
Power in Threshold Network Flow Games

Yoram Bachrach, Jeffrey S. Rosenschein

School of Engineering and Computer Science

Hebrew University, Jerusalem, Israel

{yori, jeff}@cs.huji.ac.il

Abstract

Preference aggregation is used in a variety of multiagent applica-
tions, and as a result, voting theory has become an important topic in
multiagent system research. However, power indices (which reflect how
much “real power” a voter has in a weighted voting system) have re-
ceived relatively little attention, although they have long been studied
in political science and economics.

We consider a particular multiagent domain, a threshold network
flow game. Agents control the edges of a graph; a coalition wins if it
can send a flow that exceeds a given threshold from a source vertex
to a target vertex. The relative power of each edge/agent reflects its
significance in enabling such a flow, and in real-world networks could
be used, for example, to allocate resources for maintaining parts of the
network. We examine the computational complexity of calculating two
prominent power indices, the Banzhaf index and the Shapley-Shubik
index, in this network flow domain. We also consider the complexity of
calculating the core in this domain. The core can be used to allocate,
in a stable manner, the gains of the coalition that is established.

We show that calculating the Shapley-Shubik index in this network
flow domain is NP-hard, and that calculating the Banzhaf index is
#P-complete. Despite these negative results, we show that for some
restricted network flow domains there exists a polynomial algorithm
for calculating agents’ Banzhaf power indices. We also show that com-
puting the core in this game can be performed in polynomial time.

1 Introduction

Social choice theory can serve as an appropriate foundation upon which to
build multiagent applications. There is a rich literature on the subject of
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voting1 from political science, mathematics, and economics, with important
theoretical results. Builders of automated agents can benefit from this work
as they engineer systems that reach group consensus.

Interest in the theory of economics and social choice has in fact become
widespread in computer science, because it is recognized as having direct
implications on the building of systems comprised of multiple automated
agents [30, 9, 37, 31, 26, 15, 28]. What distinguishes computer science work
in these areas is its concern for computational issues: how are results arrived
at (e.g., equilibrium points)? What is the complexity of the process? Can
complexity be used to guard against unwanted phenomena? Does complex-
ity of computation prevent realistic implementation of a technique?

The practical applications of voting among automated agents are already
widespread. Ghosh et al. [12] built a movie recommendation system; a user’s
preferences were represented as agents, and movies to be suggested were
selected through agent voting. Candidates in virtual elections have also
been beliefs, joint plans [10], and schedules [14].

In this paper, we consider a topic that has been less studied in the context
of automated agent voting, namely power indices, which attempt to measure
the control a voter has over decisions of a larger group. Two popular power
indices are the Shapley-Shubik power index and the Banzhaf power index.
While such indices have mostly been used for measuring power in weighted
voting systems, they are well-defined for any simple coalitional game, and
can thus be easily adapted for other domains as well.

We look at some computational aspects of the Banzhaf and Shapley-
Shubik power indices in a specific environment, namely a threshold network
flow game—TNFG. In this game, a coalition of agents wins if it can send
a flow of size at least k from a source vertex s to a target vertex t, with
the relative power of each edge reflecting its significance in allowing such a
flow. This is a threshold variant of the cardinal network flow game—CNFG,
where the utility of a coalition is the maximal flow it can send between the
source and the target.

We first show that although TNFG and CNFG appear to be very similar,
the computational difficulty of certain problems can be different for these two
domains. First, we show that while it is easy to test whether a certain agent
is a dummy in CNFG, it is coNP-complete to do so in TNFGs. We then use
this result to show that calculating the Shapley-Shubik power index is NP-
hard in TNFGs. We provide a stronger result for the Banzhaf power index

1We use the term in its intuitive sense here, but in the social choice literature, “pref-
erence aggregation” and “voting” are basically synonymous.

2



in TNFGs, and show that it is #P-complete to compute it. Despite these
negative results, we show that for some restricted network flow domains
(specifically, of connectivity games on bounded layer graphs), there does
exist a polynomial algorithm to calculate the Banzhaf power index of an
agent.

These game theoretic solution concepts have applications in real-world
networks. For example, the power index might be used to allocate main-
tenance resources (a more “powerful” edge being more critical), in order
to maintain a given flow of data between two points. Thus, analyzing the
complexity of calculating power indices and providing algorithms for doing
so could help improve network reliability in various domains.

A known result from the literature is that computing the core, another
famous game theoretic solution concept, can be performed in polynomial
time in CNFGs. However, as stated above, CNFGs and TNFGs may differ
in the computational complexity of various problems (such as testing for
a dummy agent, as also noted above). Here, we show that the core can
be computed in polynomial time in TNFGs as well, and provide a simple
algorithm for doing so.

The article proceeds as follows. In Section 2 we give some background
concerning coalitional games, solution concepts and power indices, and in
Section 3 we introduce our specific network flow game, TNFG. In Section 4
we discuss dummy agents and power indices in TNFGs, presenting our com-
plexity results for the general case. In Section 5 we consider a restricted
case of TNFGs, and show how to compute the Banzhaf power index in this
domain. In Section 6 we discuss computing the core in TNFGs. We discuss
related work in Section 7, and we conclude in Section 8.

2 Technical Background

A transferable utility coalitional game is composed of a set of n agents,
I = (a1, . . . , an), and a function mapping any subset (coalition) of the agents
to a real value v : 2I → R, indicating the total utility these agents achieve
together. The function v is called the coalitional function (or sometimes
the characteristic function) of the game. In a simple coalitional game, v
only gets values of 0 or 1, so v : 2I → {0, 1}. A coalition C ⊆ I wins if
v(C) = 1, and loses if v(C) = 0. The set of all winning coalitions is denoted
W (v) = {C ⊆ 2I |v(C) = 1}.

Two common assumptions about coalitional games are that they are
increasing and super-additive. A coalitional game is increasing if for all
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coalitions C ′ ⊂ C we have v(C ′) ≤ v(C), and is super-additive when for all
disjoint coalitions A,B ⊂ I we have v(A) + v(B) ≤ v(A ∪ B). In super-
additive games, it is always worthwhile for two sub-coalitions to merge, so
eventually the grand coalition containing all the agents will form.

An agent ai is critical (sometimes called a swinger or pivotal) in a win-
ning coalition C if the agent’s removal from that coalition would make the
coalition lose: v(C) = 1 but v(C \ {i}) = 0. Thus, an agent can only be
critical in a coalition that contains her.

An agent in a coalitional game is called a dummy agent if she contributes
nothing to all coalitions.

Definition 1. A dummy agent is an agent ai ∈ I such that for all coalitions
C ⊆ I we have v(C ∪ {ai}) = v(C).

The characteristic function only defines the gains a coalition can achieve,
but does not define how these gains are distributed among the agents. A pay-
off vector (p1, . . . , pn) is a division of the gains of the grand coalition among
the agents, where pi ∈ R, such that

∑n
i=1 pi = v(I). We call pi the payoff

of agent ai, and denote the payoff of a coalition C as p(C) =
∑

i∈{i|ai∈C} pi.
An important question, obviously, is that of choosing the appropriate payoff
vector. Game theory offers several answers to this question, one of which
is the concept of the core. Another important question that arises in this
context is that of measuring the influence a given agent has on the outcome
of a simple game. One approach to measuring the power of individual agents
in simple coalitional games is power indices. We now briefly discuss the core
and power indices.

2.1 Individual Rationality and the Core

A minimal requirement for the payoff vector is that of individual rational-
ity, which states that for any agent ai ∈ C, we have that pi ≥ v({ai})—
otherwise, some agent is incentivized to work alone. Similarly, we say a
coalition B blocks the payoff vector (p1, . . . , pn) if p(B) < v(B), since the
members of B can split from the original coalition, derive the gains of v(B)
in the game, give each member ai ∈ B its previous gains pi—and still some
utility remains, so each member can get more utility. If a blocked payoff
vector is chosen, the coalition is unstable. A prominent solution concept
focusing on such stability is that of the core [13].

Definition 2. The core of a coalitional game is the set of all payment vectors
(p1, . . . , pn) that are not blocked by any coalition, so that for any coalition
C, we have p(C) ≥ v(C).
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Having a value distribution in the core indicates that no subset of the
coalition is incentivized to split. In general, the core can be empty, so every
possible value division in that case is blocked by some coalition.

2.2 Power Indices: The Shapley Value and Banzhaf Power

Index

A common interpretation of the power an agent possesses is that of its a
priori probability of having a significant role in the game. Different as-
sumptions about the formation of coalitions, and different definitions of
“having a significant role,” have caused researchers to define different power
indices. One such index is the Shapley-Shubik index, derived from the Shap-
ley value [32]—a cooperative game theory solution. Another such index is
the Banzhaf power index [2].

The Shapley value [32] defines a single value division, using an approach
that focuses on fairness, rather than on stability. The Shapley value of an
agent depends on its marginal contribution to possible coalition permuta-
tions. We denote by π a permutation (ordering) of the agents, and by Π the
set of all possible such permutations. Denote by Sπ(i) the predecessors of i
in π, so Sπ(i) = {j|π(j) < π(i)}.

Definition 3. The Shapley value is given by the payoff vector sh(v) =
(sh1(v), . . . , shn(v)) where

shi(v) =
1

n!

∑

π∈Π

[v(Sπ(i) ∪ {i}) − v(Sπ(i))].

The Shapley value can be used to to measure an agent’s ability to change
the outcome of a game, and has been used (for example) to measure political
power. It thus maps naturally into a specific power index, the Shapley-Shubik
index, which is simply the Shapley value in a simple coalitional game. In
this type of game the value of a coalition is either 0 or 1, so the formula
for shi(v) simply counts the fraction of all orderings of the agents in which
agent i is critical for the coalition of its predecessors and itself.

Another popular power index, defined for any simple game, is the Banzhaf
power index [2]. This index has been widely used, though primarily for the
purpose of measuring individual power in a weighted voting system. How-
ever, it can also easily be applied to any simple coalitional game.

The Banzhaf index depends on the number of coalitions in which an
agent is critical, out of all possible coalitions.2

2Banzhaf actually considered the percentage of such coalitions out of all winning coali-
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Definition 4. The Banzhaf power index is given by β(v) = (β1(v), . . . , βn(v))
where

βi(v) =
1

2n−1

∑

S⊂I|ai∈S

[v(S) − v(S \ {i})].

As mentioned above, different probabilistic models of the way a coali-
tion is formed yield different appropriate power indices [34]. The Banzhaf
power index reflects the assumption that the agents are independent in their
choices. In this article, we consider link failures in a network; assuming each
link may fail independently from the others, the Banzhaf power index is
very appropriate. On the other hand, when assuming links are added to a
network in a random order, and each ordering of the links in equally likely,
the more appropriate index would be the Shapley-Shubik index.

It is easy to see from Definitions 4 and 3 that ai is a dummy agent in a
game v if and only if her Banzhaf index and Shapley value are 0, so we have
shi(v) = 0 and βi(v) = 0.

2.3 Complexity of Counting Solutions

Our hardness result for calculating the Banzhaf power index in threshold
network flow games (TNFGs) involves the complexity class #P. #P is the
set of integer-valued functions that express the number of accepting compu-
tations of a nondeterministic Turing machine of polynomial time complexity.
Let Σ be the finite input and output alphabet for Turing machines.

Definition 5. #P is the class consisting of the functions f : Σ∗ → N such
that there exists a non-deterministic polynomial time Turing machine M
that for all inputs x ∈ Σ∗, f(x) is the number of accepting paths of M.

The complexity classes #P and #P-complete were introduced by Valiant [36].
These classes express the hardness of problems that “count the number of
solutions”.3

tions. This is called the normalized Banzhaf index.
3Informally, NP and NP-hardness deal with checking if at least one solution to a com-

binatorial problem exists, while #P and #P-hardness deal with calculating the number of
solutions to a combinatorial problem. Counting the number of solutions to a problem is
at least as hard as determining if there is at least one solution, so #P-complete problems
are at least as hard (but possibly harder) than NP-complete problems.
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3 Threshold Network Flow Games

3.1 Motivation

In this paper we consider a specific network reliability model. Consider a
communication network connecting various servers, where it is crucial to be
able to send a certain amount of information between two servers—a source
server and a target server. A link between any two servers can fail, and if it
does, we cannot send information through it. Of course, a communication
network may be designed with redundancy, and have no single point of
failure. However, even in this case, when more than one link fails, we may
cease to be able to send the required flow of information between the source
and target servers. Given limited resources to maintain network links, which
links should get those resources?

We model this problem by considering a threshold network flow game—
TNFG. The game consists of agents in a network flow graph, with a certain
source vertex s and target vertex t. Each agent controls one of the graph’s
edges, and a coalition of agents controls all the edges its members control.
A coalition of agents wins the game if it manages to send a flow of at least
k from source s to target t, and loses otherwise.

To ensure that the network is capable of maintaining the desired flow be-
tween s and t, we may choose to allocate our limited maintenance resources
to the edges according to their impact on allowing this flow. In other words,
resources could be devoted to the links whose failure is most likely to cause
us to lose the ability to send the required amount of information between
the source and target.

Under reasonable probabilistic models, power indices provide us with a
measure of the impact each edge has on enabling this amount of information
to be sent between the source and target, and thus provides a reasonable
basis for allocation of scarce maintenance resources.

3.2 Formal Definition

We first formally define a threshold network flow domain.

Definition 6. A threshold network flow domain consists of a network flow
graph G =< V,E >, with capacities on the edges c : E → R, a source
vertex s, a target vertex t, and a set I of agents, where agent i controls
the edge ei, and a threshold flow k. A coalition C ⊆ I, controls the edges
EC = {ei|i ∈ C}.
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In a threshold network flow game, the value of the coalition depends
on whether the maximal flow it can achieve between s and t is above the
threshold value k. The coalition wins if it allows such a flow, and loses
otherwise. This defines the threshold network flow game (TNFG).

Definition 7. A TNFG is a coalitional game played over a threshold net-
work flow domain D, where v, the characteristic function of the game, is
defined as follows:

v(C) =

{
1 if EC allows a flow of k from s to t;

0 otherwise;

TNFGs are simple games, since v can only get a value of 0 or 1. A
cardinal network flow game CNFG is defined in a similar manner, except
the value of a coalition is the maximal flow it can send from s to t. Given
a coalition C we denote by GC =< V,EC > the induced graph where the
only edges are the edges that belong to the agents in C. We denote by fC

the maximal flow between s and t in GC .

Definition 8. A CNFG is a coalitional game played over a threshold net-
work flow domain D, where v, the characteristic function of the game, is
defined as follows:

v(C) = fC .

A restricted version of the threshold network flow game is the connectiv-
ity game; in a connectivity game, the coalition’s goal is to have some path
from source to target.

Definition 9. A Connectivity Game is a TNFG where each of the edges
has identical capacity, c(e) = 1, and the target flow value is k = 1. In this
domain, the goal of a coalition is to have at least one path from s to t. Thus,
v is defined as follows:

v(C) =

{
1 if EC contains a path from s to t;

0 otherwise;

Given a network flow game (or a connectivity game), we can compute the
power indices of the game. When a coalition of edges is chosen at random,
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and each coalition is equiprobable, the appropriate index is the Banzhaf
index. When each ordering of edges is equiprobable, the appropriate index
is the Shapley-Shubik index.

We can use the power index of an agent i ∈ I (or the edge it controls, ei)
to measure its impact on allowing a given flow between s and t. Depending
on the underlying probability model we desire, the impact of ei on allowing
the desired flow is βei

(v) = βi(v), or Shei
(v) = Shi(v).

4 Power Indices in Threshold Network Flow Games

We now define the problems of calculating the Banzhaf index and the Shapley-
Shubik index in the threshold network flow game. The following problems
consider a given network flow domain D, with graph G =< V,E >, a source
vertex s and a target vertex t, capacity function c : E → R, and a target
flow value k. We consider the TNFG over D, as defined above in Section 3.
The problems concern an agent i that controls the edge ei.

Definition 10. TNFG-BANZHAF: Given the TNFG played over the do-
main D, compute the Banzhaf power index of ai in this game, βi(v).

Definition 11. TNFG-SHAPLEY: Given the TNFG played over the do-
main D, compute the Shapley-Shubik power index of ai in this game, Shi(v).

Let Cei
be the set of all subsets of E that contain ei: Cei

= {C ⊂ E|ei ∈
C}. Let W (Cei

) be the set of winning subsets of edges in Cei
, i.e., the subsets

E′ ∈ Cei
where a flow of at least k can be sent from s to t using only the

edges in E′. The Banzhaf index of ei is the proportion of subsets in W (Cei
)

where ei is crucial to maintaining the k-flow. All the edge subsets in W (Cei
)

contain ei and are winning, but only for some of them, E′ ∈ W (Cei
), do we

have that v(E′ \ {ei}) = 0 (i.e., E′ is no longer winning if we remove ei).
The Banzhaf index of ei is the proportion of such subsets. Thus, we can
rewrite the Banzhaf index of ei as:

βi(v) =
1

2|E|−1

∑

E′⊂Cei

[v(E′) − v(E′ \ {ei})].

The Shapley-Shubik power index is the proportion of all permutations
of the edges where ei is pivotal. ei is pivotal when the coalition of ei’s
predecessors is not capable of sending the target flow k between s and t, but
adding ei to that coalition makes it capable doing so.
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If we assume maintenance resources allocated to links decrease the prob-
ability of these links failing, it makes sense to allocate resources according to
the criticality of these links to maintaining the target flow. Both indices can
be used to decide how to allocate maintenance resources to links in a net-
work, but they are each appropriate to different circumstances. The Banzhaf
index is more appropriate when links may fail independently of one another.
The Shapley-Shubik power index is more appropriate when links are added
to a network in random order, so that each permutation of the links has an
identical probability. TNFG-BANZHAF and TNFG-SHAPLEY are related
to the problem of testing whether an agent is a dummy agent, discussed in
the next section.

4.1 Dummy Agents in TNFG

Given a TNFG v, it is easy to check whether a certain coalition C ⊆ I is
winning or losing. We simply remove from the graph G all the edges that
do not belong to the agents in C, compute the maximal flow between s and
t in this induced graph using a polynomial maximal flow algorithm (such
as the Ford-Fulkerson algorithm), and see if this flow is at least k. Thus,
in TNFG, we have a polynomial-time algorithm to compute v(C) for any
coalition C.

We now consider the problem of testing whether an agent is a dummy
in a TNFG. This problem is defined as follows:

Definition 12. TNFG-DUMMY: Given the TNFG v over a threshold net-
work flow domain D, and a target agent ai ∈ I, test whether ai is a dummy
agent in v.

We first note that it is easy to test whether an agent ai is critical in a
coalition C. We simply compute v(C) and v(C\{ai}), and test whether they
differ or not. However, testing whether an agent is a dummy in a TNFG
requires testing whether for any coalition C we have v(C) - v(C \{ai}) = 0.

In CNFGs it is polynomially easy to test whether an agent ai is a dummy.
Let ei = (u, v) be the edge controlled by ai. Obviously, if ei has a capacity
of 0, ai is a dummy, as it can contribute nothing to any coalition. We then
remove all edges with capacity of 0 (as they do not contribute anything
to the flow). We then simply test whether there is a simple path from s
to u and from v to t (using depth-first search, for example). If there are
paths from s to u and from v to t, agent ai is not a dummy. Denote by
C the coalition of the agents in these two paths. We have v(C) = 0 but
v(C ∪ {ai}) > 0, so ai is critical for v(C ∪ {ai}. If there are no such paths,
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it is easy to see that adding ei cannot increase the maximal flow between s
and t for any graph induced by any coalition C ⊆ I.4

Although testing for a dummy agent in CNFGs is computationally fea-
sible, we now give a hardness result for TNFGs. Specifically, we show that
TNFG-DUMMY is coNP-complete, by a reduction from PARTITION. We
first define PARTITION.

Definition 13. PARTITION: We are given a set of n integer weights T =
{t1, . . . , tn}, and are asked whether it is possible to partition T into two
subsets P1 ⊆ T , P2 ⊆ T so that P1 ∩ P2 = ∅, P1 ∪ P2 = T , and the sum of
the weights in each subset is equal:

∑
ti∈P1

ti =
∑

ti∈P2
ti.

PARTITION is a well-known NP-complete problem.

Theorem 1. TNFG-DUMMY is coNP-complete.

Proof. We first note that TNFG-DUMMY is in coNP: we can simply non-
deterministically choose a coalition C that does not contain ai, and test
whether v(C ∪ {ai}) − v(C) > 0.

We now show that TNFG-DUMMY is coNP-complete by showing how
to reduce a partition instance to a TNFG-DUMMY instance. Let T =
{t1, . . . , tn} be the set of partition weights. We construct a threshold network
flow domain as follows. The graph has a source vertex s, a target vertex t
and n more vertices V ′ = {v1, . . . , vn}. The source s is connected to each
vi ∈ V ′ with an edge eli = (s, vi), and vi is connected to t with an edge
eri

= (vi, t). The capacity of edge eli is twice the i’th weight in the partition
problem, 2 · ti, and the capacity of edge eri

is also 2 · ti. There is also
another edge that goes directly from s to t, e′ = (s, t), with a capacity of
1. We denote E = ∪n

i=1{eli} ∪ ∪n
i=1{eri

} ∪ {e′}. The threshold flow for the
reduced TNFG instance is k =

∑
ti∈T ti+1 = 2 ·h+1. The TNFG-DUMMY

problem concerns edge e′.
We now show that edge e′ is a non-dummy in the reduced TNFG if

and only if there is a partition of t1, . . . , tn in the original problem. We

denote h =

P

ti∈T ti

2 . If there is a partition P1, P2 of P = {t1, . . . , tn} (the
original input is a “yes” instance) consider the coalition C = {eli |ti ∈ P1} ∪
{eri

|ti ∈ P1}∪ {e′}. It is easy to see e′ is critical in c—we can send a flow of
P

ti∈T 2·ti

2 =
∑

ti∈T ti without using e′, and edge e′ allows us to send a flow

4As an easy proof, consider the Ford-Fulkerson method, which finds the maximal flow
by iteratively finding paths that improve the flow in the residual graph. Since ei is not on
any path from s to t, the Ford-Fulkerson method never uses this edge, but still finds the
maximal flow, so this edge does not contribute to increasing the maximal flow.
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of 1 by itself, so we can exactly reach the threshold k =
∑

ti∈T ti + 1, so e′

is critical for that coalition.
On the other hand, consider the case where there is no partition of the

weights in P . In this case, for every subset P ′ ⊂ P we have that either∑
ti∈P ′ ti ≥ h + 1 or

∑
ti∈P ′ ti ≤ h − 1. Consider any subset of the edges

E′ ⊂ E such that e′ /∈ E′. Since an edge eli ∈ E′ only affects the maximal
flow of E′ if eri

∈ E′ and vice versa, we can remove from E′ all edges eli such
that eri

/∈ E′, and all edges eri
such that eli /∈ E′. Denote the set of edges

remaining after that as E∗. The maximal flow in E∗ is the maximal flow in
E′. Since there is no partition of P , the maximal flow using the edges in E′

is f∗ such that either f∗ ≥ 2 · (h+1) = 2 ·h+2 or f∗ ≤ 2 · (h−1) = 2 ·h−2.
If f∗ ≥ 2 · h + 2 then f∗ is already over the threshold, so E′ is already a
winning coalition, and adding e′ to that coalition does not change its value.
If f∗ ≤ 2 · h − 2 then adding e to that coalition adds 1 to the flow and we
get a flow of f ′ ≤ 2 · h− 2 + 1 = 2 · h− 1, so adding e′ to that coalition does
not make it a winning coalition.

Thus, e′ is a non-dummy in the reduced TNFG if and only if the partition
instance is a “yes” instance, so TNFG − DUMMY is coNP-complete.

4.2 Computing Power Indices in TNFG is Hard

We now show that both computing the Shapley-Shubik power index and
computing the Banzhaf power index in a TNFG are computationally hard.
Theorem 1 has shown that testing if an agent ai is a non-dummy is NP-
complete. Since the Banzhaf power index and the Shapley value of an agent
is non-zero if and only if an agent is non-dummy, we get the following corol-
lary.

Corollary 1. TNFG-BANZHAF and TNFG-SHAPLEY are NP-hard.

Proof. Being able to compute either power index would allow us to test if
an agent is a non-dummy. We can simply calculate the index and test if it
is 0 or not.

We note that TNFG-BANZHAF and TNFG-SHAPLEY are NP-hard,
but are not necessarily in NP.5 The next section shows a stronger result for
TNFG-BANZHAF, and shows that it is indeed a #P-Complete problem.

5More precisely, the decision problem of testing whether the power index is above a
certain value q, is not necessarily in NP.
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4.3 #P-Completeness of Calculating the Banzhaf Index in

TNFGs

We now show that the general case of TNFG-BANZHAF is #P-complete,
by a reduction from #MATCHING.

First, we note that TNFG-BANZHAF is in #P. There are several poly-
nomial algorithms to calculate the maximal network flow, so it is easy to
check if a certain subset of edges E′ ⊂ E contains ei and allows a flow of
at least k from s to t. It is also easy to check if a flow of at least k is no
longer possible when we remove ei from E′ (again, by running a polynomial
algorithm for calculating the maximal flow). The Banzhaf index of ei is ex-
actly the number of such subsets E′ ⊂ E, so TNFG-BANZHAF is in #P. To
show that TNFG-BANZHAF is #P-complete, we reduce a #MATCHING
problem6 to a TNFG-BANZHAF problem.

Definition 14. #MATCHING: We are given a bipartite graph G =<
U,V,E >, such that |U | = |V | = n, and are asked to count the number
of perfect matchings possible in G.

4.4 The Overall Reduction Approach

The reduction is done as follows. From the #MATCHING input, G =<
U,V,E >, we build two inputs for the TNFG-BANZHAF problem. The
difference between the answers obtained from the TNFG-BANZHAF runs
is the answer to the #MATCHING problem. Both runs of the TNFG-
BANZHAF problem are constructed with the same graph G′ =< V ′, E′ >,
with the same source vertex s and target vertex t, and with the same edge
ef for which to compute the Banzhaf index. They differ only in the target
flow value. The first run is with a target flow of k, and the second run is
with a target flow of k + ǫ.

A choice of subset Ec ⊂ E′ reflects a possible matching in the original
graph. G is a subgraph of the constructed G′. We identify an edge in G′,
e ∈ E′, with the same edge in G. This edge indicates a particular match
between some vertex u ∈ U and another vertex v ∈ V . Thus, if Ec ⊂ E′ is
a subset of edges in G′ which contains only edges in the subgraph of G, we
identify it with a subset of edges in G, or with some candidate of a matching.

We say Ec ⊂ E′ matches some vertex v ∈ V , if Ec contains some edge
that connects to v, i.e., for some u ∈ U we have (u, v) ∈ Ec. Ec is a possible
matching if it does not match a vertex v ∈ V with more than one vertex in

6This is one of the most well-known #P-complete problems.
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U , i.e., there are not two vertices u1 6= u2 in U that both (u1, v) ∈ Ec and
(u2, v) ∈ Ec. A perfect matching matches all the vertices in V .

If Ec fails to match a vertex in V (the right side of the partition), the
maximal possible flow that Ec allows in G′ is less than k. If it matches all
the vertices in V , a flow of k is possible. If it matches all the vertices in
V , but matches some vertex in V more than once (which means this is not
a true matching), a flow of k + ǫ is possible. ǫ is chosen so that if a single
vertex v ∈ V is unmatched, the maximal possible flow would be less than
|V |, even if all the other vertices are matched more than once. In other
words, ǫ is chosen so that matching several vertices in V more than once
can never compensate for not matching some vertex in V , in terms of the
maximal possible flow.

Thus, when we check the Banzhaf index of ef when the required flow is
at least k, we get the number of subsets E′ ⊂ E that match all the vertices
in V at least once. When we check the Banzhaf index of ef with a required
flow of at least k + ǫ, we get the number of subsets E′ ⊂ E that match all
the vertices in V at least once, and match at least one vertex v ∈ V more
than once. The difference between the two is exactly the number of perfect
matchings in G.

Therefore, if there existed a polynomial algorithm for TNFG-BANZHAF,
we could use it to build a polynomial algorithm for #MATCHING, so
TNFG-BANZHAF is #P-complete.

4.5 Reduction Details

The reduction takes the #MATCHING input, the bipartite graph G =<
U,V,E >, where |U | = |V | = k. It then generates a network flow graph G′

as follows. The graph G is kept as a subgraph of G′, and each edge in G
is given a capacity of 1. A new source vertex s is added, along with a new
vertex t′ and a new target vertex t. Let ǫ = 1

k+1 so that ǫ ·k < 1. The source
s is connected to each of the vertices in U , the left partition of G, with an
edge of capacity 1 + ǫ. Each of the vertices in V is connected to t′ with an
edge of capacity 1 + ǫ. t′ is connected to t with an edge ef of capacity 1 + ǫ.

As mentioned above, we perform two runs of TNFG-BANZHAF, both
checking the Banzhaf index of the edge ef in the flow network G′. We denote
the network flow game defined on G′ with target flow k as v(G′,k). The first
run is performed on the game with a target flow of k, v(G′,k), returning the
index βef

(v(G′,k)). The second run is performed on the game with a target
flow of k + ǫ, v(G′,k+ǫ), returning the index βef

(v(G′,k+ǫ)). The number of
perfect matchings in G is the difference between the answers in the two runs,

14



βef
(v(G′,k)) − βef

(v(G′,k+ǫ)). This is proven in Theorem 6.
Figure 1 shows an example of constructing G′ from G. On the left is the

original graph G, and on the right is the constructed network flow graph G′.

Figure 1: Reducing #MATCHING to TNFG-BANZHAF

4.6 Proof of the Reduction

We now prove that the reduction above is correct. In all of this section,
we take the input to the #MATCHING problem to be G =< U,V,E >
with |U | = |V | = k, the network flow graph constructed in the reduction
to be G′ =< V ′, E′ > with capacities c : E′ → R as defined in Section 4.5,
the edge for which to calculate the Banzhaf index to be ef , and target flow
values of k and k + ǫ.

Proposition 2. Let Ec ⊂ E′ be a subset of edges that lacks one or more
edges of the following:

1. The edges connected to s;

2. The edges connected to t′;

3. The edge ef = (t′, t).

We call such a subset a missing subset. The maximal flow between s and t
using only the edges in the missing subset Ec is less than k.

Proof. The graph is a layer graph, with s being the vertex in the first layer,
U the vertices in the second layer, V the vertices in the third, t′ the vertex in
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the fourth, and t in the fifth. Edges in G′ only go between consecutive layers.
The maximal flow in a layer graph is limited by the total capacity of the
edges between every two consecutive layers. If any of the edges between s
and U is missing, the flow is limited by (|V |−1)(1+ǫ) < k. If any of the edges
between V and t′ is missing, the flow is also limited by (|V | − 1)(1 + ǫ) < k.
If the edge ef is missing, there are no edges going to the last layer, and the
maximal flow is 0.

Since such missing subsets of edges do not affect the Banzhaf index of
ef (they add 0 to the sum), from now on we will consider only non-missing
subsets. As explained in Section 4.4, we identify the edges in G′ that were
copied from G (the edges between U and V in G′) with their counterparts
in G. Each such edge (u, v) ∈ E′ represents a match between u and v in
G. Ec is a perfect matching if it matches every vertex u to a single vertex
v and vice versa.

Proposition 3. Let Ec ⊂ E′ be a subset of edges that fails to match some
vertex v ∈ V . The maximal flow between s and t using only the edges in the
missing subset Ec is less than k. We call such a set sub-matching, and it is
not a perfect matching.

Proof. If Ec fails to match some vertex v ∈ V , the maximal flow that can
reach the vertices in the V layer is (1 + ǫ)(k − 1) < k, so this is also the
maximal flow that can reach t.

Proposition 4. Let Ec ⊂ E′ be a subset of edges that is a perfect matching
in G. Then the maximal flow between s and t using only the edges in Ec is
exactly k.

Proof. A flow of k is possible. We send a flow of 1 from s to each of the
vertices in U , send a flow of 1 from each vertex u ∈ U to its match v ∈ V ,
and send a flow of 1 from each v ∈ V to t′. t′ gets a total flow of exactly
k, and sends it to t. A flow of more than k is not possible since there are
exactly k edges of capacity 1 between the U layer and the V layer, and the
maximal flow is limited by the total capacity of the edges between these two
consecutive layers.

Proposition 5. Let Ec ⊂ E′ be a subset of edges that contains a perfect
matching M ⊂ E in G and at least one more edge ex between some vertex
ua ∈ U and va ∈ V . Then the maximal flow between s and t using only the
edges in Ec is at least k + ǫ. We call such a set a super-matching, and it is
not a perfect matching.
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Proof. A flow of k is possible, by using the edges of the perfect match as in
Proposition 4. We send a flow of 1 from s to each of the vertices in U , send
a flow of 1 from each vertex u ∈ U to its match v ∈ V , and send a flow of
1 from each v ∈ V to t′. t′ gets a total flow of exactly k, and sends it to t.
After using the edges of the perfect matching, we send a flow of ǫ from s to
ua (this is possible since the capacity of the edge (s, ua) is 1+ ǫ and we have
only used up 1). We then send a flow of ǫ from ua to va. This is possible
since we have not used this edge at all—it is the edge which is not a part of
the perfect matching. We then send a flow of ǫ from va to t′. Again, this is
possible since we have used 1 out of the total capacity of 1 + ǫ which that
edge has. Now t′ gets a total flow of k + ǫ, and sends it all to t, so we have
achieved a total flow of k + ǫ. Thus, the maximal possible flow is at least
k + ǫ.

Theorem 6. Consider a #MATCHING instance G =< U,V,E > re-
duced to a BANZHAF-NETWORK-FLOW instance G′ as explained in Sec-
tion 4.5. Let v(G′,k) be the network flow game defined on G′ with target flow
k, and v(G′,k+ǫ) be the game defined with a target flow of k+ǫ. Let the result-
ing index of the first run be βef

(v(G′,k)), and βef
(v(G′,k+ǫ)) be the resulting

index of the second run. Then the number of perfect matchings in G is the
difference between the answers in the two runs, βef

(v(G′,k))− βef
(v(G′,k+ǫ)).

Proof. Consider the game v(G′,k). According to Proposition 2, in this game
the Banzhaf index of Ef does not count missing subsets Ec ∈ E′, since they
are losing. According to Proposition 3, it does not count subsets Ec ∈ E′

that are sub-matchings, since they are also losing. According to Proposi-
tion 4, it adds 1 to the count for each perfect matching, since such subsets
allow a flow of k and are winning. According to Proposition 4, it adds 1 to
the count for each super-matching, since such subsets allow a flow of k (and
more than k) and are winning.

Consider the game v(G′,k+ǫ). Again, according to Proposition 2, in this
game the Banzhaf index of Ef does not count missing subsets Ec ∈ E′,
since they are losing. According to Proposition 3, it does not count subsets
Ec ∈ E′ that are sub-matchings, since they are also losing. According to
Proposition 4, it adds 0 to the count for each perfect matching, since such
subsets allow a flow of k but not k + ǫ, and are thus losing. According to
Proposition 4, it adds 1 to the count for each super-matching, since such
subsets allow a flow of k + ǫ and are winning.

Thus the difference between the two indices,

βef
(v(G′,k)) − βef

(v(G′,k+ǫ)),
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is exactly the number of perfect matchings in G.

We have reduced a #MATCHING problem to a TNFG-BANZHAF prob-
lem. This means that given a polynomial algorithm to calculate the Banzhaf
index of an agent in a general network flow game, we can build an algorithm
to solve the #MATCHING problem. Thus, the problem of calculating the
Banzhaf index of agents in general network flow games is also #P-complete.

5 Calculating the Banzhaf Index in Bounded Layer

Graph Connectivity Games

We here present a polynomial algorithm to calculate the Banzhaf index of
an edge in a connectivity game, where the network is a bounded layer graph.
This positive result indicates that for some restricted domains of network
flow games, it is possible to calculate the Banzhaf index in a reasonable
amount of time.

Definition 15. A layer graph is a graph G =< V,E >, with source vertex s
and target vertex t, where the vertices of the graph are partitioned into n+1
layers, L0 = {s}, L1, . . . , Ln = {t}. The edges run only between consecutive
layers.

Definition 16. A c-bounded layer graph is a layer graph where the number
of vertices in each layer is bounded by some constant number c.

Although there is no limit on the number of layers in a bounded layer
graph, the structure of such graphs makes it possible to calculate the Banzhaf
index of edges in connectivity games on such graphs. The algorithm pro-
vided below is indeed polynomial in the number of vertices given that the
network is a c-bounded layer graph. However, there is a constant factor to
the running time, which is exponential in c. Therefore, this method is only
tractable for graphs where the bound c is small. Bounded layer graphs may
occur in networks when the nodes are located in several ordered segments,
where nodes can be connected only between consecutive segments.

Let v be a vertex in layer Li. We say an edge e occurs before v if it
connects two vertices in v’s layer or a previous layer: e = (u,w) connects
vertex u ∈ Lj to vertex w ∈ Lj+1 and j + 1 ≤ i. Let Predv ⊂ E be
the subset of edges that occur before v. Consider a subset of these edges,
E′ ⊂ Predv . E′ may contain a path from s to v, or it may not. We define
Pv as the number of subsets E′ ⊂ Predv that contain a path from s to v.
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Similarly, let Vi ∈ V be the subset of all the vertices in the same layer
Li. Let PredVi

⊂ E be the subset of edges that occur before Vi (all
the vertices in Vi are in the same layer, so any edge that occurs before
some v ∈ Vi occurs before any other vertex w ∈ Vi). Consider a sub-
set of these edges, E′ ⊂ PredV . Let Vi(E

′) be the subset of vertices in
Vi that are reachable from s using only the edges in E′: Vi(E

′) = {v ∈
Vi|E

′ contains a path from s to v}. We say E′ ∈ PredV connects exactly
the vertices in Si ⊂ Vi if all the vertices in Si are reachable from s using
the edges in E′ but no other vertices in Vi are reachable from s using E′, so
Vi(E

′) = Si.
Let V ′ ⊂ Vi be a subset of the vertices in layer Li. We define PV ′ as

the number of subsets E′ ⊂ PredV ′ that connect exactly the vertices in V ′:
PV ′ = |{E′ ⊂ PredV ′ |Vi(E

′) = V ′}|.

Lemma 1. Let S1, S2 ⊂ Vi where S1 6= S2 be two different subsets of vertices
in the same layer. Let E′, E′′ ⊂ PredVi

be two sets of edge subsets, so that
E′ connects exactly the vertices in S1 and E′′ connects exactly the vertices
in S2: Vi(E

′) = S1 and Vi(E
′′) = S2. Then E′ and E′′ do not contain the

same edges: E′ 6= E′′.

Proof. If E′ = E′′ then both sets of edges allow the same paths from s, so
Vi(E

′) = Vi(E
′′).

Let Si ⊂ Vi be a subset of vertices in layer Li. Let Ei ⊂ E be the set of
edges between the vertices in layer Li and layer Li+1. Let E ⊂ Ei be some
subset of these edges. We denote by Dests(Si, E) the set of vertices in layer
Li+1 that are connected to some vertex in Si by an edge in E:
Dests(Si, E) = {v ∈ Vi+1|there exists some

w ∈ Si and some e ∈ E that e = (w, v)}.
Let Si ⊂ Vi be a subset of vertices in Li and E ⊂ Ei be some subset of
the edges between layer Li and layer Li+1. PSi

counts the number of edge
subsets in PredVi

that connect exactly the vertices in Si. Consider such
a subset E′ counted in PSi

. E′ ∪ E is a subset of edges in PredVi+1 that
connects exactly to Dest(Si, E). According to Lemma 1, if we iterate over
the different Si’s in layer Li, the PSi

’s count different subsets of edges, and
thus every expansion using the edges in E is also different.

Algorithm 2 calculates Pt. It iterates through the layers, and updates
the data for the next layer given the data for the current layer. For each
layer Li and every subset of edges in that layer Si ⊂ Vi, it calculates PSi

;
it does so using the values calculated in the previous layer. The algorithm
considers every subset of possible vertices in the current layer, and every
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Connecting-Exactly-Subsets(G, v)
P{s} = 1 // Initialization

for all other subsets of vertices S
PS = 0

for i = 0 to n − 1 // Iterate through layers

for all vertex subsets Si in Li

for all edge subsets E between Li, Li+1

D = Dests(Si, E) // Subset in Li+1

PD = PD + PSi

Figure 2: Algorithm Connecting-Exactly-Subsets (G, v)

possible subset of expanding edges to the next layer, and updates the value
of the appropriate subset in the next layer.

A c-bounded layer graph contains at most c vertices in each layer, so
for each layer there are at most 2c different subsets of vertices in that layer.
There are also at most c2 edges between 2 consecutive layers, and thus at
most 2(c2) edge subsets between two layers. If the graph contains k layers,
the running time of the algorithm is bounded by k · 2c · 2(c2). Since c is a
constant, this is a polynomial algorithm.

Consider the connectivity game on a layer graph G, with a single source
vertex s and target vertex t. The Banzhaf index of the edge e is the number
of subsets of edges that allow a path between s and t, but do not allow
such a path when e is removed (divided by a constant). We can calculate
P{t} = P{t}(G) for G using the algorithm to count the number of subsets of
edges that allow a path from s to t. We can then remove e from G to obtain
the graph G′ =< V,E \{e} >, and calculate P{t} = P{t}(G

′). The difference
P{t}(G)−P{t}(G

′) is the number of subsets of edges that contain a path from
s to t but no longer contain such a path when e is removed. The Banzhaf

index for e is
P{t}(G)−P{t}(G′)

2|E|−1
. Thus, this algorithm allows us to calculate

the Banzhaf index on an edge in the connectivity games on bounded layer
graphs.

6 The Core of TNFG

Several articles in the literature have discussed computing the core of CNFG,
and have shown this can be done in polynomial time. However, as seen in
Section 4.1, certain problems (for example, testing an agent for being a
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dummy) can be solved in polynomial time for CNFG but are NP-complete
to solve for TNFG. We show that the core of a TNFG can (like the core of
CNFG) be computed in polynomial time.

The core of TNFG has applications for real world networks. Given a
particular reward for being able to send a certain flow of information between
the source and the target, we may want to distribute this reward to the
agents who own the links. We are interested in distributing the profits
in such a way that guarantees that no subset of the agents who own the
links are incentivized to split away and establish their own network. The
appropriate solution concept for this is the core. When the core is non-
empty, it contains payoff vectors that are stable. When it is empty, the
coalition would be unstable no matter how we divide the utility among the
agents.

We first note that it is not always possible to concisely represent the
core, since it may contain an infinite number of payoff vectors. However,
in the case of TNFGs, concise representation of the core can be done. The
core is a very demanding concept in simple coalitional games. An agent ai

is a veto player if it is present in all winning coalitions, so if ai /∈ C we have
v(C) = 0. It is a well-known fact that in simple coalitional games, the core
is non-empty if and only if there is at least one veto player in the game.

Consider a simple coalitional game that has no veto players. For every
agent ai we have a winning coalition that does not contain ai. Take a payoff
vector p = (p1, . . . , pn) where pi > 0. Since

∑n
i=0 pi = 1 and since pi > 0 we

know that p(C) ≤
∑

pj∈I−ai
pj < 1, so p(C) < v(C) = 1, which makes C a

blocking coalition. On the other hand, we can see that any payoff vector p
where non-veto players get nothing is in the core: any coalition C that can
potentially block p must have v(C) = 1 (if v(C) = 0 it cannot block), and
must contain all the veto players, so

∑
pj∈C pj = 1, and thus cannot block

p. Due to this fact, calculating the core of simple games simply requires
obtaining a list of veto players in that game.

We now consider computing the core in TNFGs. It is easy to see that
TNFGs are increasing games—when adding agents to a coalition, we are
only increasing the maximal flow between the source and the target. We
now denote the set of all the agents except ai as I−i = I \ {ai}.

We now show a polynomial algorithm for testing if an agent is a veto
agent in TNFGs.

Lemma 2. Testing if agent ai is a veto agent in a TNFG is in P.

Proof. We first show that I−i is a losing coalition if and only if ai is a
veto agent. If I−i is a losing coalition then due to the fact that TNFGs
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are increasing, any sub-coalition of it, C ⊆ I−i, is also losing. Thus, any
coalition without ai is losing, so ai is a veto player. On the other hand, if
I−i is a winning coalition, it is a winning coalition where ai is not present,
so by definition ai is not a veto player. Thus, to test if ai is a veto agent we
only need to test if I−i is losing or winning. Since calculating v(I−i) simply
requires removing ei, running a maximal flow algorithm and checking if the
maximal flow is above the threshold, we can check if an agent is a veto agent
in a TNFG in polynomial time.

Since computing the core in simple coalitional games simply requires
returning a list of all the veto agents, we get the following corollary.

Corollary 2. It is possible to compute the core of a TNFG in polynomial
time.

Proof. Computing the core of a TNFG requires returning a list of the veto
players in the game. Due to Lemma 2, we can check each agent and see if it
is a veto player. Thus, testing all the agents and finding all the veto players
can also be done in polynomial time. If there are no veto players, the core
is empty. Otherwise, any payoff vector that distributes 1 (the total utility
v(I) = 1) among the veto players and gives none to the non-veto players is
in the core.

7 Related Work

Power indices originated in work in game theory and political science, at-
tempting to measure the power players have in weighted voting games. In
these games, each player has a certain weight, and a coalition’s weight is the
sum of the weights of its participants. A coalition wins if its weight passes
a certain threshold. This is a common situation in legislative bodies. Power
indices were suggested as a way of measuring the influence of players in such
a game on choosing outcomes. The most popular indices suggested for such
measurement are the Banzhaf index [2] and the Shapley-Shubik index [33].

In his seminal paper, Shapley [32] considered coalitional games and the
fair allocation of the utility gained by the grand coalition (the coalition of
all agents) to its members. The Shapley-Shubik index [33] is the direct
application of the Shapley value to simple coalitional games.

The Banzhaf index emerged directly from the study of voting in decision-
making bodies, where a certain normalized form of the index was intro-
duced [2]. The normalized Banzhaf index measures the proportion of coali-
tions in which a player is a swinger, out of all winning coalitions. This
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normalized index is similar to the Banzhaf index discussed in Section 1, and
is defined as:

β̃i =
βi(v)∑
k∈N βk

.

The Banzhaf index was later mathematically analyzed in [8], where it
was shown that this normalization has certain undesirable qualities, and the
standard Banzhaf index is introduced.

Both the Shaply-Shubik and Banzhaf were applied in an analysis of the
voting structures of the International Monetary Fund and the European
Union Council of Ministers (as well as many other bodies) [19, 21].

The differences between Banzhaf and Shapley-Shubik were analyzed in [34],
where it was shown that each index reflects specific conditions in a voting
body. An axiomatization for these indices (as well as several others) was
given in [18]. As mentioned in Section 4, different probabilistic assumptions
regarding our network reliability problem require different power indices.

It is possible to calculate the power indices for any simple coalitional
game. However, the complexity of such a procedure depends on the repre-
sentation of the game. When the game is defined only by the value of each
coalition, for example in the form of an oracle which tests a certain coalition
and answers whether it wins or loses, calculating power indices is problem-
atic. A naive implementation of an algorithm for calculating the Banzhaf
index of an agent ai enumerates over all coalitions containing ai. Since there
are 2n−1 such coalitions, the naive algorithm is exponential in the number
of agents. The situation is even worse for the Shapley-Shubik power index.
For n agents, there are n! permutations to consider. Using Stirling’s ap-
proximation, this means there are about O(2n log n) permutations to check.

Several articles deal with computing power indices in various domains.
[24] contains a survey of algorithms for calculating power indices of weighted
majority games. [7] shows that computing the Shapley value in weighted ma-
jority games is #P-complete, using a reduction from KNAPSACK. Since the
Shapley value of any simple game has the same value as its Shapley-Shubik
index, this shows that calculating the Shapley-Shubik index in weighted
majority games is #P-complete. [25] have shown that calculating both
the Banzhaf and Shapley-Shubik indices in weighted voting games is NP-
complete.

The problem of computing power indices in simple games depends on
the chosen representation of the game. The number of possible coalitions or
permutations is exponential in the number of agents, and hardness results
(such as the ones noted above for weighted voting games) have been proven
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for several domains. Thus, calculating power indices in time polynomial
in the number of agents can only be achieved in specific domains. Several
papers have dealt with compact representations of coalitional games and uses
of these compact representations for calculating solution concepts [3, 7, 6, 5].

The computational complexity hardness results for various general do-
mains indicate that in order to calculate power indices one must either
restrict the domain, or approximate the power index. One approach, us-
ing generating functions, has been suggested in [23] and analyzed in [4].
That method trades time complexity for storage space. Owen [27] describes
methods for computing the power indices exactly, based on the multilin-
ear extension (MLE) of a game. These have similar complexity issues as
direct enumeration, but serve as a basis for approximation techniques pre-
sented in [20], which allows trading off time and approximation quality. A
Monte-Carlo approach to approximating the Shapley value has been sug-
gested in [22]. That paper only considered the Shapley-Shubik power in-
dex, and not the Banzhaf index. A randomized method for calculating the
Shapley-Shubik power index of weighted voting games has been suggested
in [11]. [24] contains a survey of algorithms for calculating the power indices
of weighted majority games.

The solution concept of the core originated in [13]. It focuses on stability
of the coalition. In this paper, we have considered the threshold network
flow domain, TNFG, where a coalition of agents must achieve a flow beyond
a certain threshold value. While this work has focused on TNFGs, sev-
eral works have considered the similar cardinal network flow game, CNFG.
CNFG is a non-simple game, and several problems have different compu-
tational properties in CNFGs and TNFGs. For example, in Section 4.1 we
have shown that testing for dummy agents in CNFGs can be done in poly-
nomial time, while it is coNP-complete to do so in TNFGs. [17, 16] have
shown that certain families of CNFGs and similar games have non-empty
cores. [35] consider the characterization of dummy arc, an arc whose dele-
tion from the network does not change the value of maximum flow.7 They
show that the flow game defined on a simple network has a stable core if
and only if there are no dummy arcs in the network. Our results concern
TNFGs and not CNFGs. Also, we focus on the computational complexity
of calculating solution concepts and power indices.

While the model we suggest is game theoretic, such problems can be

7This should not be be confused with a dummy agent. A dummy arc does not change
the maximal flow for the grand coalition of all the edges, while a dummy agent does not
change the maximal flow of any coalition.
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naturally formulated as network reliability problems. The computational
complexity of such problems has been studied in several papers. Classical
network reliability problems consider an undirected graph G =< V,E >,
where each edge e ∈ E has a probability assigned to it, pe. This is the
probability that edge e remains in the surviving graph. One prominent
problem is s-t connectivity probability (STC-P): given the above domain,
compute the probability of having a path between s, t ∈ V in the surviving
graph. Another prominent problem is full connectivity probability (FC-P):
given the above domain, compute the probability that the surviving graph
is connected (so that there is a path between any two vertices). One seminal
paper by Valiant [36] proves that STC-P is #P-hard. Provan and Ball [29]
show that FC-P is also #P-hard.

Although such network reliability domains allow a very detailed analysis,
we believe a game theoretic analysis has several advantages. It takes into
account the self-interested nature of the agents, and has been well studied
in various contexts, so results from game theory can be used to increase our
understanding of network reliability.

8 Conclusions and Future Directions

We have considered threshold network flow games, where a coalition of
agents wins if it manages to send a flow of more than some value k between a
source vertex and a target vertex. Such games can be used to model certain
network reliability domains. Power indices in such games may be used to de-
cide how to allocate maintenance resources in real-world networks, in order
to maximize our ability to maintain a certain flow of information between
two sites. We have assessed the relative power of each agent in this scenario
using two power indices: the Banzhaf index and the Shapley-Shubik power
index.

We have shown that although power indices theoretically allow us to
measure the power of the agents in the network flow game, the problem of
computing such indices in this domain is computationally hard. We have
shown that computing the Shapley-Shubik power index is NP-hard. We have
also proven a stronger result for the Banzhaf power index in this domain, by
showing it is #P-complete to compute it. Despite this discouraging result
for the general threshold network flow domain, we have also provided a more
encouraging result for a restricted domain. In the case of connectivity games
(where it is only required for a coalition to contain a path from the source to
the destination) played on bounded layer graphs, it is possible to calculate
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the Banzhaf index of an agent in polynomial time. We have also considered
the problem of allocating the gains of a coalition in a TNFG in a stable way.
We have shown that in TNFGs, the core can be computed in polynomial
time.

We believe that power indices can indeed help improve reliability in real-
world networks. Although these indices are hard to compute in the worst
case, there are several ways to overcome this difficulty. In this paper we
have shown that restricting the inputs may allow us to exactly compute
such power indices. Several articles mentioned in Section 7 indicate that
such indices can be approximated in polynomial time with a very high accu-
racy. Thus, such indices can be a very useful tool for identifying reliability
“hotspots”.

We suggest several directions for future research. First, we have only dis-
cussed a specific network reliability domain, that of TNFGs. Such analysis
could also be applied to other related domains. A few interesting examples
would be considering server failures (rather than link failures), maintain-
ing connectivity between all the servers, and minimizing the latency (rather
than maximizing bandwidth). Another open problem is finding ways to bet-
ter approximate power indices in TNFGs. Finally, it would be worthwhile to
investigate the complexity of calculating the power indices and other game
theoretic solution concepts in many additional interesting domains, other
than weighted voting games and network flow games.
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