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Abstract

Decentralized Reputation Systems have recently emergedrasninent method
of establishing trust among self-interested agents imerdinvironments. A key
issue is the efficient aggregation of data in the system;rakapproaches have
been proposed, but they are plagued by major shortcomings.

We put forward a novel, decentralized data management scigeounded in
gossip-based algorithm&umor mongerings known to possess algorithmic ad-
vantages, and indeed, our framework inherits many of itesidfleatures: scalabil-
ity, robustness, globality, and simplicity.

We demonstrate that our scheme motivates agents to maansgaiarkling clean
reputation, by showing that the higher an agent’s repuiasi@bove the threshold
set by her peers, the more transactions she would be ablentplet® within a
certain time unit. We analyze the relation between the amoywhich an agent’s
average reputation exceeds the threshold and the timereequd close a deal.
This analysis is carried out both theoretically, and enoplty through a simulation
system calledossipTrustSimFinally, we show that our approach is inherently
impervious to certain kinds of attacks.

1 Introduction

In open multiagent environments, self-interested agemtotien tempted to employ
deceit as they interact with others. Fortunately, dishbagsnts can expect their vic-
tims to retaliate in future encounters. This “shadow of thteife”, as Axelrod termed
it [6], motivates cooperation and trustworthiness.

However, as the size of the system grows, agents have amagicgly small chance
of dealing with another agent they already know; as a coresezpy building trust in do-
mains teeming with numerous agents becomes much hardempromenent example
of such an environment is the Internet, which has a key bewfedifowing interaction

*A preliminary version of this paper appeared in the proagegsiof IJCAI 2007.



between entities who are not familiar with each other. Stheevalue of a transaction
depends heavily on the reliability of the parties involvadtj designing mechanisms
that allow the obtaining of information regarding the pastinvolved in a possible
transaction is very important in such environments.

Reputation systems address this problem by collectingntaiaing, and dissemi-
nating reports among agents, so that agents may learn floensdexperience. To put
it differently, agents are intimidated by the “shadow of thire” today, even though
tomorrow they are most likely to meet total strangers. Amach information may
allow an agent tehoosehe most suitable party with whom to carry out a transaction.
Such systems have been used in a wide variety of applicatioeectronic commerce,
auctions, and many peer-to-peer systems.

Reputation systems can be decomposed into two major comfong) the trust
model, which describes whether an agent is trustworthy2aride data management
scheme. The latter component poses some interesting prsjséénce it is imperative
to efficiently aggregate trust-related information in tigstem. A simple solution is to
maintain a central database that contains the feedbackrgatfrom past transactions.

Unfortunately, the centralized solution is inappropriatdistributed environments
where scalability is a major concern, as the database sammiss a bottleneck of the
system. Moreover, this approach is not robust to failuregviBus work ondecen-
tralized reputation schemes suffered from their own major probleagents have to
maintain complex data structures, evaluation of trust seteonly on local informa-
tion, or there are restrictive assumptions on the trust mbde

We approach this hornets’ nest by designing a novel methadisf aggregation
(i.e., a reputation system’s data management scheme). g tteg focus of this arti-
cle. The method is demonstrated in this paper for a simpkt model, but it can be
extended to more complex models.

The roots of ourmgossip-basedipproach to reputation system data management
can be traced to a seminal paper by Frieze and Grimmett [I'6nar starts with one
agent; at each stage, each agent that knows the rumor sjireeaisother agent chosen
uniformly at random. The authors show that the rumor reaeliemgents quickly (a
result that roughly coincides with situations in real life)

We directly rely on more recent results, surveyed in the segtion. It has been
shown that aggregate information, such as averages andafwagents’ inputs, can be
calculated using similar methods of uniform gossip in a weat scales gracefully as
the number of agents increases. Furthermore, the appreaobust to failures, and
the results hold even when one cannot assume a point-td-gorinection between any
two agents (as is the case in peer-to-peer [P2P] networks).

In our setting, each agent merely keeps its private evaloati the trustworthiness
of other agents, based on its own interactibng/hen an agent wishes to perform
a transaction with another, it obtains taeerageevaluation of the other’s reputation
from all agents in the system, using a gossip-based tecéniqu

Although the algorithms that we present estimateaheragereputation, they can
be easily adapted to estimating whether a certain agenthigh seputation in the eyes

1The “or” is not exclusive.
2The question of how agents set this valuation is outsidedbpesof this paper.



of the majority of the agents, or certain other similar metrics. Thus, thenfwork
we advocate for aggregating reputation information accodates more sophisticated
trust models.

Some advantages are immediately self-evident. Each agmessvery little in-
formation, which can be simply and efficiently organizedd awvaluation of trust is
based on global information. Additionally, this framewankerits the advantages of
gossip-based algorithms: scalability, robustness taifajldecentralization, and as a
consequence, applicability in peer-to-peer networks.

We have implemented a system callédssipTrustSinfor simulating transactions
among agents who use our suggested procedure to decideawbetiot to carry out a
transaction. This simulation is used to investigate sontikeeproperties of our method.

An important desideratum one would like a reputation systesatisfy is motivat-
ing agents to maintain an untarnished reputation, i.e.etabsolutely trustworthyas
opposed to, say, being generally trustworthy but occa#liodaeating). We claim that
our data management scheme, together with an extremelyesimpt model, satisfies
this property, by showing that the higher an agent’s reprias above the threshold
set by the peers with whom she wishes to interact, the manedrdions she would be
able to complete within a certain time unit. This claim is gaged by both theoretical
results, as well as by empirical results obtained u§ogsipTrustSim

We also demonstrate that our trust data management scherardther advantage:
it is inherently resistant to some attagikgith no assumptions on the trust model). This
is a positive side effect of the exponential convergenasraf the algorithms we use.

In this paper we daot address the problem of designing a trust model. Rather,
we suggest an approach for agents to aggregate distributgtdriformation so as to
decide with whom to carry out transactions.

The article is organized as follows. Section 2 discussesigdsmsed methods for
aggregating information, which lie at the core of the methadsuggest. Section 3
introduces our method of gossip-based aggregation of itrf@imation for decentral-
ized reputation systems. In Section 4, we theoreticallyjyaeahow keeping a very
high reputation allows an agent to shorten the time she regjto achieve a successful
transaction. Section 5 discusses simulation results thatsaipport this claim. In Sec-
tion 6, we consider certain kinds of attacks that can be ugeatbnts who attempt to
manipulate reputation systems, and show that our methassistant to such attacks.
Section 7 discusses important related work; we concludeatiéh 8.

2 Gossip-Based Information Aggregation

In this section, we survey the relevant results of Kempe rBabd Gehrke [20]. These
algorithms allow us to estimate the average of values hefteatork nodes (in our
case, these values will be the reputation values concemiparticular agent). [20]
also shows how to calculate other functions over these sakigch as the majority
function and sum. Thus our algorithms can be adapted forr,oth@re sophisticated
models of trust.



2.1 Push-Sum

We begin by describing a simple algorithmy$H-Sum, to compute the average of
values at nodes in a network. There araodes in the system, and each nadmIds
an inputz; > 0. At time ¢, each nodé maintains asums; ; and aweightw, ;. The
values are initialized as followssy ; = x;, wo,;, = 1. Attime O, each nodeé sends
the pairsg i, wo ; to itself; at every time > 0, the nodes follow the protocol given as
Algorithm 1.

Algorithm 1
1: procedure PUSH-SUM
2: Let {(§;,w;)}; be all the pairs sent toat timet — 1
3 s Y4
4: Wi — W
5: Choose a targef; (7) uniformly at random
6
7
8:

Send the paifis; ;, sw ;) toi and tof; (i)
: ifT is the estimate of the average at time
end procedure

2.2 Convergence and the Diffusion Speed of Uniform Gossip

LetU(n, 4, €) (thediffusion speedf uniform gossip) be an upper bound on the number
of turns RusH-Sum requires so that for all > U(n, 4, €) and all nodes,
1
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Theorem 1([20]).
1. U(TL, 67 6) = O(IOgn + 10g % + 10g %)

<e

2. The size of all messages sent at tiniy PUSH-SUM is O(t + max; bits(z;)),
where bit$x;) is the number of bits in the binary representation:of

2.3 Advantages of Push-Sum

A major advantage of gossip-based algorithms is their rtoless to failures: the ag-
gregation persists in the face of failed nodes, permanenhumication failures, and
other unfortunate events. Further, no recovery actiongsired. The assumption is
that nodes can detect whether their message has reachedtitsation; RSH-SUM is
modified so that if a node detects its target failed, it setedgessage to itself.

Theorem 2([20]). Letyu < 1 be an upper bound on the probability of message loss at
each time step, and I&f’ be the diffusion speed of uniform gossip with faults. Then:
2

U'(n,d,€) = TEE

U(n,d,e).



In several types of decentralized networks, such as P2Ponetwpoint-to-point
communication may not be possible. In these networks, gssimed that at each stage
nodes send messages to all their neighbitesding. When the underlying graph is
an expander, or at least expected to have good expansioitsrsignilar to the above
can be obtained. Fortunately, it is known that several pe@eer topologies induce
expander graphs [25, 21].

2.4 Push-Sum Notes

In the rest of the paper, we hawve < 1, and in particular), z; < n. Therefore,
it is possible to redefin& to be an upper bound on the number of turns required so

that for allt > U and all nodes, the absolute error|2ti — %Zk xk’ is at moste

We,i

with confidencel — 4, and it still holds that/(n,d,e) = O(logn + log § + log 1).
Hereinafter, when we refer @ we have this definition in mind.

Remark 1. The protocol RsH-SuM is presented in terms of a synchronized starting
point, but this assumption is not necessary. A node thatgpitequery may use the
underlying communication mechanism to inform all other @®df the query; conver-
gence times are asymptotically identical.

3  Our Framework

Let the set of agents b¥ = {1,...,n}. Each ageni € N holds a number/ € [0,1]
for each agenj € N (including itself). This number represents reputation with
respect toi, or to put it differently, the degree to whichis willing to trustj. As
agents interact, these assessments are repeatedly uplatdd not in general concern
ourselves with how agents set these values.

When an agent is deliberating whether to deal with another aggnt wishes to

make an informed evaluation of the other’s reputation. et Z+Ti be the average
of j's reputation with respect to all agents. Knowledge-bfvould givei a good idea
of how trustworthyj is (this is, of course, a simple model of trust).

3.1 Gossip Based Trust

We show that in this scenario, agents can use gossip-bagaidtlains to decide with
whom to carry out transactions. Also, in such a setting, teyaire encouraged to keep
a completely untarnished reputation. Similar results eaotitained for more complex
trust models.

A simple way to compute the average trust is viassR-Sum.

The protocol AL -TRUST is given as Algorithm 2. BsH-SuM is executed for
U = U(n,0,¢) stages. At timdJ, it holds for allk € N, and in particular for agent

i, that’% — 7| < ¢, with probabilityl — §. In other words, the algorithm returns a

very good approximation of's average reputation.




Algorithm 2

1. procedure EVAL-TRUST(i,j,d,¢) > i evaluates’ with accuracy, confidence
1-9§

2:  forall k€ Ndo

3 Ty — 1, > Inputs to RISH-SUM arej’s reputation w.r.t. agents

4 end for

5

6

7

run PUSH-SuM for U = U (n, §, €) stages
: return 2%t
Wy,
end procedure

3.2 Use of the Technique

In practice, when two agenisandj interact,i may evaluatg’s reputation (and vice
versa) by calling EAL-TRUST. The protocol quickly returns the approximation of
7/, based on the values, at the timeEvAL -TRUST was called Each agent keeps
different valuess; ; andwy ; for every different query that was issued by some other
agent in the system, and updates these values repeatedidimccto RISH-SUM.
Thus, at any stage every agent participates in many paeaielutions of BSH-SuM.

A possible cause for concern is the amount of communicatiah @egent has to
handle at every turn. However, the quick convergenceusfHRSum implies that often
the burden would not be too great. Indeed, assume that thbenwhnew interactions
at each turn is bounded by a constaor at worst is very small compared#). Each
such new interaction results in at most two new executiortsvaf_ - TRUST, but the
execution lasts at moét turns. To conclude the point, under the foregoing assumptio
each agent sends at mestU = O(log n) messages per turn.

Remark 2. The size of messages depends on hovvrfhere calculated, and as men-
tioned above, this issue is outside the scope of this papevertheless, there would
usually be a constant number of reputation levels (saynftance, that;l can assume

the values";'- € {0,0.1,0.2,...,1}), so the message size would normally be constant.

As the above method of aggregating an agent’s average teputalies on the
gossip-based algorithmusH-Sum, it inherits all the latter's benefits, in particular
robustness to failure and applicability in peer-to-pedwoeks.

4 The Benefit of an Unstained Reputation

It is very desirable (indeed, crucial) that a reputatiortesysbe able to induce truthful-
ness in agents. Naturally, an agent with a stained repuatatould be shunned by its
peers, while an agent with a good reputation would easilgisdeals and transactions.
A further step in this direction is motivating agemisverto cheat.



4.1 Reputation and Speed of Transaction

An agent with agenerallygood reputation, one that is slightly above the required
threshold of her peers—an agent that only occasionallytsheaould probably be
able to win the confidence of her peers; there is seeminglyeason why an agent
should not “play false” now and again. Nevertheless, we id@nsn this section an
extremely simple and general trust model, and show that thithdata management
scheme that we have presented, there is a social benefititegheavery high reputa-
tion: the higher the agent’s reputation, the shorter the tieguired to close deals.

We consider a model in which each agehgs a reputation threshok*” (similar
to [27]) and a confidence levé]: agent; is willing to deal with an agent iff ¢+ knows
that j's average reputation is at leagt'", with confidencel — §,. i evaluates;’s
reputation as above, usingvkL -TRUST. Recall that when the algorithm terminates,
agenti only has are-close approximation of’. If % is very close ta-"", i would
have to increase the accuracy. '

Remark 3. We still do not commit to the way the value7§ are determined and up-
dated, so the above trust model is quite general.

Algorithm 3
1. procedure DECIDE-TRUST(, §) > ¢ decides if it wants to deal with
2: e—1/2 > Initialization
3: ki1 <0
4 loop
5: ko «— U(n,d;,e€)
6: run EVAL -TRUST(j) for anotherk, — k; stages > A total of £, stages
7: if s¢/w; < rth" — ethen
8: return false
o: else ifs; ; /w, ; > rt"" + e then

10: return true

11 end if

12: k1 «— ko

13: €—¢€/2

14: end loop
15: end procedure

The procedure BCIDE-TRUST, given as Algorithm 3, is a straightforward method
of determining whether? > r!"". Agenti increases the accuracy of the evaluation
by repeatedly halving, until it is certain of the result. In this context, a stage of
EVAL -TRUST corresponds to a stage o BH-SuM.

4.2 Theoretical Analysis of Speed of Transaction

Proposition 3. Leti,j € N, andA;; = |7 — rth"|. With probability at least — &;,
DECIDE-TRUST correctly decides whether agejits reputation is at least"" after



Figure 1: lllustration for the proof of Proposition 3. Once A;;/2 ands; ;/w;; >
rthr + ¢, it holds with probabilityl — §; thatr/ > rthr.

O(logn + log % + log AL) stages ofEVAL -TRUST.3
i ij

Proof. Assume w.l.0.g. that!"” < #/, and that the algorithm reached a stagehere
€ < Aj;/2. Atthis stage, it holds thdt> — 77| < ¢ (with probability1 — 4;), and
therefore: ’

St.i
Wt 4

)

>7 —¢

= T;&hr + Aij — €

> T;f‘hr + €.
Hence, the algorithm surely terminates whea A;; /2. Now the proposition follows
directly from the fact thal/ (n, 6;, A;;) = O(log n + log 3 + log A%j). O

To conclude, Proposition 3 implies that there is a benefiaf@ntj in maintaining
a high reputation: for any agefnivith a reasonable threshold,;; is significant, and
this directly affects the running time ofHZIDE-TRUST.

Remark 4. The result is limited, though, when the number of agenislarge, as the
time to evaluate an agent'’s reputation is also proportitmialg .

5 Reputation and Speed of Transactions: Simulation
Results UsingGossipTrustSim

Section 4 discussed how high reputation has a social beoefibfagent, as it shortens
the time that the agent requires to close deals. In that madeint: is willing to
interact with ageny iff ¢ believes;j’s average reputation is above a certain threshold
valuer?"" with confidence level of;. Section 4 presented a simple algoritiDecide-
Trust that agents can use in this model. The algorithm enablegant&o bound

3The probability is the chance that the algorithm will ansiveorrectly; the bound on the number of
stages is always true.



her probability of accepting a transaction by mistake (tlee probability of the agent
deciding that > 7" when in fact it is not) by a desired confidence level, The
algorithm automatically chooses the number of Push-Supsgteperform, based on
the Push-Sum results obtained along the way.

We have denoted the amount by which an agéntaverage reputation truly is
above the desired threshold for transactions required bgta@sA;; = |7 — ri'r|.

In Section 4, we showed that the higher an agent’s reputéiafove the required
threshold (that is, the highek;; is), the fewer Push-Sum steps are required. More
precisely, the number dEval-Trustcalls is O(logn + log 6i + log A%j). We now
provide the results of several simulations, which exachgracterize how the time
required to close a deal dependssty.

Although our empirical results only concern certain trusdals, they indicate that
agents who are significantly above the required reputalicshold can indeed signif-
icantly shorten the time they need to close a single dealgamthus able to complete
more deals within a given time unit. These simulation resttimplement our theoret-
ical analysis in the previous section.

We constructed a system call&dssipTrustSinfor simulating transactions among
agents who us®ecide-Trust(Algorithm 3), to decide whether or not to perform a
transactionGossipTrustSirhas been implemented in Java, and includes an implemen-
tation of Push-Sunand of our suggesteival-Trustand Decide-Trust(Algorithms 2
and 3).

5.1 Empirical Analysis of Speed of Transaction

The simulations deal with a certain agenf,who is interested in a transaction with
agentj. In each such simulation, for each agettie system randomly choosels j's
reputation in the eyes af—the degree to whichis willing to trust j—according to a
certain model. In all the simulations presented in this pageuse a straightforward
model, wherer/ is drawn from the same distribution for any agéntOnce ther’
values are set for all agentswe then simulate what happens when ageattempts to
decide whether to interact with agentusing our suggestddecide-Trustalgorithm.
Each such simulation ruri3ecide-Trusuntil agentz decides whether to trust agent
or not, and we count the total number of Push-Sum steps peefbr

There are 2500 agents in our simulations. The initial vatue is set to be:; =
0.5. Since this is a very large value, Eval-Trust is typicallylad more than once.
The threshold value in our simulation#4"” = 0.5, so agentr wants to accept the
transaction only ifi's average reputation ig > 0.5. Our confidence level i§, = 0.1,
so agent: would accept the transaction onlyrif > 4" with a probability of at least
1-6,=0.9. _

In our first simulation, each’ is distributed uniformly between a minimal value
a and a maximal valué = 1, thus, its expectation & [rf] = £2. Since there are

many agents, the average reputation of agésan approximately normal distribution.
We simulate thédecide-Trustun when in fact? > r!*" (anda is chosen so that this
is indeed the case), so agerghould eventually accept the transaction. Itis easy to see

that the highen is, the highei {rf} for all agents, and the higheE [A ;] is.



We usedsossipTrustSirnto find the required number of Push-Sum steps for agent
to approve the transaction with aggniVe did this for several values af and for each
value we repeated the simulation 100 times, then calcuthtedverage number of re-
quired Push-Sum steps. The results are presented in Figwhech shows the relation
found betwee\,;, the amount by which agentss reputation exceeds the threshold
required by agent, and the number of Push-Sum steps agehas to perform before
approving the transaction.

Uniform Distribution Model
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Figure 2: Uniform Distribution Model: the relation betwe#re distance from the
threshold A;;, and the required number of Push-Sum steps.

It is easy to see from Figure 2 that indeed aggstsituation is better when her
average reputation is well above ageistthreshold. The higher her reputation is, the
fewer Push-Sum steps are required for agetd accept the transaction. This means
that although an agent can successfully complete traosaotiith another agent when
her reputation is only slightly above the other agent’s neglithreshold, she would be
able to complete more transactions within a time unit by mglsiure her reputation is
much higher than that threshold value. However, the speadnigved by increasing
the reputation diminishes when the reputation is well alibeghreshold.

Another thing to note is that there are “bumps” in the graphere suddenly a
small increase in the distance from the threshalg;, results in a big decrease in the
required number of Push-Sum steps. This occurs since Aligor8, Decide-Trust,
calls Algorithm 2, Eval-Trust, several times, and halveswhlue ofc each time. Since
each such call to Eval-Trust requires several Push-Surs,sidyen typically one less

10



call to Eval-Trust is required, there is a significant desesia the required number of
Push-Sum steps. _

In our second simulation, each has a normal distribution, with expectatiprand
variances? = 0.0001. As before, since there are many agents, the average reputa-
tion of agentj is also an approximately normal distribution, but with a fmgaller
variance. Againy is chosen so that in fact > 7" (so we only simulate for values
p > rihT), so agentr should eventually accept the transaction. The highé, the
higherE [A,;] is. As before, we tested the number of Push-Sum steps relgfioire
agentr to approve the transaction with agerfbr several values gf. For each value,
we repeated the simulation 100 times, and calculated thageenumber of required
Push-Sum steps. The results are presented in Figure 3, sindets the relation found
betweenA,; and the number of required Push-Sum steps.

Normal Distribution Model
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Figure 3: Normal Distribution Model

Similarly to the uniform distribution model, Figure 3 shothsit ageny’s situation
is better when her average reputation is well above agisrihreshold. In this model
as well, the higher her reputation is, the fewer Push-Supsstee required for agemt
to accept the transaction, so she can complete more trarsaper time unit.

To conclude, the simulations support the claim that whemguitie gossip-based ap-
proach, agents are incentivized to make sure their reputetiwell above the threshold
value they need in order to complete transactions. Agentsoghasionally cheat may
still be able to complete transactions, as long as theirtegjom does not drop below
the threshold chosen by the agents with whom they wish toedotebut they would be

11



able to perform fewer transactions in each time unit.

6 Resistance to Attacks

We have seen that information about an agent’s reputatiorbeaefficiently propa-
gated, as long as all agents consistently followaE-TRUST. However, with repu-
tation systems we are usually dealing with self-interestgeints. In our context, a
manipulative agent may artificially increase or decreasetlerall evaluation of some
agent’s reputation by deviating from the protocol.

In the framework we have presented, trust is evaluated doetbis of global knowl-
edge, i.e., the average of all reputation values in the syst&€herefore, any small
coalition cannot significantly change the average repuradif some agenf by set-
ting their own valuations? to legal values irf0, 1], and then following the protocol
EVAL-TRUST.A

6.1 Arbitrarily Setting Reputation

An interesting setting which should be considered ariseswvebmanipulator is allowed
to set its reputation value arbitrarily. As a simple motingtexample, consider a sit-
uation where agents propagate aggstaverage reputationc{ = r] for all 7), and a
manipulator™ wants to ensure that for all =~ convergesto a hlgh value as the time
t increases. At some stage the manlpulator updateg, im 10 ben, but except for this
harsh deV|atton follows the protocol to the letter. In partar, the manipulator might
initially setr’,. = x;m = n. We refer to this strategy &trategy 1 Clearly, for alli,
Sit eventually converges to a value that is at least 1.

Despite the apparent effectiveness of Strategy 1, it idyedesiected. Indeed, unless
for all ¢ # ™ it holds thats,, ; = 0 at the timet, when the manipulator deviated by
assignings, ;,» = n, the expre55|on§'—7 would eventually converge to a value that is
strictly greater than 1; this would clearly unmask the dedeis of course possible to
updates;, ;~ to be less tham, but it is difficult to determine priori which value to
set without pushing the average reputation above 1.

6.2 A More Subtle Approach to Manipulating Reputation

We now consider a more subtle way to increase the vaiéresa deceit that is indeed
difficult to detect; we call this strate@trategy 2 For the fII’SfT stages of the algorithm,
the manipulatoi™ follows PusH-SuM as usual, with the exception of the updates of
s¢,m . after updatingo; ;m = >, (as usual);™ updates:s; ;m = wy;=. In other
words, the manipulator sets its personal evaluation ofteesge —~—— et to be 1 at every
staget = 1,...,7T. Fortimet > T, the manipulator abides by the protocol.

Using thls strategy, it always holds thét— < 1 for all 4. In addition, for all
t, it still holds that) . w;; = n. Therefore ‘without augmenting the system with
additional security measures, this manipulation is diffitudetect. We shall presently

4In fact, this holds for every coalition that does not counstita sizable portion of the entire set of agents.
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demonstrate formally that the manipulation is effectivéhia long run:% converges
to 1 for all4. ’

S27,4 T~>oo

Proposition 4. Under Strategy 2, for all € N, Py

1 in probability.

Proof. We first notice thad _, s, ; is monotonically increasing in stageMoreover, as
noted above, it holds that at every stayé, w, ; = n, as foralli € N: jjT <1, and

thus:
Z Sti < Z Wi = M.
i %

Lete, 6 > 0. We must show that it is possible to chodséarge enough such that
forallt> 2T and alli € N, Pr[s“ >1—¢€>1-34.

Assume that at timeit holds that

2idti g _ @)
n

Letl; = {i € N: 3"t > 1—¢/4},w(ly) = > e, wei,- It holds that:

n(l—€/2) > s

iEN

> Z St,i
i€l

> wei-(1-¢€/4)
i€l

= w(l,)(1 — ¢/4).

It follows thatw(;) < n - 1= 5/2 . The total weight of agents itV \ I, is at least

n — w(l¢). There must be an agent € N\ I, with at least al /n-fraction of this
weight:

—U}(It) €
Wi, > - > v

(@)

In order for the choice of; to be well-defined, assumg is the minimal index that
satisfies Equation (2).

Now, lets; ;. be the manipulator's sum had he updated it according to tbe pr
tocol, i.e.,s; ;» = ), 8 for all messages sent toi™. With probability 1/» (and
independently of other stageg){i;) = i™; if this happens, it holds that:

Spa1,im < (Weprim — 1/2-we5,) +1/2- 844,
< (Wig1,m — 1/2 - wyy,) 3
F1/2we, - (1 — €/4).

For all stages it holds that) ; s;y1,; — >_; 5t.i = St41,im — S m, @S the ma-
nipulator is the only agent that might changg s, ;. Therefore, in the conditions of
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Equation (3),

!
E St+1,4 — E St,i = St+1,im — Spqq,4m

i i

= Wi1,im — St41,im
€
>1/2 wy, - 1
€2

>

— 32— 8¢

= A(w).

So far, we have shown that for each stagehere Equation (1) holds anfi(i;) =
i™, itis the case tha}; s;41,; — >, ¢, > A(w). This can happen at mo%&%/f)

times before Equation (1) no longer holds, or to put it défety, before% >
1—¢/2.

Let X, be i.i.d. binary random variables, that are 1fiffi;) = i". It holds that for
all t where Equation (1) is tru&[X;] = 1/n. By Chernoff’s inequality, it holds that:

P[liX< 1]< R
r|— — € 2n°,
Tlt:l t_27’L_

It is possible to choos®; to be large enough such that this expression is at @5t

and in addition% STy > %. Therefore, at timél}, the averag iiT”‘ >
1 — ¢/2 with probabilityl — §/2.

Recall that aftefl” stages (wheré™ deviated from the protocol), it still holds that
>, wr,i = n. Assume that indeeé:% > 1 — ¢/2. By modifying the proof of
Theorem 3.1 from [20], it is possible to show that after arofh, = T (n, §, €) stages
where all agents observe the protocol, it holds with praditghi — §/2 that for all ¢,

LESE 4 BN ZiiT”’ < ¢/2, and thus for ali andt > Ty + T, -2~ > 1 — € with

WTy +To,i Wt,i
probabilityl — 4.
The proof is completed by simply choosifig= max{T},T>}. O

6.3 Resistance to Subtle Reputation Manipulation

Proposition 4 implies that Strategy 2 poses a provably apugblem, when BsH-
SuM is run a large number of turns. Fortunatelydd-SuM converges exponentially
fast, and thus it is usually the case that the manipulatastigable to significantly affect
the average reputation, as the following proposition destrates.

Proposition 5. LetT; < T'. Under Strategy 2 it holds th& Z% — W} < %
Proof. Let {§;,w;} be the messages that the manipulator received atitimé. The

manipulator sets; 1 ;= = wy1m = »_, w;. Essentially, this is equivalent to setting
forall I 5, = @y, or in other words, raising each by @; — §;. Atturnt it was already
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true thats; ;m = wy ;= (W.l.0.g. this is also true for = 0), so it is enough to consider
messages at timefrom all 7 #£ ™
Therefore, for all stagefs it holds that:

E lz St —Zm] = 3" Prlfuli) = ™) (s - 5t)

The last equality follows from the fact that for aJl} ", w; ; = n.
Asil = Z% and from the linearity of expectation, we obtain that

]l (EZ)]

_ZE

1 1
< -Tp-—=.
n 2

O

In particular, sincé/(n, 6,€) = O(logn + log } + log 1), PUSH-SUM is executed
O(logn) stages, and thus the difference in the average is at md@;ﬂ), which is
quite insubstantial.

Remark 5. It is not guaranteed at tim€,; that eachst—l is close tor/, because the
inputs were dynamically changed during the executlonumﬁlSUM

Remark 6. The above discussion focused on a setting where the matopatéeempts
to increase the average reputation of an agent. It is likep@ssible for a manipula-
tor to decrease an agent’s average reputation, or indeezt thag average reputation
eventually to any value the manipulator wants.

Remark 7. Jelasity, Montreso and Babaoglu [18] propose a generaladethcom-
pletely prevent malicious agents from deviating in godsaged algorithms, by aug-
menting the protocol with exchange of certificates. Howgibher authors describe their
approach in a very general manner, so this approach was ptarmented here.
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7 Related Work

The main focus of research on trust and reputation systesibden on the semantic
aspects of these systems, and their effect on social welRmevious work has high-

lighted the advantages of reputation systems in overcoseipl pitfalls in several

domains. Akerlof [4], for instance, considered markets gheformation asymmetry

exists between buyers and sellers, in the sense that bugremnty guess the quality of
goods; in such a setting, a reputation system can improvalseelfare.

Several papers provide detailed background concerningatpn systems [22, 19,
17]. A number of such systems are used in practice. One pehieputation system
is that of eBay; the efficiency of eBay-like reputation syssehas been studied in [12].

Other research has analyzed manipulations of generaktgumechanisms. Fried-
man and Resnick [15] have discussed the effecthefip pseudonym¥Vhen agents
can enter the system using pseudonyms, and the cost oftiagrea identity is cheap,
agents who have a stained reputation may easily shed it. tithera considered several
solutions to this problem: disallowing anonymity, entrgggwhich make pseudonyms
more expensive), and using a central authority for irregddde (“once-in-a-lifetime”)
pseudonyms. However, each approach has major drawbadkdis¢uisses Sybil at-
tacks, where an agent creates many false identities in todsoost the reputation of
its primary identity.

Dellarocas [11] studied a setting where agents manipulagépatation system by
providing unfair ratings to some of their peers, and suggessteral solutions. A num-
ber of other mechanisms can make reputation systems ra@sistaanipulations; [24]
discusses scoring rules that help obtain honest feedbabks,[5] proposes a method
for learning who the good raters are.

7.1 Distributed Reputation Systems

Early research on distributed reputation systems inclubdatiof Abdul-Rahman and
Hailes [1], which relied on the results of Marsh [23] to desi model of trust in
online environments. In this framework, each agent mushtaai and update large
data structures, which contain knowledge about the engstem. Updating this data
may be inefficient, and in particular it is not certain that stheme scales well when
the number of agents grows.

P2PRep [8] and Xrep [10] are P2P reputation systems thatepighybacked onto
existing P2P protocols (such as Gnutella). P2PRep allowssfe estimate trustwor-
thiness of other peers by polling. XRep takes another stepaial; each peer keeps
trust evaluations both of other peers and of resources. doagtees are given with
respect to computational efficiency and scalability.

Aberer and Despotovic [3] introduce a reputation systen ¢basists of both a
semantic model and a data management scheme. The latéer oeliP-Grid [2], and
uses distributed data structures for storing trust infaionathe associated algorithms
scale gracefully as the number of agents increases. Inialdit limited resistance to
manipulation and failure is achieved through replicatibdata. This approach suffers
from several shortcomings compared to ours. Agents in tthieme assess others’
reputation only on the basis of complaints filed in the pa;ftamework is generally
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limited to such binary trust information. In addition, ttus evaluated only according
to referrals from neighbors, whereas in our scheme the atiatuis based on all the
information in the system.

Xiong and Liu [27] introduced a sophisticated frameworkafieally applicable in
peer-to-peer networks, where the decision whether to &rpster is based on five met-
rics: satisfaction, number of transactions, credibilitfeedback, transaction context,
and community context. This work was extended in [26]. Bodipgrs concentrate
on the trust model, and generally do not elaborate on therdateagement scheme.
Specifically, in [27] a P-Grid [2] is used. Therefore, thisnwés in a sense orthogonal
but complementary to ours. Dewan and Dasgupta [14] propaéeertification and
IP-Based safeguards as ways of inducing trust; that wodkamplements ours.

Finally, gossip-based algoritht&ave many applications in other domains, for
instance replicated database maintenance [13].

8 Conclusions and Future Research

We have presented a data management scheme which is basedsigmlgased algo-
rithms, and have demonstrated that it possesses the fotideatures:

e Decentralization: no central database, and further, egipiity in networks where
point-to-point communication cannot be assumed.

e Scalability: the time to evaluate an agent's average ré¢jputavith confidence
1 — & and accuracy is O(logn + log  +log ).

e Robustness to failure.

e Global perspective: evaluation of trust is based on albaieinformation in the
system, rather than local information.

e Extremely simple data structures: each agent merely keepssessment of the
agents with which it personally interacted.

e Motivates absolute truthfulness, as the time to close deaisdecrease as repu-
tation increases.

e Resistance to some attacks, such as carefully tamperitgthét updates per-
formed by RISH-SuM.

We have focused on the data management scheme, and havg igngeed the
trust model (with the exception of Section 4). However, whedve that many existing
trust models can be integrated with our framework. A verypdamexample is the
binary trust model of [3], where agents can file complaintsiagf other agents. In our
framework, each agenfsets its value; to be 0 if it wishes to file a complaint against
j; otherwise, the value is 1.

More sophisticated models may require tweaks in the framlew@onsider the
trust model presented in [27], where five factors are takemacscount. Three of the

5They are also calledpidemic algorithms

17



factors mentioned simply determine the way an agent updai@sn values:, and our
framework of course supports any update formula. The “nurobteansactions” factor
is already taken into account, as we compute the averagéatepu The “credibility
of feedback” factor requires a small change: given creitiiibtingsc; for agents, a
weighted average can be computed; the initial inputs of sgger; = so; = ¢; - 7,
and their weights arey ; = ¢;.

An interesting direction for future research is augmenthng framework with an
option to efficiently choose amorsgrvice provider$ agenti requires a specific ser-
vice, and there are: other agents that offer to respondite request. Agents can be
matched to service providers usingratchmakingervice, but that problem has been
handled [9]. We are concerned with the following questioncean agent is given a
list M of m-service providers, which one should it choose? The obvamssver is,
the one with the highest reputation: argq@yﬁj. However, as the size dff may
approachn, it is difficult to estimate the reputation of all agentsiii

One possible solution is to hold an election: the voters lageitagents, and the
candidates are the: service providers. It is possible, for instance, to detamthe
winner using the simplplurality rule: each agent votes for one candidate; the winner
is the candidate that secured the largest number of votesaldéo possible to resolve
this election in our framework, usingu®H-SuM. DenoteM = {j1,j2,...,jm}. The
inputz; of each agent for BsH-SuM is (conceptually) a base + 1 number withm
coordinates; théth coordinate oft; is n if i votes forj;, and 0 otherwise. The average
is calculated by usingsH-Sum with anabsoluteerrore = 1/3, and some confidence
1—0 > 0 (thex; are translated to base 10). After the averéfge is calculated, the
result is rounded to the nearest integer and again traddlatease: + 1; the ageny;
such that thé’th coordinate is largest wins the election.

Unfortunately, since in this case the inputsare large, obtaining such a small
absolute error requires a large number of iterationswsHR Sum, and furthermore,
the message size is large. Is there a way of holding an efeftising some other
voting rule, perhaps) in our framework in a way that scale with respect to both
the running time and message size?

A different direction is using our framework to prevent aka based on cheap
pseudonyms [15]. This is made possible due to the fast agtioegf information and
its global nature. If an agent cheadl, other agents will soon know. It is possible to
restrict newcomers, with an unestablished reputationntp one transaction in every
period of lengthO(logn). This way, each identity would be good for only a single
deceitful transaction, since after the period is over, tfiermation could have already
been obtained by any agent. Granted, it would still be ptessibshed stained identi-
ties, but the flow of transactions a cheater would be ablengpbete would be severely
diminished.

6In a sense, similar to [8].
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