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Abstract

Decentralized Reputation Systems have recently emerged asa prominent method
of establishing trust among self-interested agents in online environments. A key
issue is the efficient aggregation of data in the system; several approaches have
been proposed, but they are plagued by major shortcomings.

We put forward a novel, decentralized data management scheme grounded in
gossip-based algorithms.Rumor mongeringis known to possess algorithmic ad-
vantages, and indeed, our framework inherits many of its salient features: scalabil-
ity, robustness, globality, and simplicity.

We demonstrate that our scheme motivates agents to maintaina sparkling clean
reputation, by showing that the higher an agent’s reputation is above the threshold
set by her peers, the more transactions she would be able to complete within a
certain time unit. We analyze the relation between the amount by which an agent’s
average reputation exceeds the threshold and the time required to close a deal.
This analysis is carried out both theoretically, and empirically through a simulation
system calledGossipTrustSim. Finally, we show that our approach is inherently
impervious to certain kinds of attacks.

1 Introduction

In open multiagent environments, self-interested agents are often tempted to employ
deceit as they interact with others. Fortunately, dishonest agents can expect their vic-
tims to retaliate in future encounters. This “shadow of the future”, as Axelrod termed
it [6], motivates cooperation and trustworthiness.

However, as the size of the system grows, agents have an increasingly small chance
of dealing with another agent they already know; as a consequence, building trust in do-
mains teeming with numerous agents becomes much harder. Oneprominent example
of such an environment is the Internet, which has a key benefitof allowing interaction

∗A preliminary version of this paper appeared in the proceedings of IJCAI 2007.

1



between entities who are not familiar with each other. Sincethe value of a transaction
depends heavily on the reliability of the parties involved in it, designing mechanisms
that allow the obtaining of information regarding the parties involved in a possible
transaction is very important in such environments.

Reputation systems address this problem by collecting, maintaining, and dissemi-
nating reports among agents, so that agents may learn from others’ experience. To put
it differently, agents are intimidated by the “shadow of thefuture” today, even though
tomorrow they are most likely to meet total strangers. Also,such information may
allow an agent tochoosethe most suitable party with whom to carry out a transaction.
Such systems have been used in a wide variety of applications, in electronic commerce,
auctions, and many peer-to-peer systems.

Reputation systems can be decomposed into two major components: 1) the trust
model, which describes whether an agent is trustworthy, and2) the data management
scheme. The latter component poses some interesting problems, since it is imperative
to efficiently aggregate trust-related information in the system. A simple solution is to
maintain a central database that contains the feedback gathered from past transactions.

Unfortunately, the centralized solution is inappropriatein distributed environments
where scalability is a major concern, as the database soon becomes a bottleneck of the
system. Moreover, this approach is not robust to failures. Previous work ondecen-
tralized reputation schemes suffered from their own major problems:agents have to
maintain complex data structures, evaluation of trust is based only on local informa-
tion, or there are restrictive assumptions on the trust model.1

We approach this hornets’ nest by designing a novel method oftrust aggregation
(i.e., a reputation system’s data management scheme). Thatis the focus of this arti-
cle. The method is demonstrated in this paper for a simple trust model, but it can be
extended to more complex models.

The roots of ourgossip-basedapproach to reputation system data management
can be traced to a seminal paper by Frieze and Grimmett [16]: arumor starts with one
agent; at each stage, each agent that knows the rumor spreadsit to another agent chosen
uniformly at random. The authors show that the rumor reachesall agents quickly (a
result that roughly coincides with situations in real life).

We directly rely on more recent results, surveyed in the nextsection. It has been
shown that aggregate information, such as averages and sumsof agents’ inputs, can be
calculated using similar methods of uniform gossip in a way that scales gracefully as
the number of agents increases. Furthermore, the approach is robust to failures, and
the results hold even when one cannot assume a point-to-point connection between any
two agents (as is the case in peer-to-peer [P2P] networks).

In our setting, each agent merely keeps its private evaluation of the trustworthiness
of other agents, based on its own interactions.2 When an agent wishes to perform
a transaction with another, it obtains theaverageevaluation of the other’s reputation
from all agents in the system, using a gossip-based technique.

Although the algorithms that we present estimate theaveragereputation, they can
be easily adapted to estimating whether a certain agent has ahigh reputation in the eyes

1The “or” is not exclusive.
2The question of how agents set this valuation is outside the scope of this paper.
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of the majority of the agents, or certain other similar metrics. Thus, the framework
we advocate for aggregating reputation information accommodates more sophisticated
trust models.

Some advantages are immediately self-evident. Each agent stores very little in-
formation, which can be simply and efficiently organized, and evaluation of trust is
based on global information. Additionally, this frameworkinherits the advantages of
gossip-based algorithms: scalability, robustness to failure, decentralization, and as a
consequence, applicability in peer-to-peer networks.

We have implemented a system calledGossipTrustSim, for simulating transactions
among agents who use our suggested procedure to decide whether or not to carry out a
transaction. This simulation is used to investigate some ofthe properties of our method.

An important desideratum one would like a reputation systemto satisfy is motivat-
ing agents to maintain an untarnished reputation, i.e., to be absolutely trustworthy(as
opposed to, say, being generally trustworthy but occasionally cheating). We claim that
our data management scheme, together with an extremely simple trust model, satisfies
this property, by showing that the higher an agent’s reputation is above the threshold
set by the peers with whom she wishes to interact, the more transactions she would be
able to complete within a certain time unit. This claim is supported by both theoretical
results, as well as by empirical results obtained usingGossipTrustSim.

We also demonstrate that our trust data management scheme has another advantage:
it is inherently resistant to some attacks(with no assumptions on the trust model). This
is a positive side effect of the exponential convergence rates of the algorithms we use.

In this paper we donot address the problem of designing a trust model. Rather,
we suggest an approach for agents to aggregate distributed trust information so as to
decide with whom to carry out transactions.

The article is organized as follows. Section 2 discusses gossip-based methods for
aggregating information, which lie at the core of the methodwe suggest. Section 3
introduces our method of gossip-based aggregation of trustinformation for decentral-
ized reputation systems. In Section 4, we theoretically analyze how keeping a very
high reputation allows an agent to shorten the time she requires to achieve a successful
transaction. Section 5 discusses simulation results that also support this claim. In Sec-
tion 6, we consider certain kinds of attacks that can be used by agents who attempt to
manipulate reputation systems, and show that our method is resistant to such attacks.
Section 7 discusses important related work; we conclude in Section 8.

2 Gossip-Based Information Aggregation

In this section, we survey the relevant results of Kempe, Dobra and Gehrke [20]. These
algorithms allow us to estimate the average of values held atnetwork nodes (in our
case, these values will be the reputation values concerninga particular agent). [20]
also shows how to calculate other functions over these values, such as the majority
function and sum. Thus our algorithms can be adapted for other, more sophisticated
models of trust.
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2.1 Push-Sum

We begin by describing a simple algorithm, PUSH-SUM, to compute the average of
values at nodes in a network. There aren nodes in the system, and each nodei holds
an inputxi ≥ 0. At time t, each nodei maintains asumst,i and aweightwt,i. The
values are initialized as follows:s0,i = xi, w0,i = 1. At time 0, each nodei sends
the pairs0,i, w0,i to itself; at every timet > 0, the nodes follow the protocol given as
Algorithm 1.

Algorithm 1
1: procedure PUSH-SUM

2: Let {(ŝl, ŵl)}l be all the pairs sent toi at timet− 1
3: st,i ←

∑

l ŝl

4: wt,i ←
∑

l ŵl

5: Choose a targetft(i) uniformly at random
6: Send the pair(1

2st,i,
1
2wt,i) to i and toft(i)

7:
st,i

wt,i
is the estimate of the average at timet

8: end procedure

2.2 Convergence and the Diffusion Speed of Uniform Gossip

LetU(n, δ, ǫ) (thediffusion speedof uniform gossip) be an upper bound on the number
of turns PUSH-SUM requires so that for allt ≥ U(n, δ, ǫ) and all nodesi,

1
∑

k xk
·

∣

∣

∣

∣

∣

st,i

wt,i
−

1

n

∑

k

xk

∣

∣

∣

∣

∣

≤ ǫ

(the relative error is at mostǫ) with probability at least1− δ.

Theorem 1([20]).

1. U(n, δ, ǫ) = O(log n + log 1
δ + log 1

ǫ ).

2. The size of all messages sent at timet by PUSH-SUM is O(t + maxi bits(xi)),
where bits(xi) is the number of bits in the binary representation ofxi.

2.3 Advantages of Push-Sum

A major advantage of gossip-based algorithms is their robustness to failures: the ag-
gregation persists in the face of failed nodes, permanent communication failures, and
other unfortunate events. Further, no recovery action is required. The assumption is
that nodes can detect whether their message has reached its destination; PUSH-SUM is
modified so that if a node detects its target failed, it sends its message to itself.

Theorem 2([20]). Letµ < 1 be an upper bound on the probability of message loss at
each time step, and letU ′ be the diffusion speed of uniform gossip with faults. Then:

U ′(n, δ, ǫ) =
2

(1− µ)2
U(n, δ, ǫ).
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In several types of decentralized networks, such as P2P networks, point-to-point
communication may not be possible. In these networks, it is assumed that at each stage
nodes send messages to all their neighbors (flooding). When the underlying graph is
an expander, or at least expected to have good expansion, results similar to the above
can be obtained. Fortunately, it is known that several peer-to-peer topologies induce
expander graphs [25, 21].

2.4 Push-Sum Notes

In the rest of the paper, we havexi ≤ 1, and in particular
∑

i xi ≤ n. Therefore,
it is possible to redefineU to be an upper bound on the number of turns required so

that for all t ≥ U and all nodesi, theabsolute error
∣

∣

∣

st,i

wt,i
− 1

n

∑

k xk

∣

∣

∣
is at mostǫ

with confidence1 − δ, and it still holds thatU(n, δ, ǫ) = O(log n + log 1
δ + log 1

ǫ ).
Hereinafter, when we refer toU we have this definition in mind.

Remark 1. The protocol PUSH-SUM is presented in terms of a synchronized starting
point, but this assumption is not necessary. A node that poses the query may use the
underlying communication mechanism to inform all other nodes of the query; conver-
gence times are asymptotically identical.

3 Our Framework

Let the set of agents beN = {1, . . . , n}. Each agenti ∈ N holds a numberrj
i ∈ [0, 1]

for each agentj ∈ N (including itself). This number representsj’s reputation with
respect toi, or to put it differently, the degree to whichi is willing to trust j. As
agents interact, these assessments are repeatedly updated. We do not in general concern
ourselves with how agents set these values.

When an agenti is deliberating whether to deal with another agentj, i wishes to

make an informed evaluation of the other’s reputation. Letr̄j =
P

k rj

k

n be the average
of j’s reputation with respect to all agents. Knowledge ofr̄j would givei a good idea
of how trustworthyj is (this is, of course, a simple model of trust).

3.1 Gossip Based Trust

We show that in this scenario, agents can use gossip-based algorithms to decide with
whom to carry out transactions. Also, in such a setting, agents are encouraged to keep
a completely untarnished reputation. Similar results can be obtained for more complex
trust models.

A simple way to compute the average trust is via PUSH-SUM.
The protocol EVAL -TRUST is given as Algorithm 2. PUSH-SUM is executed for

U = U(n, δ, ǫ) stages. At timeU , it holds for allk ∈ N , and in particular for agent

i, that
∣

∣

∣

st,i

wt,i
− r̄j

∣

∣

∣
≤ ǫ, with probability1 − δ. In other words, the algorithm returns a

very good approximation ofj’s average reputation.
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Algorithm 2

1: procedure EVAL -TRUST(i, j, δ, ǫ) ⊲ i evaluates̄rj with accuracyǫ, confidence
1− δ

2: for all k ∈ N do
3: xk ← rj

k ⊲ Inputs to PUSH-SUM arej’s reputation w.r.t. agents
4: end for
5: run PUSH-SUM for U = U(n, δ, ǫ) stages
6: return sU,i

wU,i

7: end procedure

3.2 Use of the Technique

In practice, when two agentsi andj interact,i may evaluatej’s reputation (and vice
versa) by calling EVAL -TRUST. The protocol quickly returns the approximation of
r̄j , based on the valuesrj

k at the timeEVAL -TRUST was called. Each agenti keeps
different valuesst,i andwt,i for every different query that was issued by some other
agent in the system, and updates these values repeatedly according to PUSH-SUM.
Thus, at any stage every agent participates in many parallelexecutions of PUSH-SUM.

A possible cause for concern is the amount of communication each agent has to
handle at every turn. However, the quick convergence of PUSH-SUM implies that often
the burden would not be too great. Indeed, assume that the number of new interactions
at each turn is bounded by a constantc (or at worst is very small compared ton). Each
such new interaction results in at most two new executions ofEVAL -TRUST, but the
execution lasts at mostU turns. To conclude the point, under the foregoing assumption,
each agent sends at mostc · U = O(log n) messages per turn.

Remark 2. The size of messages depends on how therj
i are calculated, and as men-

tioned above, this issue is outside the scope of this paper. Nevertheless, there would
usually be a constant number of reputation levels (say, for instance, thatri

j can assume
the valuesri

j ∈ {0, 0.1, 0.2, . . . , 1}), so the message size would normally be constant.

As the above method of aggregating an agent’s average reputation relies on the
gossip-based algorithm PUSH-SUM, it inherits all the latter’s benefits, in particular
robustness to failure and applicability in peer-to-peer networks.

4 The Benefit of an Unstained Reputation

It is very desirable (indeed, crucial) that a reputation system be able to induce truthful-
ness in agents. Naturally, an agent with a stained reputation would be shunned by its
peers, while an agent with a good reputation would easily solicit deals and transactions.
A further step in this direction is motivating agentsneverto cheat.

6



4.1 Reputation and Speed of Transaction

An agent with agenerallygood reputation, one that is slightly above the required
threshold of her peers—an agent that only occasionally cheats—would probably be
able to win the confidence of her peers; there is seemingly no reason why an agent
should not “play false” now and again. Nevertheless, we consider in this section an
extremely simple and general trust model, and show that withthe data management
scheme that we have presented, there is a social benefit to having a very high reputa-
tion: the higher the agent’s reputation, the shorter the time required to close deals.

We consider a model in which each agenti has a reputation thresholdrthr
i (similar

to [27]) and a confidence levelδi: agenti is willing to deal with an agentj iff i knows
that j’s average reputation is at leastrthr

i , with confidence1 − δi. i evaluatesj’s
reputation as above, using EVAL -TRUST. Recall that when the algorithm terminates,
agenti only has anǫ-close approximation of̄rj . If st,i

wt,i
is very close torthr

i , i would
have to increase the accuracy.

Remark 3. We still do not commit to the way the valuesri
j are determined and up-

dated, so the above trust model is quite general.

Algorithm 3
1: procedure DECIDE-TRUST(i, j) ⊲ i decides if it wants to deal withj
2: ǫ← 1/2 ⊲ Initialization
3: k1 ← 0
4: loop
5: k2 ← U(n, δi, ǫ)
6: run EVAL -TRUST(j) for anotherk2 − k1 stages ⊲ A total of k2 stages
7: if st,i/wt,i < rthr

i − ǫ then
8: return false
9: else ifst,i/wt,i > rthr

i + ǫ then
10: return true
11: end if
12: k1 ← k2

13: ǫ← ǫ/2
14: end loop
15: end procedure

The procedure DECIDE-TRUST, given as Algorithm 3, is a straightforward method
of determining whether̄rj ≥ rthr

i . Agent i increases the accuracy of the evaluation
by repeatedly halvingǫ, until it is certain of the result. In this context, a stage of
EVAL -TRUST corresponds to a stage of PUSH-SUM.

4.2 Theoretical Analysis of Speed of Transaction

Proposition 3. Let i, j ∈ N , and∆ij = |r̄j − rthr
i |. With probability at least1 − δi,

DECIDE-TRUST correctly decides whether agentj′s reputation is at leastrthr
i after
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thr
i r̄

j

∆ij

st,i

wt,i

2ǫ

Figure 1: Illustration for the proof of Proposition 3. Onceǫ < ∆ij/2 andst,i/wt,i >
rthr
i + ǫ, it holds with probability1− δi that r̄j ≥ rthr

i .

O(log n + log 1
δi

+ log 1
∆ij

) stages ofEVAL -TRUST.3

Proof. Assume w.l.o.g. thatrthr
i < r̄j , and that the algorithm reached a staget0 where

ǫ < ∆ij/2. At this stage, it holds that| st,i

wt,i
− r̄j | ≤ ǫ (with probability1 − δi), and

therefore:

st,i

wt,i
≥ r̄j − ǫ

= rthr
i + ∆ij − ǫ

> rthr
i + ǫ.

Hence, the algorithm surely terminates whenǫ < ∆ij/2. Now the proposition follows
directly from the fact thatU(n, δi, ∆ij) = O(log n + log 1

δi
+ log 1

∆ij
).

To conclude, Proposition 3 implies that there is a benefit foragentj in maintaining
a high reputation: for any agenti with a reasonable threshold,∆ij is significant, and
this directly affects the running time of DECIDE-TRUST.

Remark 4. The result is limited, though, when the number of agentsn is large, as the
time to evaluate an agent’s reputation is also proportionalto log n.

5 Reputation and Speed of Transactions: Simulation
Results UsingGossipTrustSim

Section 4 discussed how high reputation has a social benefit for an agent, as it shortens
the time that the agent requires to close deals. In that model, agenti is willing to
interact with agentj iff i believesj’s average reputation is above a certain threshold
valuerthr

i with confidence level ofδi. Section 4 presented a simple algorithm,Decide-
Trust, that agents can use in this model. The algorithm enables an agent to bound

3The probability is the chance that the algorithm will answerincorrectly; the bound on the number of
stages is always true.
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her probability of accepting a transaction by mistake (i.e., the probability of the agent
deciding that̄rj > rthr

i , when in fact it is not) by a desired confidence level,δi. The
algorithm automatically chooses the number of Push-Sum steps to perform, based on
the Push-Sum results obtained along the way.

We have denoted the amount by which an agentj’s average reputation truly is
above the desired threshold for transactions required by agenti as∆ij = |r̄j − rthr

i |.
In Section 4, we showed that the higher an agent’s reputationis above the required
threshold (that is, the higher∆ij is), the fewer Push-Sum steps are required. More
precisely, the number ofEval-Trustcalls is O(log n + log 1

δi
+ log 1

∆ij
). We now

provide the results of several simulations, which exactly characterize how the time
required to close a deal depends on∆ij.

Although our empirical results only concern certain trust models, they indicate that
agents who are significantly above the required reputation threshold can indeed signif-
icantly shorten the time they need to close a single deal, andare thus able to complete
more deals within a given time unit. These simulation results complement our theoret-
ical analysis in the previous section.

We constructed a system calledGossipTrustSim, for simulating transactions among
agents who useDecide-Trust(Algorithm 3), to decide whether or not to perform a
transaction.GossipTrustSimhas been implemented in Java, and includes an implemen-
tation ofPush-Sumand of our suggestedEval-TrustandDecide-Trust(Algorithms 2
and 3).

5.1 Empirical Analysis of Speed of Transaction

The simulations deal with a certain agent,x, who is interested in a transaction with
agentj. In each such simulation, for each agenti the system randomly choosesrj

i , j’s
reputation in the eyes ofi—the degree to whichi is willing to trustj—according to a
certain model. In all the simulations presented in this paper we use a straightforward
model, whererj

i is drawn from the same distribution for any agenti. Once therj
i

values are set for all agentsi, we then simulate what happens when agentx attempts to
decide whether to interact with agentj, using our suggestedDecide-Trustalgorithm.
Each such simulation runsDecide-Trustuntil agentx decides whether to trust agentj
or not, and we count the total number of Push-Sum steps performed.

There are 2500 agents in our simulations. The initial value for ǫ is set to beǫ1 =
0.5. Since this is a very large value, Eval-Trust is typically called more than once.
The threshold value in our simulation isrthr

x = 0.5, so agentx wants to accept the
transaction only ifj’s average reputation is̄rj > 0.5. Our confidence level isδx = 0.1,
so agentx would accept the transaction only ifr̄j > rthr

x with a probability of at least
1− δx = 0.9.

In our first simulation, eachrj
i is distributed uniformly between a minimal value

a and a maximal valueb = 1; thus, its expectation isE
[

rj
i

]

= 1+a
2 . Since there are

many agents, the average reputation of agentj is an approximately normal distribution.
We simulate theDecide-Trustrun when in fact̄rj > rthr

x (anda is chosen so that this
is indeed the case), so agentx should eventually accept the transaction. It is easy to see

that the highera is, the higherE
[

rj
i

]

for all agentsi, and the higherE [∆xj ] is.
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We usedGossipTrustSimto find the required number of Push-Sum steps for agentx
to approve the transaction with agentj. We did this for several values ofa, and for each
value we repeated the simulation 100 times, then calculatedthe average number of re-
quired Push-Sum steps. The results are presented in Figure 2, which shows the relation
found between∆xj , the amount by which agent’sj’s reputation exceeds the threshold
required by agentx, and the number of Push-Sum steps agentx has to perform before
approving the transaction.

Figure 2: Uniform Distribution Model: the relation betweenthe distance from the
threshold,∆xj , and the required number of Push-Sum steps.

It is easy to see from Figure 2 that indeed agentj’s situation is better when her
average reputation is well above agentx’s threshold. The higher her reputation is, the
fewer Push-Sum steps are required for agentx to accept the transaction. This means
that although an agent can successfully complete transactions with another agent when
her reputation is only slightly above the other agent’s required threshold, she would be
able to complete more transactions within a time unit by making sure her reputation is
much higher than that threshold value. However, the speedupachieved by increasing
the reputation diminishes when the reputation is well abovethe threshold.

Another thing to note is that there are “bumps” in the graph, where suddenly a
small increase in the distance from the threshold,∆xj , results in a big decrease in the
required number of Push-Sum steps. This occurs since Algorithm 3, Decide-Trust,
calls Algorithm 2, Eval-Trust, several times, and halves the value ofǫ each time. Since
each such call to Eval-Trust requires several Push-Sum steps, when typically one less
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call to Eval-Trust is required, there is a significant decrease in the required number of
Push-Sum steps.

In our second simulation, eachrj
i has a normal distribution, with expectationµ and

varianceσ2 = 0.0001. As before, since there are many agents, the average reputa-
tion of agentj is also an approximately normal distribution, but with a much smaller
variance. Again,µ is chosen so that in fact̄rj > rthr

x (so we only simulate for values
µ > rthr

x ), so agentx should eventually accept the transaction. The higherµ is, the
higherE [∆xj ] is. As before, we tested the number of Push-Sum steps required for
agentx to approve the transaction with agentj for several values ofµ. For each value,
we repeated the simulation 100 times, and calculated the average number of required
Push-Sum steps. The results are presented in Figure 3, whichshows the relation found
between∆xj and the number of required Push-Sum steps.

Figure 3: Normal Distribution Model

Similarly to the uniform distribution model, Figure 3 showsthat agentj’s situation
is better when her average reputation is well above agentx’s threshold. In this model
as well, the higher her reputation is, the fewer Push-Sum steps are required for agentx
to accept the transaction, so she can complete more transactions per time unit.

To conclude, the simulations support the claim that when using the gossip-based ap-
proach, agents are incentivized to make sure their reputation is well above the threshold
value they need in order to complete transactions. Agents who occasionally cheat may
still be able to complete transactions, as long as their reputation does not drop below
the threshold chosen by the agents with whom they wish to interact, but they would be
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able to perform fewer transactions in each time unit.

6 Resistance to Attacks

We have seen that information about an agent’s reputation can be efficiently propa-
gated, as long as all agents consistently follow EVAL -TRUST. However, with repu-
tation systems we are usually dealing with self-interestedagents. In our context, a
manipulative agent may artificially increase or decrease the overall evaluation of some
agent’s reputation by deviating from the protocol.

In the framework we have presented, trust is evaluated on thebasis of global knowl-
edge, i.e., the average of all reputation values in the system. Therefore, any small
coalition cannot significantly change the average reputation of some agentj by set-
ting their own valuationsrj

i to legal values in[0, 1], and then following the protocol
EVAL -TRUST.4

6.1 Arbitrarily Setting Reputation

An interesting setting which should be considered arises when a manipulator is allowed
to set its reputation value arbitrarily. As a simple motivating example, consider a sit-
uation where agents propagate agentj’s average reputation (xi = rj

i for all i), and a
manipulatorim wants to ensure that for alli, st,i

wt,i
converges to a high value as the time

t increases. At some staget0, the manipulator updatesst0,im to ben, but except for this
harsh deviation follows the protocol to the letter. In particular, the manipulator might
initially set rj

im = xim = n. We refer to this strategy asStrategy 1. Clearly, for alli,
st,i

wt,i
eventually converges to a value that is at least 1.

Despite the apparent effectiveness of Strategy 1, it is easily detected. Indeed, unless
for all i 6= im it holds thatst0,i = 0 at the timet0 when the manipulator deviated by
assigningst0,im = n, the expressionsst,i

wt,i
would eventually converge to a value that is

strictly greater than 1; this would clearly unmask the deceit. It is of course possible to
updatest0,im to be less thann, but it is difficult to determinea priori which value to
set without pushing the average reputation above 1.

6.2 A More Subtle Approach to Manipulating Reputation

We now consider a more subtle way to increase the valuesst,i

wt,i
, a deceit that is indeed

difficult to detect; we call this strategyStrategy 2. For the firstT stages of the algorithm,
the manipulatorim follows PUSH-SUM as usual, with the exception of the updates of
st,im : after updatingwt,im =

∑

l ŵl (as usual),im updates:st,im = wt,im . In other
words, the manipulator sets its personal evaluation of the averagest,im

wt,im
to be 1 at every

staget = 1, . . . , T . For timet > T , the manipulator abides by the protocol.
Using this strategy, it always holds thatst,i

wt,i
≤ 1 for all i. In addition, for all

t, it still holds that
∑

i wt,i = n. Therefore, without augmenting the system with
additional security measures, this manipulation is difficult to detect. We shall presently

4In fact, this holds for every coalition that does not constitute a sizable portion of the entire set of agents.
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demonstrate formally that the manipulation is effective inthe long run:st,i

wt,i
converges

to 1 for all i.

Proposition 4. Under Strategy 2, for alli ∈ N , s2T,i

w2T,i

T→∞
−→ 1 in probability.

Proof. We first notice that
∑

i st,i is monotonically increasing in staget. Moreover, as
noted above, it holds that at every stage,

∑

i wt,i = n, as for alli ∈ N : st,i

wt,i
≤ 1, and

thus:
∑

i

st,i ≤
∑

i

wt,i = n.

Let ǫ, δ > 0. We must show that it is possible to chooseT large enough such that
for all t ≥ 2T and alli ∈ N , Pr[

st,i

wt,i
≥ 1− ǫ] ≥ 1− δ.

Assume that at timet it holds that:
∑

i st,i

n
< 1− ǫ/2. (1)

Let It = {i ∈ N :
st,i

wt,i
≥ 1− ǫ/4}, w(It) =

∑

i∈It
wt,it

. It holds that:

n(1− ǫ/2) ≥
∑

i∈N

st,i

≥
∑

i∈It

st,i

≥
∑

i∈It

wt,i · (1− ǫ/4)

= w(It)(1 − ǫ/4).

It follows thatw(It) ≤ n · 1−ǫ/2
1−ǫ/4 . The total weight of agents inN \ It is at least

n − w(It). There must be an agentit ∈ N \ It with at least a1/n-fraction of this
weight:

wt,it
≥

n− w(It)

n
≥

ǫ

4− ǫ
. (2)

In order for the choice ofit to be well-defined, assumeit is the minimal index that
satisfies Equation (2).

Now, let s′t,im be the manipulator’s sum had he updated it according to the pro-
tocol, i.e.,s′t,im =

∑

l ŝl for all messagesl sent toim. With probability1/n (and
independently of other stages),ft(it) = im; if this happens, it holds that:

s′t+1,im ≤ (wt+1,im − 1/2 · wt,it
) + 1/2 · st,it

≤ (wt+1,im − 1/2 · wt,it
)

+ 1/2 · wt,it
· (1− ǫ/4).

(3)

For all stagest it holds that
∑

i st+1,i −
∑

i st,i = st+1,im − s′t+1,im , as the ma-
nipulator is the only agent that might change

∑

i st,i. Therefore, in the conditions of

13



Equation (3),

∑

i

st+1,i −
∑

i

st,i = st+1,im − s′t+1,im

= wt+1,im − st+1,im

≥ 1/2 · wt,it
·
ǫ

4

≥
ǫ2

32− 8ǫ

= ∆(w).

So far, we have shown that for each staget where Equation (1) holds andft(it) =

im, it is the case that
∑

i st+1,i −
∑

i st,i ≥ ∆(w). This can happen at mostn(1−ǫ/2)
∆(w)

times before Equation (1) no longer holds, or to put it differently, before
P

i
st,i

n ≥
1− ǫ/2.

Let Xt be i.i.d. binary random variables, that are 1 iffft(it) = im. It holds that for
all t where Equation (1) is true,E[Xt] = 1/n. By Chernoff’s inequality, it holds that:

Pr[
1

T1

T1
∑

t=1

Xt ≤
1

2n
] ≤ e−

T1

2n2 .

It is possible to chooseT1 to be large enough such that this expression is at mostδ/2,

and in addition 1
2n · T1 ≥

n(1−ǫ/2)
∆(w) . Therefore, at timeT1, the average

P

i
ST1,i

n ≥

1− ǫ/2 with probability1− δ/2.
Recall that afterT stages (whereim deviated from the protocol), it still holds that

∑

i wT,i = n. Assume that indeed
P

i
ST1,i

n ≥ 1 − ǫ/2. By modifying the proof of
Theorem 3.1 from [20], it is possible to show that after anotherT2 = T2(n, δ, ǫ) stages
where all agents observe the protocol, it holds with probability 1 − δ/2 that for all i,
∣

∣

∣

sT1+T2,i

wT1+T2,i
−

P

i
ST1,i

n

∣

∣

∣
< ǫ/2, and thus for alli andt ≥ T1 + T2, st,i

wt,i
> 1 − ǫ with

probability1− δ.
The proof is completed by simply choosingT = max{T1, T2}.

6.3 Resistance to Subtle Reputation Manipulation

Proposition 4 implies that Strategy 2 poses a provably acuteproblem, when PUSH-
SUM is run a large number of turns. Fortunately, PUSH-SUM converges exponentially
fast, and thus it is usually the case that the manipulator is not able to significantly affect
the average reputation, as the following proposition demonstrates.

Proposition 5. LetT1 ≤ T . Under Strategy 2 it holds thatE
[

P

i
ST1,i

n − r̄j
]

≤ T1

2n .

Proof. Let {ŝl, ŵl} be the messages that the manipulator received at timet + 1. The
manipulator setsst+1,im = wt+1,im =

∑

l ŵl. Essentially, this is equivalent to setting
for all l ŝl = ŵl, or in other words, raising eacĥsl by ŵl − ŝl. At turn t it was already

14



true thatst,im = wt,im (w.l.o.g. this is also true fort = 0), so it is enough to consider
messages at timet from all i 6= im.

Therefore, for all stagest, it holds that:

E

[

∑

i

st+1,i −
∑

i

st,i

]

=
∑

i6=im

(Pr[ft(i) = im] · (
1

2
wt,i −

1

2
st,i))

=
1

2n

∑

i6=im

(wt,i − st,i)

≤
1

2n

∑

i6=im

wt,i

≤
1

2n

∑

i∈N

wt,i

=
1

2
.

The last equality follows from the fact that for allt,
∑

i wt,i = n.

As r̄j =
P

i
s0,i

n , and from the linearity of expectation, we obtain that

E

[∑

i sT1,i

n
− r̄j

]

=
1

n
E

[

T1−1
∑

t=0

(

∑

i

st+1,i −
∑

i

st,i

)]

=
1

n

T1−1
∑

t=0

E

[

∑

i

st+1,i −
∑

i

st,i

]

≤
1

n
T1 ·

1

2
.

In particular, sinceU(n, δ, ǫ) = O(log n + log 1
δ + log 1

ǫ ), PUSH-SUM is executed
O(log n) stages, and thus the difference in the average is at mostO( log n

n ), which is
quite insubstantial.

Remark 5. It is not guaranteed at timeT1 that eachst,i

wt,i
is close tor̄j , because the

inputs were dynamically changed during the execution of PUSH-SUM.

Remark 6. The above discussion focused on a setting where the manipulator attempts
to increase the average reputation of an agent. It is likewise possible for a manipula-
tor to decrease an agent’s average reputation, or indeed to set that average reputation
eventually to any value the manipulator wants.

Remark 7. Jelasity, Montreso and Babaoglu [18] propose a general method to com-
pletely prevent malicious agents from deviating in gossip-based algorithms, by aug-
menting the protocol with exchange of certificates. However, the authors describe their
approach in a very general manner, so this approach was not implemented here.
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7 Related Work

The main focus of research on trust and reputation systems has been on the semantic
aspects of these systems, and their effect on social welfare. Previous work has high-
lighted the advantages of reputation systems in overcomingsocial pitfalls in several
domains. Akerlof [4], for instance, considered markets where information asymmetry
exists between buyers and sellers, in the sense that buyers can only guess the quality of
goods; in such a setting, a reputation system can improve social welfare.

Several papers provide detailed background concerning reputation systems [22, 19,
17]. A number of such systems are used in practice. One prominent reputation system
is that of eBay; the efficiency of eBay-like reputation systems has been studied in [12].

Other research has analyzed manipulations of general reputation mechanisms. Fried-
man and Resnick [15] have discussed the effects ofcheap pseudonyms. When agents
can enter the system using pseudonyms, and the cost of recreating an identity is cheap,
agents who have a stained reputation may easily shed it. The authors considered several
solutions to this problem: disallowing anonymity, entry fees (which make pseudonyms
more expensive), and using a central authority for irreplaceable (“once-in-a-lifetime”)
pseudonyms. However, each approach has major drawbacks. [7] discusses Sybil at-
tacks, where an agent creates many false identities in orderto boost the reputation of
its primary identity.

Dellarocas [11] studied a setting where agents manipulate areputation system by
providing unfair ratings to some of their peers, and suggests several solutions. A num-
ber of other mechanisms can make reputation systems resistant to manipulations; [24]
discusses scoring rules that help obtain honest feedbacks,while [5] proposes a method
for learning who the good raters are.

7.1 Distributed Reputation Systems

Early research on distributed reputation systems includedthat of Abdul-Rahman and
Hailes [1], which relied on the results of Marsh [23] to design a model of trust in
online environments. In this framework, each agent must maintain and update large
data structures, which contain knowledge about the entire system. Updating this data
may be inefficient, and in particular it is not certain that the scheme scales well when
the number of agents grows.

P2PRep [8] and Xrep [10] are P2P reputation systems that can be piggybacked onto
existing P2P protocols (such as Gnutella). P2PRep allows peers to estimate trustwor-
thiness of other peers by polling. XRep takes another step forward; each peer keeps
trust evaluations both of other peers and of resources. No guarantees are given with
respect to computational efficiency and scalability.

Aberer and Despotovic [3] introduce a reputation system that consists of both a
semantic model and a data management scheme. The latter relies on P-Grid [2], and
uses distributed data structures for storing trust information; the associated algorithms
scale gracefully as the number of agents increases. In addition, a limited resistance to
manipulation and failure is achieved through replication of data. This approach suffers
from several shortcomings compared to ours. Agents in this scheme assess others’
reputation only on the basis of complaints filed in the past; the framework is generally
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limited to such binary trust information. In addition, trust is evaluated only according
to referrals from neighbors, whereas in our scheme the evaluation is based on all the
information in the system.

Xiong and Liu [27] introduced a sophisticated framework specifically applicable in
peer-to-peer networks, where the decision whether to trusta peer is based on five met-
rics: satisfaction, number of transactions, credibility of feedback, transaction context,
and community context. This work was extended in [26]. Both papers concentrate
on the trust model, and generally do not elaborate on the datamanagement scheme.
Specifically, in [27] a P-Grid [2] is used. Therefore, this work is in a sense orthogonal
but complementary to ours. Dewan and Dasgupta [14] propose self-certification and
IP-Based safeguards as ways of inducing trust; that work also complements ours.

Finally, gossip-based algorithms5 have many applications in other domains, for
instance replicated database maintenance [13].

8 Conclusions and Future Research

We have presented a data management scheme which is based on gossip-based algo-
rithms, and have demonstrated that it possesses the following features:

• Decentralization: no central database, and further, applicability in networks where
point-to-point communication cannot be assumed.

• Scalability: the time to evaluate an agent’s average reputation with confidence
1− δ and accuracyǫ is O(log n + log 1

δ + log 1
ǫ ).

• Robustness to failure.

• Global perspective: evaluation of trust is based on all relevant information in the
system, rather than local information.

• Extremely simple data structures: each agent merely keeps an assessment of the
agents with which it personally interacted.

• Motivates absolute truthfulness, as the time to close dealsmay decrease as repu-
tation increases.

• Resistance to some attacks, such as carefully tampering with the updates per-
formed by PUSH-SUM.

We have focused on the data management scheme, and have largely ignored the
trust model (with the exception of Section 4). However, we believe that many existing
trust models can be integrated with our framework. A very simple example is the
binary trust model of [3], where agents can file complaints against other agents. In our
framework, each agenti sets its valuerj

i to be 0 if it wishes to file a complaint against
j; otherwise, the value is 1.

More sophisticated models may require tweaks in the framework. Consider the
trust model presented in [27], where five factors are taken into account. Three of the

5They are also calledepidemic algorithms.
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factors mentioned simply determine the way an agent updatesits own valuesri
j , and our

framework of course supports any update formula. The “number of transactions” factor
is already taken into account, as we compute the average reputation. The “credibility
of feedback” factor requires a small change: given credibility ratingsci for agents, a
weighted average can be computed; the initial inputs of agents arexi = s0,i = ci · r

j
i ,

and their weights arew0,i = ci.
An interesting direction for future research is augmentingthe framework with an

option to efficiently choose amongservice providers:6 agenti requires a specific ser-
vice, and there arem other agents that offer to respond toi’s request. Agents can be
matched to service providers using amatchmakingservice, but that problem has been
handled [9]. We are concerned with the following question: once an agent is given a
list M of m-service providers, which one should it choose? The obviousanswer is,
the one with the highest reputation: argmaxj∈M r̄j . However, as the size ofM may
approachn, it is difficult to estimate the reputation of all agents inM .

One possible solution is to hold an election: the voters are the n agents, and the
candidates are them service providers. It is possible, for instance, to determine the
winner using the simpleplurality rule: each agent votes for one candidate; the winner
is the candidate that secured the largest number of votes. Itis also possible to resolve
this election in our framework, using PUSH-SUM. DenoteM = {j1, j2, . . . , jm}. The
inputxi of each agent for PUSH-SUM is (conceptually) a basen + 1 number withm
coordinates; thel’th coordinate ofxi is n if i votes forjl, and 0 otherwise. The average
is calculated by using PUSH-SUM with anabsoluteerrorǫ = 1/3, and some confidence
1 − δ > 0 (thexi are translated to base 10). After the averagest,i

wt,i
is calculated, the

result is rounded to the nearest integer and again translated to basen + 1; the agentjl

such that thel′th coordinate is largest wins the election.
Unfortunately, since in this case the inputsxi are large, obtaining such a small

absolute error requires a large number of iterations of PUSH-SUM, and furthermore,
the message size is large. Is there a way of holding an election (using some other
voting rule, perhaps) in our framework in a way that scales well with respect to both
the running time and message size?

A different direction is using our framework to prevent attacks based on cheap
pseudonyms [15]. This is made possible due to the fast aggregation of information and
its global nature. If an agent cheats,all other agents will soon know. It is possible to
restrict newcomers, with an unestablished reputation, to only one transaction in every
period of lengthO(log n). This way, each identity would be good for only a single
deceitful transaction, since after the period is over, the information could have already
been obtained by any agent. Granted, it would still be possible to shed stained identi-
ties, but the flow of transactions a cheater would be able to complete would be severely
diminished.

6In a sense, similar to [8].
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