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Abstract

We consider an automated agent that needs to coordinate with a human partner
when communication between them is not possible or is undesirable (tacit coor-
dination games). Specifically, we examine situations where an agent and human
attempt to coordinate their choices among several alternatives with equivalent util-
ities. We use machine learning algorithms to help the agent predict human choices
in these tacit coordination domains.

Experiments have shown that humans are often able to coordinate with one an-
other in communication-free games, by using focal points, “prominent” solutions
to coordination problems.

We integrate focal point rules into the machine learning process, by transform-
ing raw domain data into a new hypothesis space. We present extensive empirical
results from three different tacit coordination domains. The Focal Point Learning
approach results in classifiers with a 40% to 80% higher correct classification rate,
and shorter training time, than when using regular classifiers, and a 35% higher
correct classification rate than classical focal point techniques without learning. In
addition, the integration of focal points into learning algorithms results in agents
that are more robust to changes in the environment. We also present several results
describing various biases that might arise in Focal Point based coordination.

∗A preliminary version of this article appeared in the Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAI 2007).
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1 Introduction
One of the central problems in multi-agent systems is the problem of coordination.
Agents often differ, as do humans, in their subjective view of the world and in their
goals, and need to coordinate their actions in a coherent manner in order to attain mu-
tual benefit. Sometimes, achieving coherent behavior is the result of explicit commu-
nication and negotiation [35, 20]. However, communication is not always possible, for
reasons as varied as high communication costs, the need to avoid detection, damaged
communication devices, or language incompatibility.

Several methods have been developed for achieving coordination and cooperation
without communication, for teams of automated agents in well-defined tasks. The re-
search presented in [9] provides a solution to the flocking problem, in which robots
need to follow their leader. The robots, grouped into mobile teams, move in a two-
dimensional space and cannot communicate with one another. A comparison of exper-
iments with and without communication in the retrieval task, in which agents need to
scout and retrieve resources, was presented in [1]. In [30], agents used predefined so-
cial laws for achieving coordination without communication in the multiagent territory
exploration task. All of the above research considers specific methods that are tailored
for a single, well-defined task, and for pure autonomous agent teams (i.e., humans do
not take part in the interactions).

In experimental research presented by Thomas Schelling [29], it was shown that
people are often able to successfully solve coordination-without-communication sce-
narios (which he named tacit coordination games) in an impressive manner, usually
with higher coordination rates than that predicted by decision theoretic analysis [4]. It
appears that in many of those games there is some sort of “prominent solution” that the
players manage to agree upon without communication, and even without knowing the
identity of their coordination partner. Those “prominent solutions” were named focal
points by Schelling (and are also sometimes referred to as Schelling points).

A classic example of focal point coordination is the solution most people choose
when asked to divide $100 into two piles, of any size; they should attempt only to match
the expected choice of some other, unseen player. More than 75% of the subjects in
Schelling’s experiments created two piles of $50 each; that solution is what Schelling
dubbed a focal point. At the same time, using decision theory would result in a ran-
dom selection among the 101 possible divisions, as the (straightforward) probability
distribution is uniform.

Previous coordination-without-communication studies were directed at coordinat-
ing a team of automated agents; the main motivation for our research, however, comes
from the increasing interest in task teams that contain both humans and automated
agents [10]. In such cases, augmenting an automated agent with a mechanism that imi-
tates focal point reasoning in humans will allow it to better coordinate with its (human)
partner.

Human-Agent collaboration can take the form of physical robots or of software
agents that are working on a task with human partners ([10] provides a good survey).
For example, the “DEFACTO” system [31] used artificial agents in the fire-fighting
domain to train incident commanders. In the area of space exploration, NASA has
explored the possibilities of having collaborative agents assisting human astronauts in
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various activities [23, 32, 27]. Another scenario is the development of user interfaces
that diverge from a limited master-slave relationship with the user, adopting a more col-
laborative, task-sharing approach in which the computer explicitly considers its user’s
plans and goals, and is thus able to coordinate various tasks [11].

One important type of natural human-machine interaction is the anticipation of
movement, without the need for prior explicit coordination. This movement can be
physical, such as the movement of a robotic arm that is assisting a human in a con-
struction task (e.g., a machine helping a human weld pipes [27]). As humans naturally
anticipate their partners’ choices in certain situations, we would like automated agents
to also act naturally in their interactions with humans [13]. Coordinated anticipation
can also take place in virtual environments, including online games and military simu-
lations, where humans and automated agents (“synthetic forces” in their terminology)
can inhabit shared worlds and carry out shared activities [18].

Regardless of the specific problem at hand, there are several general constraints
implicit in the above scenarios:

• The human partner with whom our automated agent is trying to coordinate may
not always be known ahead of time, and we want coordination strategies suitable
for novel partners.

• The environment itself is not fully specified ahead of time, and may be config-
ured somewhat randomly (although the overall domain is known, i.e., the domain
elements are a given, but not their specific arrangement).

• There is no option to “hard-wire” arbitrary coordination rules into all partici-
pants, since we are not dealing with coordination between two centrally-designed
agents.

We specifically consider environments in which a human and automated agent as-
pire to communication-free coordination, and the utilities associated with coordinated
choices are equal. Clearly, if utilities for various choices differed, the agent and human
could employ game theoretic forms of analysis, such as Nash equilibria selection (e.g.,
[12, 15]) which might specify certain strategies. However, game theory does not ad-
dress the problem of choosing among multiple choices with equivalent utility, all other
aspects being equal, in a tacit coordination game.1

In this paper, we present an approach to augmenting the focal point mechanism
in human-agent interactions through the integration of machine learning algorithms
and focal point techniques (which we call Focal Point Learning [FPL]). The integra-
tion is done via a semi-automatic data preprocessing technique. This preprocessing
transforms the raw domain data into a new data set that creates a new hypothesis space,
consisting solely of general focal point attributes. The transformation is done according
to four general focal point rules: Firstness, Centrality, Extremeness, and Singularity,
and their intuitive interpretation in the coordination domain.

We demonstrate that using FPL results in classifiers (a mapping from a coordination
problem to the choice selected by an arbitrary human coordination partner) with a 40%
to 80% higher correct classification rate, and a shorter training time, than when using

1Even the question of how to choose among multiple Nash equilibria is not necessarily straightforward.
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regular classifiers, and a 35% higher rate than when using only classical focal point
techniques without applying any learning algorithm. In another series of experiments,
we show that applying these techniques can also result in agents that are more robust
to changes in the environment.

We begin by providing background on focal points in Section 2. In Section 3, we
describe the novel Focal Point Learning approach. We then describe our experimental
setting in Section 4, its definitions, methodology, and the domains that were used in the
experiments. Next, in Section 5, we discuss the robustness of our agents to dynamically
changing environments. Additional experimental results and insights on the nature of
focal points is discussed in Section 6, and we conclude in Section 7.

2 Focal Points
Focal points were introduced by Schelling in [29] as a prominent subset of solutions for
tacit coordination games, which are coordination games where communication is not
possible. In such games (also known as matching games in game theory terminology)
the players only have to agree on a possible solution, regardless of the solution itself.
In other words, they receive a reward by selecting the same solution, regardless of the
solution. When their solutions differ, both players lose and do not get any reward. A
solution is said to be “focal” (also “salient”, or “prominent”) when, despite similarity
among many solutions, the players somehow converge to this solution.

2.1 Focal Point Examples
To better understand the notion of focal points, we will now review several coordination
tasks that were investigated by Schelling in his original presentation [29].

The classic example, presented above, is a coordination task in which two players
need to divide a pile of 100 identical objects (e.g., 100 coins) into two piles. A player’s
only concern is that his objects should be divided in the same way as the other player’s
objects, regardless of the piles’ sizes. Schelling found that players with a strong in-
centive for success would divide the pile into two identical piles of 50 objects each.
The player’s reasoning process would dictate that, as at the basic level of analysis all
choices are equivalent (that would be the expected analysis when applying a straight-
forward decision theoretic model), the players must apply higher-level reasoning by
focusing on some property that would distinguish a particular choice—and at the same
time, rely on the other person’s doing likewise. Here, the property that causes the 50–50
choice to be more “prominent” than others can be regarded as a symmetric uniqueness
property.

In another example, Schelling asked his subjects to coordinate by naming a positive
integer. If both players select the same number, they both get a positive reward (here
again, regardless of the number itself), otherwise, they get nothing. His results show
that despite there being an infinite number of positive integers, players did manage to
converge to a few potential choices, and often coordinate. The most prominent choice
in this experiment (which got 2

5 of the answers) was the number 1. This number has an
obvious property that distinguishes it from others, as it is the smallest positive integer.
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Figure 1: 3x3 Coordination Grid

At times, physical or geographical ordering of the environment can help focus
choices. For instance, the coordination task in Figure 1 is to check one square on a
3x3 grid board; again, the only need is to coordinate with another player regardless
of the square itself. Here, most people manage to do better than the 1

9 predicted by
straightforward mathematical analysis. Most people selected the central square as it is
considered prominent according to various subjective properties related to symmetry
and centrality.

However, a small change in the environment can result in a more challenging co-
ordination task. Looking at Figure 2, we can notice that now there is no prominent
solution according to the symmetry and centrality properties that were found in the
previous version. However, Schelling’s experimental results in this task suggest that
subjects converged to the upper-left square as the prominent focal point, and generally
speaking most selections were on the squares residing in the upper-left to lower-right
diagonal.

Figure 2: 4x4 Coordination Grid

The focal point phenomena can be observed in various coordination domains: find-
ing a meeting place at an airport, where to leave a note for a spouse, voting for the same
candidate in an election. However, the underlying idea is that the players are motivated
to coordinate and that they are doing so by a kind of higher-order reasoning: reasoning
about what the other player would reason about me.

2.2 Related Work
Schelling [29], after the presentation of his experimental results, claimed that when
searching for prominent solutions, there are two main components: Logic and Imagi-
nation. Logic is some logical explanation for a choice (for example, choosing 1 when
asked to pick a positive integer, because it is the smallest positive integer). Imagination
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includes the unknown predisposition that makes people tend to choose “Heads” over
“Tails” in a simple Heads or Tails coordination game.

2.2.1 Game Theory

The problem of selecting a choice among alternatives with equal utility values is also
present in game theory. There, interactions are often represented as normal form
games, in which a matrix is used to represent the players’ strategies, and each player’s
payoffs are specified for the combined actions played inside the matrix. This type of
representation allows us to find dominating strategies and different sorts of equilibrium
points. One example is the Nash equilibrium [26]: two strategies S1 and S2 are said
to be in Nash equilibrium if, assuming that one agent is using strategy S1, the best the
other agent can do is to use S2. When the coordination game has a single equilibrium
point one might argue that it should be selected, but there are games where there are
multiple equilibria. In Figure 3 there are two equilibria: one for strategies ac, and the
other for strategies bd.

Player 22x2 game
Action c Action d

Action a (2, 1) (−1,−1)Player 1
Action b (−1,−1) (1, 2)

Figure 3: Normal Form 2x2 Game with Two Equilibrium Points

Game theory provides various solutions to cases where the payoff matrix is asym-
metric [15, 12]; other solution concepts deal with the evolution of equilibria in games
played repeatedly within a specific population [19, 36, 37], or which iteratively con-
verge on a pattern of coordinated play [6]. However, none of the above solutions from
game theory addresses the problem of solving non-repeated, multiple equilibria, sym-
metric coordination games without communication, such as tacit coordination games.

Player 2
a2 b2 . . . n2

a1 (1, 1) (0, 0) . . . (0, 0)
b1 (0, 0) (1, 1) . . . (0, 0)

Player 1 ... . . . . . . . . . . . .
n1 (0, 0) (0, 0) (0, 0) (1, 1)

Figure 4: n-Action, Two-Player Tacit Coordination Game

A tacit coordination game for two players can be presented as the following normal
form matrix (see Figure 4). In this example, each player has a set of n possible actions,
labeled from a to n (with the player number as a subscript). In this game, the players get
a payoff only if they are able to agree on an action, regardless of the action itself. The
divide-100-objects focal point example (Section 2.1) can be seen as a similar matrix
where n = 101, for the number of possible strategies. Yet again, while game theory
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does not provide a solution for such cases, human beings are often able to do better
than might be predicted by decision theory.

2.2.2 Labeling Theories

Game theory lacked a formal model that would explain the findings in Schelling’s ex-
periments. Gauthier [8] was the first who addressed this topic. He introduced the notion
of Salience when rational players are engaged in coordinated interaction. Players seek
salience in order to increase the equilibrium utility value (i.e., distinguishing one of the
choices) using additional knowledge about the situation by forming expectations about
what I expect you to expect from me. This additional knowledge is the player’s own
description of the world (which is not handled in classical game theory’s analysis), ac-
cording to the way it is conceived by him. The player, when making a choice, follows
a principle of coordination, which ensures that the most distinguished equilibria are
selected.

Following Gauthier, Bacharach [2] introduced the notion of availability, which is
the probability that the player will conceive of certain aspects of the coordination prob-
lem. For example, given a coordination problem where one has to select one brick
from a set of eight bricks, it is easy for the player to notice the color of the bricks (thus,
this dimension will have high availability), but it might be hard to notice that a sin-
gle brick is made of a different material (this dimension will have lower availability).
Bacharach argued that the number of possible choices (or equilibria) is given accord-
ing to the number of aspects the player grasps in the coordination problem. Bacharach
and Bernasconi [3] presented a variable frame theory (VFT), where they refer to fea-
tures as frames which subjectively describe the game to each player. Frames are sets
of variables that are used to conceptualize the game.

Janssen [17] continued building on Bacharach’s model, generalized it for general
classes of dimensions, and showed that players in all cases would receive a higher pay-
off by following his selection principle rather than neglecting the label information.

Sugden [33] presented a different theory by showing how labels can influence deci-
sions in pure coordination games. He argued that the labeling of choices is beyond the
conscious control of the player, and is influenced by psychological and cultural factors.
He showed that his collective rationality principle may or may not create coordination,
depending on the labeling procedure correlation.

The economic theories presented above all give appropriate retroactive justification
to answers for coordination games, but are not highly descriptive of human behavior,
nor are they applicable to our mixed human-agent scenario, for several reasons. First,
they do not give any consideration to social conventions and cultural factors [22, 36,
37].2 Second, their analysis does not quantify the notion of availability, nor give the
labeling conceived of by players. Moreover, these theories have no explanatory power;
for example, in the Heads/Tails question, most people choose Heads. This could be
explained by saying that Heads has a conventional priority over Tails, but the same
explanation could have been used if the majority had picked Tails.

2We will see later that these are very important in the process of focal point discovery.
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2.2.3 Experimental Work

There has been some experimental research that has tried to establish the existence of
focal points in coordination games.

Mehta et al. [25], in a series of controlled experiments, managed to verify people’s
ability to coordinate their answers. In one experiment, subjects were divided into two
groups. Group A was instructed to try and coordinate their answers; Group B was
instructed to give a response without any incentive to match their partner’s choice. The
questions were generally “open” coordination questions, without a well-defined set of
possible answers, for example, “Choose a year”, or “Choose a mountain”. Results
showed that Group A had a significantly higher success rate in coordinated answers
than Group B, which had no incentive for coordination.

In the second experiment, the focus was on assignment games where the purpose
was to isolate some focal point selection rules that the authors hypothesized would
be used in the coordination problem: (1) closeness, (2) accession, or (3) equality. The
game was as follows: there was a board containing two squares and an arbitrary number
of circles. The squares were always located at the same position, and the circles were
positioned at different places on the board. The task was to assign each circle to a
square (by painting the circles red or blue), and to be able to coordinate your assignment
with another player. The results showed support for the hypothesis that subjects used
the rules mentioned above. The authors claimed, “It seems clear that subjects are
drawing on each of the three rules to identify focal points”. However, in an analysis
that we did of each of the rules, it appears that the accession rules had a very limited
impact on the overall results, in comparison to the other rules.

Mehta published another experiment [24], in which she interviewed players, after
completing various coordination games, about their behavior in the games. There were
some insights that were common to the majority of the interviewed subjects: (a) sub-
jects tried “going into the heads” of their partner, to figure out what he would do; (b)
subjects tried using cultural information shared with their partner; (c) the use of rules—
most subjects followed some rules in choosing their answer; (d) the use of “fairness”
played a significant role.

Another set of experiments, which strengthens the notion of focal point usage, was
done by Van Huyck et al. [14], studying games with multiple equilibria; they checked
how human subjects make decisions under conditions of strategic uncertainty. Cooper
et al. [5] experimented to discover what happens when players play a non-cooperative
game with multiple Nash equilibria. His results showed that the outcome would come
from the set of Nash equilibria.

In the artificial intelligence literature, Kraus et al. used Focal Point techniques to
coordinate between agents in communication-impoverished situations [7, 21]. In [21]
they modeled the process of finding focal points from domain-independent criteria us-
ing two approaches: decision theory, and step-logic. They devised a focal point algo-
rithm tailored to a robot rendezvous coordination game (where two robots have to agree
on a single object from a small set of objects with various properties), and showed that
their algorithm managed to converge to focal points in a very high percentage of cases.
However, though their approach initiated the use of focal points in the agent-agent co-
ordination problem, their results are not very surprising: two agents running the same
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algorithm would necessarily converge to the same solution (though the authors’ ap-
proach was not hard-wired). We consider that a major advantage that automated agents
could gain from using focal points is specifically when working with human beings,
who inherently seem to exhibit such reasoning capabilities.

3 Focal Point Learning
To enhance human-agent coordination, we would like the automated agent to have a
cognitive mechanism which is similar to the one that exists in human beings. Such a
mechanism would allow agents to reason and search for focal points when communication-
impoverished situations occur.

Coordination in human-agent teams can be strengthened by having agents learn
how a general human partner will make choices in a given domain. It is possible to
use various machine learning algorithms to explicitly learn the focal choices in a given
game. However, learning to classify the choices of a general human partner in tacit
coordination games is difficult for the following reasons:

1. No specific function to generalize — there is no mathematical function nor
behavioral theory that predicts human choices in these games. Specifically, no
function can capture the notion that for some tacit coordination games, different
human players can select different choices.

2. Noisy data — data collected from humans in tacit coordination games tends to
be very noisy due to various social, cultural, and psychological factors that bias
their answers. When collecting data, any experience before or during the game
can impact the focal points (we will see examples of that phenomenon below).

3. Domain complexity — in complex domains, training a classifier not only re-
quires a large set of examples, but in order to generalize an arbitrary human part-
ner, those examples should be taken from different sources in order to remove
cultural and psychological biases. This results in a very difficult data collection
task.

These difficulties suggest that using classical machine learning methods to build
a focal point reasoner, which works similarly to that exhibited by humans, is not an
easy task. As we will see in the experimental section below, the main problem is that
we want to classify a “general” human coordination partner and not a specific partner
(which would be a considerably easier task for classical machine learning algorithms).

As mentioned above, several attempts have been made to formalize focal points
from a game theoretic, human interaction point of view ([16] provides a good overview).
However, as we said, that research does not provide the practical tools necessary for
use in automated agents. In [21], Kraus et al. identified some domain-independent rules
that could be used by automated agents to identify focal points. The following rules
are derived from that work, but are adjusted and refined in our presentation.3

3Kraus et al. used the following intuitive properties: Uniqueness, Uniqueness complement, centrality,
and extremeness.
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• Centrality — this rule gives prominence to choices directly in the center of
the set of choices, either in the physical environment, or in the values of the
choices. For example, in the 3x3 grid coordination scenario (Figure 1, above),
the center square had the centrality property as it resides directly in the center of
the physical environment (both horizontally and vertically).

• Extremeness — this rule gives prominence to choices that are extreme relative to
other choices, either in the physical environment, or in the values of the choices.
For example, when asked to select one number out of a set, the highest or smallest
numbers will have the extreme property. In a physical environment, the tallest,
smallest, longest, etc., can be named as the extreme choices.

• Firstness — this rule gives prominence to choices that physically appear first
in the set of choices. It can be either the option closest to the agent, or the first
option in a list. For example, when asked to select one number out of a set, the
number that appears first has the firstness property.

• Singularity — this rule gives prominence to choices that are unique or distin-
guishable relative to other choices in the same set. This uniqueness can be, for
example, with respect to some physical characteristics of the options, a special
arrangement, or a cultural convention. There are many examples of this rule,
from a physical property such as the object’s color or size, to some social norm
which singles out one of the options.

We employ learning algorithms to help our agent discover coordination strategies.
Training samples, gathered from humans playing a tacit coordination game, are used
to create an automated agent that performs well when faced with a new human partner
in a newly generated environment. However, because of the aforementioned problems,
applying machine learning on raw domain data results in classifiers having poor perfor-
mance. Instead, we use a Focal Point Learning approach: we preprocess raw domain
data, and place it into a new representation space, based on focal point properties.
Given our domain’s raw data Oi, we apply a transformation T , such that Nj = T (Oi),
where i, j are the number of attributes before and after the transformation, respectively.

The new feature space Nj is created as follows: each v ∈ Oi is a vector of size
i representing a game instance in the domain (world description alongside its pos-
sible choices). The transformation T takes each vector v and creates a new vector
u ∈ Nj , such that j = 4×[number of choices].4 T iterates over the possible choices
encoded in v, and for each such choice computes four numerical values signifying
the four focal point properties presented above. For example, given a coordination
game encoded as a vector v of size 25 that contains three choices (c1, c2, c3), the trans-
formation T creates a new vector u = (cc1, c

e
1, c

f
1 , c

s
1, c

c
2, c

e
2, c

f
2 , c

s
2, c

c
3, c

e
3, c

f
3 , c

s
3) of

size 12 (3 possible choices × 4 focal point rules), where cc/e/f/sl denotes the central-
ity/extremeness/firstness/singularity values for choice l. Note that j might be smaller
than, equal to, or greater than i, depending on the domain and the number of rules used.

4This can be generalized to a different number of rules by taking j =[number of rules]×[number of
choices].
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Input: Original coordination task Encoding
Output: Focal Point based coordination task Encoding
V [num′Choices× num′Rules];
foreach c ∈ choices do

foreach r ∈ Rules do
V [c× r] = ComputeRule(r,c);

end
end
return V ;

Algorithm 1: The General Transformation Algorithm

The transformation from raw domain data to the new representation in focal point
space is done semi-automatically using Algorithm 1. This linear-time algorithm is
a general transformation algorithm to any number of focal point rules. In order to
transform raw data from some new domain, one needs to provide a domain-specific
implementation of the four general focal point rules. There is currently no automated
way to suggest the optimal set of rules for a given problem domain, and we will not
claim below that our choices are optimal. However, due to the generic nature of the
rules, this task is relatively simple, intuitive, and suggested by the domain itself (we
will see such rules in Section 4.3). When those rules are implemented, the agent can
itself easily carry out the transformation on all instances in the data set.

4 The Experimental Setting
We designed three domains for experiments in tacit coordination. For each domain, a
large set of coordination problems was randomly generated, and the solutions to those
problems were collected from human subjects.

We used the resulting data set to train three types of agents, and compared their
coordination performance (versus unknown human partners). The agent types are as
follows:

1. Domain Data agent — an agent trained on the original domain data set.

2. Focal Point agent (FP agent) — an agent using focal point rules without any
learning procedure.

3. Focal Point Learning agent (FPL agent) — an agent using the Focal Point Learn-
ing method.

In the second phase of our experiments we tested robustness to environmental
changes (Section 5). We took the first domain described in Section 4.3, and designed
two variations of it; one variant (VSD, a Very Similar Domain) had greater similarity to
the original environment than the other variant (SD, a Similar Domain) had. Data from
human subjects operating in the two variant settings were collected. We then carried
out an analysis of automated coordination performance in the new settings, using the
agents that had been trained in the original domain. In addition to the main results, we
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will discuss below several insights into the nature of focal points that came from dif-
ferent stages of the experiments, pre-experiments, and while interviewing the subjects
after they participated in the experiments.

4.1 Definitions
Definition 1 (Pure Tacit Coordination Games). Pure Tacit Coordination Games (also
called matching games) are games in which two non-communicating players get a pos-
itive payoff only if both choose the same option. Both players have an identical set of
options and the identical incentive to succeed at coordination.

Our experiments involved pure tacit coordination games. We demonstrate the def-
initions below with the following example of such a game. Two non-communicating
players are faced with the following set of numbers: { 15, 18, 100, 8, 13 }. Their
instructions are to select a single number of that set, where successful coordination is
rewarded with $50 for each player (regardless of the coordination choice); in the case
of unsuccessful coordination, the players receive nothing.

Obviously, in the above example, straightforward decision theory would suggest
that all five options have similar probability (p(c) = 0.2, where c is a choice), for
successful coordination; from a game theoretic point of view, all five choices/actions
have arbitrary labels and an arbitrary ordering. However, we have reason to believe
that using focal point reasoning, we will be able to coordinate with a human partner
with higher probability than the expected 0.2.

Definition 2 (Focality Value). Let R be the set of selection rules used in the coordi-
nation domain, c ∈ C be a possible choice in the domain, r ∈ R be a specific selection
rule, and v(r, c) be its value. Then the focality value is defined as:

FV (c) =

∑
r∈R v(r, c)

|R|
.

A focality value is a quantity calculated for each possible choice in a given game,
and signifies the level of prominence of that choice relative to the domain. The focality
value takes into account all of the focal point selection rules used in the coordination
domain; their specific implementation is domain dependent (e.g., what constitutes Cen-
trality in a given domain). Since the exact set of selection rules used by human players
is unknown, this value represents an approximation based on our characterization of the
focal point rule set. In the experiments, our FP agent will use this value to determine
its classification answer to a given game.

Going back to our running example, we can now calculate the focality value for
each of the possible choices of the coordination problem (five choices). The first step is
to provide an intuitive domain-dependent implementation to the suggested focal point
rules:

• Centrality — will increase prominence of the central choice of that set (the num-
ber 100);

• Extremeness — will be defined to increase prominence of the two extreme choices:
the smallest and largest numbers (numbers 100 and 8);

12



• Firstness — the intuitive implementation would be to increase the prominence
of the first number in the list (number 15);

• Singularity — in this setting can be defined using odd/even division (15 and 13),
prime numbers (only 13 is prime), or simply according to the number of digits
(according to this property, 8 and 100 are the distinguished choices).

We should choose one or more singular properties which are believed to be intuitive
interpretations that will be used by most humans.

We can give different weight to different rules, but here we continue the example
using uniform weight for the rules. The following list will specify the FP values
according to the above rules of all choices:

FP(15) = 2 — using the firstness and singularity property with the parity division.

FP(18) = 0 — none of the above rules are prominent for this choice.

FP(100) = 3 — using the centrality, extremeness and singularity rules according to the
number of digits.

FP(8) = 2 — using the extremeness and singularity rules according to the number of
digits.

FP(13) = 2 — using singularity according to parity and prime numbers.

According to our specific implementation, a human player can have the following
observations: choosing 18 is the least recommended choice as its focality value is
the lowest. The most prominent choice would be the number 100, with the highest
focal value, 3. Naturally, different interpretations as to the rules, and different weights,
would result in different focal values. However, as we see in our experimental section,
the most intuitive descriptions using those rules will assist us in focusing the answers,
or will at least help us in eliminating some of the options (e.g., in our example 18 can
be easily pruned, leaving us with an easier coordination task).

Definition 3 (Focality Difference). Let C be the set of all possible choices in the
coordination domain and FV (c) be the focality value of c ∈ C, max be the maximum
function and 2nd max be the second maximum function. Then the focality difference
is defined as:

F Diff(C) = max
c∈C

(FV (c))− 2nd max
c∈C

(FV (c)).

A focality difference is a function that gets a set of possible choices and determines
the difficulty level of the tacit coordination game. Naturally, a game with few choices
that have similar focality values is harder to solve than a game that might have more
choices, but with one of the choices much more prominent than the others.

In our example, the focality difference is F Diff(example) = 3 − 2 = 1. This
difference allows us to compare different tacit coordination games and understand
which game is easier to solve using a focal-point-based answer. The higher the fo-
cality difference is, the easier it is to coordinate on a focal answer. Moreover, we can
see that the focality difference is not a function of the cardinality of the set of possible
choices.
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4.2 Methodology
For each of the experimental domains presented below, we used the same methodology.
First, we collected a large set of samples from different human players. Each such
sample was a randomly generated instance of the coordination domain; thus, there
were instances that were generated more than once and were “played” by different
players.

The next step was to build machine learning classifiers that predict the choice se-
lected by most human partners. We worked with two widely used machine learning
algorithms: a C4.5 decision learning tree [28], and a feed-forward back-propagation
(FFBP) neural network [34]. Obviously, the different domains have different numbers
of input and output neurons, thus they require using different network architectures.

train

Experimental Data

ML
classifier

preprocess

Domain data agent

naive
classifier

FP agent

ML
classifier

FPL agent

Figure 5: The Training Stage

Each of these was first trained on the raw domain data set, and then on the new
preprocessed data based on the focal point rules. Figure 5 describes the training stage
that was done for each of the experimental domains. As can be seen, the domain
data agent is trained on the raw experimental data, the FP agent does not undergo any
training, and the FPL agent is trained on the preprocessed data. The raw data was
represented as a multi-valued feature bit vector. Each domain feature was represented
by the minimal number of bits needed to represent all of its possible values. This
simple, low-level representation helped standardize the experimental setup with both
types of classifiers using exactly the same domain encoding.

The transformation to focal point encoding provides focality values in terms of
our low-level focal point rules (Firstness, Singularity, Extremeness, and Centrality) for
each of the possible choices. Their values were calculated in a preprocessing stage,
prior to the training stage (and by an agent when it needs to output a prediction). In
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the training session, the algorithms learn the best values and weight for each rule, as
the individual impact of each individual rule may vary across domains. It is important
to note that following the transformation to the focal point encoding, we deprive the
classifier of any explicit domain information during training; it trains only on the focal
point information.
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ML
classifier

FPL agent

naive
classifier
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output

output

Experimental Data

test

preprocess

Figure 6: The Testing Stage

Finally, we compared the performance of our three agents in each domain according
to their correct classification of the test samples. This process is described in Figure 6,
where we can see that the test examples are fed in their original encoding to the domain
data agent, while the FP and FPL agents classify the example after it has gone through
the preprocessing phase. For a given game instance, each of the agents outputs one of
the possible choices, the one that it predicts most people will select.

4.3 The Experimental Domains
We now present three experimental domains that were designed to check FPL’s perfor-
mance. We designed the coordination games with the following design principles in
mind:

1. Make the domains tacit coordination games (equal utility values for all possible
choices).

2. Avoid implicit biases that might occur due to psychological, cultural, and social
factors (i.e., remove possible biases).

3. Use a variety of tacit coordination problems to check the performance of focal
point learning in different domains.
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4.3.1 Pick the Pile Game

We designed a simple and intuitive tacit coordination game that represents a simplified
version of a domain where an agent and a human partner need to agree on a possible
meeting place. The game is played on a 5-by-5 square grid. Each square of the grid
can be empty, or can contain either a pile of money or the game agents (all agents
are situated in the same starting grid; see Figure 7). Each square in the game board is
colored white, yellow, or red. The players were instructed to pick the one pile of money
from the three identical piles, that most other players, playing exactly the same game,
would pick. The players were told that the agents can make horizontal and vertical
moves.

Figure 7: Pick the Pile Game Board Sample

Data was collected using an Internet website (Figure 8) which allowed players from
all over the world to participate in the game, and their answers were recorded. Upon
entering the website, each player was requested to read the instructions and was asked
to play the game only one time. The instructions specified that each player is paired
with an unknown partner and that their score would be given at the end. Each game
session was constructed of 10 randomly generated instances of the domain. We en-
forced the one-game-per-person rule by explicitly requesting the players to play only
once, and by recording the player’s IP and removing multiple instances of the same IP
from our database.5 The call for players was published in various AI related forums
and mailing lists all over the world, and eventually we gathered approximately 3000
game instances from over 275 different users from around the world.

The first step was to build a feed-forward back-propagation network on a simple
encoding of the domain. In a simple binary encoding of this domain, for encoding
25 squares with 9 possible values (4 bits) per square, we used 100 neurons for the in-
put layer. The output layer consisted of 3 neurons (as there are 3 piles from which to
choose), where the first neuron represented the first pile in the game, that are ordered
horizontally from the top-left corner to the bottom-right corner. The other network
parameters, such as number of hidden neurons, learning rate (η), and momentum con-
stant, were set by way of trial and error to achieve the best performance.

5Our method was not fully secure, and could be manipulated by requesting a new IP address, or by using
other computers. However, due to the nature of the game it is reasonable to assume that most players did not
do that.
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Figure 8: Screenshot from Game Website

The transformation to the focal point space was done in the following way:

1. Centrality — Centrality was calculated as an exact bisection symmetry, thus giv-
ing a positive value to a pile that lies directly between two other piles either
horizontally, vertically, or diagonally.

2. Singularity — the only distinguishable choice attribute is the color, thus the Sin-
gularity of each pile was calculated according to the number of squares having
the same color. Naturally, a pile of money sitting on a red square in a board
having only 4 red squares, would have a higher degree of singularity than a pile
of money sitting on a white square, if there were 17 white squares on that board.

3. Firstness — The Firstness property was calculated as the Manhattan distance
between the agent’s square and each pile of money.

4. Extremeness — The Extremeness property was intuitively irrelevant in this do-
main, so we gave it a uniform constant value.

After preprocessing the data according to the above interpretation of the focal point
rules, we built two additional agents: the focal point agent (FP) is one that selects the
pile with the highest focality value (without employing any learning procedure). The
focal point learning agent (FPL) built a new neural network after discretizing the focal
point rules to a set of eight possible values {0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875,
1}. Now, the number of input neurons is 36 (4 rules × 8 discrete values (3 bits) ×
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3 possible choices), there are 3 output neurons, and we will train the network on the
newly transformed data.6

Example: Looking at Figure 7, we can compute the focality value according to
the above rules. Before doing so, let us enumerate the piles as follows: pile1 is
the upper right pile (on the yellow-colored grid), pile2 is the pile on the 2nd row
(counting down from above), and pile3 is the pile on the bottom row. In addition,
note that the ComputeRule function will be denoted as v for ease of presentation.
Now, neither of the piles in that example have any Centrality property (as they are
not residing on the same row, column, or diagonal); formally, v(centrality, pile1) =
v(centrality, pile2) = v(centrality, pile3) = 0. In terms of Firstness, pile1 is 3
grid squares away from the agents, thus v(firstness, pile1) = 0.75. Pile2 is two grid
squares away, thus v(firstness, pile2) = 0.875, and pile3 is three grid squares away,
v(firstness, pile3) = 0.75. The Singularity property finds piles 2 and 3 on a white
grid square; thus, as the board contains 12 white grid squares out of 25 squares overall,
their values will be v(singularity, pile2) = v(singularity, pile3) = 1−0.48 ≈ 0.5.
Pile1, residing on a yellow grid square would be valued as v(singularity, pile1) =
1− 0.28 ≈ 0.75.

Summing their focality values, we have FV (pile1) = 0.75, FV (pile2) = 0.6875,
FV (pile3) = 0.625. Here, the agent who is only using a focal point calculation will
select pile1, as it has the highest focality value in this game. Moreover, we can now
compute the focality difference of the game as 0.75−0.6875 = 0.0625. This quite low
focality difference suggests that this specific instance of the domain is difficult to solve.

4.3.2 Candidate Selection Game

Players were given a list of five candidates in an election for some unknown position.
The candidates were described using the following properties and their possible values:

1. sex∈{Male, Female}

2. age∈{25, 31, 35, 42, 45}

3. height (in meters) ∈ {1.71, 1.75, 1.78, 1.81, 1.85}

4. profession ∈ {Doctor, Lawyer, Businessman, Engineer, Professor}

Each list was composed of five randomly generated candidates. The (pen and pa-
per) experiments were carried out when subjects (a total of 82 first-year university
students) were seated in a classroom, and were told that their coordination partners
were randomly selected from experiments that took place in other classes, i.e., their
partner’s identity is completely unknown. For a candidate to be elected, it needs to
get these two votes (the player’s and its partner’s); thus, both sides need to choose the
same candidate. To create the necessary motivation for successful coordination, we
announced a monetary reward for success.7 Figure 9 shows a sample question in the
domain.

6The number of input neurons can be reduced, as the Extremeness property was not used in this interpre-
tation of the rules.

7It is a well-known phenomenon that coordination in these games deteriorates without sufficient motiva-
tion.
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Figure 9: Candidate Selection Game Sample

The binary encoding for building the neural network in this domain was a set of 50
input neurons in the input layer that encoded 5 candidates, each encoded with 10 bits
(1 bit for gender, and 3 bits for each of the others). The output layer was composed of
5 output neurons, one for each possible candidate.

The focal point transformation had the following intuitive implementation:

1. Centrality — gave a positive constant value to the third candidate in the list
(which is located in the center of the selection list).

2. Singularity — the Singularity of a candidate was calculated according to the
relative uniqueness of each of its values (i.e., a sole female candidate in a set of
males will increase the singularity value by 1− 0.2 = 0.8).

3. Firstness — The Firstness property gave a positive constant value to the first
candidate on the list.

4. Extremeness — The Extremeness property gave high values to properties that
exhibited extreme values in some characteristics of the candidate (for example,
a candidate who is the oldest or youngest among the set of candidates would get
a higher Extremeness value than a candidate who is not).

Example: let us now compute the rules according to the game instance presented
in Figure 9. We will enumerate the candidates according to their order of appear-
ance from top to bottom. The centrality and firstness properties are intuitive, and re-
sult in v(centrality, candidate3) = c1 and v(firstness, candidate1) = c2, while
c1, c2 > 0. The extremeness property gave prominence to candidate2 as she is the sole
oldest, and the tallest, candidate; thus v(extremeness, candidate2) > 0. The same
goes for the singularity property, in which we compute the singularity of the values
exhibited in each of the candidate’s properties. For instance, candidate1 is one of the
three Males (hence, 0.4), one of the three 25-year-old candidates (again, 0.4), one of
the two candidates of 1.75m height (0.6) and one of the three lawyers (0.4). Taking the
average, we have v(singularity, candidate1) = 0.45.

4.3.3 Shape Matching Game

Players were given a random set of geometric shapes, and had to mark their selected
shape in order to achieve successful coordination with an unknown partner (presented
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with the same set). The seven shapes were presented in a single row and were random-
ized from the set of circle, rectangle, or triangle. Questionnaires containing ten game
instances were distributed to students (78 students overall). As before, monetary prizes
were guaranteed to students with the highest coordination scores. Figure 10 shows a
sample question in the domain.

Figure 10: Shape Matching Game Sample

This domain is the easiest among our games to represent as a simple binary encod-
ing, because each goal has only a single property, its type. In any game instance, each
shape can be a circle, rectangle, or triangle. Thus, the question was easier in terms of
its simple binary representation, as we needed 14 input neurons and 7 output neurons.

The focal point transformation was implemented as follows:

1. Centrality — Centrality gave additional focality value to the middle choice, and
increased the focality value of a shape which had the same shape series on both
of its sides. A longer series yielded a higher value.

2. Singularity — the Singularity of a choice was determined by the number of
choices with the same shape (for example, in a game where all shapes are cir-
cles and only a single shape is a triangle, the triangular shape will have a high
singularity value).

3. Firstness — Firstness gave a small bias to the first shape on the left-hand side of
the list.

4. Extremeness — The Extremeness property gave higher focality values to the first
and last choices in the set.

In this domain we have an example of a domain transformation in which j > i,
which means that the transformation actually increases the search space. From 14
input neurons in the simple binary representation, we now move to a space of 42 input
neurons (6 bits × 7 choices).

4.4 Results
For each of the above domains, we compared the correct classification performance
of both C4.5 learning trees and FFBP neural network classifiers. As stated above, the
comparison was between a domain data agent (trained on the raw domain encoding),
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a focal point (FP) agent (an untrained agent that used only focal point rules for pre-
diction), and a focal point learning (FPL) agent. “Correct classification” means that
the agent made the same choice as that of the particular human player who played the
same game.8

We optimized our classifiers’ performance by varying the network architecture and
learning parameters, until attaining best results. We used a learning rate of 0.3, mo-
mentum rate of 0.2, 1 hidden layer, random initial weights, and no biases of any sort.
Before each training procedure, the data set was randomly divided into a test and a
training set (a standard 33.3%–66.6% division). Each instance of those sets contained
the game description (either the binary or focal point encoding) and the human answer
to it. All algorithms were run in the WEKA9 data mining software, which is a collection
of machine learning algorithms for data mining tasks. The classification results using
the neural network and the decision tree algorithms were very close (maximum differ-
ence of 3%). Figure 11 compares the correct classification percentage for the agents’
classification techniques, in each of the three experimental domains. Each entry in the
graph is a result averaged over five runs of each learning algorithm (neural network and
C4.5 tree), and the average of those two algorithms.

Figure 11: Average Correct Classification Percentage

Examining the results, we see a significant improvement when using the focal point
learning approach to train classifiers, rather than the domain data agent (p < 0.01 in
two-proportion z-tests in all domains). In all three domains, the domain data agent is
not able to generalize sufficiently, thus achieving classification rates that are only about
5%–10% higher than a random guess. Using FPL, the classification rate improved
by 40%–80% above the classification performance of the domain data agent.10 The
results also show that even the classical FP agent, which does not employ any learning
algorithm, performs better than the domain data agent. In an additional analysis that

8If there were multiple occurrences of a specific game instance, the choice of the majority of humans was
considered the solution.

9http://www.cs.waikato.ac.nz/ml/weka/
10Since even humans do not have 100% success with one another in these games, FPL is correspondingly

the more impressive.

21



was done on the FP agent, we saw a tendency in which the FP agent, when facing
coordination problems with low focality difference, has its performance deteriorate to
that of random guesses.

Note also that in the first domain, when using FPL instead of regular raw data
learning, the marginal increase in performance is higher than the improvement that
was achieved in the second domain (an increase of 28% vs. 22%), which is in turn
higher than the marginal increase in performance of the third domain (an increase of
22% vs. 18%). From those results, we hypothesize that the difference in the marginal
performance increase is because the first domain was the most complex in terms of the
number of objects and their properties. As the domain becomes more complex, there
are more possibilities for human subjects to use their own subjective rules (for example,
in the Pick the Pile domain, we noticed that few people looked at the different color
patterns that were randomly created, as a decision rule for their selected goal). As
more rules are used, the data becomes harder to generalize. When an agent is situated
in a real, highly complex environment, we can expect that the marginal increase in
performance, when using FPL, will be correspondingly large.

An additional advantage of using FPL is the reduction in training time (e.g., in the
Pick the Pile domain we saw a reduction from 4 hours on the original data to 3 minutes),
due to the reduction of input size. Moreover, the learning tree that was created using
FPL was smaller, and can be easily converted to a rule-based system as part of the
agent’s design.

Figure 12: “Pick The Pile” Focality Difference Impact

In Figure 12 we checked the impact of the focality difference on the success rate
in the “Pick the Pile” domain. We computed the focality difference of each of the
randomized instances that was played, and divided them into six groups according to
their values. We then isolated each group and checked the successful coordination rate
on each of the groups. It turns out that in the highest focality instances (> 0.35) the
FPL agent managed to achieve a 78.3% successful coordination rate, and in the next
group (0.3–0.35) it managed to achieve a 75% successful coordination rate. One can
also see that the successful coordination rate increased with the focality difference.
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5 Robustness to Environmental Changes
As seen in Section 4, the focal point rules proved to be helpful in handling various tacit
coordination domains against an arbitrary human partner. In this section, we examine
the robustness of human-agent tacit interaction in changing environments, and analyze
the robustness of our agents to changes in the domain environment. Dynamic changes
in the environment can occur for many reasons, and having a more robust agent can
become a crucial ingredient for succeeding on various missions.

Definition 4 (Environment Similarity). Similarity between environments is calcu-
lated as the Euclidean distance:

dij =

√√√√ n∑
k=1

(xik − xjk)2,

where the environment vector x is constructed from the number of goals, number of
attributes per goal, number of values per attribute, and the attribute values themselves.

To check agent robustness in the face of environment changes, we took the “Pick
the Pile” domain (described in Section 4.3.1), and designed variants; we denote them
as the similar domain, and the very similar domain. To check agent performance, we
put the original agents (i.e., the domain data and focal point learning agents that had
been trained on the original Pick the Pile version, and the regular focal point agent) in
the new environments, and compared their classification performance.

Figure 13: “Pick The Pile” — VSD Example

We created two different versions of the Pick the Pile game, which had different
similarity values relative to the original version. In the first variant (which we will
denote VSD for Very Similar Domain), we added a fourth possible value to the set of
values of the color attribute (four colors instead of three). In the second variant (which
we will denote SD for Similar Domain), in addition to the first change, we also changed
the grid structure to a 6 by 4 grid (instead of the original 5 by 5). Moreover, in both
variants, we changed all four color values from actual colors to various black and white
texture mappings (see Figure 13 for an example).

Additional experiments were conducted in order to collect human answers to the
two new variants of the game (85 first-year computer science and applied mathematics
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students took part). The agents that had been trained on the original environment (using
the neural network algorithm), were now asked to coordinate with an arbitrary human
partner in the new environments. Figure 14 summarizes performance comparison of
the agents in each of the new environment variants.

Figure 14: Classification Percentage in Similar Environments

The prediction results on the first variant (VSD) show that all three agents managed
to somehow cope with the new, very similar domain, and suffered only a small decrease
in performance. However, when looking at the results of the similar domain (SD), we
see that the domain data agent’s performance decreased all the way to its classification
performance’s lower bound, that of random guessing. At the same time, our FPL agent
did suffer a mild decrease in performance (around 5%), but still managed to keep a
reasonably high performance level of around 62% (significantly better than the domain
data agent, with p < 0.01 in a two-proportion z-test). We can also notice that the
classical FP agent copes with the environmental changes better than the domain data
agent, with a performance level of around 45%; however, it is still low when compared
to the FPL agent’s performance level.

6 Additional Results and Insights

6.1 Generalized Pick the Pile Domain
We conducted an additional set of experiments in order to evaluate the algorithm’s
performance on a variation of the Pick the Pile domain that is more generalized and
challenging. In this variation, in contrast to the original Pick the Pile domain, the
coordination task is not limited to agreeing on one of the three possible piles (i.e.,
33% is the expected successful coordination rate according to decision theory), but to
agree on any possible grid position. The board was reduced to a 3 by 3 grid, and after
removing the pile icons, we were left with 8 possible meeting positions (the grid where
the agents are located was not considered a valid meeting place), which resulted in a
12.5% expected successful coordination rate according to standard decision theory. In
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addition, instead of the original color attribute, we presented 4 new possible values on
each grid square: a picture of a tree, grass, stones, or a lake. This would implicitly cause
the players to use more subjective contextual information when needed. Figure 15
presents an instance of the new domain.

Figure 15: Generalized Pick the Pile Example

This experiment was a pen-and-paper experiment with 200 first year students study-
ing computer science, applied mathematics, and engineering. Each subject received a
questionnaire with 6 randomly-generated instances. As before, we compared the per-
formance of an agent that was trained on the original domain encoding, and a focal
point learning agent that was trained using the same rule implementations as described
above for the original domain.

Our results show that this variation is very challenging to both classifiers, as the
domain data agent (trained with the original encoding) achieved approximately 16%
correct classification, while the focal point learning agent achieved approximately 34%
correct classification. While these rates are not as impressive as our results in the
original domain, they still provide a significant improvement on the results that the
original classifier was able to achieve without using the focal point learning scheme.

6.2 Generalized Shape Matching Domain
In an additional experiment that we conducted on the Shape Matching domain, we
generalized the game as follows: instead of having a fixed set of 7 shapes in each in-
stantiation of the domain, we randomized the number of shapes in each row in addition
to their type. In the generalized domain, each game instance can include from 3 to 7
shapes (and not always 7 shapes, as in the original version), and each such shape itself
was randomized from the set of possible shapes. Figure 16 presents an example of two
game instances from a questionnaire, where in the first there are 4 shapes to choose
from, while in the second there are 7 shapes to choose from (just as in the original
version).

The data was collected in the same way as in the original experiment (each subject
played 10 randomized game instances). A comparison was made between a domain
data learning agent and a focal point learning agent, so as to evaluate the advantages
gained by using the new learning method in a variant on the domain which is more
complex than the original one. When the number of randomized shapes was smaller
than 7, we used a binary value to represent a “non-existing” shape value for that input
neuron. The same focal point rules were used, with the following adjustments to the
centrality and extremeness rules, in order to consider the possibility of randomizing the
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Figure 16: Generalized Shape Matching Example

number of shapes per row. (1) Centrality — Centrality gave additional focality value
to the middle choice, when the number of shapes was odd. With an even number of
shapes, no centrality value was given. (2) Extremeness — The Extremeness property
gave higher focality values to the first and last choices in the set. Those values became
higher as the number of shapes increased (the extremeness in a game with 3 shapes
was lower than the extremeness in a game with 6 shapes).

Our results show that the domain data agent managed to achieve a correct classi-
fication rate of 37%, while the focal point learning agent managed to beat that with
a 49% correct classification rate. We also checked the performance of a regular focal
point agent (not employing any learning algorithm), and found that it performs as well
as the domain data agent, with a 38% correct classification rate.

6.3 Culturally Biased Candidate Selection Domain
One of Schelling’s classic examples can be found in [29], where he showed his subjects
a 4 by 4 grid (see Figure 2) and instructed them as follows:

“Put a check mark in one of the sixteen squares. You win if you all succeeded in
checking the same square.”

Schelling reported that 24 out of 41 (58%) people selected the upper-left corner
(which is of course more than the 6.25% predicted by standard decision theory), and
all but 3 of the votes were distributed along the diagonal.

We conducted a similar experiment with a larger set of subjects (81 first-year stu-
dents) and surprisingly, we had two main focal points: the first was the upper-left corner
(with 40 votes), and the second was the upper-right corner (with 32 votes). The upper-
right corner did not appear as a possible focal solution to this problem in Schelling’s
report, but was found as a strong focal point in our data. Those results seem less
surprising when we add the information that the experiment was conducted with stu-
dents who write from right to left. We hypothesize that this cultural information biased
the subjects toward the upper-right corner as an additional focal point, along with the
upper-left one, which was found in the original experiment.

In order to further explore the notion of culturally biased tacit coordination games,
we took the Candidate Selection game and designed a new, culturally biased, variation
of it. In the original version of the game, the five candidates were enumerated using
numbers 1 to 5. In the new variant, the five candidates were enumerated using family
names that remained constant and were not randomized (all other properties were still
randomized). Candidate 1 was named “Brown”, candidate 2 was named “Cohen”,
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candidate 3 was named “Jones”, candidate 4 was named “Mitchell”, and candidate 5
was named “White”. The names were selected as to give a cultural bias to candidate 2
as this name is of Jewish origin (and one of the most common family names in Israel,
where the experiment took place), while all other candidates have common American
family names that we assumed have no special meaning to most of our student subjects.

Figure 17: Culturally Biased Example

We used first and second year students to play randomized instances of the game.
The results, without even considering the candidate properties, are not surprising: while
in the original version (enumerated by numbers), 16% of the students selected candi-
date 2, in the biased version this number rose to 27%.

Given a tacit coordination domain and such knowledge of a cultural bias (or bi-
ases of other forms as we will see below), we can augment the FPL with a cultural
bias-based rule that will increase the focality value of the choice (candidate 2 in our
example) by some constant amount. This increase will help the learning algorithm to
break ties and differentiate towards the biased answer when the focality difference is
small. In our experiments, by including such a bias rule in the form of a constant in-
crease of 0.15 to singularity value of candidate 2, we managed to increase the agent’s
correct classification rate by 9%.

6.4 Additional Insights
In a series of experiments that were partly conducted to reproduce and verify the results
reported in several of Schelling’s classic experiments, and partly as a pre-experimental
stage for the domains presented above, we gained additional results that can help in
deepening our understanding of the nature of focal points.

6.4.1 Educational Bias

In a pre-experimental stage of the “pick the pile” domain, we conducted pen-and-paper
experiments in a small class composed of 14 computer science graduate students. The
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pre-experimental stage was meant to check whether the written instructions were com-
prehensible, as we wanted to avoid answering questions out loud, due to the possibility
that such answers might bias the subjects.

The instructions stated that the subjects were to be paired with an unknown partner
from that class, and that their answers would be compared. Here again, a monetary
prize was given to the couple with the highest number of successful coordinations.

When recording their solutions, we found that there was a tendency to select piles
that are on the same column or row, even if they are further away in terms of their Man-
hattan distance. Those results surprised us, as we hypothesized that the subjects, being
computer science graduates, would naturally follow the Manhattan distance measure,
as the instructions clearly state that “diagonal moves are illegal”.

After the experiment ended, we interviewed several subjects in order to understand
their selection. To our surprise, it appears that those students were working in the field
of Robotics, and it was obvious to them that the refacing operation is an expensive
operation in the robotics domain, and should be avoided. They also added that they
used that knowledge when solving the coordination games, as they knew that their
coordination partners were to be selected from that group alone.

Those results show again that the more knowledge one has of one’s coordination
partner, the more it allows one to focus choices with respect to that information which
is common to both partners.

6.4.2 Firstness in “Heads or Tails?” Domain

In several of our paper and pen experiments we decided to explore why, according to
Schelling, around 85% of the answers to the simple “Heads or Tails?” question turns
out to be “Heads”.11 Why is “Heads” an obvious focal point for a tacit coordination
task based on that question? We hypothesized, according to our suggested focal point
rules, that the Firstness property has a crucial role in focalizing “Heads”, as it appears
first in the presentation of the question.

In order to check our hypothesis, we generated two types of questions: one being
the original formulation of the problem “Heads or Tails?”, and the other the reverse
presentation, “Tails or Heads?”. In several of our previous experiments, we planted a
single question of one of the above forms into the questionnaire. Thus, several of our
subjects played the “Heads or Tails?” version, and others played with the “Tails or
Heads?” version.

Table 1: “Heads or Tails?” Results
“Heads” selected “Tails” selected

“Heads or Tails?” 23 7
“Tails or Heads?” 13 16

Overall, we collected 59 answers, and the results appear in Table 1. The results
show that on the “Heads or Tails?” question, we got results similar to those of

11In his experiments, 36 selected Heads and only 6 Tails.
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Schelling, as only 7 people selected “Tails” out of 30 subjects (i.e., 23% in our experi-
ment compared with Schelling’s 14%). However, in the second variation, the “Tails or
Heads?” presentation, 55% of the subjects selected “Tails”, a greatly increased per-
centage. It might be hypothesized that although presenting “Tails” first made it a far
more likely choice, it may not have reached the popularity of “Heads”, since “Heads
or Tails?”, with “Heads” first, is still the more standard presentation of the problem in
English (and thus the primacy of Heads is still somewhat maintained in many players’
minds).

In any case, it is easy to see that the presentation of the question completely changed
the focality of “Heads” from a high focality answer in the original presentation, to a
lower focality answer in the new presentation. Two lessons can be learned from those
results: first, obviously the presentation of the coordination task impacts its focality
difference. Second, as the only difference in the new version is the order of the choices,
firstness is an important property in that coordination task.

7 Conclusions and Future Work
In this article we have been interested in enhancing agent-human coordination possi-
bilities in situations where communication is not possible. When an agent (or robot)
is coordinating with a human partner, having a cognitive mechanism that mimics the
reasoning process of that human being will make the agent more robust to changes in
the environment, and more adaptable to different domains.

We presented the Focal Point Learning (FPL) approach to building automated
agents that play tacit coordination games with general human partners in dynamic envi-
ronments. The technique makes use of learning algorithms to train agents to coordinate
with general human partners in specific domains; focal points are integrated into the
learning process through the use of focal point selection rules. Training data is pre-
processed and transferred into a new representation space, where each vector contains
quantified focal point values, and these are used to train the agent.

We created three experimental domains, and collected data to be used for training
agents to predict human coordination choices in those domains. Results showed that
when trained solely on the domain-encoded data, the classifiers resulted in a close-to-
random correct classification percentage, while the FPL agents managed to achieve a
significantly higher correct classification rate. We then created two variants of one of
the domains, collected human data for the variants, and then checked the coordination
performance, in these variants, of each of the agents that had been trained in the orig-
inal domain. Here again, the FPL agents outperformed the others, and demonstrated
robustness in an altered environment.

As can been seen from our experimental work, even in our simplified domains the
suggested FPL technique relies on having a large amount of data. Moreover, this data
should be taken from a large enough sample space to remove various biases. It might
be that the costs of applying FPL techniques for cases where there is a need to coordi-
nate without communication is not practical for all domains, as acquiring experimental
data from humans is not a simple procedure. However, in domains where human lives
are at stake, such as search-and-rescue tasks, caring for the elderly, or human-robot
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teams, this technique may be very beneficial. In addition, the wide array of electronic
data that is available due to the development of the internet (e.g., web searches and
electronic transactions), can be used with various data mining techniques to improve
user-interface experiences or automated agent development processes, when commu-
nication will not be available at runtime.

Future work on Focal Point Learning can be taken in several different directions.
First and foremost, more experimental work with human beings is needed to deepen
our understanding of the nature of focal points and their properties. Through that ef-
fort, we can gain a deeper understanding of the reasoning process that underlies tacit
coordination games. Additional experimental work on the psychological component of
focal points is most definitely needed.

Another direction is to take a game theoretic approach and look for a robust and
formal theory in game theoretic terms which, in contrast to existing focal point theories,
will have predictive abilities and not only the capability of retrospective analysis.

From the Focal Point Learning point of view, one obvious next step is to apply the
technique to a real-world domain, for instance, a military application where manned
and unmanned aircraft or land vehicles are cooperating to carry out some well-defined
task. In military applications, due to uncertainty and the dynamic nature of the envi-
ronment, having a cognitive mechanism could prove to be highly important.

To sum up, when building agents to coordinate with unfamiliar human partners,
without communication, machine learning classifiers have difficulty generalizing data
to predict human choices. Focal Point Learning can improve performance, and robust-
ness in the face of environmental change.
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