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Abstract

Many multiagent domains where cooperation among agents is crucial
to achieving a common goal can be modeled as coalitional games. How-
ever, in many of these domains, agents are unequal in their power to affect
the outcome of the game. Prior research on weighted voting games has
explored power indices, which reflect how much “real power” a voter has.
Although primarily used for voting games, these indices can be applied

*A preliminary version of this paper appeared in [1]. The previous version contained a
theoretical analysis of our suggested methods for approximating power indices. This version
contains new empirical analysis of the performance of these methods, for both the Banzhaf
and Shapley-Shubik power indices, based on simulations of several types of voting games, as
well as a discussion of these new results and their significance.



to any simple coalitional game. Computing these indices is known to be
computationally hard in various domains, so one must sometimes resort
to approximate methods for calculating them.

We suggest and analyze randomized methods to approximate power
indices such as the Banzhaf power index and the Shapley-Shubik power
index. Our approximation algorithms do not depend on a specific repre-
sentation of the game, so they can be used in any simple coalitional game.
Our methods are based on testing the game’s value for several sample
coalitions. We show that no approximation algorithm can do much better
for general coalitional games, by providing lower bounds for both deter-
ministic and randomized algorithms for calculating power indices. We also
provide empirical results regarding our method, and show that it typically
achieves much better accuracy and confidence than those required.

1 Introduction

Cooperation is critical to many types of interaction among self-interested agents.
In many domains, agents require one another in order to achieve their goals.
When the outcomes, achieved by a coalition of agents, can be described in terms
of success or failure, we can model the system as a simple coalitional game.

One example of such a domain is the case of coalitions among voting agents.
When voting on a candidate under a certain protocol, agents may work together
so that a certain candidate will be chosen. A well-known game-theoretic model
of cooperation in voting domains is that of weighted voting games. Each of the
players in such a game has a weight, and a coalition of players wins the game if
the sum of the weights of its participants exceeds a certain quota.

One question that arises is that of measuring the power different agents
possess in cooperative settings. In some domains, agents are unequal in their
power to affect the outcome of the game, and the weight of a player in a voting
game does not necessarily reflect the actual power that player has over the
decisions of a larger group.

A common interpretation of the power an agent possesses is that of its a
priori probability of having a significant role in the game. A power index
measures the ability a certain agent has to affect the result of the game; thus,
power indices reflect how much “real power” an agent has. Two prominent
power indices are the Shapley-Shubik power index [25] and the Banzhaf power
index [3]. Although power indices have mainly been considered in the context of
weighted voting systems, it is possible to apply them to any simple coalitional
game.

Power indices have several uses. The most prominent of these is measur-
ing political power in decision making bodies. As discussed in Section 3, power
index-based analysis has been applied to several political bodies. Another appli-
cation of power indices is cost sharing schemes and cost allocation [28]. Due to
their applicability to such real-world problems, calculating power indices is an
important problem. Unfortunately, these indices are generally hard to compute,
even in restricted domains.



We suggest and analyze approximation algorithms for calculating power in-
dices of a given agent, for any simple coalitional game. We consider a query
regarding the value of any coalition to be the basic operation. Our method
randomly samples coalitions, and tests whether the given agent is critical in
the sample. We use the samples to estimate the Banzhaf power index, or more
precisely, to build a confidence interval for it. Our procedure returns an inter-
val [I,r], so that the correct Banzhaf index lies inside the interval with high
probability 1 — 4.

The required number of samples (and thus the running time of the algorithm)
depends on two parameters: the desired accuracy of the procedure, as defined
by the width of the interval, and the desired confidence level, or the probability
that the correct value actually lies outside the interval, namely §. In fact, we
later show it is easy to trade off one parameter for the other, and provide the
equations linking these parameters.

Although we handle the Banzhaf power index, we show that slight changes
in the algorithm allow it to approximate the Shapley-Shubik index as well. We
show that no other algorithm can obtain much better results for simple coali-
tional games, by providing lower bounds for both deterministic and randomized
algorithms for calculating the Banzhaf power index. We first provide a lower
bound on the number of queries required for a deterministic algorithm with a
given accuracy. We then use the Minimax principle of Yao [27] to show that
no randomized algorithm can achieve superpolynomial approximation. Finally,
we present results of an empirical evaluation of our procedure, showing that it
typically achieves much better accuracy and confidence than those required, for
both the Banzhaf and Shapley-Shubik power indices.

1.1 Structure of the Paper

The paper proceeds as follows. In Sections 2.1 and 2.2 we give some background
concerning coalitional games and power indices. In Section 3 we discuss some
related work regarding power indices and the computational complexity of cal-
culating power indices, as well as approximate methods for calculating these
indices. In Section 4 we discuss our method of approximating power indices
using a sampling technique. Section 5 shows that the results achieved by the
sampling technique are in a sense the best possible, since no deterministic algo-
rithm can achieve comparable accuracy with a polynomial number of queries,
and since no randomized algorithm can achieve superpolynomial accuracy. Sec-
tion 6 contains an empirical analysis of our suggested method, and provides
results regarding its actual accuracy and confidence (rather than the theoretical
bounds on these). We conclude in Section 7.

2 Model and Definitions

We now give several definitions regarding coalitional games and power indices,
required for the rest of this paper.



2.1 Coalitional Games

A coalitional game is composed of a set of n agents, I, and a function mapping
any subset (coalition) of the agents to a real value v : 2/ — R. In a simple
coalitional game, v only gets values of 0 or 1 (v : 2f — {0,1}). We say a
coalition C C I wins if v(C) = 1, and say it loses if v(C) = 0.

An agent ¢ is critical in a winning coalition C' (sometimes also called a
“swinger” or “pivot”) if the agent’s removal from that coalition would make it
a losing coalition.

A critical agent has a strong influence on the result of the game, so this
property is related to various measures of power. Two approaches to measuring
the power of individual agents in simple coalitional games are the Banzhaf index
and the Shapley-Shubik index.

2.2 The Banzhaf Index and the Shapley-Shubik Index

The Banzhaf index depends on the number of coalitions in which an agent is
critical, out of all the possible coalitions that contain the agent. The Banzhaf
index is given by (v) = (61(v),. .., Bn(v)) where
1 .
Pilv) = 5o D [(S) —v(S\ {i})]

scllies

The Shapley-Shubik power index is simply the application of the Shapley
value for simple coalitional games. Denote by 7 a permutation (reordering) of
the agents, so m : {1,...,n} — {1,...,n} and 7 is reversible, and by II the set
of all possible such permutations. Denote by S, (i) the predecessors of ¢ in 7,
so Sx(i) = {j|7(j) < w(i)}. The Shapley-Shubik index is given by sh(v) =
(shy(v), ..., shp(v)) where

sha(w) = = S [0(S20) U {}) — v(S+(0)]

mell

The definition of the Banzhaf index reflects the assumption that each coali-
tion has an equal probability of occurring, while the Shapley-Shubik index re-
flects the assumption that any ordering of the agents entering the coalition has
an equal probability of occurring.

3 Related Work

The Banzhaf index emerged directly from the study of voting in decision-making
bodies. A first version of the Banzhaf power index was introduced in [3]. This
version is called the mormalized Banzhaf index. It measures the proportion
of coalitions in which a player is a swinger, out of all winning coalitions, and
normalizes the indices of all the agents, so they sum up to 1. The normalized



Banzhaf index is defined as:
~ Bi(v
fi= W
Ekel Bre

The normalized Banzhaf index was analyzed in [9], where it was shown
that this normalization lacks certain desirable properties, and the more natural
Banzhaf index was introduced.

A similar power index, the Shapley-Shubik power index, originated in work
on game theory. In his seminal paper, Shapley [24] considered coalitional games
and the fair allocation of the utility gained by the grand coalition. The Shapley-
Shubik index [25] is simply an application of the Shapley value to simple coali-
tional games.

Both the Shapley-Shubik and the Banzhaf indices have been widely studied.
Straffin [26] has shown that each index reflects certain conditions in a voting
body, relating to how a coalition is formed. [13] describes the axioms that
characterize both the Banzhaf and Shapley-Shubik power indices, along with
several others.

Various power indices, including the Banzhaf power index and the Shapley-
Shubik power index, have been surveyed in [11, 4, 14, 7]. These indices were
applied in an analysis of the voting structures of several bodies, including the
European Union Council of Ministers and the IMF [17, 15]. [5] considers a power
index-based analysis of the European Union, and shows that such analysis is
computationally difficult, as brute-force techniques for computing these indices
are not always tractable. Another application of power indices is cost sharing
schemes: the Shapley value is well known for its use in establishing the fair
sharing of costs [28].

The naive implementation of calculating the Banzhaf index is exponential,
since the number of possible coalitions is exponential in the number of agents.
The situation is even worse for the Shapley-Shubik power index. For n agents,
there are n! permutations to consider. Using Stirling’s approximation, this
means there are about O(2"1°6™) permutations to check. Calculating power
indices in time polynomial in the number of agents can only be achieved in very
specific and restricted domains.

[8] shows that computing the Shapley-Shubik index in weighted majority
games is #P-complete. Similar results [21, 23] show that calculating both the
Banzhaf and Shapley-Shubik indices in weighted voting games is NP-complete.

[2] has considered the problem of calculating the Banzhaf power index in
network flow games. This is a game-theoretic model of a network reliability
problem. In this game, each agent controls an edge in a network flow graph,
and a coalition of agents wins if it manages to allow a certain flow between a
source vertex and a target vertex. [2] has shown that in this specific domain,
calculating the Banzhaf power index is #P-complete, but gave a polynomial
algorithm for a certain restricted case, namely of connectivity games in bounded
layer graphs.

The example above shows that restricting the domain may allow one to find
ways of overcoming the computational difficulty of calculating power indices in



the general case. However, the hardness results for various gemeral domains
indicate that in order to calculate power indices one must either restrict the
domain, or approximate the power index.

One approach, using generating functions, has been suggested in [19] and an-
alyzed in [6]. That method trades time complexity for storage space. Owen [22]
describes methods for computing the power indices exactly, based on the mul-
tilinear extension (MLE) of a game. These have similar complexity issues as
direct enumeration, but serve as a basis for approximation techniques presented
in [16], which allows trading off time and approximation quality.

A Monte-Carlo approach to approximating the Shapley value has been sug-
gested in [18]. That paper only considered the Shapley-Shubik power index, and
not the Banzhaf index, and did not provide a complete confidence interval sta-
tistical analysis.! We apply a similar approach to approximating both indices,
and provide a more rigorous statistical analysis. We do this by investigating
the required number of samples for building a confidence interval with a given
confidence level and accuracy. We also complement these results by providing
lower bounds on the number of required samples, for both deterministic and
randomized algorithms for calculating power indices.

The performance of an approximation method should be evaluated in terms
of two criteria: its time complerity and its quality (the accuracy of the proce-
dure, and the confidence it guarantees).

A randomized method for calculating the Shapley-Shubik power index of
weighted voting games has been suggested in [10]. Although that work provided
an analysis of the statistical error in such a procedure, it only considered the
Shapley-Shubik power index in weighted voting games, and the evaluation of
the approximation error was carried out empirically.

[20] contained a survey of algorithms for calculating the power indices of
weighted majority games. It discussed a Monte-Carlo approach for calculating
the Banzhaf power index, but only showed how to calculate the maximum likeli-
hood estimator. [20] did not show how to build a confidence interval for a given
confidence level. It focused on weighted voting games, in which comparing the
power of two agents is simple: in weighted voting games a player with a higher
weight cannot have a smaller power index than a player with a smaller weight.
Our work also considers general simple games where such a simple way of com-
paring power indices does not exist, and shows how to rank agents according to
their power indices in such domains.

To our knowledge, no work has considered lower bounds for power index
approximation algorithms. In this paper, we provide such bounds, showing that
our randomized approach outperforms any deterministic algorithm in terms of
accuracy (given a certain number of samples), and that no randomized algorithm
can achieve significantly better results than those achieved by our algorithms.
These lower bounds hold for general coalitional games, where the structure of the
coalitional function is unrestricted. For restricted domains, it may be possible

'We use Hoeffding’s inequality [12], which was introduced in 1963, a few years after [18]
was published.



to provide better deterministic algorithms, or better randomized algorithms.

4 Approximating Power Indices by Sampling

We suggest a method for approximating the power indices of a certain agent in
a simple game. The basic operation our algorithms use is a query regarding the
value of a coalition. Calculating 3;, the Banzhaf index for agent 4, is performed
by randomly sampling coalitions containing player i, and estimating 3; by the
proportion of the sampled coalitions where agent ¢ is critical. When sampling
coalitions, each sample has a probability of 3; of being a coalition where agent
1 is critical, so we can approximate (3; by taking into consideration several such
samples.

The number of samples determines the accuracy of this procedure: for a given
€ > 0, the probability § of missing the correct value 3; by more than ¢ depends on
the number of samples used. The algorithm we propose determines the required
sample size according to the required confidence level (4, the probability of
error) and approximation accuracy (e, the maximal allowed distance from the
correct value).

4.1 Randomly Sampling Coalitions

The suggested approximation algorithm relies on a sampling procedure. The
Banzhaf sampling procedure returns a random coalition C' which contains player
1. This can easily be done by randomizing a bit using the uniform distribution
over {0,1} for each of the other agents, and always setting the bit for agent i
to 1.

Once the random sample is returned, we simply check if agent ¢ is critical in
that sample. Agent i is critical in the returned coalition C' if:

v(C) —v(C\{i}) =1

We denote this as Critical(i, C).

It is easy to see from the definition of the Banzhaf index that the probability
that agent 7 is critical in a random coalition that contains it is exactly its Banzhaf
power index, so:

Prejiec(Critical(i, C)) = B;

Let C; be a random coalition containing agent 7, as defined previously. Let X
be the random variable which is 1 if agent ¢ is critical in C}, and 0 otherwise.

4.2 Estimating the Power Index

When attempting to estimate the power index of an agent i, we can randomly
sample coalitions in the way described above. For each such sample we can
check if agent ¢ is critical in that coalition. Given k such sample coalitions, we
can get an estimator for ;.



Lemma 1. Let Cq,...,Ck be a set of k randomly sampled coalitions, and
X1,..., X be the series of k Bernoulli trials, as defined above. Let X be the
number of successes in this series of Bernoulli trials, X = Zle X;. Then the
maximum likelihood estimator for 3; is:

This estimator is unbiased.

Proof. As discussed in Section 4.1, each such X is a single Bernoulli trial, and
Pr(X; =1)=f; and Pr(X; =0) =1—-06;. X1,..., X} is a series of k such
Bernoulli trials. X is the number of successes in this series of Bernoulli trials,
X = 2?21 X;, and thus has the binomial distribution X ~ B(k,(;). Since
the X,’s are independent but identical Bernoulli trials, the mazimum likelihood

estimator for 3; is Bl = % This estimator is known to be unbiased for the
binomial distribution. O

4.3 A Confidence Interval for the Power Index
The estimator ﬂl by itself does not provide a bound on the probability that this

value is approximately correct. Given a sample X1, ..., X; of k& such Bernoulli
trials, we are interested in getting a value that is probably approximately correct
(PAC).

If for some € > 0, we consider values that are within a distance of ¢ from
the correct value, [3;, accurate enough, and are willing to accept a certain low
probability § of having our estimator ﬂAz miss J; by more than e, we can formulate
the problem as building a confidence interval for §;, with an accuracy of € and
with confidence level of 1 — §. The interval we build is:

[/BA’L - 6767; + E]

The interval is centered at B, has a width of 2 - € > 0, and contains the true
0B; with a probability of at least 1 — 6.

We obtain an equation relating the required number of samples k, the con-
fidence level ¢, and the accuracy e (width of the interval), by using Hoeffding’s
inequality [12].

Theorem 1 (Hoeffding’s inequality). Let Xi,...,X,, be independent random
variables, where all X; are bounded so that X; € [a;, b;], and let X = >0 | X;.
Then the following inequality holds.

Pr(|X — E[X]| > ne) < 2e p( 207 ¢ )
— >ne) <2exp| ~=———
2 i (bi — ai)?
‘We now use Hoeffding’s inequality to build a confidence interval for the power

index. Let C1, ..., be aset of k randomly sampled coalitions, and X1, ..., Xy
be the series k of Bernoulli trials, as defined above. Again, let X = Z?:l X;,



and take Bl = % as an estimator for §;. All X; are either 0 or 1 (and are thus
bounded between these values), and

EX] =Fk-05;
Thus, the following holds:
Pr(|X — kBi| > ke) < 2e2F€
Therefore the following also holds:
Pr(|0; — B;] > €) < 272k

We now calculate the required number of samples in order to make sure that
this probability is below some required confidence level §.2

Our method generates a ‘conservative confidence interval’. Intervals based
on Hoeffding’s bound are sometimes referred to as ‘conservative confidence in-
tervals’, since they are based on ezact bounds rather than on approximated
bounds, such as the normal approximation for the binomial distribution.

An approach based on the normal approximation for the binomial distribu-
tion could be taken here to obtain slightly smaller confidence intervals. However,
such a procedure only holds the required confidence level approzimately. This
slight error in the confidence level accumulates when repeating the process, and
is thus inappropriate for the ranking procedure presented later in this paper.?

We now show how to build the conservative confidence interval, using the
Hoeffding inequality.

Theorem 2 (Power Confidence Interval). For any required accuracy € > 0
and required confidence level 1 — §, we can construct a conservative confidence
interval with width 2¢ of the form:

[/él - Gvﬁi + 6]

This interval holds the correct Banzhaf index 3; with probability 1 — 6. The
required number of samples for this is

2
_nF
2¢2

Similarly, given k samples and a required confidence of 1 — 6, the following
s a conservative confidence interval for B;, with the required confidence level of

1-6:
« 1 2 . 1 2
lﬁi‘\/%mavﬁi*v%l%]

2Such methods are widely used for the analysis of randomized algorithms in various areas.
For example, PAC learning algorithms are typically based on such techniques.

3 Also, it is harder to analyze the asymptotic behavior of the running time of our procedure
when using the normal approximation, since it has no direct formula.




Proof. We use the Hoeffding inequality to make sure the error does not exceed
our target confidence level §, and get:

Pr(|;— il > ¢) <2¢72F< <5

We now extract the required € and k:

0
—2ke? <In-
e < n2
This can be restated as:
2 lng
>-_—2
- 2k

Finally we get the desired equations, connecting the accuracy, the confidence,
and the number of samples:

> gL 2
“=Vaor Ms
In 2
S —N
— 2¢2

O

We now present an algorithm for building a confidence interval for the power
index in simple coalitional games. The algorithm gets the required confidence
level § and interval width w, and returns the desired confidence interval.

Algorithm 1. ConfidenceBanzhaf(,w):
1. X=0,k=0,e=7%.

2
In
2¢2 "

2. Loop until k >

(a) Randomly choose a coalition C' such that C contains agent i

() k=k+1
(c) If i is critical in C then X = X +1
(4) i = %

3. Calculate the confidence interval Confinterval using Theorem 2.
4. Return Conflnterval.

In certain cases, we may want to compute the power indices of several or even
all the agents in a certain game. For example, when ranking agents according
to their power index, we need accurate estimates of the power index of all the
ranked agents.

Consider a series of m runs of an algorithm for approximating power indices,
each of a different agent. Such a series returns m intervals ¢; = [I;,r;], where
each such interval contains (3; with probability 1 — §’.

10



In order to rank the agents according to their power indices, we can sort the
agents according to the intervals’ centers. If no two intervals ¢; # c; intersect,
and if each of them does contain the actual power index of that agent i so that
0B; € ¢;, this results in the correct ranking.

Lemma 2. Let cy,...,cy, be a series of m pairwise non-intersecting confidence
intervals for 3;’s, each with confidence level of 8" as defined above. The proba-
bility of having at least one interval that misses a power index is bounded from
above by m - ¢§'.

Proof. Each such interval misses its power index with probability of at most ¢’,
so for all ¢ we have:

P(Bi ¢ ¢;) <¢

We use the union bound to bound the probability of having at least one
interval that misses a power index:

P(3ilB; ¢ ¢;) < ZP(@- ¢c)<m-d

Thus, if the intervals do not intersect, we have a wrong ranking with prob-
ability of at most 8 < m - §’. O

Given a target confidence level § for the ranking procedure, we can now take
6= % as the target confidence level for the single confidence interval. In this
case, the error probability would be:

B<m-§ =56

Thus, we achieve the desired confidence level for the ranking.
When approximating the power indices of all the agents, we can use the
following corollary.

Corollary 1. When approximating the power index for all the agents in the
game, B = (B1,...,0n), with a requested probability 6 of not missing any of the
values by more than €, we can approximate each value using Algorithm 1 with
confidence level of %, the same €, and with a total of O(E%nln %) samples.

Proof. We simply apply Lemma 2 for the case where m = n, the number of all
the agents. O

We now consider how to adapt the above procedure for the Shapley-Shubik
index as well.

4.4 Adaptations for the Shapley-Shubik Power Index

The Shapley-Shubik power index can be approximated in a very similar way
to that described above for the Banzhaf power index. Both indices measure
the probability of an agent being critical, under different coalition formation

11



scenarios. Our algorithm is based on randomly sampling coalitions, and it
is possible to change the way these coalitions are sampled so that the result
approximates the Shapley-Shubik power index, rather than the Banzhaf power
index.

Rather than randomly choosing coalitions, we can randomly choose per-
mutations. The Shapley-Shubik sampling procedure simply returns a random
permutation of the agents. There are many known techniques to produce a
random permutation, whose running time is linear in the size of the returned
permutation.

Similarly to the algorithm for the Banzhaf index, once the random sample is
returned, we simply check if agent 4 is critical in that sample. Agent ¢ is critical
in the returned permutation 7 if:

v(Sx (i) U{i}) — v(Sx(i)) = 1

We denote this as Critical(i, ).

After taking several such samples, we estimate sh;(v) by the proportion of
the sampled permutations where agent ¢ is pivotal. It is easy to see from the
definition of the Shapley-Shubik index that the probability that agent ¢ is critical
in a random permutation is exactly its Shapley-Shubik power index, so:

Prren(Critical(i,m)) = sh;(v)

We now define the random variable X; by letting 7; be a random permu-
tation, and X; being 1 if 4 is critical in m; and being 0 if it is not. We can
then continue the process exactly as in Section 4.2, and get a procedure for the
Shapley-Shubik power index.

The Shapley-Shubik power index is really the application of the Shapley
value in a simple coalitional game. It is possible to adapt the procedure for the
Shapley value as well, by defining a random variable X; which is a;’s marginal
addition to a random permutation, and taking proper bounds for the Hoeffding
inequality. However, in this case, the bound would depend on the minimal and
maximal such marginal contributions to any coalition.*

5 Lower Bounds for Calculating and Approxi-
mating Power Indices

From Theorem 2 we see that we can build a confidence interval for the power
index, with accuracy of ¢ = 1/p(n), where p(n) is a polynomial, and with
confidence of 1 —§, by taking enough samples. The number of required samples
is

O(p(n)in(1/9))

4For the Shapley value, an agent’s marginal contribution to any coalition is bounded by
0 and the maximal possible value of a coalition. Thus, applying Hoeffding’s inequality (The-
orem 1) requires a different number of samples, and although the algorithm remains very
similar, this can have a large effect on the running time.

12



The number of samples is thus polynomial even if § is exponentially small.

A natural question now is whether we can have a deterministic algorithm that
can achieve comparable accuracy with a polynomial number of queries. Another
question is whether there is some other randomized algorithm that achieves
superpolynomial accuracy, e.g., ﬁ, where ¢(n) = Q(2") or even ¢(n) = 2",
for e > 0.

In the rest of this section, we give negative answers to the above questions.

Our results hold for algorithms that have access to a game oracle that returns
the game’s value for a given coalition. Such an oracle can only answer queries
of the form: return the value v(S) of the coalition S. The results do not hold
for special restricted cases, where there is a succinct representation of the game.

5.1 Lower Bounds for Deterministic Approximation Algo-
rithms

We show that for deterministic algorithms we need an exponential number of
queries to achieve polynomial accuracy, in contrast to the randomized case. In
fact, this still holds even if we relax the accuracy to linear or even sublinear.

Theorem 3. There is a constant ¢ > 0 such that any deterministic algo-
rithm that computes the Banzhaf index with accuracy better than c//n requires

Q2" /\/n) samples.

Proof. Consider a deterministic algorithm A that always uses less than the
stated number of queries. We will use a certain family of instances to derive a
contradiction.

Our instances have n + 1 players, where n is an even number, and we are
interested in computing the index of the (n + 1)-st player. We let Iy denote an
instance where 3,41 = 0.

We also define the following family of instances F: consider a coalition S
of {1,...,n}. An instance I belongs to F if for |S| < n/2, v(S) = 0 and
v(SU{n+1}) = 0. For coalitions with |S| = n/2, v(S) = 0 and for exactly half
of them, adding n + 1 makes it a winning coalition and for the rest not. For
|S| > n/2, the values are determined by monotonicity, i.e., the value is 1 only if
S contains some winning coalition of lower cardinality, otherwise it is 0.

Hence we see that for I € F, the agent n + 1 is critical in exactly (n%)/ 2
coalitions. Thus:

n
(n/Z)

2.2n
By using Stirling’s approximation, we can see that for large enough n:

(,15) = 2@V

This implies that for all I € F we have:

ﬁn+1 -

ﬁn-ﬁ-l = Q( )

1
NG

13



Consider now the algorithm 4. If it achieves an accuracy better than (3,1,
then it should be able to distinguish between the instance Iy and any instance
IekF.

However there will always be an instance of F that will make A fail, if A asks
less than (n';Q) /2 queries. To see this, look at the queries asked by A (whether
adaptive or not). We can always answer zero to all queries for coalitions of
the form S U {n + 1}, with |S| = n/2. This can still correspond to a member,
I*, of F, but the algorithm has no way of deducing that 5,1 # 0 and hence
cannot distinguish between Iy and I'* (the answers to queries with |S| < n/2 or
|S| > n/2 cannot give any additional information on the index either). O

5.2 Lower Bounds for Randomized Approximation Algo-
rithms

We now consider the existence of randomized algorithms that can achieve su-
perpolynomial approximation, e.g., 1/2V™, or even better O(1/2"). Below, we
answer this question negatively as well for functions that grow faster than poly-
nomials.

This essentially implies that our algorithm of Section 4.3 is the best we can
hope for in polynomial time.

Theorem 4. Let § be a constant less than 1/2 and let g(n) be any superpoly-
nomial function with q(n) < 2", i.e., g(n) = w(p(n)) for any polynomial p(n).
Then for any € > 0, no polynomial time randomized algorithm can build a con-
fidence interval with accuracy better than 1/q(n) and confidence level of at least
1-6.

Proof. We use the standard Minimax principle of Yao [27]: to show a lower
bound on a randomized algorithm, it suffices to define a distribution on some
family of instances and show a lower bound for a deterministic algorithm on
this distribution.

Fix € > 0. The distribution is as follows. As in Theorem 3, we have n + 1
players, with n even. Out of all coalitions S of {1,...,n} with |S| = n/2, we
pick uniformly at random 2" /q(n) of them and we make n + 1 critical in the
corresponding coalitions S U {n + 1}.

This defines a distribution on a family of instances F'. We will have this
distribution on F’ with probability 1/2. With the remaining 1/2 probability,
we will have the instance Iy. For I € F’ the Banzhaf index is exactly:

2n 1

Pt = Sz = qlm)

Consider any deterministic algorithm that asks at most p(n) queries for some
polynomial p(n). If it achieves accuracy better than 1/¢(n), it should be able
to output a nonzero value for I € F’ with a constant probability. For this it
needs to identify at least one coalition where n + 1 is critical.
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However, no matter what the queries of the algorithm are, since the critical
coalitions were chosen uniformly at random, each query succeeds with proba-
bility at most:

271

Thus, for large enough n, the overall probability of success is at most:

b2 < Lo (B <

1
Tagm () " 2 a(n)

1
2
m

As an example, we see from the proof above that if we need accuracy better
than, say, 1/2V", any algorithm would require exponentially many queries. Or
more generally:

Corollary 2. Any randomized algorithm that succeeds with probability higher
than 1/2 needs an exponential number of queries to achieve accuracy better than
1/2" for any e > 0.

The results given in this section are lower bounds on the required amount
of information to achieve a desired approximation (specifically, the required
number of coalition value queries), and are independent of common complexity
theory assumptions, i.e., they hold even if P = NP.

6 Empirical Analysis

We now give results regarding an empirical analysis of our suggested algorithm
for approximating the Banzhaf and Shapley-Shubik power indices. Our results
were obtained by running the algorithm on a set of simulated weighted voting
games. For each such simulated game, we compared the approximation results
to the actual power index values (computed using the power index definitions).

We generated random weighted voting games as follows. For each game, the
weights of the players were selected randomly, using either a uniform distribution
or a normal distribution. The uniform distribution was over the range [1, 20].
The normal distributions used had a mean value of 10 and a standard deviation
of 1, 2, or 3. The quota for each game was chosen uniformly from the range
[1S,35] where S is the sum of all the players’ weights (a quota which is too
small or too large makes the game uninteresting). The number of players in
each game ranged from 10 to 13.°

For approximation purposes, each game was assigned a desired accuracy
level € (0.025 or 0.05) and a desired confidence level § (0.025 or 0.05), meaning

5The computational requirements for exactly computing power indices are enormous even
for small games, as the complexity is exponential (or worse) in the number of players. For
example, at the time of writing this paper, calculating the Shapley-Shubik power index for a
game with 13 players requires about an hour on a standard PC.
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that the probability that the approximation given by the algorithm will miss
the actual value by more than e should be at most 9.

The simulation performed for each game was as follows. First, the actual
Banzhaf and Shapley-Shubik power indices of the game were computed exactly.
Next, the approximation algorithm was run 10,000 times.® For each run, the
approximation results were compared to the actual power index values. The
actual accuracy level was computed as the average difference between the ap-
proximate value and the correct value over all players and all runs. We denote
by €, and €, the Banzhaf and Shapley-Shubik power index actual accuracy lev-
els respectively. The actual confidence level was computed as the fraction of
approximate values (over all players and all runs) which differ from the correct
value by more than e. We denote by d, and ¢ the Banzhaf and Shapley-Shubik
power index actual confidence levels respectively.

6.1 Empirical Results

Some sample results can be seen in Table 1 (note that some numbers have been
rounded). The actual confidence levels achieved by the approximation algorithm
for the games tested were typically several orders of magnitude better than re-
quired (and sometimes 100% of the approximations were within the required
interval). It is interesting to note that the Shapley-Shubik power index approx-
imations were usually better than the Banzhaf power index approximations.

Dist. Players € ) € Op €s O
U(20) 10 0.025 | 0.025 | 0.005 | 0.0004 | 0.004 | 0.00001
U(20) 11 0.025 | 0.05 | 0.005 | 0.002 | 0.004 | 0.00005
U(20) 12 0.05 | 0.05 | 0.008 | 0.00009 | 0.008 | 0.00007
U(20) 13 0.05 | 0.025 | 0.009 | 0.0004 | 0.007 | 0.000008
N(10,1) 13 0.025 | 0.05 | 0.006 | 0.001 0.004 0
N(10,3) 12 0.025 | 0.025 | 0.004 | 0.00003 | 0.004 | 0.00002
N(10,1) 11 0.05 | 0.025 | 0.011 | 0.0005 | 0.008 0
N(10,3) 10 0.05 | 0.05 | 0.011 | 0.0002 | 0.009 | 0.00002

Table 1: Empirical results of the power index approximation algorithm for some
sample games.

These results indicate that when using our approximation approach, and its
stated number of random samples, the actual accuracy and confidence achieved
are typically much better than required. The number of samples our algo-
rithm uses is determined by applying Hoeffding bounds, which hold for any
distribution. In practice, when the weight distributions are similar to those we
simulated, we expect that the number of samples taken by our approximation

SEach such run randomly chooses various player coalitions or permutations, as required
for the given accuracy and confidence levels, and generates an approximation of the players’
power indices based on those samples.
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method will yield much better confidence and accuracy than those requested.
Alternatively, when the weight distributions are similar to those we simulated,
the number of samples required to achieve the requested confidence and ac-
curacy may in fact be much smaller than those taken by our approximation
algorithm. We examine this perspective in the next section.

6.2 Empirical Estimates of the Number of Samples

The previous section investigated the actual accuracy and confidence levels ob-
tained when using our approximation approach, and using Theorem 2 to com-
pute the number of required samples for building a conservative confidence
interval. We now attempt to empirically determine the number of samples re-
quired for achieving given accuracy and confidence levels, rather than using the
formula from Theorem 2. In order to do so, we repeated the above simulations
using a factor f, which indicates the fraction of random samples used out of
the total number taken by Algorithm 1, as determined by Theorem 2. In other
words, if, for a given accuracy level € and a given confidence level ¢, the al-
gorithm normally uses k random samples, we attempt to achieve the required
confidence interval using only fk random samples.”

Dist. Players € 1) f €p Op

U(20) 12 0.025 | 0.025 | 0.3125 | 0.008 | 0.018

U(20) 12 0.05 | 0.05 0.25 | 0.017 | 0.033
N(10,1) 12 0.025 | 0.025 | 0.4375 | 0.008 | 0.017
N(10,3) 12 0.025 | 0.025 | 0.25 | 0.008 | 0.012
N(10,1) 12 0.05 | 0.05 0.25 0.01 | 0.044
N(10,3) 12 0.05 | 0.05 0.25 0.01 | 0.045

Table 2: Empirical Banzhaf power index approximation results for some sample
games using a fraction of the number of samples prescribed by the algorithm.

Tables 2 and 3 show that confidence intervals with similar quality to those
desired can be achieved using only a fraction (about i) of the number of samples
used in our approximation method. These results indicate that when sampling
a player coalition (or permutation) is costly, we can typically use many fewer
samples, and still obtain good accuracy and confidence. Once again, we see that
the algorithm performs slightly better for the Shapley-Shubik power index than
for the Banzhaf power index.

7Of course, we have empirically tested only some specific game distributions, and other
bounds may be applicable for other game families, whereas the number of samples taken by
Algorithm 1 is enough to achieve the desired accuracy and confidence levels for any game.
However, these results do indicate how “wasteful” our approximation algorithm may be.
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Dist. Players € 1) f €5 O

U(20) 12 0.025 | 0.025 | 0.25 | 0.007 | 0.011

U(20) 12 0.05 | 0.05 | 0.1875 | 0.018 | 0.041
N(10,1) 12 0.025 | 0.025 | 0.1875 | 0.009 | 0.021
N(10,3) 12 0.025 | 0.025 | 0.1875 | 0.009 | 0.022
N(10,1) 12 0.05 | 0.05 | 0.1875 | 0.009 | 0.02
N(10,3) 12 0.05 | 0.05 | 0.1875 | 0.008 | 0.024

Table 3: Empirical Shapley-Shubik power index approximation results for some
sample games using a fraction of the number of samples prescribed by the algo-
rithm.

7 Conclusions and Future Research

We have suggested algorithms for approximately calculating power indices, in
any simple coalitional game. The method is suited for both the Banzhaf power
index and for the Shapley-Shubik power index. We also believe the method is
quite general and can be adapted for other power indices as well.

Our method is probably approximately correct: our procedure returns a
confidence interval that contains the actual value with high probability. The
running time of our method depends on both the accuracy (the desired width
of the interval), and the confidence level (the maximal allowed probability of
having the true power index outside the interval), and is polynomial in both.

The approximation algorithm we suggested is a randomized algorithm. Al-
though the algorithm is simple, we showed that it performs very well in terms of
running time, accuracy, and confidence. We also showed that no deterministic
algorithm can achieve comparable accuracy to our algorithm with a polynomial
number of queries, and that no randomized algorithm can achieve superpoly-
nomial accuracy. Therefore, our algorithm is close to optimal in this sense.
The lower bounds given in this paper are bounds on the required amount of
information, and are thus independent of complexity theory assumptions.

The empirical evaluation we carried out to test our algorithm indicates that
typically it achieves much better accuracy and confidence levels than those re-
quired, for both the Banzhaf and Shapley-Shubik power indices. We have also
shown that we can typically achieve the required accuracy and confidence levels
with only a fraction of the number of samples used by the algorithm.

There are several directions for future work. First, we note that for restricted
domains, it might be possible to exactly calculate power indices, or find ways
to obtain better approximations. For example, it may be possible to achieve
good deterministic algorithms and approximation algorithms with better quality
for calculating power indices in restricted weighted voting games or restricted
network reliability domains. Second, although our approximation method can
be used for both the Banzhaf index and the Shapley-Shubik index, it would
be interesting to see if there are domains where one index can be polynomially
computed, while the other is hard to compute.
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