand Parisi (1997)), or use a genetic-parenting
combination (as suggested here). If the expectancy is lowerthan an arbitrary limit, use some combination of
parenting with learning, perhaps with a very small amount ofgenetics. If the expectancy is higher than that
limit, use pure learning.

Finally, we offer a thought which is beyond the strictly computational. In nature, parenting has two functions:
providing for the young, and educating them. However, thereare settings where the young have access to sufficient
resources, eliminating the need to provide for them. An interesting point for biologists to explore might be whether
for animals in such settings, a parenting role evolves, as a function of the environment’s rate of change. According
to this article’s results, it would be expected to evolve if and only if the environment does not change too quickly.



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

30 REFERENCES

Appendix A: Further Research

The model presented in this article contains many parameters and details, which can be modified in search of a
better way to synthesize agents that cope with static, slowly changing, and quickly changing environments. Further
research can be done on the following questions:

• Would performance improve by tweaking parameter values?
• Parenting in our model was performed with two parents. Is there an optimal number of parents? Is it one, two, or

more?
• Parenting in our model was performed with real parents, as mentioned in Section 3.5.1. Is there any importance

for the parents to be real parents? Is there some hidden effect when the offspring receives advice from parents
with which it shares its genetic material? This question especially concerns cases where best performers had
positive values ofPComp

Gen andP
Comp
Par .

• A parenting agent in our model selected between its parents’advice with equal probability. Is there a different
method that would improve on this? For example, should the probability that the parenting agent selects a parent’s
advice be influenced by how well that parent performed in the previous generation? Should it be influenced
by how well that parent is sure of its advice (e.g., the actualMC-values, the number of times that the parent
encountered the given memory, how late during its life-timethe parent encountered the given memory, etc.)?

• Should the parenting model be changed so that parents track the performance of their offspring and update their
MC-tables accordingly? This question is analogous to the idea presented in Whiteson and Stone (2003)—would
layered learning operate better concurrently (in which case a training layer still learns), or should there only be a
single learning layer at any given time (which is termed “traditional” layered learning)?

• What difference would it make to add exploration to the parenting algorithm? Would this significantly improve
or worsen the effects of parenting shown in this article?

• What happens whenαEnv is positive but approaches zero? Would learning still predominate for best performers,
or would best performers shift more and more weight toward genetics, up to a point where genetics predominate?

• Would there be any significant difference when memory lengths are larger than1?
• Would there be any significant difference with more than one food patch, or with a food patch that has multiple

local minima or maxima?
• Should the model be changed so that(G,L,P ) does not remain constant throughout the lifetime of agents?To

take human settings as an example, as people grow older, theytend to listen less to their parents and rely more
on their own experiences. ShouldP

Comp
Par decrease andPComp

Lrn increase during an agent’s lifetime?
• Is it possible for agent generations to evolve a suitable(G,L,P ), instead of having it predetermined?
• The metric used in defining agent success relied on the best eating rate (BER) measured per generation. Would

the conclusions regarding the appropriate mix of genetics,learning, and parenting change significantly if an
average eating rate was measured instead?

This list is certainly not exhaustive, and many other aspects can be further explored.

References

R. Axelrod: 1997,The Complexity of Cooperation: Agent-Based Models of Competition and Collaboration. Prince-
ton University Press.

J. Baldwin: 1896, ‘A New Factor in Evolution’.American Naturalist30, 441–457, 536–554.
R. A. Brooks: 1986, ‘A Robust Layered Control System for a Mobile Robot’. IEEE Journal of Robotics and

Automation2(1), 14–23.
D. Carmel and S. Markovitch: 1999, ‘Exploration Strategiesfor Model-based Learning in Multiagent Systems’.

Autonomous Agents and Multi-agent Systems2(2), 141–172.
H. G. Cobb and J. J. Grefenstette: 1993, ‘Genetic Algorithmsfor Tracking Changing Environments’. In:Proceed-

ings of the Fifth International Conference on Genetic Algorithms. San Mateo, pp. 523–530.
J. Denzinger and S. Ennis: 2002, ‘Being the New Guy in an Experienced Team - Enhancing Training on the Job’.

In: Proceedings of the First International Joint Conference onAutonomous Agents and Multiagent Systems.



February 4, 2007 18:54 Journal of Experimental & Theoretical Artificial Intelligence jetai˙parenting

REFERENCES 31

Bologna, Italy, pp. 1246–1253.
G. E. Hinton and S. J. Nowlan: 1996, ‘How Learning can Guide Evolution’. In: Adaptive Individuals in Evolving

Populations: Models and Algorithms. Addison-Wesley, pp. 447–454.
T. D. Johnston: 1996, ‘Selective Costs and Benefits in the Evolution of Learning’. In:Adaptive Individuals in

Evolving Populations: Models and Algorithms. Addison-Wesley, pp. 315–358.
M. Littman: 1996, ‘Simulations Combining Evolution and Learning’. In: Adaptive Individuals in Evolving Popula-

tions: Models and Algorithms. Addison-Wesley, pp. 465–477.
M. Littmann and D. Ackley: 1991, ‘Adaptation in Constant Utility Non-Stationary Environments’. In:Proceedings

of the Fourth International Conference on Genetic Algorithms. San Mateo, pp. 136–142.
G. Mayley: 1996, ‘Landscapes, Learning Costs, and Genetic Assimilation’. Evolutionary Computation4(3), 213–

234.
S. Nolfi, J. L. Elman, and D. Parisi: 1994, ‘Learning and Evolution in Neural Networks’.Adaptive Behavior3(1),

5–28.
S. Nolfi and D. Floreano: 1999, ‘Learning and Evolution’.Autonomous Robots7(1), 89–113.
S. Nolfi and D. Parisi: 1997, ‘Learning to Adapt to Changing Environments in Evolving Neural Networks’.Adaptive

Behavior5(1), 75–98.
D. Parisi and S. Nolfi: 1996, ‘The Influence of Learning on Evolution’. In: Adaptive Individuals in Evolving

Populations: Models and Algorithms. Addison-Wesley, pp. 419–428.
T. W. Sandholm and R. H. Crites: 1996, ‘Multiagent Reinforcement Learning in the Iterated Prisoner’s Dilemma’.

Biosystems37, 147–166.
M. Sebag, M. Schoenauer, and C. Ravise: 1997, ‘Revisiting the Memory of Evolution’. In: T. Bäck (ed.):Proceed-

ings of the Seventh International Conference on Genetic Algorithms (ICGA97). San Francisco, CA.
R. S. Sutton and A. G. Barto: 1998,Reinforcement Learning: An Introduction. The MIT Press.
P. M. Todd and G. F. Miller: 1991, ‘Exploring Adaptive AgencyII: Simulating the Evolution of Associative Learn-

ing’. In: From Animals to Animats: Proceedings of the First International Conference on Simulation of Adap-
tive Behavior. pp. 306–315.

S. Whiteson and P. Stone: 2003, ‘Concurrent Layered Learning’. In: AAMAS 03 : Proceedings of the Second
International Joint Conference on Autonomous Agents and Multiagent Systems. Melbourne, Australia, pp.
193–200.


