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This article explores hybrid agents that use a variety dfrigpies to improve their performance in an environment tage. We considered, specifically,
genetic-learning-parenting hybrid agents, which usednabigation of a genetic algorithm, a learning algorithm (iur case, reinforcement learning), and a
parenting algorithm, to modify their activity. We experimally examined what constitutes the best combination ofkae over these three algorithms, as a
function of the environment's rate of change.

For stationary environments, a genetic-parenting contioimgroved best, with genetics being given the most weigbt.environments with low rates of
change, genetic-learning-parenting hybrids were besh arning having the most weight, and parenting havingastl as much weight as genetics. For
environments with high rates of change, pure learning agamved best. A pure parenting algorithm operated extnepmbrly in all settings.
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1 Introduction

1.1 Genetic and Learning Algorithms

Among the most prominent types of heuristic algorithms usedealing with NP-hard problems are genetic al-
gorithms. Genetic algorithms operate by representingyepessible solution to a given problem as a series of
“genes”. Multiple agents, each containing its own seriegeaies, start working to solve the problem. As in bi-
ological evolution, these genes are developed over mangrggéons by a repeated process of genetic crossovers,
mutations, evaluations, and “survival of the fittest”. Otiere, the developed genes contain information that is gath-
ered over these multiple generations, and hopefully, tkentaally provide an optimal or near-optimal solution to
the problem.

The main disadvantage of genetic algorithms is that theynaialy suitable for dealing with stationary problems.
Problems, however, may be of a dynamic nature, i.e., havédehiparameter, or state, that occasionally changes.
In such dynamic situations, when a change occurs in the @mublstate, genetic algorithms tend to collapse and
start over again, searching for a new optimal solution joftiéhout much success (Cobb and Grefenstette, 1993).

A modification that can help genetic algorithms handle dyisgmmoblems is to combine them with a learning
algorithm. Such an approach has been used in developingigetits that handle stationary environments (Hinton
and Nowlan, 1996; Nolfi et al., 1994; Parisi and Nolfi, 1996]J agents that handle dynamic environments (Littman,
1996; Littmann and Ackley, 1991; Nolfi and Floreano, 1999tfNind Parisi, 1997; Todd and Miller, 1991).

For more precise interpretation of the term “learning”, veed to first examine the termemory of evolution
Memory of evolution simply refers to memory that can be disettansferred from an individual in one generation
to an individual in the subsequent generation. Note thagtieimformation is not included in memory of evolution,
as the genetic information contains only implicit instiaos and not a history of events. Thus, an assumption
about the presence or absence of memory of evolution isarircthe interpretation of the term “learning”. If



February 4, 2007 18:54 Journal of Experimental & Theork#etficial Intelligence jetai’ parenting

2 Michael Berger

memory of evolution is assumed to be present, any learniogegs started at one generation can be continued in
the next. Otherwise, any learning process started at onergion must come to an end at that same generation.
As the absence of memory of evolution correctly describé&srabevolution, and as natural evolution has been the
dominant paradigm for artificial evolution, any furtherdntretation of the term “learning” in this article should
assume the absence of memory of evolution (Sebag et al.).1997

Genetic algorithms and learning algorithms are inheratiffgrent, in that genetic algorithms gather information
over many generations, while learning algorithms gathi@rimation only over a single generation. Herein lies the
flexibility of learning—as long as genetic effects are naliged, learning is unbiased by information gathered in
previous generations, and is therefore more suitable falirdgwith a dynamic problem, where information from
previous generations might not be relevant. On the othed te@fearning process might actually be misséogne
important information from previous generations, caustrtg be more wasteful in relearning information, and
ultimately less accurate (Mayley, 1996).

1.2 Parenting Algorithms

Let us informally define a current decision’s levelspfbstantiatiorto be determined by the amount of information
gathered as a basis for reaching that decision. Let us disorially define a current decision’s level mdlevance

to be determined by the level of similarity between the aurenvironment and the environment at the time the
information was gathered. Let us also say that an algorghewels of substantiation and relevance are determined
by the levels of substantiation and relevance attained égécisions that are taken when using that algorithm.

In the discussion above of algorithms that deal with dynapnablems, two extremes have been presented: a
genetic algorithm, which has a high level of substantiabaha low level of relevance, and a learning algorithm,
which has a low level of substantiation but a high level oévahce. One might consider how algorithms that are
“in-between” might fare—specifically, for a problem withetfollowing two conditions:

e Condition C1: The problem state can only change to a state adjacent to lieirstate space, with adjacency
defined by some metric over that space.
e Condition C2:The problem has a very low (but positive) rate of dynamic ggan

For such problems, it seems that the an in-between algorittight have a higher level of substantiation than
learning, while still preserving an adequate level of ratee, becaus€l andC2 combined imply that a current
problem state is somewhat similar to problem states that @ecountered over the last few generations.

Thus, we introduce the notion of parenting. We defirgaeenting algorithmas one in which agents follow in-
structions from their parents, i.e., agents of the prevgmrseration, and the parents determine their instructions a
cording to what they themselves had learned ovectimpletecourse of their generationa-posteriori In contrast
to learning agents, parenting agents do not execute theiagtions according to what they learn for themselves.

A parenting algorithm has higher substantiation than aniegralgorithm. Thus, it avoids decisions based on mo-
mentary experience, which might be more prone to error—eajpein early stages (Johnston, 1996). Conversely,
a parenting algorithm has lower substantiation than a geakgorithm, because its information is gathered over
the span of a single generation, and not over many genesafitiis, a parenting algorithm is more prone to error
than a genetic algorithm.

As for relevance, in a given generation, a parenting algoribas lower relevance than a learning algorithm,
because its information is gathered in the previous geioerand not in the current one. Conversely, a parenting
algorithm has higher relevance than a genetic algorithirab&e its information is unbiased by whatever happened
in generations before the previous one.

A parenting algorithm seems to fit the definition of an “inyeeén” algorithm. Can it help handle a problem that
fulfills conditionsC1 andC2? This question constitutes one focus of this article.

1.3 Overview of the Article

In Section 2, we describe the overall environment of our grpents, and what constituted our goal for the agents.
In Section 3, the hybrid agents themselves are presentady alith their genetic, learning, and parenting aspects.
Section 4 describes the various experimental runs that meide, while Section 5 presents the results of those
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experiments. Section 6 gives an overview of related work.duclusions are discussed in Section 7.

2 Environment and Task

2.1 Environment

We define around to be the basic time unit. The environment consists of a ngetar grid, with dimensions
wP™ x hE™ The grid contains agents and food. In every round, eachtageneither “eat” or “starve”. This
environment is generally similar to that used in Nolfi et 4b44).

In each round, each square on the grid may contain any nurhgents, and it may or may not contain unlimited
food—unlimited in the sense that when food is present in asgjwall agents in that square are said to have eaten
(unlike Nolfi et al. (1994)). The reason for making food urited is to avoid dependencies between the actions and
performance of different agents, thus avoiding the conigleX social interactions. At the end of a round, an agent
may travel to an adjacent square or stay put.

The appearance or non-appearance of food is actually dieakkry structures in the environment to which agents
are oblivious. These affeod patchesA food patch is a positive probability functioRz,., defined over a group
of adjacent squares on the grid.slis a square, the®r,,4(s) defines the probability that in a given round, food
will appear in square. If several food patche$r o4, - - - Prood, » have a non-empty domain intersection, then for
each square in that intersectionPr,.4(s) is defined amaxle Prood, (s). The environment contaimﬁgfch food
patches.

A fundamental attribute of the environmentd$™”, which is the probability that in a given round, the food
patches move (i.e., their domains move). When this ocalrdpod patches move one square, each in its own
random direction (EAST, SOUTH, WEST, NORTH).

One last important property of the environment is that ityiglic. This is true both for movements of agents and
of food patches. This means that a movement from a squadirgsin the edge in the direction of the edge results
in re-appearance on the other side of the grid. The grid wéreatkas cyclic so that all squares in it would be
homogeneous (thus inner squares, edge squares and caraggsgll have the same importance).

2.2 Mapping the Environment to an Abstract Problem

If we define an abstract problem as that of finding food in anrenment that has a pre-determined set.dbod
patches, each with a pre-determined shape, then a givetiopasi all food patches actually constitutes one state
of that problem. For food patchlet (zro04,, Yrood,) D€ @ny representational point from within it.

A metric can then be defined on tBe-dimensional space of these states by defining any vedtothat space,
v=(z1,1,---,Tn, Yn), t0o denote the positions of the representational pointdl édd@d patches in that state, i.e.,
Vi (TFood, = Ti N\ YFood, = Yi)- Thus, the environment presented above in Section 2.1ldutfinditionC1. For
very low positive values ofi/“™, it fulfills condition C2 as well.

2.3 Task

The goal in our experiments has been to synthesize an agerenjoys a maximagating-rate—the fraction of
rounds in which it eats, out of the total number of roundssTask definition requires more detail, in two respects:
1) how to integrate agent generations in the definition, gritb@ to measure the success of agents.
An integration of agent generations in the task definitioretiired since the development of genetic agents and
parenting agents does not occur in a single agent’s lifetimeover many lifetimes. Thus, the concepgeheration
is defined: a generation of agents is a group of agents thraitrstdr life in the environment simultaneously, and end
their life in the environment simultaneously. To avoid maysome agents receive unfair advantages over others, all
agents of the same generation start at the same positiosjteopdhat is randomly determined for each generation.
Itis also important to note that the environment is compyaiblivious to the concept of generations. This means
that the position of food patches is not reset at the starhefiageneration—the environmentis “continuous” across
generations.
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When considering how to measure agent success, such m@asuiraust not consist of only the initial genera-
tion; agents that develop over multiple generations mustllogved time to develop. Also, the measurement must
include a large enough number of generations so as to iretkastatistical validity of the results.

Having presented those aspects above that required maig dehore accurate task can now be formulated. For
a given agent generation, letBER (best eating-ratd)e defined as the maximal eating-rate of all agents in that
generation (a similar metric for success was used in Sebalg @997)). In a run ohg‘;g’%m agent generations,
each consisting of’,%** agents that live fon7%" rounds, let the measure of successe defined as the average

over the BERs of the last.?*%, _ generations. Our goal is then to develop agents that magimiz

enTest

3 Agents

The agents used in our experiments are hybrids of a gergtamleloping agent, a self-learning agent, and a
parenting agent. Before defining these agent types, a fewitilafis are in order.

3.1 Definitions

o Perception:An element of the set:
{0,...,w"™ — 1} x {0,...,hP™ — 1} x {0,1}

Indicates a position (of the agent) on the grid, and wheteagent found food in that position.

e Reward:That part of the perception which indicates whether the afpemd food (reward is 1) or not (reward
is 0).

e Action: A direction of movement (for the agent to move next). One oBEHASOUTH, WEST, NORTH, HALT.

e Memory: A sequence containing the agent’s last perception-actins. pA memory of lengthn will contain
the last perception, preceded by the previous- 1 perception-action pairs. Note that in principle, there are
(2 - BEw . wEm)™ . 5m=1 possible memories of length. However, since movement in our environment is
deterministic, the number of possible memories of lengtis (2 - RZ™ . wEmv) . 5m=1,

¢ MAM: Memory-Action Mapper. Receives a memory as input, andmstan action as output. The MAM actually
constitutes an agent’s policy.

e ASF: Action-Selection Filter. Receives several actions astiipal, action suggestions), and returns one of them
as output.

3.2 Genetic Agents

A genetic agent is one that selects its actions according pyedetermined gene sequence, and can mate with other
genetic agents to produce new offspring that contain their gene sequences (Axelrod, 1997).

A genetic agent holds a memory of lengtit"*”. In addition, the genetic agent employs genes, with each gen
composed of &eyand avalue The key is a possible memory, and the value is a possibleracti

The MAM of a genetic agent is a gene sequence, containing ene fpr each possible memory. The position
of a gene in the sequence is defined uniquely by its key (he.géne sequences of all genetic agents in the same
environment and with the same memory length contain gentbsanmiidentical order of keys).

The MAM of a genetic agent is created when the agent is createtit is never updated afterwards. When the
MAM receives a memory as input, it maps it to the returnedoschiy finding the key that matches the memory,
and then returning its accompanying value.

Genetic algorithms employ generations of genetic ageeti$nd each agent run in the environment and then
producing a new generation of agents by mating agents frencuirent generation. Conventionally, the mating
stage consists of two partgenerational selectioandoffspring creation Here, only offspring creation is imple-
mented within the genetic agent. As for generational sielectt is implemented elsewhere, and is described in
Section 3.5.1.
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Figure 1. Genetic Sequence Example{°™ = 1)

Key | Value Key | Value
(5,7) | NORTH (5,7)| EAST
(5,8) | NORTH (5,8) | NORTH
(a) (5,9) | SOUTH (5,9) | WEST
(6,0)| WEST (6,0) | HALT
(6,1)| HALT (6,1) | NORTH
(6,2) | WEST (6,2) | SOUTH
Key | Value Key | Value
(5,7) | NORTH (5,7)| EAST
(5,8) | NORTH (5,8) | NORTH
(b) (5,9) | WEST (5,9) | SOUTH
(6,0)| HALT (6,0) | WEST
(6,1) | NORTH (6,1) | HALT
(6,2) | WEST (6,2) | SOUTH
Key | Value Key | Value
(5,7) | NORTH (5,7)| EAST
(5,8) | SOUTH (5,8) | NORTH
(c) (5,9 | WEST (5,9) | SOUTH
(6,0)| HALT (6,0) | HALT
(6,1) | NORTH (6,1) | HALT
(6,2)| EAST (6,2) | SOUTH

This figure follows the changes that are undergone by a spseiiment of a gene sequen@g shows the segment

in the genes of both parents, prior to matirflg) shows the segments after the crossover stage. A double-line
marks the places where a crossover occui@dshows the segments after the mutation stage. Text in bolotelen
positions where a mutation occurred.

An illustration of the mating process of two genetic agempears in Figure 1. Whenever two genetic agents
mate, they create two offspring, the MAMs of which are crdats follows. First, a copy is created for each of the
gene sequences of the parents. We will denote the sequepies asS* andS2. A simultaneous scan is then started
overS! andS?, gene by gene. Le;ié denote the gene of sequence capiyat position;. As previously explained,

gjl- andgjz. have the same key. For agiywhen the scan reaches positigrihe following events may occur:

e CrossoverThis event occurs with probabilit?gfg;. When it occurs, all genes at positions> j are swapped
betweenS' and.S* (i.e., the complete sub-sequences of genes startiggatdg?).

e Mutation: This is an event that occurs with probabilify{;/; for each of the sequences. When it occurs for
sequencé”, the value of geng’ changes to a randomly selected value (action).

After the scan is complete, the offspringeceives sequences the gene sequence in its MAM.
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3.3 Learning Agents

A learning agent is an agent that selects its actions acugtdia learning algorithm. The most appropriate type
of learning algorithm for this environment is reinforcembzarning (Littman, 1996), in which agents receive after
every action a signal that informs them how good their chofcaction was (here, the presence or absence of food
in their position). The reinforcement learning algorithimat was selected for the learning agent was Q-learning
with Boltzmann exploration (Sandholm and Crites, 1996).

The learning agent holds a memory of lengif™”. When the agent’'s MAM receives memory as input, it maps
it to the returned action according to the Q-learning withtBuann exploration algorithm.

In the general Q-learning algorithm, an agent tries to ma&aémewards that it receives from the environment
by improving its action selection. Q-learning’s strategy &ttaining this goal is to evaluate actions according to
the expected discounted sum of future rewards that thegenadcire likely to yield under the most optimistic
assumptions that can be derived from present knowledge.

Letr; denote the reward given at learning sfefIhen at learning step, the discounted sum of future rewards is
defined a$ "3, 7'r,+i, where0 < v < 1is the discount factor is a pre-determined parameter, which determines
the importance of the reward at the current learning-stempared to the importance of all future rewards (a value
of 0 means that the agent only values its current rewardpgadypproaching 1 mean that the agent attributes more
and more importance to future rewards).

The Q-learning algorithm works by estimating the expectsdalnted sum of future rewards for all possible
actions, in light of the current memory. Letlenote a memory, and letdenote an action. Then the val@gs, a)
(termed &-valug is defined as the expected discounted sum of future rewatdsed by taking actiom when the
memory contains, and following an optimal policy thereafter (this is the “st@ptimistic assumption” mentioned
earlier). In our setting, all Q-values are initializedd, to prevent bias in the initial selection of actions.

Q-learning uses an additional pre-determined paramekéchvis termed the “learning rate”. This parameter can
receive values between 0 and 1. The learning rate deterrhovesjuickly Q-learning converges to final memory-
action evaluations—the higher the learning rate, the curitthe convergence.

Formally, the Q-learning algorithm is defined as follows:

(i) Initialize Q-values to arbitrary values.
(i) From the current memory, select an action. This will cause receipt of an immediate payeffand arrival at
a next memory’.
(i) UpdateQ(s,a) based on this experience as follows:

AQ(s,a) = o™ |1+~ max Q(s', b) — Q(s, a)

whereal"™ is the learning rate ang™"" is the discount factor.
(iv) Goto 2.

An illustration of the Q-table use and update appears inreigu

For a current memory, what action should be selected next? One trivial answer $elect the action with the
highest Q-value fos, thus “exploiting” the Q-value. However, according to Shalin and Crites (1996) (and, in
another context, Carmel and Markovitch (1999)), the atarioperates better if an element of exploration is added
to action-selection, thus improving the comparison thatla@ning agent makes among different actions.

In Sandholm and Crites (1996), a Boltzmann exploration oethias selected. According to this method, every
possible actiom; has the following probability to be selected:

wheret is a computational parameter that controls the amount dbexion, and in learning step, ¢t = TL;‘ng(n).

t is an annealing temperature that decreases over time nbrgasing exploitation and decreasing exploration (the
action with the highest Q-value receives probabilities tygproach 1). Also, a freezing temperatef&”. = has

eeze
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Figure 2. Q-Table Exampler(“™" = 1)
Key | NORTH | EAST | SOUTH | WEST | HALT

@7 010 | 020 | 015 | 013 | 0.08

(2) : : : : : :
(5.7)| 012 | 033 | 079 | 012 | 0.30
Key | NORTH | EAST | SOUTH | WEST | HALT

o @7 010 | 060 | 0.15 | 0.13 | 0.08

(5,79 0.12 0.33 0.79 0.12 | 0.30

This figure shows an example of the use and update of a Q-takdeime that™™ = 0.3, v/ = 0.8, and the
agent is in position (4,7)a) shows the agent’s Q-table before selecting the the nexdra¢h) shows the Q-table
after the agent selected action EAST and moved to (5,7) (whiuld occur for example if there is no exploration,
since EAST is the action with the highest Q-value for (4,A9sume that the agent’s reward for this action was 1.
Then the table cell in bold gets updated as follokg? = 0.3 - [1 + 0.8 - 0.79 — 0.2] ~ 0.4

been defined, so that when< tkrm ., exploration (which is better for early steps) ceases cetaf, and full
exploitation kicks in.

3.4 Parenting Agents

A parenting agent is an agent that differentiates betviemmingexperiences from the environment, gratform-

ing actionshased on that experience. In fact, when a parenting ageiatedean an action to perform, its experience
has absolutely no weight in that decision. Instead, thetetgems to another parenting agent, its “parent”, and seeks
advice about what action to perform. The parent, in turnsitseown experience to return an answer. Note that the
parent is an agent that interacted with the environmentdrptevious generation, but no longer does so.

A group of methods that seems appropriate for such pareagegts is Monte Carlo methods, or MC-methods
for short (Sutton and Barto, 1998). MC-methods are used/f@uating and improving policies, i.e., memory-action
mappings. In contrast to Q-learning, with MC-methods thalwation and improvement are performed after com-
pleteepisode®f rounds, and not after every single round. In the currentexd, an episode is simply a generation.
This was the reason for preferring MC-methods over Q-legrior the parenting algorithm—MC-methods are
more suitable for creating policies that take into accoenesgal dynamic states of the environment in the course
of a generation, thus avoiding convergence of policy adogrtb a single state at the end of that generation. This
allows a bird’s-eye view of what weren averagehe “correct” actions during the previous generation,degsg
the chance for errors, which is a characteristic that we d/bké the parenting algorithm to have.

In the evaluation stage, the mapping of each possible meto@gch possible action is evaluated. The evaluation
produces a value, termed MC-value Let s be a memory and an action. The MC-value dfs, a) is the average
of rewards in all rounds following the agent’s encounter @hnory s and selection of. as the next action. In our
setting, all MC-values are initialized 5, to prevent bias in the initial relative evaluation of aogo

The MC-value definition above leaves one open question: \Wagpens if the agent encountered memoayd
responded with actiom more than once? MC-methods typically use one of two appesch

(i) Setthe MC-value to the average of rewards received iroalhds following the agent’s first encounter(efa).
This is termed dirst-visit MC-method.
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(i) For every encounter of the agent with, ), calculate the average of rewards received in all roundsviaig
that encounter. Then, set the MC-value to the average oétaesrages. This is termed amery-visitMC-
method.

The advantage of a first-visit MC-method is that the companabf MC-values is based on the largest possible
sample of data. However, we chose to use an every-visit M@wde because in our case, the environment may be
dynamic; specifically, the environment may change signitigdbetween the parent’s first encounter witha) and

the end of the parent’s generation. An illustration of thaleation stage for parenting agents appears in Figure 3.

Figure 3. Parenting Agent's Evaluation Example/{(®" = 1)
(47) (48) (47) (46) 47) 57 47 G717 47 448
(S,1) (N,0) (N,0) (S,0) (E, 1) (W,1) (W,0) (E,1) (H,0) (S,1)

47 @7 (47 (48 47) (46) (47) (G7) (47 (4781
(W,0) (E0) (S1) (NO) (NI (S,00 (E0) WD) (H1) (W]I)
(@)

Key | NORTH | EAST | SOUTH | WEST | HALT

(4,7) 0.5 0.667| 0.75 0.5 0.5

Key | NORTH | EAST | SOUTH | WEST | HALT

@7 0667 | 0.75 | 0625 | 0.75 1

b
This figure shows an example of the use of an MC-(ta)bIe by pare)tshows the history of two parents. The top
row is the parent’s position, and the bottom row is the resilaction and reward received from that acti(i).
shows the calculated MC-tables as a result of each parést@y (respectively). Cells in bold denote memories
that occurred more than once (and hence their MC-valuesvedealated according to the every-visit principle). If
these parents had a common offspring that is located at (4g7jirst parent would suggest it move SOUTH, while
the second parent would suggest it HALT.

In the improvement stage, the parenting agent stores in A8M mapping of memories to actions, to be
used only by the agent’s offspring. Any possible memerys mapped to an action* by simply selecting
a* = argmax, MC (s, a). Since this mapping is computed from scratch, without takio account the mapping
of the parenting agent’s parent, this method is termedfalne MC-method.

In addition to the MAM, the parenting agent holds a memoryeoigthm”*". Also, the parenting agent has an
ASF component.

So far, the functions of parents and offspring have beemudssd, without mentioning the number of parents that
each offspring has. In this experiment, we used one of nataredels—every offspring has two parents. If they
both give the offspring advice, which advice does it takeprinciple, this is controlled by the ASF component.
In our experiments, each of a given offspring’s parents mascual chance for its advice to be accepted by the
offspring.

One important point is the exploration issue. As noted ind@uand Barto (1998), MC-methods usually require
exploration for them to be effective. Otherwise, deterstinipolicies lead to the exploration of only a single
action for every memory. However, the intention here wappsely to develop a “pure” parenting function, where
the parent always gives advice that it deems the best—he miost exploitive one. In contrast to learning, here
exploration is not essential, because a parenting ageataatart its life with zero-experience—it has its parents
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experience.
That said, there is still some degree of non-determinisindlifzs in through the back door, in three spots:

(i) A parenting agent’s ASF does not always select the samanpa
(i) A given memory could have more than one action with a matiMC-value (in which case, an action is chosen
for advice by selecting randomly from among these actions).
(i) A complex agent might not always use the parenting ag@execute an action (see Section 3.5).

In concluding this section, it is important to re-iterate thost important difference between learning agents and
parenting agents: Learning agents select actions onythadtording to their own experience. Parenting agents
select actions according to their parents’ experiencéy samplete information about the eventual rewards that
their parents received after selecting their actions.

3.5 Complex Agents and Processes

As mentioned above, the agents that are situated in ourcamaint are actually hybrids of genetic, learning, and
parenting agents. The agent types mentioned in Section3.3.2nd 3.4 are not situated directly in the environment.
Rather, the agent population is made up of agents that areedsromplex agent€Each complex agent contains
within it an instance of each of the mentioned types (gen&tarning, and parenting), in a subsumption archi-
tecture (Brooks, 1986). As such, it can be said that each nggent contains thrdaner agents—one genetic
agent, one learning agent, and one parenting agent. The@oagent mediates between the genetic, learning, and
parenting agents, on the one hand, and the environmenteasthibr. The complete processes of mating, receiving
a perception, and executing an action are detailed in th@fislg subsections.

3.5.1 Mating. Atthe end of a generation’s run, the performance of each tggent is evaluated by its eating-
rate. The evaluations’ average and standard deviatiahare calculated, and the agents are classified in strata of
width d aroundm. Each agent is then awarded mating rights, determined Isyratum. Mating rights specify the
number of matings to which the agent is entitled. This is teeagational selection part of the genetic algorithm,
which was mentioned in Section 3.2.

Specifically, mating rights are awarded as follows (AxeJrd€97): first, all agents that have an eating-rate of
at leastm + d receive two mating rights. Afterwards, the strata are phg#selescending order, and as long as
the sum of awarded mating rights is smaller thﬁﬁf’“, all agents in the next lower stratum receive one mating
right. Finally, mating pairs are determined randomly, whalssuring that no agent participates in more matings
than entitled to, and that the total number of offspring iaaiq0n£35k. Note that this method preserves, to a high
degree, the following principles:

e Survival of the fittest Agents that exhibit good performance (compared to othexsdive a mating right, and
those with exceptional performance receive an extra maitig.

o Genetic variancelt is not the case that only those agents with exceptiondbpaance receive mating rights.
Thus, we avoid putting all of our eggs into one basket.

The mating process of two individual agents is depicted guFé 4. Two complex agents mate and create two
offspring by mating their respective inner genetic ageagsyell as their respective inner parenting agents, and then
encapsulating the inner offspring in new complex agentpoifig) (in the figure, only one of the new offspring is
shown, for the sake of clarity). There are three points thatikl be noted:

(i) The inner genetic offspring receives genetic informatirom its parents during mating, while the inner parent-
ing offspring does not.

(i) Let function g(c) mark the inner genetic agent of complex ageritet functionp(c) mark the inner parenting
agent of complex agent Let functionsP; (a) and P»(a) mark the first and second parent of any ageritet
functionC'(a) mark the complex agent containing inner agenthen for every complex ageat

(PL(p(c), Pa(p(e) = (p(C(PL(g(c),p(C(P2(g(c)))))
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Figure 4. Mating Flow

In other words, in any complex offspring, the parents offitsar parenting agents are those associated with the
parents of the inner genetic agents—i.e., the inner pargatjents take advice from their real parents, and not
from foster parents.

(i) The inner learning agents of the complex offspring @absolutely no association with the inner learning agents
of the complex parents.

3.5.2 Receiving a Perception.The process of receiving a perception is depicted in Figuh/Ben the complex
agent receives a perception, it passes it on to the innettigelearning, and parenting agents. The genetic agent
updates its memory accordingly. The learning agent updtatexemory and its MAM. The parenting agent updates
its memory and its MAM (this is equivalent to updating the MAMIy at the generation’s end, because the MAM
is not used during the current generation).
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Note that the parents from the previous generation are aeiplunaware of the perception—they do not learn
any new information.
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3.5.3 Executing an Action. The flow of the action execution process is depicted in Figurd/hen the complex
agent is about to execute an action, it asks its inner agestsjgest it.

The genetic agent feeds its memory to its MAM, and suggestegtturned action as the action to execute.

The learning agent feeds its memory to its MAM, and suggéstsdturned action as the action to execute.

The parenting agent feeds its memory as input to each ofienp MAMs. The returned actions are fed through
the parenting agent’s ASF, and the parenting agent sugthest€tion selected by its ASF as the action to execute.

The actions suggested by the inner agents are fed to the epmgént's ASF, which selects the genetic agent’s

suggestion with probabilit)PgeTp, the learning agent’s suggestion with probabilﬁg?nmp, and the parenting

agent’s suggestion with probabilit&g(ffw. The complex agent executes the action selected by its AftFalso
perceives it by causing the inner agents to perceive it iuthual manner (see above, Section 3.5.2).

Note that the flow of perceptions and actions in the complenad a general one, and it could be used to
combine any number of given algorithms (as long as each itlgothas an inner agent that executes it). Any
algorithms used will update their own internal structuregectly, but they are not guaranteed to have their own
suggested action executed in every round. The effect ofdbtson different algorithms may vary.

4 Runs

Sections 2 and 3 specified all the different parameters titatichine the behavior of the agent and its environment.
This section specifies which parameters were set to congiérgs, which were treated as independent variables,
which constituted the dependent variables, and finally sarra®s the number of runs performed.

4.1 Constants

411 Task.

Task
[ ] ’I’LA — 20.
This value has been selected because it was used by theogalgetithm implementation in Axelrod (1997),
and seems to provide a sufficient genetic base.
o nlask, = 0500.
This value has been determined experimentally to allow faugh generations for a genetic algorithm to be
effective whem ™" = 0, and to also allow for a sufficient number of generationsésting.
o nlask . =1000
GenTest . . .
This value has been determined experimentally to smoothheumeasured results and to prevent flukes from
having a noticeable effect.
o nF3sk = 30000.
This value has been determined experimentally to allow farugh rounds for a Q-learning algorithm to be
effective.

4.1.2 Environment.

o WP =20,
wbm = 20.
These values have been selected to allow for a large enoigjs@that search for food patches would not be
trivial, and to allow for a large enough set of possible pptions.
Env
=1.
This value has been selected to allow an easier analysie oéults.
The single food patch is defined in relation to a central poiic, = (Tcpo,ops Yepa,.r )- FOr @ point(z, y), let
d¢ Y) be defined as :

(x7

max ( min (|z —

dfrvy)

Env‘)

; min (’y ~ Yeparenl |y — Ycpaten — hEnUD
denotes the larger between the horizontal distance betwegn, and (x,y) and the vertical distance

xcPatch, ’ T — wCPatch —w
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betweercpq.r, and(z, y), taking into account that the environment is cyclic. Théme,gingle food patch function
is defined as follows:

PE™ (z,y) =0.2- P?—d&c,wJ

In effect, this describes a 5x5 food patch. Its peak is at 8rger with a value of 0.8. All squares in the inner
frame have a value of 0.4. All squares in the outer frame hassdiee of 0.2.

4.1.3 Genetic agents.

Gen

o m =1.
This value has been selected experimentally, becauserhighes increase the number of possible memories,
and hence the number of genes, causing the genetic algauttave a much slower convergence rate when

afm = 0.
o PSM =0.02.

PGen = 0.005.
These values were selected in the general vicinity of valtea Axelrod (1997) and Cobb and Grefenstette
(1993), and they have been fine-tuned experimentally.

4.1.4 Learning agents.

Lrn
e m =1.
This value has been selected experimentally, becauserhighes increase the number of possible memories,
causing the Q-learning algorithm to “spread out” too muclupgiating each Q-value less often.
Lrn
o =0.2.

Al = 0.95.
Fomp(n) =5-0.999".

These values have been selected because they were used@yetimning algorithm implementation in Sand-
holm and Crites (1996).

i t%’:]eleze =0.2.
This value has been selected in light of the selected vabresH:sF andf%gglp, so that exploration would stop
after a small but significant fraction of rounds (3910 royratsapproximately the first 13% of rounds in every

generation).

4.1.5 Parenting agents.

Par
o m =1.
This value has been selected experimentally, becauserhighes increase the number of possible memories,
causing the Monte Carlo algorithm to “spread out” too muclupglating each MC-value less often.

4.2 Independent Variables

The parameters that constituted independent variables agefollows a2, PSP, PO pSem Eor shorter

Lrn
notation,(G, L, P) will sometimes be used instead @5, PL2"™", P5™); the two are synonymous.

4.3 Dependent Variables
The only dependent variable is
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4.4 Summary of Runs

For a givem™"?, all values of(G, L, P) that fulfill the following conditions were tested:
() PG >0, PO > 0, PEI™ > 0.

(") Pgeomp + PComp + PComp — 1.

n Lrn Par
(iiiy PEO™ =0.1-n,
PG =00 k- (1= PET™); nik € N,
Under the above conditions, there are 11 different valusis/tfi 7" can receive (i.ef), 0.1, ..., 1). For each such

value, there are 11 values thgt”"” can receive, except fdP. %" = 1, whereP5°""” can receive only one value
(0). Therefore, for a given"?, there are 111 values 66, L, P) that fulfill the above conditions.

There were7 different values ofy*™ that were tested), 1076, 107°,1074,1073,1072,10~. Since each com-
bination ofa"” and(G, L, P) was tested (in one run), this amounted to a total@fruns.

5 Results

This section details the performance of agents by analyjthiegalue of\ and the eating-rates in general.

5.1 Scale of\

First, it is worth noting the scale by which a valueo$hould be evaluated. The food patch had a pe@kSofThus,

an agent that can direct itself to that peak would be expeotkdve an eating-rate of abdu8. Therefore, an agent
could be considered “perfect” if it has an eating-raté)&f Even though a higher value is possible, because the
food patch is a probabilistic function, for the purpose dimlag a scale this fact is negligible.

5.2 Main Results

Table 1. Result Summary of Runs

(G,L,P)
o™ 1(1,0,0) (0,1,0) [(0,0,1)] Best(G, L, P) | BestA
0][0.2425 0.7233 [0.0746 (0.7,0,0.3) [0.7988
107°]]0.2139 0.7188 [0.0730 (0.2,0.6,0.2) [0.7528
107°]/0.180¢ 0.6912 [0.0670 (0,0.9,0.1) [0.7011
10~%]]0.1550 0.5454 [0.0520(0.03,0.9,0.07) [0.6021
1077]]0.1462 0.3252 [0.0291(0.02,0.8,0.18) [ 0.3647
1072]|0.08054 0.1834 [0.0167  (0,1,0) 0.1834
10~1]]0.0366 0.0698 [0.0177  (0,1,0) 0.0698

Table 1 summarizes the main results—tealue of the pure agent types and the best performer forestlab
of o™ . Two points are derived from this table:

o Not surprisingly,\ becomes degraded a§™" rises.
e The performance of agents can be classified according te targges of“": 0, (0, K] and[K, 10~!], where
1073 < K <1072,

5.3 Pure Parenting PS> = 1)

Pure parenting is ineffective. This is evident from Tablerg though it is true for all tested values@f™, it is

most striking in Figure 8 (parenting probability is imptian the figure sincengfp + Pﬁ‘j@m” + ngf"”p =1).
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A probable explanation for this degraded performance isldugsion not to include exploration in the parenting
agent’s algorithm. Indeed, a closer look at the eatingsrat@ure parenting agents lends support to this explanation
The eating-rates go through a two-generation cycle. As amele, fora®™ = 0, the eating-rates of all agents
in one generation usually have values betwe#05 and0.025, while in the next generation almost all eating-
rates aré) (nicknamed a “zero-generation”). This cycle repeats. Tdre-generations occasionally have up to four
eating-rates higher than05, and there are rare zero-generations with one or two mediungb eating-rates. This
behavior is demonstrated for a sample range of generatidrigiire 7.

0.03 T T T T T T T T T

0.02 .

Eating-Rate

0.01

O Il Il Il Il Il
5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050
Generation

Figure 7. 75t Percentile of Eating-Rates for Pure Parenting Agents’ = 0)

Lack of exploration could be the culprit. What seems to bepeapg is that in the non-zero-generation, agents
start a search for food, which is beneficial to a certain éxtdowever, the search is not good enough for the MC-
method to consider it a success (since the initial MC-vadue8.5). Therefore, the offspring in the next generation,
which is a zero-generation, receive advice from the panmeotso go where the parents went, i.e., abandon the
parents’ search. The obedient offspring do just that, aatchdn other directions, which are usually barren. Now,
the offspring in the next non-zero-generation will recdiwdy valuable advice, not to go in the barren directions.
However, for every memory, the non-zero-generation agiit$ace three or four other directions in which they
can go, so they will be able to start a beneficial search, byttora certain extent. Hence, the cycle.

5.4 Runs witha®™ =0

The results for the runs with”™ = 0 are summarized in Table 2, and they are represented visodfigure 8.
The points that can be derived from these results are asvillo

e The highest\-value,0.7988, is achieved forG, L, P) = (0.7,0,0.3). Taking into account the scale that was
mentioned earlier()(8 being achieved by a perfect agent), this means that the \astity of generations that
eventually evolved for thisG, L, P) have each contained a near-perfect agent—over a sg@@fenerations!

e Surprisingly, pure genetic agents perform poorly, while tigbrids of genetic agents with learning and parenting
agents achieve a very high Still, in view of what is known of genetic algorithms, andsé the environment
is stationary, the pure genetic agent is expected to haveualey achieved a near-perfesthad it been given
enough generations to develop. Indeed, Hinton and Nowl@@g§jldemonstrated that “learning” organisms can
evolve much faster than their non-“learning” equivaleAtsd according to Littman (1996), evolution and “learn-
ing” complement each other. On the one hand, “learning” nesjsa evolution by making near-perfect individ-
uals receive high fithess scores, since such individualstadia “learning”, to exhibit optimal behavior. On the
other hand, evolution accelerates “learning” by makingviadials nearly perfect to begin with. This interaction
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Table 2. Afor "V =0 .
P
Com
f}gecgfw 0 01| 02| 03| 04| 05| 06| 07| 08| 09 1
- Lrn

0({0.07440.10740.22410.48660.77360.77150.76260.75380.7448 0.7373
0.1]]0.09880.10370.2470 0.70930.77970.77110.76210.75310.74450.737
0.2][0.15610.15150.48120.78140.780540.77449 0.76590.75470.7451 0.7368
0.3][0.26290.34370.738(0.78710.78210.77730.77040.75740.74720.7369
0.4]]|0.35570.68070.78340.789( 0.78580.78410.777¢0.763¢0.74950.7373
0.5][0.64510.75230.78510.79030.78710.784d 0.77940.77190.756( 0.7378 0.7233
0.6][0.75440.77700.787(0.789¢ 0.78810.7868 0.783( 0.77630.7613 0.7362
0.7]]0.79840.7824 0.78650.78930.78930.78830.78470.77/850.7634 0.7363
0.8][0.79820.78490.7880 0.790(0 0.7898 0.7881/0.7854 0.7811 0.77210.7360
0.9][0.79530.78670.78940.7906 0.7906 0.7868 0.78390.782(0J0.77450.734
1]]0.24250.79480.79150.78690.779¢0.773§0.766§0.75690.74410.736§

Success (Lambda)

0.4

. o o
Genetic Prob. Learning Prob.

Figure 8. \ for o™ = 0

between evolution and “learning” was first applied to ndtawlution, and is termed thgaldwin Effect(Bald-
win, 1896). In our experiments, “learning” is manifestedtbby learning agents and by parenting agents. Note
that the acceleration of “learning” by evolution explaineyaparenting has such a positive contribution to the
genetic-parenting hybrid, compared to the poor perforraarigure parenting agents.

o Generally, for a giverP5”™, \ rises asP_ "™ decreases.

Lrn

° WhenPg(f[”p reaches values as high @$-0.7, A drops sharply from values abover to values in the range
0.35-0.5 and lower. So here, not only is pure parenting catastrophicalso a high enough degree of parenting
causes a severe drop in performance.

5.5 Runs with a Low PositivexE™?

The results for the runs with®™ ¢ {1076,1075,10~4,10~3} can be classified together. The results for these
values ofo“™ are summarized in Tables 3, 4, 5, and 6, and they are repeebestially in Figures 9, 10, 11, and
12 (respectively). The points that can be derived from tselts for thesex*"*-values are as follows:

e As expected, pure genetic agents perform much worse thariganming agents.
e Pure learning agents are not the best performers. They greréarmed by hybrids where the following condi-
tions hold:
() PL™ > PG + PR

Lrn



February 4, 2007 18:54 Journal of Experimental & Theork#etficial Intelligence jetai’ parenting

18 Michael Berger
Table 3. Afor a®"? = 10-°
Pfomp
:fzc 0o | 01| 02| 03| 04| 05| 06| 07| 08| 09| 1

Lrn

0({0.073(0.11020.23410.45470.74390.75160.75140.74320.73870.73371
0.1]]0.0904 0.1070 0.24590.4162 0.72480.73660.74390.73540.7263 0.7277
0.2][0.14280.1408 0.2803 0.62010.71110.7344 0.73390.72870.7344 0.7216
0.3][0.1884 0.21250.4540 0.6256 0.7388 0.735(0 0.723(0 0.73890.72590.720
0.4]]0.29050.43390.5361]0.664( 0.72550.75250.73170.73180.73230.727(
0.5][0.35190.47560.58980.67230.73740.72550.75280.73130.7249 0.71250.7188
0.6]/0.40490.5101]0.65410.70290.72480.7418 0.728¢ 0.73820.715¢ 0.7153
0.7]]0.55490.60050.6620 0.709¢ 0.732(0 0.70850.747( 0.709¢ 0.72140.7214
0.8][0.56630.5891]0.63270.68690.7226§0.738¢d 0.7154 0.73420.71350.709
0.9]/0.5181/0.606(0 0.72440.7031/0.719¢ 0.7166 0.733(0 0.72810.7364 0.7192
1]]0.21390.62980.60730.72780.71310.73690.716( 0.71350.698(0 0.719(¢

Table 4. Xfor a®™v = 107°

PComp
PCoan Lrn
Lol 0 | 01| 02| 03| 04| 05| 06| 0708|091
Lrn

0({0.067(0.11630.23380.391(0 0.597/(0 0.6702 0.6824 0.6943 0.6987 0.7011
0.1]]0.07890.11250.2396 0.40140.57650.656/0.67/450.6764 0.697¢ 0.6987
0.2[[0.08270.12790.2530 0.40710.56350.63990.660/0.6811 0.68971 0.6953
0.3][0.13080.15580.2904 0.4141/0.6037 0.6336 0.65350.67770.683¢ 0.691§
0.4][0.15770.21680.32880.44230.5670 0.636/0.64790.6664 0.6 745 0.6889
0.5[[0.12340.24330.33950.47850.57780.6300 0.6660 0.65550.674( 0.6878 0.6912
0.6][0.19190.31340.413(0 0.5540 0.599( 0.6364 0.65110.66430.67/17 0.6863
0.7]][0.25040.33740.412/0.528¢0.55890.626(0 0.6414 0.6484 0.6681 0.681
0.8][0.22840.39730.47830.5716 0.59310.60370.6593 0.6484 0.6723 0.6807
0.9][0.30850.467(0 0.45850.53990.55830.58490.62810.63250.6537 0.6643
1]]0.1804 0.53290.5164 0.529¢ 0.5039 0.588(0 0.5654 0.606( 0.6279 0.653

Table 5. Afora®™v =107%

Comp
PLrn

ey 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0{0.052(0.12330.23170.32360.4163 0.4814 0.5304 0.5641 0.5823 0.5987
0.1]]0.044590.11540.22720.336(0 0.4182 0.4903 0.5321/ 0.5644 0.58971 0.6019
0.2]|0.04640.12040.228720.33370.4166 0.4856 0.5334 0.562¢ 0.5818 0.599
0.3][0.05330.12390.23250.32710.4116 0.48050.52740.564( 0.585( 0.602]
4[/0.05700.13530.2321]0.3330 0.4028 0.47740.52090.5544 0.5814 0.5989
0.5//0.07650.1461]0.2411/0.343(00.41210.47720.521¢ 0.55190.5803 0.5909 0.5452
0.6][0.06850.16780.253(0.337170.4020 0.46830.51610.5441]0.5683 0.5917
0.7][0.08930.17000.290/0.34770.413¢90.4670 0.50549 0.53590.5614 0.5820
0.8
0.9

1

0.07030.2008 0.2824 0.3486 0.4121 0.4584 0.4925 0.5324 0.5582 0.570
0.089(00.24170.31270.37290.41240.4564 0.467/30.5039 0.5415 0.559]
0.15500.41800.41630.42690.4264 0.43690.44820.47120.5023 0.5431]

s Comp Comp

(") PPar > PGen
In other words, the best performers are those hybrids wleammihg predominates (but is not absolute), and
parenting has at least as much weight as geneticsx8 ¢ {107°,10~%, 1073}, the inequality of the second
condition is a strong one—the best performer contains a rhigre/parenting has more than twice the weight of
genetics. Presumably, far®™ = 10~% environment changes occur at such a low rate that geneticsaradle
them well (one change eveﬁﬁ% generations on average).
The result forr®™ = 10~% might actually imply that the shift from the best performgpe fora " = 0 to the
best performer type for low positive”""-values is a gradual one, rather than an abrupt oneaF8t = 0,
the best performer haBl > = (0 and P52 < P52, Fora®™ e {107%,10%,1072}, all best perform-
ers havePy "? > 0.8 and P52 > 2 - PSP, Therefore, the best performer fof™* = 10~, which has
PO — 0.6 and PSP = PSS, can be considered “in-between” these two states.

Lrn
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Table 6. X for ®"v = 1073 -
omp
Comp PLT”
f}gecnw 0 01| 02| 03| 04| 05| 06| 07| 08| 09 1
- Lrn

0](0.0297/0.0930 0.15650.2200 0.2623 0.2959 0.3244 0.3454 0.358( 0.3505
0.1]]0.02540.09190.1623 0.22250.2702 0.3102 0.335(0 0.35190.364/ 0.3564
0.2[/0.0261/0.09250.16150.2231]0.2730 0.3090 0.3408 0.35710.3601/ 0.353(
0.3[/0.02940.09110.16070.2209 0.2714 0.30370.3354 0.358( 0.3641 0.356]]
0.4{/0.03140.09470.16350.222720.2702 0.3039 0.3329 0.3554 0.3634 0.356(
0.5[/0.03430.09740.16240.2191]0.2634 0.3008 0.3343 0.348(0 0.3574 0.3527 0.3252
0.6[/0.03820.10020.1605 0.2144 0.2648 0.29570.3277 0.35190.3524 0.3497
0.7]]0.04020.1018 0.16230.21610.25790.29350.3207 0.3365 0.353(0 0.346
0.8[/0.04300.11430.17370.2160 0.2589 0.28610.31570.327( 0.3431 0.339
0.9[/0.0461/0.13240.1862 0.2228 0.2573 0.2836 0.3025 0.3227 0.3265 0.3336
1]]0.14620.29430.3000 0.30770.3028 0.3064 0.311( 0.32220.3219 0.3303

Success (Lambda)

Learning Prob.

Genetic Prob.

Figure 9. X for aZ™v = 10—6

Unfortunately, the possibility of this gradual trend fef™* < 10~6 cannot be further explored experimentally
with the given parameter values. The reason is that the mn@oiable that denotes the number of food patch
movements throughout the lasf"%.. ., generations is a binomial one. For high enoudt-values, it is ap-
proximately a normal distribution, but already fof"” = 10~> and more so fon”™ = 1079, the distribution

is not so close to normal anymore (this can be seen visualtphparing the jerkiness of the graphs in Figures 9
and 10 to the relative smoothness of all other graphs).

o The best performers are not the only ones that are betteptivariearners. Best performers are surrounded by an
(experimentally) continuous environmémif performers, all of which perform better than pure leagnagents.
This is important, because it indicates that it is not a mattehance or a fluke that the best performers in our
experiments performed better than pure learning agentée Tasummarizes these continuous environments.

e The best performers af”"’-values10~2 and10~* perform significantly better than the pure learning agent
(12.1% and 10.4% higher, respectively). kdr*’-values10~° and10~%, the difference is less significant (1.4%
and 4.7% higher, respectively).
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Figure 10. X for oF™v = 10~5
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Figure 11. X for a£nv = 10—4

Table 7. Environments of Performers that are Better tham Pearning Agents

Com PgomP
Best Perfcc)rmer ppomP T pe
alnv |l (poomp 1?;%21;) in Environmentin Environmen
100 (0.6,0.5) 0.5-0.7 0-0.6
0.4-0.7 0.3-0.6
1077 ©0.9,1) 0.8-0.9 0.9-1
107 (0.9,0.7) 0.8-0.9 0.2-1
0.7-0.9 0.5-1
103 (0.8,0.9) 0.7-0.9 0.2-1
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Figure 12. A for a®7v = 10—3

Table 8. X for a®™v = 1072

PComp

Lrn

pComp

Gen 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0]/0.01610.042710.0600 0.07870.08840.10140.108740.11620.1208 0.1247
0.1][0.018¢0.0430 0.0624 0.07850.09340.100690.11440.11740.12210.1289
0.2][|0.01950.04370.06180.07890.09370.10540.11470.11870.1223 0.126(
0.3][0.02170.04400.06320.079¢ 0.095§0.10600.114§0.11640.12310.1267
0.4][0.02300.04440.06400.07930.09330.10370.11190.12070.12250.1258
0.5][0.025 0.04530.06570.08170.0948 0.10440.11280.11870.12270.12820.1834
0.6][0.02730.04480.0636 0.08110.094d0.10490.113110.11890.123§8 0.127
0.7][0.027890.04650.064/0.07930.09190.10300.113270.11810.121¢ 0.1253
8][0.02930.04920.06710.08120.09420.10590.11150.1187]0.1252 0.1318
.9][0.03230.05730.07440.08650.09630.107/(00.11270.12020.126/ 0.131
1]]0.08050.13190.15130.1576§0.15990.160/0.15550.15230.1484 0.143

Table 9. Afora®"v = 107!

Pfomp
Lol o [ o1]o2| 03] 0405|0607 0800 1

Lrn

0][0.017740.02530.02870.032(0 0.035%0.03670.0382 0.0401 0.0423 0.046]]
0.1]]0.0190 0.0256 0.0297 0.03250.0357]0.0374 0.039¢ 0.0405 0.0425 0.0462
0.2][0.02270.0258 0.0290 0.0321/0.035(0 0.03790.03950.0413 0.042710.045
0.3][0.02270.02590.0294 0.03210.035¢ 0.0374 0.0402 0.0412 0.0431{ 0.0459
0.4]]0.02330.02620.02910.0324 0.0356 0.0376 0.03990.04110.043( 0.0461]
0.5[[0.02370.0260 0.0298 0.03290.03510.0384 0.0401/ 0.04150.0434 0.0464 0.0698
0.6[[0.0231]0.02650.029/0.03310.0362 0.03820.0399 0.0415 0.0438 0.0463
0.7]]0.022§ 0.02670.0304 0.03370.0364 0.03870.041( 0.0427 0.0439 0.0464
0.8][0.03030.02830.03130.03490.03770.03970.0412 0.04250.0444 0.047
0.9][0.03140.02990.0341/0.03740.0388 0.04150.0430 0.0441 0.0458 0.048
1][0.0364 0.0450 0.0547]0.0557]0.0556 0.056( 0.0547 0.052¢ 0.0514 0.052]

5.6 Runs with a Higher Positiven®™?

The results for the runs with®™* € {1072, 1071} can be classified together. The results for the’s&’-values are
summarized in Tables 8 and 9, and they are representedlyisukigures 13 and 14 (respectively). The points that

1The term “environment” in this bullet refers to a mathematienvironment, not the environment in which the agentsatper
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Figure 13. X for oF™v = 10~2

Genetic Prob. Learning Prob.

Figure 14. X for oF™? = 10~1

can be derived from the results for these valuesdf’ are as follows:

e As expected, pure genetic agents perform much worse thanganming agents.
o Pure learning agents are the best performers.

o For any givenP_ °"™, a hybrid with P5""” = 0 performs better than any other hybrid with the saf&”"”. In

other words, even very small amounts of parenting hindepérormance of agents.

5.7 A Qualitative Angle

In Sections 5.4, 5.5, and 5.6, the discussion centered drbumhich is an aggregate measure of BERs (in the last
1000 generations). However, it is also worth exploring the datilie behavior of BERs that lies behind This
section describes the different behaviors of the BER gréptdifferent types of best performers, and examines the

effects of adding a parenting element to a pure learningtagen
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Figure 15. BER of Best Performer for?"v = 0

5.7.1 BERs of Best PerformersFor o”™ = 0, the BER graph for the best performer is shown in Figure 15.
This genetic-parenting hybrid evolves over a short periodbmut100 generations, and then reaches a very high
performance with occasional drops. These drops in perfocemaecome rarer as generations pass, and the main,
crisp graph line indicates a pretty high consistency ingremnce. For the last 1000 generations, the measurement
period of\, 02 = 4.72 - 107°.

1 T T T T T T T T T

0.9 -
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0.4

L LAl b

1000 2000 3000 4000 5000 6000 7000 8000 9000
Generation

0.3
0.2
o i ‘ \“\M

Figure 16. BER of Pure Genetic Agent fla™? = 0

When comparing the BER graph of the best performer with thB BEaph of a pure genetic agent (Figure 16), it
is evident that parenting carries out two roles. First, inages to nudge genetics so that it converges quickly in the
correct direction. Second, it provides a safety net in lgérerations, in the sense that even when performance falls,
it does not fall too deep (with extremely high probabilitfhese roles have already been mentioned in Section 5.4.

As it turns out, learning provides the same roles as parmgfsiee Figure 17), which means that learning, instead
of parenting, can be added to genetics. While this doestbfligiurt the average of BERs in later generations
(A = 0.7948 instead 0f0.7988), it greatly improves the minimum of BERs in these genersifwith extremely
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Figure 17. BER ofG, L, P) = (0.9,0.1,0) for a®™v = 0

high probability). The loss in\ is caused by the fact that the main band of the graph in Figans Wider than

in Figure 15. To translate the meaning of a “main band” intonatical variance, we considered the graph in
Figure 17 to be made up of a single main band with no resulsideithat band. The minimum of this graph in
the measurement period wa§606. Thus we compared the variance of all results larger thamoaleto0.7606

in both graphs. This meant that in Figure 15 there véareuge results (out of000), that were not included in the
definition of the “main band” (this is visually apparent frahe figure). For Figure 142 = 3.07 - 107°. While
smaller than the originat?> = 4.72 - 10~° measured for Figure 15, it is larger than the variance of thenm
band in that figure—e? = 1.54 - 107°. This is caused by the inevitable need of the learning agerdlearn
information each new generation and to perform exploratignle a parenting agent performs no exploration at all.
As seen here, lack of exploration in parenting also has aldis#@age in that there is a small chance that it would
lead agents in a wrong direction, as manifested by the roggidts. But ultimately, in this scenario, the benefits of
parenting’s lack of exploration still outweigh those ofrieiag in the long run.

Il Il Il Il Il Il Il Il Il
(0] 1000 2000 3000 4000 5000 6000 7000 8000 9000
Generation

Figure 18. BER of Best Performer far?v = 106
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Fora®™ = 1079, the BER graph for the best performer is shown in Figure 18 ganetics-learning-parenting
hybrid that has a fair amount of genetics has the advantageaétively high starting-point, since the genetics are
boosted by learning and parenting (see Section 5.4). Thisrpger manages to evolve from its high starting-point
to a very high position (between7 and0.8), and hold its ground there for a short while. Performanogsiioccur
at a higher rate than they do for the BER performance&t’ = 0, and sometimes the drops bring down the
performance for longer than an instant (presumably, wheridbd patch moves). However, learning and parenting
act like a safety net, ensuring that the performance draps@trtoo steep, and genetics always fight (successfully)
to bring the performance back up to very high levefs.= 0.0015.

BER

Il Il Il Il Il Il Il Il Il
(0] 1000 2000 3000 4000 5000 6000 7000 8000 9000
Generation

Figure 19. BER of Best Performer far?™v = 104

Fora®™ ¢ {1075,10~%,1073}, a representative BER graph for the best performer is shovigure 19 (for
aP™ = 107%). This genetics-learning-parenting hybrid has minuten@y amounts of genetics. Therefore, the
BER graph does not show an element of evolution—the end ofrtéygh is not much higher than its start. On the
other hand, parenting and learning provide a safety neighmanifested by the fact that all BER values are higher
than0.3, and a vast majority of them are also higher tidah The graph is very shaky, and the width of its main
band is aboud.2. 2 = 0.0038.

For o™ ¢ {1072,107'}, a representative BER graph for the best performer is showRigure 20 (for
aP™ = 1072). The best performer is a pure learning agent—and thus, ER aph does not show any el-
ement of evolution. Here too, learning provides a safetywkich is manifested by the fact that all BER values are
higher thar0.1. This graph is not as shaky as was the casefdt’ ¢ {107°,107*, 10~3}—the width of its main
band is aboub.1. 02 = 4.88 - 107%.

5.7.2 The Effects of Parenting on Learning.Section 5.5 has shown that the best performer fordd#’-values is
one where learning predominates but is not absolute, arehfiag predominates the rest. Section 5.6 has shown
that for highern®"?-values, parenting hinders performance, and pure leaisibgst.

The effect of parenting on learning can be isolated when eoimg the performance ofG,L,P) =
(0,1,0) with that of (G,L,P) = (0,0.9,0.1). This is presented in Figures 21, 22, 23, 24, 25, and 26.
Note that fora® ¢ {1076,107°,107%,1073} performance is improved by adding parenting, while for
af™ e {1072,10~'} performance is worsened.
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Figure 20. BER of Best Performer far?v = 10—2

Figure 21. BER of G, L, P) = (0, 1, 0) (left) and(G, L, P) = (0, 0.9,0.1) (right) for a®"v = 10~6
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Figure 22. BER of G, L, P) = (0, 1, 0) (left) and(G, L, P) = (0, 0.9,0.1) (right) for a®"v = 1075

1

0.9 0.9 B

o8 -

o
i}
@

0.4 -

0.3 B

0.2 0.2 -

0.1 0.1 -

o L L L L L L L L L o L L L L L L L L L
o 1000 2000 3000 4000 5000 6000 7000 8000 9000 o 1000 2000 3000 4000 5000 6000 7000 8000 9000
Generation Generation

6 Related Work

Related work can be divided into two types. The first type &eegch that relates to methods that have certain
aspects similar to parenting. The second type is reseaathsiitmulates combinations of genetic algorithms and
learning algorithms only.
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= (0,0.9,0.1) (right) for a®mv = 107%
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Figure 24. BER of G, L, P) = (0, 1, 0) (left) and(G, L, P) = (0, 0.9,0.1) (right) for a®"v = 10~3
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Figure 25. BER of G, L, P) = (0, 1, 0) (left) and(G, L, P) = (0, 0.9,0.1) (right) for a v = 10~2
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Figure 26. BER of G, L, P) = (0, 1, 0) (left) and(G, L, P) = (0, 0.9,0.1) (right) for a®mv = 101
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6.1 Notions Similar to Parenting

A notion that is somewhat related to parenting is taken frbenrealm of teamwork—training a new worker on
a team to fulfill the job of an older worker that left the teamaept here the whole team gets replaced at once).
This scenario is dealt with in Denzinger and Ennis (2002)emgtthe notions of genetics, parenting, and learning
are replaced by notions of abilities, seed strategy, and@igarning, respectively. The abilities determine what a
worker can perform. The seed strategy is a strategy thatalnleawstarts with, but it does not cover all situations—it
is only a guideline. Online learning fills in the blanks. Wheenew worker is brought in to replace an old worker,
the new worker receives the seed strategy of the old workgighnis analogous to parenting. Also, an interesting
parallel between our research and Denzinger and Ennis J28@Rat in the latter, a new worker can replace an
old worker only if it has similar abilities; In our resear@s mentioned in Section 3.5.1, the parenting in complex
agents is performed by real parents, i.e., parents thag gjggretic material similar to that of the offspring.

Parenting is also somewhat reminiscent of the idea of lalyler@rning Whiteson and Stone (2003). In layered
learning, an agent is composed of layers, that are sorteatding to their “proximity” to the environment. The
layer that is closest to the environment learns first. Afardsg, it trains the next level, which now becomes the
learning layer. This process is repeated, with every legrtayer turning into a training layer for the subsequent
layer. One of the training methods is pruning of the outptitsehich is similar to what occurs in parenting (each
parent provides only one allowed action). However, theeesaveral important differences between parenting and
layered learning:

¢ In parenting, all “layers” (agents) are applied to the saas& tin layered learning, layers are applied to different
tasks. In this sense, parenting can be said to representidispase of layered learning.

o Parenting always deals with no more than two “layers” (whaoh different agents), while layered learning holds
on to previous layers. As a consequence, parenting is eklertd any number of generations, in contrast to
layered learning (because of memory limitations).

e In pure parenting, the child “layer” (agent) does not learralg while in layered learning each layer learns.
However, this difference does not exist in non-pure pangnithere some learning is performed, in which case
the child “layer” (agent) learns as well.

In parenting, all “layers” (agents) are of identical prokirto the environment.

6.2 Other Combinations of Genetic Algorithms with Learning

All research mentioned in this subsection explored legrnfowever, it appears that what was referred to in this
article as parenting might also be branded as a type of ‘liegtin the work mentioned in this subsection, in
that parenting is also a type of local search for a soluti@h dperates side by side with global search, which is
performed by a genetic algorithm.

Hinton and Nowlan (1996) presents an extreme example ofiasésy environment. In this environment, organ-
isms have20 switches that they have to either connect or disconnecarisgis receive additional mating awards
only if they set the switches in a single (fixed) pattern, duthe 22° possible patterns. During their lifetime, the
organisms haveé000 attempts to find the correct setting. The organisms carryna @@ each switch, with three
possible values: 1 (connected), O (disconnected) andd'‘B&tearned). The organisms “learn” by selecting random
values for the switches that correspond to genes marked‘@itht was found that when the organisms were al-
lowed to learn, the evolved populations contained orgasitirat reached the correct solution much faster than in
the case where organisms were not allowed to learn.

Nolfi et al. (1994) presents a more “natural” example of ai@tatry environment, which is similar to the one
we used. The environment is a two-dimensional grid, in wligknts search for pieces of food that are located
in an environment. The input given to an agent is the posiiothe food element nearest to it. In contrast to our
model, when food is eaten by an agent, it disappears. Thislisaavantage from an analysis standpoint because
it influences the performance of agents; thus, we could havagent that performs well, but that did not find
food just because others beat him to it. Agents receive gaights according to the amount of food that they
find during their lifetime. Here too, a combination of a génelgorithm with learning evolved faster than a pure
genetic algorithm. Also, it was shown that the genetic athor improves learning by evolving individuals that
have a predisposition for learning to behave efficiently.



February 4, 2007 18:54 Journal of Experimental & Theork#etficial Intelligence jetai’ parenting

Jeffrey S. Rosenschein 29

Nolfi and Parisi (1997) presents a different “natural” eadiment, which is dynamic. In this environment there
is a grid with a single target area, which contains food. Thé g surrounded by walls, and if the agent hits a
wall, it gets stuck in it. This fact complicates analysis efformance, and we avoided this in our environment
by eliminating walls altogether and making the environmeydic. In Nolfi and Parisi (1997), there are actually
two types of walls, which activate the proximity sensors gémts from different distances. The environment in
every even generation is surrounded by the first type of wadfgle the environment in every odd generation is
surrounded by the second type. This is what makes the em@énohdynamic. However, there are two important
differences from our environment. First, this environmeamnges only between generations, and not within them
as in our environment. Second, the change in this envirohimeateterministic, unlike in ours. Again, the results
were similar—learning speeded up evolution, while the tjeradgorithm improved learning.

7 Conclusions

Returning to the original abstract question raised in $acti.2, let us define an agent’s algorithm A to be an
action-augmentoof an agent’s algorithm B if the following conditions hold:)(both algorithms are always used
for receiving perceptions; (2) B is applied for executingaation in most steps; (3) A is applied for executing an
action in at least 50% of the other steps.

The main results of our experiments can be rephrased ag/fllo

¢ When the environment is stationary, parenting can provigmsitive contribution when used as an action-
augmentor for genetics. Note that in such an environmemiglitonsC1 andC2 (from Section 1.2) basically
hold, although without the condition &2 that the rate of dynamic change pesitive(but zero is indeed very
low).

¢ When the environment has a very low rate of dynamic changengiag can provide a positive contribution
when used as an action-augmentor for learning. Note thaigh an environment, conditiortdl andC2 both
hold.

e When the environment has a higher rate of dynamic changenfiag loses its effectiveness, and pure learning
is the best performer. Note that in such an environment,iiondC2 does not hold.

In all cases, pure parenting performs extremely poorly.

When the environment is stationary, learning too can peadimilar positive contribution when used as an
action-augmentor for genetics. Thus, the contributionarépting is unique only to environments with a low posi-
tive rate of dynamic change—i.e., where conditi@isandC2 both hold (fully).

While this article only presents a single testbed, the amichs presented above may very well be applicable to
many settings. Continuing with the abstract solution presgtabove, when a task is given in an agent-environment
setting and the agent has a large enough number of rounds/®tee problem, one suggested method for devel-
oping suitable agents would be to reduce the task to thegetiscussed in this article, as follows:

(i) Divide the sequence of rounds into generations. Eacleiggion should be sufficiently long, and there should
be a sufficient number of generations.

(i) Define a metric over the state of the environment.

(iii) Calculate the expectancy of the “rate of change” in émeironment’s state, with respect to the metric.

(iv) Categorize the expectancy of the “rate of change”. i€, use a genetic-learning combination (as suggested
here and in Hinton and Nowlan (1996); Nolfi et al. (1994); Nalid Parisi (1997)), or use a genetic-parenting
combination (as suggested here). If the expectancy is |twear an arbitrary limit, use some combination of
parenting with learning, perhaps with a very small amoungefetics. If the expectancy is higher than that
limit, use pure learning.

Finally, we offer a thought which is beyond the strictly camgttional. In nature, parenting has two functions:
providing for the young, and educating them. However, tlagessettings where the young have access to sufficient
resources, eliminating the need to provide for them. Arr@gting point for biologists to explore might be whether
for animals in such settings, a parenting role evolves, asetibn of the environment'’s rate of change. According
to this article’s results, it would be expected to evolveniflanly if the environment does not change too quickly.
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Appendix A: Further Research

The model presented in this article contains many paraserad details, which can be modified in search of a
better way to synthesize agents that cope with static, gloldnging, and quickly changing environments. Further
research can be done on the following questions:

o Would performance improve by tweaking parameter values?

e Parenting in our model was performed with two parents. Ieth@ optimal number of parents? Is it one, two, or
more?

e Parenting in our model was performed with real parents, agiored in Section 3.5.1. Is there any importance
for the parents to be real parents? Is there some hidden affex the offspring receives advice from parents
with which it shares its genetic material? This questioreeslly concerns cases where best performers had
positive values 0’5" and PS5

e A parenting agent in our model selected between its paradiste with equal probability. Is there a different
method that would improve on this? For example, should tbbadnility that the parenting agent selects a parent’s
advice be influenced by how well that parent performed in tlevipus generation? Should it be influenced
by how well that parent is sure of its advice (e.g., the acMi@lvalues, the number of times that the parent
encountered the given memaory, how late during its life-tthieparent encountered the given memory, etc.)?

o Should the parenting model be changed so that parents tragetformance of their offspring and update their
MC-tables accordingly? This question is analogous to tke jatesented in Whiteson and Stone (2003)—would
layered learning operate better concurrently (in whicle@saining layer still learns), or should there only be a
single learning layer at any given time (which is termedditianal” layered learning)?

o What difference would it make to add exploration to the pangnalgorithm? Would this significantly improve
or worsen the effects of parenting shown in this article?

o What happens whem”™" is positive but approaches zero? Would learning still preidate for best performers,
or would best performers shift more and more weight towardeges, up to a point where genetics predominate?

o Would there be any significant difference when memory lengtie larger tham?

o Would there be any significant difference with more than amwlfpatch, or with a food patch that has multiple
local minima or maxima?

o Should the model be changed so th@t L, P) does not remain constant throughout the lifetime of agefas?
take human settings as an example, as people grow oldertghéyo listen less to their parents and rely more
on their own experiences. Shoukf”"™ decrease an#. °"” increase during an agent’s lifetime?

¢ Is it possible for agent generations to evolve a suité@lel, P), instead of having it predetermined?

e The metric used in defining agent success relied on the bisg eate (BER) measured per generation. Would
the conclusions regarding the appropriate mix of genelzgning, and parenting change significantly if an
average eating rate was measured instead?

This list is certainly not exhaustive, and many other aspean be further explored.
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