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Abstract
Group decisions are often complicated by a deadline. For example, in committee hiring 
decisions the deadline might be the next start of a budget, or the beginning of a semester. It 
may be that if no candidate is supported by a strong majority, the default is to hire no one 
- an option that may cost dearly. As a result, committee members might prefer to agree on 
a reasonable, if not necessarily the best, candidate, to avoid unfilled positions. In this paper 
we propose a model for the above scenario—Consensus Under a Deadline (CUD)—based 
on a time-bounded iterative voting process. We provide convergence guarantees and an 
analysis of the quality of the final decision. An extensive experimental study demonstrates 
more subtle features of CUDs, e.g., the difference between two simple types of committee 
member behavior, lazy vs. proactive voters. Finally, a user study examines the differences 
between the behavior of rational voting bots and real voters, concluding that it may often 
be best to have bots play on the voters’ behalf.
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1  Introduction

We study the problem of arriving at a joint decision (a consensus) under a deadline, based 
on the preferences of multiple voters. The voters’ task is to find an alternative that the 
majority agrees upon, before some predefined deadline is reached. The majority is prede-
fined and can vary from 51% of the votes to unanimous agreement. As different individuals 
have different preferences, a decision does not occur immediately, and more than one round 
of voting may be required. Hence, a voting process takes place, where voters potentially 
change their ballots as the deadline approaches.

We define a strict, formal, time-bounded iterative voting process. The process begins 
with each voter revealing her most-preferred alternative. If no alternative reaches the 
required majority, a multi-stage voting process begins. At each stage, all voters that wish 
to change their ballot apply for a voting slot. A voter may choose to change her ballot if, 
for instance, she realizes that her most-preferred alternative has no chance of being elected. 
She then might decide to vote for another alternative. One voter is chosen randomly from 
all those who applied for a voting slot; the chosen voter casts her new ballot. Then, the vot-
ing result is updated and publicized. The process continues in rounds until a consensus is 
reached, or until the deadline is reached, the sooner of the two. We assume that each voter 
has a private, strict preference order over the alternatives and that the number of alterna-
tives is fixed. Bargaining is not permitted. We further assume that the voters are rational 
but strategic. The amount of strategic ballot changes is unlimited and subject only to the 
deadline constraint. Each stage (or round) is defined as one clock tick. Lastly, we assume 
that a failure to reach a consensus is the worst outcome for all voters.

1.1 � Motivation

As a motivating scenario, consider an academic hiring committee. There are a few short-
listed candidates, and each committee member has reviewed their merits, attended their 
talks, and formed a preference order over the candidates, reflecting her opinion of them. 
The committee has to reach a decision with a large majority, and has only a limited time to 
decide before the next budget period or academic term begins. If the committee fails, the 
lack of a new faculty member might have a budgetary impact, and cause a higher teach-
ing load - the worst outcome for everyone. The faculty’s secretary provides support for 
the ensuing iterative voting procedure. He collects votes, summarizes them and publicizes 
the results to all committee members. However, the secretary can perform only a finite, 
reasonable number of such steps. So if any committee member wishes to change her vote, 
there is only a finite, predetermined number of opportunities she will have to do so. Under 
our model, the secretary will only accept a vote change from one committee member per 
iteration.

The restriction of one vote change per round is not an arbitrary design choice, but often 
matches real-world needs. As a practical example, consider an event that occurred in the 
hometown of one of the authors. The town is divided into two neighborhoods; each of the 
neighborhoods contains one public elementary school. According to Ministry of Education 
regulations, a class cannot contain more than 42 children. Furthermore, a class may only 
be split into two classes, if it contains more than 42 children. Children entering first grade 
are automatically assigned to the school in their neighborhood. However, recently, 41 first 
grade children were allocated to one neighborhood school and 30 children to the other. 
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In an attempt to decrease class sizes, and for the benefit of the young children, the town 
canceled the automatic allocation and allowed parents to register their child to either one 
of the schools, hoping that this would lead to either three small-sized first grade classes, 
or at least two more equally-sized classes. As both schools are perceived as equally good, 
parents prefer their children to attend the school in their own neighborhood. However, they 
also prefer their children to study in a class that contains a minimal number of children. 
Sadly, no registration requests were filed. Parents assumed other parents would change 
their registration and were reluctant to do so themselves, even though in hindsight, each 
parent regretted not changing their registration (a no-action variant on “tragedy of the com-
mons”). Had the town performed an iterative voting process, publicizing the current results 
at each stage, and bounded by a deadline, these first graders would likely have begun their 
education in less-crowded classes.

Other examples, where consensus under a deadline is required, include a selection of a 
CEO of a company, a scientific committee deciding where to hold next year’s conference, 
and even more informal problems, such as a major holiday family dinner venue.

All the above cases have several common features. First, there is a strict deadline 
for reaching an agreement: the start of an academic year, national holidays, the budget 
approval deadline, or dinnertime. Second, assuming that individuals at least somewhat dif-
fer in their preferences, it is unlikely that a consensus will be reached immediately; a con-
sensus is usually reached, if at all, only after several rounds of a sequential voting process.

1.2 � Contributions

We provide, to the best of our knowledge, the first model for iterative voting with a dead-
line (Sect. 3). The model can be generalized to other voting rules, but for ease of exposi-
tion, we initiate this line of research with a specific model, namely, Consensus Under a 
Deadline (CUD), based on Plurality with a threshold (also known as Majority). We estab-
lish the theoretical properties of CUDs, such as termination, guarantees of no runs ending 
with a default, and additive Price of Anarchy bounds (Sect. 4). CUDs adhere to a simple 
protocol, and we can effectively simulate them to investigate statistical properties; we pro-
vide an encompassing experimental analysis of their tradeoffs (Sect. 5). In particular, we 
measure the effects of voter behavioral types (lazy vs. proactive) on the number of voting 
steps and the additive Price of Anarchy.

Furthermore, we introduce the CUD game, an on-line voting game that we designed as 
a user-study, in order to examine how real users behave (Sect. 6). The collected data allows 
us to analyze human behavior such as how often a consensus is reached, and when (if at 
all) strategic voting occurs; perhaps most importantly, we also examine the quality of the 
final decision reached by a group of people, in terms of the average reward and the addi-
tive price of anarchy. We compared our results with the performance of rational bots, and 
a mixture of bots and humans. Consequently, we provide some insight into bot vs. human 
voting and propose that bots may have a big advantage in consensus reaching scenarios 
with a deadline, as they increase the convergence percentage and the general satisfaction of 
all voters.

A short version of this paper, with preliminary results, was presented in a workshop 
[1]. That version contained theorems with no proofs and no examples, and some experi-
mental simulations. The CUD game was presented as a short conference paper [57]. An 
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independent research that used the CUD game to study Alexithymia traits was led by one 
of the authors  [16].

2 � Related work

Reaching a consensus has been extensively studied in the field of group decision making 
[9, 19, 58]. Recently, social influence has began to be explored [5, 54]. However, we study 
a scenario where voters do not interact or bargain.

Similarly to us, Yager and Alajlan [56] suggest iterative rounds where voters provide 
modified versions of their subjective probability distribution. In each round the voters see 
the current group aggregated probability distribution and are allowed to change their own 
probability distribution. However, differently from us, in their model, the voters need to 
agree on the aggregated distribution. In our model, voters are all required to agree on the 
same candidate, i.e, they are required to submit the same distribution.

In a Consensus Under a Deadline (CUD) game, a consensus on one alternative must be 
reached within a fixed deadline. If the voters do not reach a consensus, a default candidate 
is declared.

To the best of our knowledge, this paper is the first to analyze theoretical features of 
CUD games in iterative voting, and to demonstrate them experimentally, with a focus on 
convergence time and final outcome quality. Furthermore, we study human behavior in 
CUDs, our goal being to examine whether humans behave rationally.

2.1 � Myopic voters

In principle, hierarchies of beliefs and cognitive hierarchies, have been around for quite 
some time and across the AI board (e.g., definitely non-exhaustively,  [2, 17, 18, 40]), and 
even of a freshly renewed interest in voting games specifically (see, e.g., [4, 7, 11]). In real-
ity, capabilities of the majority of people are limited to very shallow cognitive hierarchies 
even in simple games, as shown in experiments (see [44, 51]). Handling both beliefs about 
other player behaviors and their preferences, is a much more difficult proposition even for 
computational agents (see, e.g., [15]).1 Furthermore, some of the more recent analysis sug-
gests that a large proportion of people are in fact myopic [53]. Therefore, because we seek 
a model that would easier relate to the real-world human behavior trends, we adopt the 
assumption of myopic agent strategies.

2.2 � Iterative voting games and the question of convergence

A CUD game is a type of iterative voting game (see, e.g., [8, 33, 34, 43, 45, 47]). How-
ever, CUDs have several unique features. First, although CUDs do utilise a known 
voting rule, they work directly with the set of possible winners (i.e., alternatives that 
might be chosen by the majority), and behave much like non-myopic games based on 

1  Many a joke deals with chains of “I know that he thinks that I know...”, and are in fact based on human 
inability to handle deep nested beliefs. Comically this is even witnessed in popular culture, e.g., the episode 
of “Friends”: “The one where everybody finds out”.
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local-dominance (see, e.g.,  [26, 32, 35]). On the other hand, the distinction between 
lazy and proactive voter behavior links CUDs with biased voting (see, e.g., [10]).

The standard assumption in the iterative voting literature is that voting processes 
do not terminate, unless no voter has a way to further manipulate the outcome. Con-
vergence is the subject of an extensive research effort, both to determine when these 
processes terminate and with what ballot profile ([23, 34, 45, 47, 48]). CUDs, on the 
other hand, always terminate and declare a winner (see Theorem 1). Our framework will 
always converge if the voters are rational and there is a sufficient amount of time before 
the deadline.

Some models focus on choosing one alternative with a certain degree of consensus. 
The consensus can be a simple majority, a majority of 2/3 and so forth. For example, 
a Papal Conclave has to choose the next pope with a majority of at least 2/3. The vot-
ing process continues infinitely until the required majority is reached. Here, the voters’ 
degree of indifference to time plays a major role. For example, Kweik [25] has shown 
that when all voter preferences are known in advance, the outcome may be predicted, 
and it favors the voter with the highest indifference to time.

Reijngoud et al. [47] analyzed the iterated voting model from different angles: how 
the amount of information received in one single poll influences the manipulated behav-
ior of the voter, and how repeated polls affect the manipulated behavior of all voters. 
Brânzei et  al. [3] studied the different influence of strategic voting on the main vot-
ing methods. They defined the additive Price Of Anarchy ( PoA+ ) factor that measures 
the differences between truthful voting and worse-case manipulated voting. Though the 
general concept of the price of anarchy historically had other interpretations and uses 
(see, e.g., [24, 46]), it is the additive form that best befits our setting. Thus, PoA+ is one 
of the measures we use in our experimental evaluation.

2.3 � Deadline

A feature that distinguishes our framework from other iterative voting processes is the 
deadline. Informally, the deadline is a time limit on the voting process. Bargaining mod-
els often have a deadline; however, they do not usually require a consensus or the selec-
tion of one alternative only. Rather, the outcome may be a compromise among the most-
preferred outcomes by all participants. Deadlines are defined as “fixed time limits that 
end a negotiation”  [28, 42]. Experimental studies of bargaining deadlines have shown 
that the majority of agreements are obtained in the final seconds before the deadline [12, 
22]. Even complete information does not speed agreement much, contrary to what might 
be expected  [49]; moreover, agents are convinced that revealing their deadlines may 
decrease their payoffs, contrary to what is proven theoretically [41]. The concession rate 
increases as the deadline approaches [6, 22, 27]. If the deadline is soon enough, then 
the agents converge almost immediately, but if the deadline is long enough away, there 
probably appears a delayed equilibrium [13]. If the deadlines are different for the agents 
and are common knowledge for everyone, then the theory predicts an inmediate equilib-
rium [25], yet some experiments show that there will be delays [20]. However, there is 
a probability that no agreement will be reached before the deadline; depending on the 
context, more than half [28] or at least one third [39] of all negotiations may fail. None-
theless, a moderate deadline has a positive effect on the outcome [42]. Our model does 
not encompass negotiation or bargaining.
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2.4 � Human behavior in voting games

On-line platforms such as Doodle allow people to submit their votes on the problem in 
question, to view the votes of other group members, and to change their votes if they 
wish. Zou et  al. [59] studied strategic voting behavior in Doodle polls, and how the 
knowledge of current voters’ preferences affected results. Interestingly, people tend to 
change their vote preferences in light of the votes of their peers. In our model, voter 
preferences are private, and voters can only see intermediate aggregated results.

Meir et al. [36] performed a study of human behavior in online voting. Similarily to 
us, their setting is of an iterative voting game, under the plurality voting rule. They clas-
sified voters into three distinct types, two of which are not strategic and one that will 
perform straightforward strategic moves. However their setting does not contain a dead-
line. Moreover, while they provide valuable insights on human voting patterns, they do 
not compare their framework with a rational strategic model, so the question of whether 
humans and bots act alike remained unanswered.

3 � Model

In this section we formally model a deadline-bounded, iterative voting process. We con-
centrate on an extension of the Majority rule, i.e., on plurality voting with a threshold, 
leaving other voting rules for future work. The threshold determines the number of vot-
ers that need to vote for the same candidate for that candidate to win. The threshold is 
termed tight if it is equal to the number of voters, i.e., a unanimous consensus vote is 
required, and is termed relaxed otherwise.

The process begins when each voter reveals her most preferred alternative. The pref-
erences are aggregated using plurality voting. If a consensus is not instantly reached, 
a process of vote alterations begins. Formally, let V be a set of n voters choosing from 
a set, C, of m + 1 alternatives in an iterative process with a deadline of � steps. At any 
intermediate stage of the voting process, t ∈ [0 ∶ �] will denote the remaining number 
of steps before the process must stop. We denote by � ∈ C the default alternative, and 
C+ = C ⧵ {�} the set of valid alternatives. Notice that |C+| = m . Each voter is charac-
terised by a truthful preference ai ∈ L(C) , where L(C) is the space of complete and non-
reflexive orderings over the set of alternatives C. Generally, we write ai(c, c�) if voter i 
prefers c to c′ . However, when it is beneficial to visually underline the relative prefer-
ence of two options, we will also resort to the notation c ≻i c

′ . We assume that ai(c,�) 
for all i ∈ V  and c ∈ C+ , i.e., the default alternative is the worst option from the point of 
view of all voters. At the beginning of the process, when t = � , every voter i ∈ V  casts 
a ballot bt

i
∈ C that reveals her most preferred candidate. The collection of all ballots, 

�t = (bt
1
,… , bt

n
) ∈ Cn , is a ballot profile. Given a ballot profile, the score of each can-

didate c is the sum of votes for this candidate: ��c(�t) = |{i ∈ V|bt
i
= c}| . Please notice 

that individual candidate scores are scalars, i.e., ��c(�t) ∈ N .
A score vector is a collection of scores of all valid candidates ��(�t) =  

(��c1 (�
t),… , ��cm (�

t)) ∈ N
m
. For convenience, a shorthand �t = (st

1
,… , st

m
) = ��(�t) is 

used, and we omit the time superscript to denote an arbitrary score vector. The score 
vector is public knowledge to all voters.
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Possible outcomes at time t are computed using a Multi-stage Defaulted Voting Rule 
(MDVR), that estimates whether any non-default candidates have enough time to gather 
sufficient support to cross the majority threshold. MDVR explicitly focuses on iterative 
ballot modifications, and accounts for the possibility that the score of a candidate may 
change. Formally, an MDVR, denoted F  , maps a score vector at time t to a subset of all 
candidates (including the default option), and has the form F ∶ Δ × [0 ∶ �] → 2C , where 
Δ is the space of all feasible score vectors.

In this paper we investigate two MDVRs: the Iterative Majority (IMaj), and its 
special sub-case, Iterative Unanimity (IUn). In the following we will assume that 
a majority threshold is 𝜎 >

n

2
 , and naturally extend this to the unanimous thresh-

old of � = n . Let �W ⊆ C+ denote the set of all valid candidates whose score difference 
from the winning majority threshold is bounded by the time until the deadline. That is: 
�W(�, t) =

{
c ∈ C+ | 𝜎 − sc < t + 1

}
 . Intuitively, these are the candidates that may still 

gather winning support if enough voters begin to favour them within the remaining time 
until the deadline. Throughout the paper we will term Ŵ = Ŵ(�, t) the set of possible win-
ners.2 Notice that the time index t here means that this set is calculated after voters have 
expressed their vote alterations at time-slice t. Thus the rule of IMaj is defined as:

Once the deadline is reached, F(�, 0) is a singleton containing either (i) a valid candidate 
with the highest score (the winner), or (ii) the default candidate � (default). Notice that 
the MDVR for Iterative Unanimity is FIUn = F

IMaj
n

.
Prior to the deadline, however, the set of possible winners is subject to the manipulative 

behaviour by voters. Specifically, at any time point t ∈ [0 ∶ �] prior to the deadline, having 
calculated and observed the set of possible winners, each voter considers how a change in 
her ballot may influence the set calculation at the next time point. I.e, each voter decides 
whether to change her vote and produces a new ballot bt

i
∈ C , thus (re)stating her vote at 

time t. Assuming, as we do here, that all voters are selfish and myopic leads to a particular 
pattern of behavior w.r.t this ballot selection. Namely, if at time t the set of possible out-
comes includes more than one valid candidate, a voter will choose her ballot to support the 
more favoured candidates over the less preferred ones. In fact, we presume that a utility 
function can be defined to express the beneficial effects of a ballot alteration on the set of 
possible winners, and that all voters myopically seek a ballot that maximises this utility. 
We formalise this utility point of view as follows.

The voter’s best possible outcome: For any non-empty W ⊂ C the best alternative in 
W w.r.t.  the voter’s truthful preferences ai is denoted ���i(W) ∈ W . That is, w is the best 
possible outcome for voter i if voter i prefers it over any other candidate in the possible out-
come set: w = ���i(W) if and only if for all c ∈ W ⧵ {w} holds ai(w, c).

The voter’s utility function: Each voter has a utility function that matches a score vector 
at time t to the voter’s utility: ui ∶ Δ × [0 ∶ �] → ℝ . We assume that the utility function is 
consistent with the voter’s truthful preferences ai for any t ∈ [0 ∶ �] . We will particularly 
emphasise the classes of lazy consistent and proactive consistent utility functions. Intui-
tively, a lazy consistent utility function drives the voter to change her ballot only if this 

F
IMaj
�

(�, t) =

{
{�} if Ŵ = �

Ŵ otherwise

2  Note the difference from the classical concept of possible winners, which refers to expansions of partial 
preference ballots (see e.g., [55]).
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creates a set of possible outcomes, while a proactive consistent function would also induce 
ballot change if the score of the best possible outcome can be improved. Formally, these 
utility classes are defined as follows.

Definition 1  A utility function ui is lazy consistent if for all �, �� ∈ Δ and t ∈ [0 ∶ �] the 
following condition holds:

where w = ���i(F(�, t)) and w� = ���i(F(�
�, t)).

Definition 2  A utility function ui is proactive consistent if for all �, �� ∈ Δ and t ∈ [0 ∶ �] 
holds the condition that:

where w = ���i(F(�, t)) and w� = ���i(F(�
�, t)).

We further assume that all utility functions are homogeneously either lazy consistent 
or proactive consistent. Notice that, although here we only use FIMaj and FIUn , CUDs can 
be naturally extended to more general forms of MDVRs. It is also important to note that 
the use of cardinal utilities has some formal benefits. Although it is possible to describe 
both lazy and proactive voter behavior using only ordinal preferences, that leads to for-
mal descriptions of choosing the best course of actions, or of reasoning about preference 
alterations, becoming vividly distinct for the two behaviors. The use of utilities allows us to 
avoid this complication, creating an elegant, uniform formal treatment of our model under 
various voter behaviour characteristics.

We must underline, however, that we do not assume knowledge of the voter’s utility 
function or its properties beyond consistency. In fact, we treat the voter’s utility as a subjec-
tive valuation that is private to the voter. The only use for the voter’s utility we have is the 
convenience of formal presentation.

Now, it must be noted that for FIMaj and FIUn the definitions of lazy and proactive 
utilities do not differ in their behavior if F(�, t) = {�} . That is, once MDVR provides 
the default as the only possible outcome, neither lazy nor proactive behavior dictates any 
change. Therefore, we concentrate our discussion on the effect of these behaviors in those 
cases where F(�, t) ⊆ C+ , that is the rule produces a set of possible winners Ŵ ≠ ∅ as its 
set of possible outcomes. In fact, the proof of Theorem 1 will later show that strategic con-
siderations by voters can only be effective in those cases where F(�, t) ⊆ C+ and a possible 
winner set Ŵ is involved.

The following example illustrates the voting procedure.

Example 1  Example of the voting procedure.
Let there be three voters, V = {1, 2, 3} and three alternatives C+ = {a, b, c} . Assume the 

strictest voting rule, unanimity, i.e., � = n . The time until the deadline is � = 2 ; the voters 
are required to reach a consensus in three time periods, from time t = � until t = 0 . We 
assume that the three voters have the following preferences:

voter 1: a ≻1 b ≻1 c;
voter 2: b ≻2 c ≻2 a;
voter 3: c ≻3 a ≻3 b.

ui(�, t) > ui(�
�, t) ⟺ ai(w,w

�),

ui(�, t) > ui(�
�, t) ⟺ ai(w,w

�) ∨
(
(w = w�) ∧ (sw > s�

w
)
)



Autonomous Agents and Multi-Agent Systems (2021) 35:9	

1 3

Page 9 of 42  9

Stage  t = 2 . The voters cast their ballots and reveal their (truthful) most preferred alter-
native, b� = (b�

1
, b�

2
, b�

3
) = (a, b, c) . Thus the scores are s2 = (s2

a
, s2

b
, s2

c
) = (1, 1, 1).

In order to win, an alternative must receive all � = 3 votes. At the moment each alterna-
tive has only one vote. There are two stages ahead, hence any alternative can gather the two 
remaining votes. Therefore at this stage all the three alternatives {a, b, c} are possible win-
ners, Ŵ(s2, 2) = {a, b, c}.

Stage  t = 1 . Each voter decides whether she wishes to change her vote. Note that the 
voters consider their options before they know if they will be chosen to cast their ballots. 
This can be viewed as answering the question: “what will I vote if I am picked to vote?”. 
Each voter asks herself this question and decides whether she wishes to have a possibility 
to change her ballot. In the current example, the voters know that someone must change the 
ballot, or else the default alternative will be chosen (and this default is the worst outcome 
for all voters). The voter does not know if the other voters will agree to change their ballot, 
and since she wishes to avoid the default alternative from being chosen, she will agree to 
change her ballot.

For instance, consider voter 1. She has 3 possible actions: either she stays with a 
( b1

1
= a ), or she changes to b or c ( b1

1
= b or b1

1
= c ). If she declares that she wishes to 

change, she might be randomly picked to do so. In this case, if she is picked to change 
at the current stage, she can predict the consequences of each of these possible votes, as 
Table 1 illustrates.

If she decides to keep her vote for a (row 2 of Table 1), then the scores of the alterna-
tives will be sc(b1) = (s1

a
, s1

b
, s1

c
) = (1, 1, 1) and there will be no possible winner, because 

n − s1
x
≥ � − 1 + 1 for any alternative x ∈ C.

If voter 1 decides to change her ballot, and vote b instead of a (row 3 of Table 1), the 
scores are sc(b1) = (s1

a
, s1

b
, s1

c
) = (0, 2, 1) . Since n − sb ≤ � − 1 + 1 , alternative b is a pos-

sible winner.

If at this stage voter 1 decides to switch to c (row 4 of Table 1), then the scores are 
(s�−1

a
, s�−1

b
, s�−1

c
) = (0, 1, 2) , and c would be a possible winner. Since the utility function is 

consistent with the truthful preference, voter 1 prefers to switch to b. This is true both for 
lazy consistent and proactive voters.

The same argument can be applied to voters 2 and 3. Therefore, all three voters “raise 
their hands” and wish to change their votes. Possible changes are gathered in Table 1.

Table 1   The possible decisions 
of voters 1,2 and 3 at stage 
t = 1 . Each voter can vote for 
either a, b or c (column 2). The 
corresponding scores for these 
choices appear in column 3. The 
possible winners following these 
choices appear in column 4

Voters b
1

i
(s1

a
, s

1

b
, s

1

c
) Ŵ(s1, 1)

Voter 1 a (1,1,1) {}

b (0,2,1) {b} ← prefers to switch to b
c (0,1,2) {c}

Voter 2 a (2,0,1) {a}

b (1,1,1) {}

c (1,0,2) {c} ← prefers to switch to c
Voter 3 a (2,1,0) {a} ← prefers to switch to a

b (1,2,0) {b}

c (1,1,1) {}
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We assume that voter 1 is randomly picked to change her vote. Accordingly, 
b1 = (b1

1
, b1

2
, b1

3
) = (b, b, c) and s1 = (s1

a
, s1

b
, s1

c
) = (0, 2, 1) , which makes b the only possi-

ble winner.
Stage  t = 0 . Voters 1 and 2 have no reason to change their vote since, as is shown 

in Table 2, whatever they vote, they cannot be better off. Voter 3 can be better off by 
switching to b, as is illustrated in Table  2 since, if she votes for b, the ballot would 
be b0 = (b0

1
, b0

2
, b0

3
) = (b, b, b) and the scores would be s0 = (s0

a
, s0

b
, s0

c
) = (0, 3, 0) , which 

makes b the only possible winner. Consequently, voter 3 decides to change her vote 
from c to b. Since she is the only one who wishes to change (that is, she is the only pos-
sible voter to be randomly picked), she changes to b.

After voter 3 changes her vote, the voting ballot is b1 = (b, b, b) and s1 = (0, 3, 0) . 
Since sb = � = n , alternative b is chosen as the winner.

The behaviors of lazy and proactive voters are different with respect to the stage at 
which they decide to change, and to which alternative they switch. The difference is 
illustrated by the following two examples for both voter types.

Example 2  Example illustrating the behavior of lazy voters.
There are five lazy voters, V = {1, 2, 3, 4, 5} and there are four alternatives to be voted 

for, C+ = {a, b, c, d} . Assume unanimity, � = n = 5 and that the voters need to reach a con-
sensus in five time periods, � = 4 . We assume that voters have the following preferences:

voter 1: a ≻1 b ≻1 c ≻1 d;
voter 2: a ≻2 c ≻2 b ≻2 d

voter 3: b ≻3 c ≻3 a ≻3 d;
voter 4: b ≻4 a ≻4 c ≻4 d;
voter 5: c ≻5 b ≻5 d ≻5 a

Stage t = 4 . The voters reveal their truthfully most preferred alternative, hence, 
the voting ballot is b4 = (b4

1
, b4

2
, b4

3
, b4

4
, b4

5
) = (a, a, b, b, c) and, therefore, the scores are 

s4 = (s4
a
, s4

b
, s4

c
, s4

d
) = (2, 2, 1, 0) . The possible winners are Ŵ(s4, 4) = {a, b, c}.

Stage t = 3 . Each voter needs to decide whether she wishes to change her vote. Voters 
1–4 cannot be better off if they change their vote, since any change would exclude their 
top-choice from the set of possible winners. Therefore, they do not “raise their hands” in 
order to change their votes. This is illustrated in Table 3.

Table 2   Possible decisions of 
voters 1,  2 and 3 at stage t = 0 . 
Voters 1 and 2 have no reason to 
change their vote. Voter 3 will 
prefer to change to b 

Voters b
0

i
(s0

a
, s

0

b
, s

0

c
) Ŵ(s0, 0)

Voter 1 a (1,1,1) {}

b (0,2,1) {}

c (0,1,2) {}

Voter 2 a (1,1,1) {}

b (0,2,1) {}

c (0,1,2) {}

Voter 3 a (1,2,0) {}

b (0,3,0) {b} ← prefers 
to switch 
to b

c (0,2,1) {}
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Consider voter 5. Whatever she votes, the set of possible winners consists only of a and 
b as is illustrated in Table 3. Hence, by Definition 1 voter 5, being a lazy voter, prefers not 
to change her vote.

Hence, at stage t = 3 the ballot is b3 = (b3
1
, b3

2
, b3

3
, b3

4
, b3

5
) = (a, a, b, b, c) , and alterna-

tives’ scores are s3 = (s3
a
, s3

b
, s3

c
, s3

d
) = (2, 2, 1, 0) , which make alternatives a and b the 

only possible winners at the current stage.

Example 3  Example illustrating the behavior of proactive voters.
Consider the same voters and preferences as in the previous example. When the vot-

ers are proactive the result at stage t = 4 does not change; the possible winners are 
Ŵ(s4, 4) = {a, b, c}.

Table 3   Possible decisions of 
voters 1–5 at stage t = 3 . Voters 
1–4 will not change their votes

Voters b
3

i
s
3

Ŵ(s3, 3)

Voter 1 a (2,2,1,0) {a, b} ← prefers not to change
b (1,3,1,0) {b}

c (1,2,2,0) {b, c}

d (1,2,1,1) {b}

Voter 2 a (2,2,1,0) {a, b} ← prefers not to change
b (1,3,1,0) {b}

c (1,2,2,0) {b, c}

d (1,2,1,1) {b}

Voter 3 a (3,1,1,0) {a}

b (2,2,1,0) {a, b} ← prefers not to change
c (2,1,2,0) {a, c}

d (2,1,1,1) {a}

Voter 4 a (3,1,1,0) {a}

b (2,2,1,0) {a, b} ← prefers not to change
c (2,1,2,0) {a, c}

d (2,1,1,1) {a}

Voter 5 a (3,2,0,0) {a, b}

b (2,3,0,0) {a, b}

c (2,2,1,0) {a, b} ← prefers not to change
d (2,2,0,1) {a, b}

Table 4   Possible decisions of 
voter 5 at stage t = 3 . The voter 
will prefer to change her ballot

Voters b
3

i
s
3

Ŵ(s3, 3)

Voter 5 a (3,2,0,0) {a, b}

b (2,3,0,0) {a, b} ← prefers 
to 
change

c (2,2,1,0) {a, b}

d (2,2,0,1) {a, b}
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At stage  t = 3 voters 1–4 cannot be better off if they change their vote, as is illustrated 
in Table 3.

Consider voter 5. As is illustrated in Table 4, whatever she votes, the set of possible 
winners will be {a, b} . Since she is a proactive voter, then, by Definition 2, given that she 
prefers b to a, she “raises her hand” because she can be better off by voting for b. Being the 
only voter who wants to cast a ballot at the current stage, she is picked to change it.

Hence, at stage t = 3 the ballot is b3 = (b3
1
, b3

2
, b3

3
, b3

4
, b3

5
) = (a, a, b, b, b) , and alterna-

tives have scores s3 = (s3
a
, s3

b
, s3

c
, s3

d
) = (2, 3, 0, 0) , which makes alternatives a and b the 

only possible winners.
Having constructed some procedural intuition with Examples  1 to  3, we can now 

summarise the progress of a CUD into a protocol. Formally, a CUD iterative voting 
game proceeds as depicted in Protocol  1. Since score vectors simply accumulate bal-
lots from �t , we use algebraic operations between a score vector and a ballot. That is, if 
�� = � − c (respectively, � = � + c ) then s�

k
= sk for all k ∈ C ⧵ {c} and s�

c
= sc − 1 (respec-

tively, s�
c
= sc + 1 ). In other words, “adding” a candidate to a score vector increases the 

score of that candidate by 1, while “subtracting” the candidate reduces it by 1.
Protocol  1 is parameterised by the Multi-stage Defaulted Voting Rule F  and the 

deadline � . The game, therefore, proceeds as follows. Iteratively, as long as the deadline 
has not been reached: all voters calculate the current score vector (line 3). If there is 
only one possible winner, w, a decision has been reached and the game ends (lines 4–5). 
If the game continues, every voter calculates what is her best possible winner, given that 
the current score vector would be augmented by her vote alteration (line 7–8). If there 
are ties (i.e., if a few alternatives receive the same score), the voter selects the alterna-
tive that is ranked highest in her truthful preferences ai . Each voter decides whether she 
wants to change her vote, based on the possible winner set and her utility function. Vot-
ers who want to vote “raise their hands”, i.e., are collected into a set I (line 10). A ran-
dom voter is chosen from set I (line 11). The chosen voter casts her ballot (lines 12–15), 
and the deadline is now one step closer (line 16).

Now, at first it may appear that Protocol 1 is unstable, and has multiple issues. E.g., it 
may appear that the time can run out with more than one alternative remaining a possi-
ble winner, or that an ill-defined ballot b−1 will be used in line 13 of the protocol at time 
t = 0 . However, Theorem 1, presented in Sect. 4, shows that a CUD always terminates 
with a single alternative in C declared a winner. We distinguish between two ways a 
CUD can terminate. We say that a CUD has converged, if it terminates with a w ∈ C+ 
declared as the winner; otherwise, the default alternative is chosen (the default is the 
worst option from the point of view of all voters). 
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3.1 � Quality of CUD outcomes

In order to analyze the quality of the result of a CUD game, features of voting processes 
can be adapted. One such feature is the additive Price of Anarchy ( PoA+ ) [3]. We adapt 
the PoA+ to CUDs, requiring that at least some valid alternative can become a winner, as 
follows.

Definition 3  Let � be the truthful profile of voters participating in a CUD, � a ballot profile 
induced by � (i.e., bi = ���i(C) ), and � = ��(�) . Denote all valid candidates that the CUD 
may converge to by �C ⊆ C+ . Then the CUD’s additive Price of Anarchy is

Namely, PoA+ is the score of the least-preferred valid alternative that could become the 
winner of a CUD, subtracted from the score of the truthful winner. Notice that PoA+ is well 
defined only for games where Ĉ is not empty, i.e., there is at least one non-trivial conclu-
sion to the voting process.3

PoA+(�) = max
c∈C

sc −min
c∈Ĉ

sc

3  Here we follow well-established definitions of the additive Price of Anarchy for voting processes with 
restricted dynamics (see, e.g., [3, 45]).
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4 � Theoretical features of CUD

We begin our theoretical analysis by showing that the CUD Protocol is stable, i.e., if the set 
of possible winners is not empty at the beginning then one single winner is found and the 
process cannot end in a default. In all our proofs time appears to be running backwards, as 
we measure the number of steps until the deadline. Thus, with every decision step taken by 
voters, time winds down from t = � to t = 0.

Theorem 1  In any CUD(FIMaj
�

, �) with � ∈ (
n

2
, n] and consistent utility functions, either the 

set of possible winners at time t = � is empty and the outcome will be set to the default 
alternative, or a valid (i.e., non-default) alternative becomes the winner at time t ∈ [0 ∶ �].

Notice that Theorem 1 applies to both voter types of interest, lazy and proactive. In fact, 
all of our theoretical results are applicable to both of these types. Now, having established 
that the algorithm always stops, we can study the CUD process in detail. All proofs can be 
found in the appendix.

First, we show that if a candidate is not a possible winner at stage t (e.g., now), then he 
will never become a possible winner at any further stage t + i.

Lemma 1  Let c ∉ Ŵ at step t, then c ∉ Ŵ at any step t′ < t.

The next lemma suggests that a candidate that receives an additional vote from one time 
step to the next must be in the set of possible winners.

Lemma 2  If st+1
c

< st
c
 , then c ∈ Ŵ(st, t).

The next two lemmas prove that a voter always votes for her top choice in the set of 
possible winners; and, if a voter switches her support to another candidate, then this newly 
supported candidate has at least the same score (number of votes) as the previously sup-
ported candidate.

Lemma 3  If a voter i at the time step t votes for candidate c ∈ Ŵ(st, t) , then 
c = ���i(Ŵ(st, t)).

Lemma 4  If there is a voter that changes her ballot at time t from voting for c to voting for 
c′ , then st+1

c
≤ st+1

c�
.

Now we can place a condition on the game features that ensures that the default alterna-
tive is never set.

Corollary 1  Let � = (a1,… , an) be the truthful profile, let � be the deadline time, and let � 
be the ballot profile induced by � , i.e., bi = ���i(C) . CUD stops with some w ∈ C+ if and 
only if there is an alternative c ∈ C+ so that ��c(�) ≥ � − �.

Corollary 1 essentially provides a finer bound on what the initial scores must look like, 
so that CUD converges. Intuitively, it says that for a non-default alternative to become the 
declared winner, there must be enough time for it to gather additional support to achieve the 
majority threshold. However, Corollary 1 does not guarantee that a particular alternative will 
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be declared as the winner. For such a guarantee, a much more stringent condition must be 
required of � and n, as the following theorem states.

Theorem 2  Let � = (a1,… , an) be the truthful profile, let � be the deadline time, and let � 
be the ballot profile induced by � , i.e., bi = ���i(C) ). If there is an alternative c ∈ C+ so 
that ��c(�) ≥ max

{⌊
n

2

⌋
+ 1, � − �

}
 then CUD terminates with c as the winner.

The following example demonstrates that the bound of Theorem 2 is tight. That is, if the 
score were any lower than Theorem 2 suggests, then, for at least some truthful profiles, a CUD 
would have more than one alternative that could be declared the winner.

Example 4  Let the number of voters n be even, and the number of (non-default) alternatives 
m ≥ 2 . Furthermore, we assume that 𝜏 >

n

2
 . Construct the truthful profile � so that 

���i(C) =

{
c1 i ∈ [1 ∶

n

2
]

c2 i ∈ [
n

2
+ 1 ∶ n]

 , where c1, c2 ∈ C+ . All other non-default candidates may 

appear in ai in any order. Then, both c1 and c2 can possibly be declared as the winner in a 
CUD.

Having dealt with the characterisation of valid alternatives that are either guaranteed to, or 
can potentially, be declared a winner, we can exploit this knowledge to place some bounds on 
the additive Price of Anarchy for CUDs.

Theorem 3  Let � be the truthful profile of voters participating in a CUD. Assuming that it 
is well-defined for the CUD instance, the following bounds can be placed on the additive 
Price of Anarchy, PoA+ , depending on the ratio of the deadline timeout � and the number 
of voters n: 

1.	 If � ≤ � −
⌊
n

2

⌋
 , then 

2.	 If 𝜎 −
⌊
n

2

⌋
< 𝜏 < 𝜎 , then 

3.	 If � ≥ � , then 

Lemma 5  The last two bounds in Theorem 3 are tight. For all � and n that satisfy the con-
ditions of Eqs 2 and 3, there exists a truthful profile � such that the corresponding bound 
holds as an equality.

(1)PoA+(�) = 0.

(2)PoA+(�) ≤
⌊
n

2

⌋
+ � − �.

(3)PoA+(�) ≤
⌊
n

2

⌋
− 1.
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5 � Experimental features of CUD

The experimental setting varied according to the following parameters:

–	 Voter types:  Lazy or proactive voters.
–	 Data sets:  A total of eight data sets: four simulated data sets and four real-world ones. 

The simulated data sets contain all permutations over 5–8 candidates (i.e., impartial 
culture for 5–8 candidates). These data sets are titled “Uniform5”, “Uniform6”, “Uni-
form7” and “Uniform8”. The four real-world data sets are: the Sushi data set (5000 
voters, 10 candidates) [21], the T-shirt data set (30 voters, 11 candidates), the Courses 
2003 data set (146 voters, 8 candidates) and the Courses 2004 data set (153 voters, 7 
candidates). The three latter data sets are taken from the Preflib library [31].

–	 Number of voters: We examined a fixed number of n ( n = 10 , 20 or 30) voters.
–	 Voter preferences sets: We created 20 random sets of voter preferences by sampling 

with return from each data set. For example, for n = 10 the same experiment was con-
ducted 20 times, each time with another set of preferences for each of the voters.

–	 Time until the deadline:  For 10 voters: � = 2, ..., 11 . For 20 voters: � = 2, ..., 21 . For 
30 voters: � = 2, ..., 31.

The various combinations of the parameters result in 9600 different experimental settings. 
Each experimental setting contains some randomness: it may be that several voters wish 
to update their vote in a given round. In such a case, according to Protocol 1, only one of 
these voters is chosen at random. In order to verify that this randomness does not effect the 
stability of the experimental setting, we generated 30,000 election runs for each experi-
mental setting.

We examined:

–	 Convergence: The minimum deadline time t which is necessary for all experiment runs 
to converge in a given experimental setting.

–	 Required number of vote changes: How many vote changes are required for the pro-
cess to converge. Here, we provide averages and standard deviations over the 20 ran-
dom voter preferences sets (which are already averages of the 30,000 runs).

–	 The Additive Price of Anarchy ( PoA+ ): Recall that PoA+ is defined as the score of 
the least-preferred valid alternative that could become the winner of a CUD, subtracted 
from the score of the truthful winner (Definition  3). In order to receive an approxi-
mation of PoA+ for each experimental setting, we looked at the winners in the 30,000 
experiment runs. Out of these winners, we found the winner that is the least preferred 
alternative. The least preferred alternative found in these 30,000 runs was subtracted 
from the truthful winner. To avoid overloading notation, we refer to this PoA+ approx-
imation simply as PoA+ . Note that PoA+ can be computed only for processes where 
some winner is found, i.e., processes that converged. For processes where the winner is 
not found, the reader should refer to the convergence rate.

Our theoretical results are relevant for all majority thresholds � ∈ (
n

2
, n] . However, to inves-

tigate the finer features of CUDs, we concentrate on Unanimity, fixing � to the number of 
voters n. Even though it means that we experimentally study an extreme CUD case, fixing 
� allows us to exclude it as a free parameter, and concentrate on studying more complex 
game features, such as the Additive Price of Anarchy.
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In order to conclude which voter type performs best over multiple data sets, we followed 
a robust non-parametric procedure proposed by García et al. [14]. This procedure allows us 
to avoid the assumption that the performance difference between voter types is normally 
distributed, making it more adequate than the standard t-test. We first used the Friedman 
Aligned Ranks test in order to reject the null hypothesis that all voter types perform the 
same. This was followed by the Bonferroni-Dunn test to find whether one of the types per-
forms significantly better than the other.

5.1 � Simulation results

Convergence: As Theorem 1 indicates, convergence always occurs when there is enough 
time until the deadline to allow voters to change their vote (i.e., when the number of itera-
tions is larger than the number of voters). Interestingly, we find that in all experimental 
settings the process converges faster than the worst-case convergence time, described by 
Theorem 1. The convergence of Uniform data sets is slower than that of real-world data 
sets, but still faster than that of the theoretical bound. This suggest two things: (a) Real-
world voter preferences are a-priori aligned, in a sense, and it is easier to reach consensus 
than with an arbitrary preference profile. (b) Worst-case profiles are extremely rare even in 
impartial cultures. Table 5 shows the minimum deadline time t which is necessary for all 
experiments to converge. In our experiments, this time was confirmed to be identical for 
proactive and lazy voters. In the real-world data sets, the process seems to converge faster 
when there are fewer candidates. The exact impact of the candidate number on conver-
gence should be examined on a wider variety of data sets; we leave this for future research. 
The more voters, the longer it takes the process to converge. This is illustrated in Fig. 1, on 
the Courses 2004 data set and T-shirt data set (results are similar for other data sets). The 
figures differ from one another because the number of candidates in each of the data sets is 
different.

Required number of vote changes: Table  6 shows, for different data sets and varying 
number of voters, the normalized average of vote changes required to reach a consensus. 
The presented results include one simulated data set (Uniform5) and the four real-world 
data sets. Full results are presented in Appendix 2. Proactive voters require more vote 
changes, this is especially true in the real-world data sets.

According to the Friedman test, there is a significant difference between the number 
of vote changes performed by purely lazy and purely proactive voter sets. According to 
the Bonferroni-Dunn test, proactive voters require a significantly higher number of vote 
changes in order to reach consensus. Notice, however, that the fact that proactive voters 
need more vote changes to converge does not affect the convergence time. This aligns well 
with our theoretical findings. In particular, Theorem 2 and Corollary 1 relate protocol con-
vergence and the deadline independently of voter types.

Additive price of anarchy: The upper bound to the Additive Price of Anarchy was com-
puted as the plurality score of the least-preferred candidate that was elected to be a unani-
mous winner in one of the 30,000 experiments, subtracted from the plurality score of the 
truthful winner. Note that in order to determine the real price of anarchy we must pursue 
every possibility. As 30,000 experiments were used, our result is actually an upper bound 
to the price of anarchy. For example, consider 12 voters and 4 candidates and the following 
scores at the beginning of the process: s�

c1
= 2, s�

c2
= 6, s�

c3
= 1, s�

c4
= 3 . The truthful plural-

ity winner is c2 with a score of 6. If in one of the experiments c3 is the unanimous winner, 
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the additive price of anarchy is 5. If c3 does not win in any of the experiments, but in some 
of them c1 wins, the price is 4. Table 7 shows the average and standard deviations of the 
upper bounds for the additive price of anarchy for 10 voters for different initial � (time until 
the deadline). These are averages (and standard deviations) over 20 different voter prefer-
ence sets. Results for 20 and 30 voters as well as for all simulated data sets (Uniform6, 
Uniform 7 and Uniform 8) are provided in Appendix 2. The PoA+ is identical for both lazy 
and proactive voters. As can be inferred from the table, the PoA+ is low, meaning that in 
most cases, the plurality winner was the winner.

To conclude, it is interesting to note that although the convergence ratio is equal for both 
voter types, the required number of vote changes is higher for the proactive, rather than 
lazy, voters. Furthermore, the additive price of anarchy is equal for proactive and lazy vot-
ers. We thus did not see any reason to continue with the proactive voters, who seem to be 
inferior to the lazy voters. Therefore, when designing the bots in user studies (in the next 
section and in Gvirts and Dery [16]), only the lazy voter architecture is used.

Fig. 1   Voting process convergence ratio—Courses-2004 (left) and T-shirt (right) data sets. On the x-axis 
is the time � that the process begins; on the y-axis, the ratio of games that converged in that time, out of all 
experiments in the same sub-class (the sub-class of experiments are all experiments from a data set with the 
same number of voters and the same �)

Table 5   Process convergence times: The minimum deadline time t which is necessary for all experiments 
to converge. The times are identical for both proactive and lazy voters. Each column represents a different 
number of voters, and each row a different data set. The number of candidates in the data set is indicated 
in brackets. For example, for the Courses 2004 data set (row 2), for 10 voters (column 1), all of the experi-
ments converged when the deadline � ≥ 6

Data set ⇓ ∖ ⇒ Number of voters 10 20 30

Uniform5 (5) 7 16 23
Uniform6 (6) 8 16 24
Uniform7 (7) 8 16 24
Uniform8 (8) 8 16 25
Courses 2004 (7) 6 13 19
Courses 2003 (8) 7 14 23
Sushi (10) 8 14 24
T-Shirts (11) 8 14 23
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6 � CUD user study

The purpose of the user study was to examine whether human voters play in a rational 
manner (more on our specific definition of the term “rational” below). We built a game, 
called the CUD game which follows our CUD model structure. The game was played by 
students as well as rational bots that were programmed according to the lazy bot behavior 
described in Sect. 3. We herein describe the game and the data collection method, and ana-
lyze the results.

6.1 � CUD‑game flow

The framework contains 2 modules: 

1.	 The CUD-Game4: a web-based interactive multi-player decision game designed to facili-
tate an iterative group decision process. The game was implemented as a Java server-
client system with an online multilingual HTML with Javascript interface. All voter’s 
actions were collected and saved to a MySQL database. The game used a full-duplex 
asynchronous communication (Websocket protocol), to enable a fully interactive game 
between all voters.

2.	 The CUD-Runner5 : a standalone Java application that received the data collected by 
CUD-Game runs, and allowed us to simulate and analyze the games.

Table 6   Number of vote changes: the average and standard deviation of the number of vote changes 
required to reach a consensus

Data set 10 Voters 20 Voters

Lazy Proactive Lazy Proactive

Uniform5 5.06 ± 2.95 5.15 ± 3.02 10.74 ± 6.02 10.83 ± 6.1

Courses 2003 4.98 ± 2.45 6.46 ± 3.54 11.31 ± 5.45 13.09 ± 6.72

Courses 2004 3.55 ± 2.05 5.73 ± 3.78 7.5 ± 4.15 11.19 ± 7.04

Sushi 5.71 ± 2.9 6.75 ± 3.7 11.11 ± 6.32 12.42 ± 7.31

T-shirts 5.66 ± 2.5 6.91 ± 3.45 12.38 ± 5.97 13.76 ± 6.93

Data set 30 Voters

Lazy Proactive

Uniform5 19.46 ± 7.6 19.49± 7.63
Courses 2003 18.7 ± 6.7 21.17 ± 8.22

Courses 2004 11.98 ± 6.37 17.13 ± 10.25

Sushi 18.61 ± 8.14 20.71 ± 9.52

T-shirts 18.74 ± 9.43 20.43 ± 10.6

5  https://github.com/DavidBenYosef/CUDRunner.

4  https://github.com/DavidBenYosef/CUDGame.
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The CUD-Game proceeds as follows: first, the game is activated at an agreed time, so 
that all voters will play at the same time (while the game is off, the voters are not able 
to log-in, and they receive an appropriate message). Once the game is on, the users are 
required to confirm their participation in the research. Next, each voter logs-in with a name 
and an identification number, and waits for the other voters to join the game. The game 
begins once the predefined number of voters is reached. When the number of logged voters 
exceeds the number of voters for a game, other games begin simultaneously and indepen-
dently. At the beginning of the game, each voter receives a predefined preference profile 
chosen uniformly at random. The highest preference for each voter is selected automati-
cally and the current result is shown (Fig. 2).

On each round, each voter decides whether to change her current selection. Voters that 
want to change their selection do so by selecting another alternative. The voters are required 
to reply within a fixed time-span (usually set to 15 seconds). Next, the system randomly 
selects one of the voters who applied for a ballot change and computes the new intermedi-
ate results. The round ends. The system checks whether the deadline has been reached and 
whether a consensus has been reached. When the answer to both of these questions is nega-
tive, a new round begins with the display of the current ballots. The participants are aware 
at all times of the number of remaining rounds. If no consensus is reached by the deadline, 
all voters receive 0 points. When a consensus is reached, each voter receives a score cor-
responding to the chosen preference (Fig. 3).

6.2 � Reward method

One of the fundamental requirements from the CUD-Game is that no consensus is the 
worst option for all voters, and that there will be no reward if consensus is not reached. 
This is the reason why we decided to avoid using the Amazon Turk platform as done 
by e.g. [29, 36, 38, 50] and many others, since this platform requires paying the players 
for logging in, regardless of their performance. In particular, in spite of the common 

Table 7   The average and standard deviations of the upper bounds for the additive price of anarchy for 10 
voters for different initial � (time until the deadline). The PoA+ is identical for both lazy and proactive voters

Time until the 
deadline

Uniform5 Courses 2003 Courses 2004 Sushi T-Shirts

2 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

3 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

4 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

5 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

6 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

7 0.1 ± 0.3 0.15 ± 0.36 0.05 ± 0.22 0 ± 0 0.15 ± 0.36

8 0.85 ± 0.74 0.4 ± 0.59 0.05 ± 0.22 0.15 ± 0.48 0.55 ± 0.81

9 1 ± 0.91 0.7 ± 1.02 0.05 ± 0.22 0.45 ± 1.04 0.65 ± 0.86

10 1 ± 0.91 0.7 ± 1.02 0.05 ± 0.22 0.45 ± 1.04 0.65 ± 0.86

11 1 ± 0.91 0.7 ± 1.02 0.05 ± 0.22 0.45 ± 1.04 0.65 ± 0.86
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measures [30],  [36] faced “ghost” players that played only for the “show-up payment” 
(that was given to lab participants and players on the Amazon Turk platform) and thus 
introduced much noise into the collected data. In our research, we defined the term of 
game points to represent an abstract reward layer. In each game, the voter had the option 
to gain between 0 to 100 game points, e.g., when there are 5 candidates, the score if the 
first preference is selected is 100 game points, the score for the second preference is 80 
game points, and so on, so that the score of the least-preferred candidate is 20 game 
points. If there is no consensus by the deadline, the voter receives 0 game points. For 
example, if a certain candidate is chosen, and a voter has this candidate ranked as her 
second preference, then she will receive 80 points for this game.

The score for each voter is collected and saved, and can be converted and paid in 
any relevant method later on. In our user-study we had undergraduate students play the 
game, and the scores were converted to course bonus points (200 game points were 
equivalent to 1 bonus point). Students could earn up to a total of five bonus points, 
that were added to their course grade. Thus, a student that received a grade of 95 in the 
course, and earned four bonus points, received 99 as a final grade. A student that earned 
five bonus points and received 88 in the course, received 93 as the final grade. Students 
had a high incentive to participate in the game, but participation was not obligatory; a 
student could receive a perfect score (100) in the course simply by completing all oblig-
atory course work and receiving a perfect score (100) in the final exam.

Our study received ethical approval of the institutional review board of Ariel Uni-
versity, Israel. The review board explicitly investigated the question of enforcement vs. 
incentivization. They agreed that our scheme is of positive incentivization rather than 
negative enforcement.

Fig. 2   The screen at the beginning of the game. The voter’s highest preference (the cat with the glasses) is 
selected automatically
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6.3 � Irrational voters

In our context, rational behavior is the tendency to conform to the group by voting for 
a candidate that was chosen by the majority of the group. In contrast to this rational 
behavior, irrational behaviors are actions that do not promote consensus-building. We 
followed the two types of irrational voting defined by [16]:

Definition 4  Opposing alignment (OA): a voter who opts to change her vote to a candidate 
cj ∈ C that she ranks lower than cmaj , the candidate with the current highest score. Namely, 
the voter prefers cmaj over cj , but still would like to vote for cj.

Consider the player in Fig. 4. An OA action would be to vote for one of the cards 
that has a lower value than the penguin (values 40 or 20). If the voter realized that her 
current selection will not win, and decided to change her selection, she should at least 
change to cmaj and not to a less preferred candidate.

Definition 5  Inappropriate alignment (IA): a voter who opts to change her vote to a candi-
date cj ∈ C , when there are other candidates that the voter prefers over cj , and furthermore 
have a score that is higher than the score of cj . Namely, the voter opts to change her vote for 
a less preferred candidate with fewer votes.

Returning to the player in Fig. 4, the candidate preferred by most players is the pen-
guin. This card has a value of 60 for player 3. An IA action would be to vote for the 
racoon which has a higher value (80) for him/her. This behavior is irrational, since there 

Fig. 3   An example of a screen at a possible end of the game. In this example, a consensus was reached; all 
voters agreed on the cat with glasses
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is no reason to change to a less preferred candidate, if this candidate also has a lower 
score.

6.4 � Data collection and metrics

Games consisted of eight voters each. We set a limit for the number of games per voter to 
15 games, so that the voters would remain motivated to play and “fight” for every point. 
In an initial experiment (omitted from this paper for lack of interest), we found that when 
the number of games in unlimited, voters have no incentive to play. Instead, in games in 
which a player perceived the setting as unfavorable, he/she preferred to wait, knowing that 
at some stage other games with better setting will be played.

A total of 72 students played a total of 264 games: 144 mixed games with two bots 
and six students, of which 137 converged, and 120 games with no bots, of which 105 con-
verged. Note that the students had no idea whether they were playing against other students 
or against bots.

We also ran a set of bot-only games, eight bots per game. A total of 10000 bots played 
1250 games. As expected, all of the games converged.

We found no significant difference in the number of irrational actions performed in 
the  first two games of each student vs. later games. We thus concluded that the irrational 
actions are not due to misunderstandings. We compared between games with irrational 
actions (OA or IA) and games without irrational actions (rational games). We defined irra-
tional games as games where at least one irrational action was performed, and rational 
games as games where no irrational actions were performed. We examined all the data 
collected in the case studies: students only games, mixed games of students and bots, and 
bot-only games.

We examined:

–	 Convergence percentage
–	  Average reward points - how do the users’ actions affect the average reward points 

received in a game?
–	 The price of Reality  (PoR) - the CUD-Game is played by real voters that are not nec-

essarily rational. The voters might decide to agree on choosing the worst option, and 
thus each game has a potential to reach the highest possible PoA+ . Furthermore, each 
game is played only once (and defiantly not 30, 000 times as in the simulated experi-
ments). Thus, we cannot measure PoA+ , and we dubb what is actually measured as “the 
Price of Reality” – PoR. PoR is defined as the score of the outcome of the CUD-Game 
subtracted from the score of the truthful winner.

Fig. 4   The voter’s options. The 
voter has previously voted for the 
blue card with the boar on it. The 
voter can choose if to stay with 
this choice, or vote for one of the 
other cards. The yellow card with 
the penguin currntly has the most 
votes - four votes (Color figure 
online)
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–	 Convergence time - how do user (and bot) actions affect the time it takes the game to 
converge?

6.5 � Game results

In order to determine whether our results obtain a statistically significant difference with 
respect to the four different phases and with respect to the game state (rational or irra-
tional), we performed a two-way ANOVA analysis. All results were found to be signifi-
cantly different with pvalue < 0.05.

Figure 5 shows the influence of irrational actions on the convergence of the games. Axis 
y displays the percentage of converged games out of all games. As expected, we see that 
irrational actions lower the chances to reach an agreement by 10% − 15% . We also see that 
bot-only games always converge, and that mixed games converge in higher percentages 
than student-only games, since less voters can play irrational actions (98% for mixed games 
with rational actions only and 88% for mixed games with irrational actions, 89% for stu-
dent games with rational actions only and 82% for student games with irrational actions).

Next, we examined whether a high convergence percentage necessarily results in a 
higher satisfaction, as theoretically a few converged game with high average reward might 
produce higher satisfaction than many converged games with low average reward.

Figure 6 shows the global satisfaction factor, i.e., the average reward points per game. 
We notice a full correlation with the convergence percentage (Fig. 5); we see a consistent 
decrease in the satisfaction factor in games with irrational votes. This is to be expected 
since when a voter plays irrationally, she plays against her interests, and more games do not 
converge, resulting in a decrease in satisfaction.

Our most important finding is found here: we see that the global satisfaction increases 
in mixed games (bots and student), and reaches its highest value in bot-only games. In 
other words, bots are better than student players, even if they are rational student play-
ers. Bots in a game (a student-bot game or a bot-only game) increase convergence per-
centage and increase the satisfaction of all voters, bots and students alike.

Note that bots outperform student players in rational games on both metric: bots con-
verge faster and receive higher rewards. Although students in rational games do not per-
form any irrational moves, they still might decline to change their vote when needed and 
in this way block convergence. We did not log such declinations as irrational. We leave 
it for future research to study when such actions occur.

Next, we examined the PoR and the convergence time factors between converged games 
with rational actions and converged games with irrational actions. We avoided comparing 
games that ended with a default alternative, as the factors for these games are not defined. 
Since we have one winner for each game, we did not compute an approximation to the 
additive price of anarchy (as in Sect. 5). Rather, we computed the score of the plurality 
winner in the truthful profile minus the score of the final winner in the game.

Figure 7 presents the comparison of the average PoR factor for rational and irrational 
games that converged. The PoR factor represents the distance between the truthful majority 
winner and the actual unanimity winner. We see that irrational actions cause a higher PoR, 
since irrational voters play against their interests and may sometimes become the deciding 
factor, resulting in a consensus which is not the majority winner. We also identify a big 
influence of irrational actions in the mixed games. After further investigation, we identi-
fied that when playing with irrational students, bots reached a higher average score. We 
conclude that bots manage to “recover” from irrational actions better than students do, and 
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to reach the best possible option considering the new situation. Interestingly, we see that 
the PoR of bot-only games is higher than the PoR of games with rational students. In fact, 
a high PoR joint with a global satisfaction improvement is an indication of good strategic 
moves. Bots strategies change the majority winner to some other candidate, leading to an 
improvement in the global satisfaction.

Figure  8 demonstrates the comparison of the convergence time factor for rational and 
irrational games. The convergence time is the number of rounds the game took to converge. 
Convergence time 10 is the slowest, and it means the game converged only on the last round. 
We see that irrational actions cause the games to converge slower, as all other voters need 
to adapt their logic to the unexpected results. Bot-only games converge the slowest, as bot 

Fig. 5   The influence of irrational actions on the convergence of the games according to game type (Stu-
dents only, Mixed students and bots or bots only) for games with only rational actions and games that 
include irrational actions. Axis y displays the percentage of converged games out of all games

Fig. 6   Average reward points comparison according to game type (Students only, Mixed students and bots 
or bots only) for games with only rational actions and games that include irrational actions. Bots are better 
than student players, even if they are rational student players
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logic makes them converge only when necessary. As reported in Fig. 5, bots always con-
verge. Students do not always converge, but Fig. 8 shows that when they do converge - they 
do it faster than bots. Further research is required to determine why this is. Perhaps students 
converge faster since they are proactive, in contrary to the lazy bots. Maybe students are 
afraid of losing all the game points, so they prefer not to wait until the last round or may vote 
for a candidate with the largest number of votes (but with a smaller utility).

Conclusion: Perhaps the bots’ main weakness is that they operate under the assumption 
that all other voters (who are also bots) have the same logic. However, students do not hold 
the same assumption about other students. Games played by students converge faster since 
students are concerned that the game will not converge and end with the default alterna-
tive (the worst option for all involved), so they prefer not to wait until the last round. For 
the same reason, a single student playing against bots can manipulate them and change the 
outcome in her favor, meaning that the result is not necessarily the option preferred by the 
majority. However, bots have a big advantage - they increase the convergence percentage 
and increase the satisfaction of all voters, bots and students alike.

7 � Discussion

We present a novel model for an iterative voting process with a restricted number of iter-
ations—Consensus Under a Deadline (CUD). We chose the sequential vote modification 
process because it is motivated by real-life scenarios (such as the school registration prob-
lem discussed in Sect. 1), and also since this is a widespread assumption in the iterative 
voting literature.

After studying the theoretical features of the CUD we find that when there are candi-
dates whose lack of votes is smaller than the time until the deadline (there is enough time 
so that voters can switch their votes to this alternative), then the CUD converges with one 
of these candidates as a winner. Moreover, if there is a candidate for whom at least half of 
the voters voted, then the CUD converges with one of these candidates as a winner.

Fig. 7   Average PoR according to game type (Students only, Mixed students and bots or bots only) for 
games that converged with only rational actions and games that included irrational actions
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Obviously not all individuals behave identically. We define two types of voters, proac-
tive and lazy. Proactive voters are, in a sense, trigger-happy to change their vote, even if 
just to ensure that their preferred possible winner gets one more point. Lazy voters change 
their votes only when it is necessary to do so, i.e., when their vote is pivotal to keeping a 
particular alternative as a possible winner. Though it is natural to see proactive voters as 
those that actively seek consensus, they reap no benefit from their activism. Specifically, 
convergence time of both proactive and lazy voter CUDs are the same. On the other hand, 
as our experiments show, the number of vote changes until convergence is higher for proac-
tive voters. In a way, they are inefficient in their behavior.

Theoretical results show PoA+ principal bounds, but yield no specific trade-offs. Hence, 
our experiments also took a deeper look into additive Price of Anarchy as a measure of 
winner quality. While re-confirming PoA+ bounds experimentally, our experiments indi-
cate that there is no difference between the PoA+ of lazy and proactive voters. Thus, when 
designing voter bots, we designed them according to lazy voter behavior.

As a result of this study, bots that follow the theoretical model in Sect.  3 have been 
implemented in a CUD-Game, a game developed in order to collect and analyze human 
behavior in consensus reaching scenarios with a tight deadline [57]. The CUD-Game was 
also used to study consensus reaching in students with Alexithymia [16].

In the CUD-Game we implemented voter bots, which follow the theoretical model in 
Sect. 3, and compared it with data collected in a user study. We used the CUD-Game to 
run a user study and examine how students reach an agreement, i.e., a consensus, within 
a tight deadline. The game enabled us to compare the students’ behavior to rational (lazy) 
bot behavior.

The results of decisions made only by bots, seem to have higher quality than when 
humans reach decisions. A reasonable conclusion is that when we want to know that a 
decision will converge, and that all voters will be as satisfied as possible with the result, 
then it is best for users to leave bots to reach a decision on their behalf. A user can notify 
her personal bot of her preferences, and let the bot represent her in the decision making 

Fig. 8   The comparison of the convergence time factor according to game type (Students only, Mixed stu-
dents and bots or bots only) for games with only rational actions and games that include irrational actions. 
The convergence time is the number of rounds the game took to converge. Convergence time 10 is the slow-
est, and it means the game converged only on the last round
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process. Our results coincide with [37] who study interaction via agents, concluding that 
agents lead to fairer results.

Bots are playing ever-larger roles in our daily lives. We rely on them for navigation 
directions (e.g., Google Maps or Waze), we rely on them for information retrieval (e.g., any 
search engine), and we may one day rely on them when attempting to reach a group deci-
sion. This research is a step in that direction.

Future work: One challenging extension is to adapt our model to use general Positional 
Scoring Rules (PSRs),  e.g., veto, approval, and Borda, rather than simple Majority. These 
rules would allow us to express more complex semantic structures over the set of alterna-
tives, even if we stay with the committee example. For instance, committee members may 
need to decide on a candidate and the pay grade. Some members may vote for a particu-
lar candidate, but veto a higher pay-grade, if they believe the candidate is not ready for a 
higher rank. At the same time, other committee members may be indifferent between two 
reasonable candidates. In these cases, veto and approval voting are more appropriate than 
Majority.

Stepping even further away from our basic model, we need to investigate what infor-
mation about the current vote affects a CUD’s outcome, and in what way. For example, 
rather than using utilities that depend on an anonymous score vector, we can use weights to 
express the fact that the opinion of certain voters is more influential. The same technique 
would allow us to impose a price on the number of times a voter changes her ballot, e.g., 
her vote loses influence, being unstable. Simultaneous re-voting would be another research 
direction, entailing very non-trivial modifications.

We must also note a possibility to introduce a more global change in how we view a vot-
er’s strategic behavior. Specifically, while we have justifiably, to an extent, assumed voter’s 
ballot change to be myopic, higher cognitive hierarchies have drawn the recent attention 
of other researchers. We consider this to be an important issue to pursue among the exten-
sions of our work, i.e., consider ballot selection that takes into account the contemporane-
ous reasoning of other voters.

Finally, there are additional methods to measure the quality of an agreement point. 
While in this paper we chose to concentrate on Additive Price of Anarchy, various meas-
ures of social welfare are also popular in the voting literature, and we intend to pursue them 
as well.

Of particular note is a possibility raised by one of our reviewers. Namely, that the vote 
aggregation function on which the deadline-limited protocol is based can be different from 
the aggregation that underpins the quality measurement of the agreement point.6 This can 
arise, for instance, as a result of an external practical limitation during system deployment. 
In this case, the quality of the agreement point achieved by the protocol should be inter-
preted as a more general approximation: an approximation of the desired voting aggrega-
tion by the protocol that can be deployed in practice. An intriguing facet of this idea is that 
it can be viewed as an attempt to approximate vote aggregation that is based on private 
evaluations of (rewards from) various options by voters. This is in sharp contrast to the 
standard approach that focuses on performance measures based on disclosed information. 
E.g., using the standard approach, we define PoA+ in terms of candidate scoring, i.e., infor-
mation that is explicitly disclosed by voters.

6  There are precious few works that already do so, such as [52], and the standard approach is to keep both 
protocol and evaluation aggregations the same.
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As for our developed framework, we hope to accommodate real-life decisions instead 
of games. Hopefully, voters will be able to set their preferences for real decisions that they 
care about, and then use the system to find a consensus. Lastly, it would be interesting to 
investigate and develop bots who change their strategies depending on whether other voters 
are humans or bots.

A proofs of theorems, lemmata and formal statements

Theorem  1  In any CUD(FIMaj
�

, �) with � ∈ (
n

2
, n] and consistent utility functions, either 

the default alternative is set at t = 0 , or a valid alternative becomes the winner at time 
t ∈ [0 ∶ �].

Proof  Proof of Theorem 1.
First, we prove by contradiction that if there are possible winners at the beginning of the 

process, then the process converges with some valid alternative as a winner. This implies 
that at stage � the set of possible winners is not empty, nor is it empty at the final stage 0, 
since there is a winner. Suppose that it does not hold: the process does not converge, even 
if there were possible winners at the beginning. In other words, at the final step t = 0 the 
set of possible winners is empty, although at the initial step t = � it is not empty. This can 
happen if, at some time step between the beginning at t = � and the end at t = 0 , the set of 
possible winners becomes empty (including the time step t = 0 ). Consider the time step �′ , 
such that for all 𝜏′′ > 𝜏′ the set of possible winners is not empty, while for �′ it is empty.

Consider the preceding iteration of our game protocol, i.e., the time step �� + 1 . There 
are two possible scenarios: (i) no voter changes the vote, and (ii) some voter changes the 
vote.

First, we assume that at the time step �� + 1 there are no voters who wish to change their 
votes. Since at �� + 1 the set of possible winners is not empty, for all the voters the utility is 
not zero under the current strategy. Since their utility at time �� + 1 reflects the outcome of 
time �′ , the set of possible winners could not become empty at time step �′.

Second, if the second scenario has occurred, at the time step �� + 1 there are some voters 
who do change their vote. The only reason for a voter to change her vote is to improve her util-
ity by switching away from an alternative that is either no longer in the set of possible winners, 
or will be removed from the set at the next time-slice. Such a switch, however, necessitates that 
the voter’s newly chosen alternative remains in the set of possible winners at the next time-
slice. Otherwise, the voter’s utility from this new choice would not be positive, and no decision 
switch would occur. In particular, this implies that the set of possible winners is not empty. 
The obtained contradiction proves that if the set of possible winners is not empty at � , it cannot 
become empty at 0, therefore there is a valid alternative that is declared as a winner.

What remains is to show consistency of our protocol, i.e., that if at the time step � the 
set of possible winners is empty, it must be empty at the time step 0 as well. Denote c ∈ C+ 
an alternative that at time step � has the maximum score sc among all other alternatives. 
Since the set of possible winners is empty at the time step � , it implies that � − sc ≥ � + 1 . 
Even if at each step until the deadline there will be a voter that changes her vote for this 
alternative c, at time 0 this alternative will have obtained only � more votes. As a result, 
the score of the alternative c at time step 0 can be at most sc + � , which would imply that 
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� − sc − � ≥ 1 and c ∉ Ŵ(�, 0) . As the score of c is maximal possible at time t = � , the 
same holds for all other alternatives. Hence, no alternative is a member of Ŵ(�, 0)—it is 
empty.

Lemma 1  Let  c ∉ Ŵ at step t, then c ∉ Ŵ at any step t′ < t.

Proof  Proof of Lemma 1.
Given that st

c
< 𝜎 − t and at each step the candidate c can get at most one vote, then 

st
�

c
< st

c
+ (t − t�) < 𝜎 − t + (t − t�) = 𝜎 − t� for any t′ < t . Therefore, c ∉ Ŵ at step t′.

Lemma 2  If  st+1
c

< st
c
 , then c ∈ Ŵ(st, t).

Proof  Proof of Lemma 2.
Given that st+1

c
< st

c
 , there exists a voter, i, who changed her vote in favor of c at time 

step t. Let c′ denote a candidate that she voted for at the preceding time step t + 1 , and let us 
assume that the lemma’s conclusion does not hold. That is, let us assume that c ∉ Ŵ(st, t).

Notice that, except c, no candidate increased his score from the time step t + 1 to the 
time step t. This is because only one voter was given the chance to change her vote, and 
thus st = st+1 − c� + c . As a result, �W(st+1, t) ⊇ �W(st, t) . Therefore, either (but not both) of 
the following holds:

–	 ai(���i(Ŵ(st+1, t)), ���i(Ŵ(st, t)))

–	 ���i(Ŵ(st+1, t)) = ���i(Ŵ(st, t)).

A voter changes her vote only if it increases her utility, and conditions above indicate that a 
lazy voter’s utility (Definition 1) will not change between st+1 and st . Thus, voter i can not 
be a lazy voter.

Now, combining the fact that st = st+1 − c� + c with our attempt to assume that 
c ∉ Ŵ(st, t) , we conclude that no candidate in the set Ŵ(st, t) has a score higher that he has 
in st+1 . More formally, ∀ĉ ∈ Ŵ(st, t), st

ĉ
≤ st+1

ĉ
 . As a result, switching from c′ to c would 

not have been the preferred move of a proactive voter (Definition 2), as it does not change 
the utility of the set of possible outcomes.

We conclude that if the set of voters consists of lazy and/or proactive voters, then the 
assumption c ∉ Ŵ(st, t) leads to a contradiction of no voter having an incentive to change 
her vote. Thus, c ∈ Ŵ(st, t) must hold.

Lemma 3  If a voter j at the time step t votes for candidate c ∈ Ŵ(st, t) , then 
c = ���i(Ŵ(st, t)).

Proof  Proof of Lemma 3.
First notice that all voters initially vote for their top choice, thus the lemma’s conclusion 

holds for t = � . However, let us assume, to the contrary, that the lemma does not hold in 
general. In particular, it would imply that there is a time step t such that for any t′ > t (i.e., 
preceding steps) the statement of the lemma is fulfilled, and at step t there is a voter j such 
that: (i) she votes for c ∈ Ŵ(st, t) ; (ii) there is a candidate c′ ≻j c in the set Ŵ(st, t).

Lemma 1 implies that �W(st, t) ⊆ �W(st+1, t + 1). If voter j did not change her vote 
at time t, then by maximality of t holds c = ���i ∈ Ŵ(st+1, t + 1) and it implies that 
c = ���i ∈ Ŵ(st, t) , which we assumed not to hold. Thus, j must have changed her vote 
at time step t. However, since there is c′ ≻j c in the set Ŵ(st, t) , both lazy and proactive 
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consistent utility (see Definitions 1, 2) from c is lower than it is from c′ at time step t, which 
contradicts optimality of choice in voting decisions (see Game Protocol 1, line 8).

Lemma 4  If there is a voter that changes her ballot at time t from voting for c to voting for 
c′ , then st+1

c
≤ st+1

c�
.

Proof  Proof of Lemma 4.
Let us assume the opposite to the lemma’s conclusion, that is st+1

c
> st+1

c�
 and conse-

quently, st+1
c

≥ st+1
c�

+ 1 = st
c�
 . As a result, according to Lemma 2, c� ∈ Ŵ(st, t) . How-

ever, since st
c′
 is sufficient to become a possible winner at time t and st+1

c
≥ st

c�
 , holds that 

c ∈ Ŵ(st+1, t) . Note that, according to Lemma 1, the above implies that c, c� ∈ Ŵ(st+1, t + 1)

.
Now, Lemma 3 implies that if a voter votes for a candidate in the set Ŵ(st+1, t + 1) , then 

she prefers this candidate over all other possible winners. Therefore, similarly to the proof 
of Lemma 2, neither a lazy nor a proactive voter would change their votes. The obtained 
contradiction proves the lemma.

Corollary 1  Let � = (a1,… , an) be the truthful profile, let � be the deadline time, and let � 
be the ballot profile induced by � , i.e., bi = ���i(C) . CUD stops with some w ∈ C+ if and 
only if there is an alternative c ∈ C+ so that ��c(�) ≥ � − �.

Proof  Proof of corollary 1.
First, let us assume the right-hand side of the “if and only if” statement, and show that 

CUD stops with a non-default alternative. The condition ��c(�) ≥ � − � implies that c is 
a possible winner by the definition of Ŵ(�, �) . Thus, at time step t = � the set of possible 
winners contains at least one alternative. As a result, by Theorem 1, the process converges 
with some (non-default) alternative chosen as the winner.

Now, let us deal with the opposite direction of the Theorem’s implication. Let CUD stop 
with some w ∈ C+ . Then this candidate w achieved � votes in no more than � steps. At each 
step he could get 1 vote at most, that is, he achieved no more than � votes. Thus, for the 
initial score of w it must hold that ��w(�) ≥ � − �.

Theorem 2  Let � = (a1,… , an) be the truthful profile, let � be the deadline time, and let � 
be the ballot profile induced by � , i.e., bi = ���i(C) ). If there is an alternative c ∈ C+ so 
that ��c(�) ≥ max

{⌊
n

2

⌋
+ 1, � − �

}
 then CUD terminates with c as the winner.

Proof  Proof of Theorem 2.
Note that at any step such that all voters whose top-choice is candidate c, vote for c, for 

any other candidate it is true that st
c�
≤ n − st

c
≤

⌊
n

2

⌋
 and st

c�
≤ st

c
− 1.

Thus, if CUD terminates with a winner other than c, it implies that c loses some votes of 
those whose top-choice is c.

Consider t such that for every t′ ≥ t all voters whose top-choice is c vote for c and at 
step t one of them changes her vote to c′ . Thus, given that no one of them has changed their 
vote before, st

c′
< st

c
 which contradicts Lemma 4. That is, there is no such t.

Therefore, candidate c retains the same number of votes, ���
c
 , until step 0, which implies 

that at that last step he has more votes than any other candidate.
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Theorem 3  Let � be the truthful profile of voters participating in a CUD. Assuming that it 
is well-defined for the CUD instance, the following bounds can be placed on the additive 
Price of Anarchy, PoA+ , depending on the ratio of the deadline timeout � and the number 
of voters n: 

1.	 If � ≤ � −
⌊
n

2

⌋
 , then 

2.	 If 𝜎 −
⌊
n

2

⌋
< 𝜏 < 𝜎 , then 

3.	 If � ≥ � , then 

Proof  Proof of Theorem 3.
Case when � ≤ � −

⌊
n

2

⌋
.

Note that, even if at each step every voter would change her vote in favour of the same 
alternative c, this alternative c would get no more than � points.

Note that, there can be at most two alternatives with score 
⌊
n

2

⌋
 . If c is the only one, then 

he is the winner, hence PoA+(�) = 0 . Suppose there are two such alternatives: w and c. 
If they have equal scores at � : s�

w
= s�

c
=
⌊
n

2

⌋
 , then, whoever wins, PoA+(�) = 0 . Another 

possibility is that there are two such alternatives, w and c, such that w has more points, i.e., 
s�
w
= s�

c
+ 1 , and all other alternatives have 0 points. Alternative c would win only if every 

supporter of w would change to c, which would take all � stages. But, from those who ini-
tially voted for w, no voter would change her vote to c, since they are better off by keeping 
their votes for w. Hence, w will win, and consequently, PoA+(�) = 0.

Case when 𝜎 −
⌊
n

2

⌋
< 𝜏 < 𝜎

Let � denote the plurality winner at the time step t = � and c denote the winner at the 
time step t = 0 , and let us assume the contrary to the Theorem, i.e., PoA+(�) >

⌊
n

2

⌋
+ 𝜏 − 𝜎 . 

In particular, it would mean that � ≠ c and

s�
c
+ � ≥ � ⇔ s�

c
≥ � − � ≥

⌊n
2

⌋
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In � steps candidate c obtains at most � votes and becomes a winner, that is s�
c
+ � ≥ � . 

Therefore, s�
c
≥ � − � . Combining this with Eq. 4, we obtain:

Thus, s𝜏
𝜔
>
⌊
n

2

⌋
 and, consequently, s�

�
≥

⌊
n

2

⌋
+ 1 . However, according to Theorem 2, this 

means that � is the declared winner of the CUD at time step t = 0 . Which contradicts key 
part of our assumption: c ≠ � . We thus must conclude that PoA+(�) ≤

⌊
n

2

⌋
+ � − � , as is 

per the Theorem.
Case  � ≥ �.
Notice again that if PoA+ ≠ 0 then the winner at the time step t = � (denoted by � ) and 

the winner at the time step t = 0 (denoted by c) must be different. Now, Theorem 2 implies 
that at the time step t = � the truthful profile winner, � , can have at most 

⌊
n

2

⌋
 votes, other-

wise it must be the winner at the time step t = 0 as well.
At the same time, it must be that s�

c
≥ 1 . Otherwise, no voter would be able to switch to 

c at any time, as there will be at least one other candidate with a higher score than c (the 
current winner) and, thus, Lemma  4 would prevent the switch. Since possible winners 
never lose votes, but only gain them, which means that the score of c will never drop to 
zero either. Thus, PoA+(a) ≤

⌊
n

2

⌋
− 1 , as required.

Lemma 5  The last two bounds in Theorem 3 are tight. For all � and n that satisfy the con-
ditions of Eqs. 2 and 3, there exists a truthful profile � such that the corresponding bound 
holds as an equality.

Proof  Proof of Lemma 5.
Table 8 provides an example of a voting profile that proves that the bounds in Case 2 

( 𝜎 −
⌊
n

2

⌋
< 𝜏 < 𝜎 ) of Theorem 3 are tight. All voters are grouped into 3 Blocks. Voters in 

Block-1 prefer the candidate c over c1 and over all other candidates; voters in Block-2 pre-
fer candidate � over c and over all other candidates; finally, each voter in Block-3 prefers 
some distinct candidate (but not � ) over c and over all other candidates. We assume that 
there are � − � voters in Block-1, 

⌊
n

2

⌋
 voters in Block-2, and the rest of the voters are in 

Block-3. It is assumed that � − � ≥ 2 , so, there are at least 2 voters in Block-1.

Notice that we can indeed construct such a preference profile given that 𝜎 −
⌊
n

2

⌋
< 𝜏 , 

that is, 𝜎 − 𝜏 <
⌊
n

2

⌋
 . In particular, the size of Block-3 is k = n −

⌊
n

2

⌋
− � + � , and, there-

fore, every candidate from {c1, c2, ...ck} appears as a top-choice only once.
We assume that � − � ≥ 2 and n is odd. Then, Ŵ(s� , �) = {c,w} . Thus, at any time 

step prior to � −
⌊
n

2

⌋
 voters from the Block-3 will want to change their vote to c, since 

they currently vote for a candidate outside the set of possible winner Ŵ  and for all of 
these voters c ≻ w . No candidate from Block-1 or Block-2 will want to change their 
votes during that time.

(4)s𝜏
𝜔
− s𝜏

c
>
⌊
n

2

⌋
+ 𝜏 − 𝜎

s𝜏
𝜔
>
⌊
n

2

⌋
+ 𝜏 − 𝜎 + s𝜏

c
≥

⌊
n

2

⌋
+ 𝜏 − 𝜎 + 𝜎 − 𝜏 =

⌊
n

2

⌋



	 Autonomous Agents and Multi-Agent Systems (2021) 35:9

1 3

9  Page 34 of 42

As a result, for t =
⌊
n

2

⌋
− � + � holds st

c
= st

w
=
⌊
n

2

⌋
 . After this step all voters from 

Block 1 and all except one from Block 3 vote for c, and all the voters from Block 2 vote 
for w. At the next step, t − 1 , all the voters will want to change their vote since the set of 
possible winners Ŵ(st−1, t − 1) can only contain candidates with 

⌊
n

2

⌋
+ 1 votes.

Ties among voters who wish to change their vote are broken randomly, and with 
probability ⌊

n

2
⌋+1
n

 a voter will be chosen who will change her vote to c. This will make c 
the only possible winner, which, more formally, means that Ŵ(s⌊

n

2
⌋−�+�−1,⌊

n

2

⌋
− � + � − 1) = {c} . Hence, c will be the winner of the entire election process, the 

final winner. Given that c and w are the only possible winners, and w is a Plurality winner 
at time � , PoA+ =

⌊
n

2

⌋
− � + �.

Table 9 provides an example of a voting profile that proves that the bounds in the Case 3 
( � ≥ � ) of Theorem 3 are tight.

Once again, all voters are grouped into three blocks. Voters of Block-1 prefer candidate 
� over c and over all other candidates; Block-2 voters prefer candidate c over c1 and over all 
other candidates; each voter in Block-3 prefers some distinct candidate (but not � ) over 
candidate c and other candidates. Let there be 

⌊
n

2

⌋
 voters in Block-1, a single voter in Block-

2, and the rest of the voters grouped into Block-3. We will assume that n is odd, so that the 
number of voters in Block-3 is k =

⌊
n

2

⌋
.

Table 8   Proof of Lemma 5: 
voters’ preferences

Block 1 Block 2 Block 3

(� − � voters) (
⌊
n

2

⌋
 voters) (The rest of the 

voters)

c c ... c w w ... w c
1

c
2

... c
k

c
1

c
1

... c
1

c c ... c c c ... c
All other candidates in 

any order
All other candidates in 

any order
All other can-

didates in any 
order

Table 9   Proof of Lemma 5: 
voters’ preferences – point of ref

Block 1 Block 2 Block 3

(
⌊
n

2

⌋
 voters) (1 voter) (The rest of the voters)

w w ... w c c
1

c
2

... c
k

c c ... c c
1

c c ... c
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Now, notice that at the time step t = � − 1 voters from Block-2 and Block-3 will want to 
change their vote. In particular, voters from Block-3 will want to change their votes to c, and, 
because ties among willing voters are broken uniformly at random, with probability ⌊ n

2
⌋

⌊ n

2
⌋+1 a 

voter from Block-3 will be granted the opportunity and change her vote in favour of c. Thus, 
Ŵ(s�−1, � − 1) = {w, c} . Analogously to the previously investigated profile, both w and c can 
be the final winner. Hence, PoA+ ≥

⌊
n

2

⌋
− 1 . Furthermore, combining this conclusion with 

an application of Theorem 3 to the constructed profile, we obtain that PoA+ =
⌊
n

2

⌋
− 1 for 

the constructed profile. This yields the tightness of Theorem 3 as required. 	�  ◻

Remarks on condorcet winners

In addition to the proofs of our main results, we would like to venture some additional 
thoughts on refinements of our protocol. Specifically, we would like to make a few notes 
about its relationship to Condorcet winners.

Lemma 6  Protocol1 is not Condorcet-consistent.

Proof  Consider a preference profile, where an alternative c ∈ C is the second choice for all 
voters, and the top choices divide equally among a1, a2, a3 ⊆ C ⧵ {c} . Furthermore, assume 
that c is not the default alternative.

It is easy to see that c is a Condorcet winner. However, since the initial score of c is 
zero and, as a consequence of Lemma 4, no voter will change her ballot in favour of c, 
and it will persistently remain outside of the set of possible winners. Hence, Protocol  1 
will either result in a default or any other alternative in C ⧵ {c} . That is, Protocol 1 is not 
Condorcet-consistent.

However, it is marginally easier for a Condorcet winner to survive our Protocol and 
become its winner, as the following augmentation of Theorem 2 states.

Conjecture 1  Let � = (a1,… , an) be the truthful profile, let � be the deadline time, and let � 
be the ballot profile induced by � , i.e., bi = ���i(C) ). Let c ∈ C+ be a Condorcet winner 
under the profile � . If in addition holds that ��c(�) ≥ max

{⌈
n

2

⌉
− 1, � − �

}
 then CUD ter-

minates with c as the winner.

Full simulation results

See Tables 10, 11, 12 and 13.
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Table 10   Number of vote changes: the average and standard deviation of the number of vote changes 
required to reach a consensus

10 Voters 20 Voters

Data set Lazy Proactive Lazy Proactive

Uniform5 5.06 ± 2.95 5.15 ± 3.02 10.74 ± 6.02 10.83 ± 6.1

Uniform6 5.03 ± 3.64 5.09 ± 3.7 10.11 ± 7.71 10.15 ± 7.75

Uniform7 5 ± 3.74 5.05 ± 3.79 9.98 ± 8.05 10.01 ± 8.07

Uniform8 5 ± 3.92 5.05 ± 3.97 9.89 ± 8.13 9.92 ± 8.17

Courses 2003 4.98 ± 2.45 6.46 ± 3.54 11.31 ± 5.45 13.09 ± 6.72

Courses 2004 3.55 ± 2.05 5.73 ± 3.78 7.5 ± 4.15 11.19 ± 7.04

Sushi 5.71 ± 2.9 6.75 ± 3.7 11.11 ± 6.32 12.42 ± 7.31

T-shirts 5.66 ± 2.5 6.91 ± 3.45 12.38 ± 5.97 13.76 ± 6.93

30 Voters

Data set Lazy Proactive

Uniform5 19.46 ± 7.6 19.49± 7.63
Uniform6 18.55 ± 10.1 18.64 ± 10.17

Uniform7 17.39 ± 11.15 17.43 ± 11.18

Uniform8 17.22 ± 11.54 17.24 ± 11.55

Courses 2003 18.7 ± 6.7 21.17 ± 8.22

Courses 2004 11.98 ± 6.37 17.13 ± 10.25

Sushi 18.61 ± 8.14 20.71 ± 9.52

T-shirts 18.74 ± 9.43 20.43 ± 10.6
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Table 11   The average and standard deviations of the upper bounds for the additive price of anarchy for 10 
voters for different initial � (time until the deadline). The PoA+ is identical for both lazy and proactive voters

Time until the 
deadline

Uniform5 Uniform6 Uniform7 Uniform8

2 0 ± 0 0 ± 0 0 ± 0 0 ± 0

3 0 ± 0 0 ± 0 0 ± 0 0 ± 0

4 0 ± 0 0 ± 0 0 ± 0 0 ± 0

5 0 ± 0 0 ± 0 0 ± 0 0 ± 0

6 0 ± 0 0 ± 0 0 ± 0 0 ± 0

7 0.1 ± 0.3 0.15 ± 0.37 0 ± 0 0.1 ± 0.3

8 0.85 ± 0.74 0.85 ± 0.67 0.75 ± 0.63 0.65 ± 0.66

9 1 ± 0.91 1.2 ± 0.77 1.1 ± 0.78 1.5 ± 0.82

10 1 ± 0.91 1.2 ± 0.77 1.1 ± 0.78 1.5 ± 0.82

11 1 ± 0.91 1.2 ± 0.77 1.1 ± 0.78 1.5 ± 0.82

Time until the 
deadline

Courses 2003 Courses 2004 Sushi T-Shirts

2 0 ± 0 0 ± 0 0 ± 0 0 ± 0

3 0 ± 0 0 ± 0 0 ± 0 0 ± 0

4 0 ± 0 0 ± 0 0 ± 0 0 ± 0

5 0 ± 0 0 ± 0 0 ± 0 0 ± 0

6 0 ± 0 0 ± 0 0 ± 0 0 ± 0

7 0.15 ± 0.36 0.05 ± 0.22 0 ± 0 0.15 ± 0.36

8 0.4 ± 0.59 0.05 ± 0.22 0.15 ± 0.48 0.55 ± 0.81

9 0.7 ± 1.02 0.05 ± 0.22 0.45 ± 1.04 0.65 ± 0.86

10 0.7 ± 1.02 0.05 ± 0.22 0.45 ± 1.04 0.65 ± 0.86

11 0.7 ± 1.02 0.05 ± 0.22 0.45 ± 1.04 0.65 ± 0.86
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Table 12   The average and standard deviations of the upper bounds for the additive price of anarchy for 20 
voters for different initial � (time until the deadline). The PoA+ is identical for both lazy and proactive voters

Time until the 
deadline

Uniform5 Uniform6 Uniform7 Uniform8

2 0 ± 0 0 ± 0 0 ± 0 0 ± 0

3 0 ± 0 0 ± 0 0 ± 0 0 ± 0

4 0 ± 0 0 ± 0 0 ± 0 0 ± 0

5 0 ± 0 0 ± 0 0 ± 0 0 ± 0

6 0 ± 0 0 ± 0 0 ± 0 0 ± 0

7 0 ± 0 0 ± 0 0 ± 0 0 ± 0

8 0 ± 0 0 ± 0 0 ± 0 0 ± 0

9 0 ± 0 0 ± 0 0 ± 0 0 ± 0

10 0 ± 0 0 ± 0 0 ± 0 0 ± 0

11 0 ± 0 0 ± 0 0 ± 0 0 ± 0

12 0 ± 0 0 ± 0 0 ± 0 0 ± 0

13 0.1 ± 0.3 0 ± 0 0 ± 0 0 ± 0

14 0.1 ± 0.3 0 ± 0 0 ± 0 0 ± 0

15 0.9 ± 1.06 0.15 ± 0.37 0 ± 0 0 ± 0

16 1.75 ± 1.19 1.2 ± 1.15 0.75 ± 0.84 0.85 ± 1.08

17 2.05 ± 1.34 2.15 ± 0.99 1.9 ± 1.01 1.8 ± 0.82

18 2.05 ± 1.34 2.3 ± 0.98 2.6 ± 1.17 2.4 ± 1.08

19 2.05 ± 1.34 2.3 ± 0.98 2.6 ± 1.17 2.4 ± 1.08

20 2.05 ± 1.34 2.3 ± 0.98 2.6 ± 1.17 2.4 ± 1.08

21 2.05 ± 1.34 2.3 ± 0.98 2.6 ± 1.17 2.4 ± 1.08

Time until the 
deadline

Courses 2003 Courses 2004 Sushi T-Shirts

2 0 ± 0 0 ± 0 0 ± 0 0 ± 0

3 0 ± 0 0 ± 0 0 ± 0 0 ± 0

4 0 ± 0 0 ± 0 0 ± 0 0 ± 0

5 0 ± 0 0 ± 0 0 ± 0 0 ± 0

6 0 ± 0 0 ± 0 0 ± 0 0 ± 0

7 0 ± 0 0 ± 0 0 ± 0 0 ± 0

8 0 ± 0 0 ± 0 0 ± 0 0 ± 0

9 0 ± 0 0 ± 0 0 ± 0 0 ± 0

10 0 ± 0 0 ± 0 0 ± 0 0 ± 0

11 0 ± 0 0 ± 0 0 ± 0 0 ± 0

12 0.05 ± 0.22 0 ± 0 0 ± 0 0 ± 0

13 0.05 ± 0.22 0.2 ± 0.52 0 ± 0 0 ± 0

14 0.2 ± 0.52 0.25 ± 0.55 0.1 ± 0.45 0.05 ± 0.22

15 0.65 ± 0.99 0.25 ± 0.55 0.65 ± 0.88 0.3 ± 0.57

16 1.35 ± 1.39 0.25 ± 0.55 1.5 ± 1.32 0.95 ± 0.76

17 1.85 ± 1.79 0.25 ± 0.55 1.95 ± 1.47 1.75 ± 1.21

18 1.9 ± 1.86 0.25 ± 0.55 2.1 ± 1.55 2.45 ± 1.64

19 1.9 ± 1.86 0.25 ± 0.55 2.4 ± 1.7 2.45 ± 1.64

20 1.9 ± 1.86 0.25 ± 0.55 2.4 ± 1.7 2.45 ± 1.64

21 1.9 ± 1.86 0.25 ± 0.55 2.4 ± 1.7 2.45 ± 1.64
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Table 13   The average and standard deviations of the upper bounds for the additive price of anarchy for 30 
voters for different initial � (time until the deadline). The PoA+ is identical for both lazy and proactive voters

Time until the 
deadline

Uniform5 Uniform6 Uniform7 Uniform8

2 0 ± 0 0 ± 0 0 ± 0 0 ± 0

3 0 ± 0 0 ± 0 0 ± 0 0 ± 0

4 0 ± 0 0 ± 0 0 ± 0 0 ± 0

5 0 ± 0 0 ± 0 0 ± 0 0 ± 0

6 0 ± 0 0 ± 0 0 ± 0 0 ± 0

7 0 ± 0 0 ± 0 0 ± 0 0 ± 0

8 0 ± 0 0 ± 0 0 ± 0 0 ± 0

9 0 ± 0 0 ± 0 0 ± 0 0 ± 0

10 0 ± 0 0 ± 0 0 ± 0 0 ± 0

11 0 ± 0 0 ± 0 0 ± 0 0 ± 0

12 0 ± 0 0 ± 0 0 ± 0 0 ± 0

13 0 ± 0 0 ± 0 0 ± 0 0 ± 0

14 0 ± 0 0 ± 0 0 ± 0 0 ± 0

15 0 ± 0 0 ± 0 0 ± 0 0 ± 0

16 0 ± 0 0 ± 0 0 ± 0 0 ± 0

17 0 ± 0 0 ± 0 0 ± 0 0 ± 0

18 0 ± 0 0 ± 0 0 ± 0 0 ± 0

19 0 ± 0 0 ± 0 0 ± 0 0 ± 0

20 0 ± 0 0 ± 0 0 ± 0 0 ± 0

21 0.15 ± 0.36 0 ± 0 0 ± 0 0 ± 0

22 0.2 ± 0.41 0 ± 0 0 ± 0 0 ± 0

23 1.15 ± 1.21 0.2 ± 0.52 0 ± 0 0.05 ± 0.22

24 2.25 ± 1.35 1.4 ± 1.14 0.55 ± 0.81 0.4 ± 0.87

25 2.7 ± 1.47 2.25 ± 1.02 1.55 ± 1.13 1.6 ± 1.03

26 2.7 ± 1.47 3.1 ± 1.25 2.5 ± 1.26 2.7 ± 1.07

27 2.7 ± 1.47 3.1 ± 1.25 2.9 ± 1.72 3.1 ± 1.15

28 2.7 ± 1.47 3.1 ± 1.25 2.9 ± 1.72 3.1 ± 1.15

29 2.7 ± 1.47 2.89 ± 1.25 2.9 ± 1.72 3.1 ± 1.15

30 2.7 ± 1.47 3.1 ± 1.24 2.9 ± 1.72 3.1 ± 1.15

31 2.7 ± 1.47 3.1 ± 1.24 2.9 ± 1.72 3.1 ± 1.15

Time until the 
deadline

Courses 2003 Courses 2004 Sushi T-Shirts

2 0 ± 0 0 ± 0 0 ± 0 0 ± 0

3 0 ± 0 0 ± 0 0 ± 0 0 ± 0

4 0 ± 0 0 ± 0 0 ± 0 0 ± 0

5 0 ± 0 0 ± 0 0 ± 0 0 ± 0

6 0 ± 0 0 ± 0 0 ± 0 0 ± 0

7 0 ± 0 0 ± 0 0 ± 0 0 ± 0

8 0 ± 0 0 ± 0 0 ± 0 0 ± 0

9 0 ± 0 0 ± 0 0 ± 0 0 ± 0

10 0 ± 0 0 ± 0 0 ± 0 0 ± 0

11 0 ± 0 0 ± 0 0 ± 0 0 ± 0
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