Searching for Close Alternative Plans

Ariel Felner', Roni Stern, Jeffrey S. Rosenschéipand Alex PomeransRy

1 Department of Information Systems Engineering, Ben-Gurion UsitseBeer-Sheva, Israel
2 Department of Computer Science, Bar llan University, Ramat Geaglls
3 School of Engineering and Computer Science, Hebrew Universitysdtem, Israel

Abstract. Consider the situation where an intelligent agent accepts as input a
complete plan, i.e., a sequence of states (or operators) that shdokblaed in

order to achieve a goal. For some reason, the given plan cannot ksrierged

by the agent, who then goes about trying to find an alternative plan that is as
close as possible to the original. To achieve this, a search algorithm thainill fi
similar alternative plans is required, as well as some sort of compdtisetion

that will determine which alternative plan is closest to the original.

In this paper, we define a numberdiftance metricketween plans, and charac-
terize these functions and their respective attributes and advantagéseide-
velop a general algorithm based on best-first search that helps ainedfigently

find the most suitable alternative plan. We also propose a number aftiesur

for the cost function of this best-first search algorithm. To explore #rerlity

of our idea, we provide three different problem domains where opraggh is
applicable: physical roadmap path finding, the blocks world, and tasédsd-

ing. Experimental results on these various domains support the effycigrour
algorithm for finding close alternative plahs.

Keywords: Best-first Search; Shortest path; Scheduling; Rplanning; Reschedul-
ing

L A preliminary version of this paper appeared in the International Joimfe®ence on Au-
tonomous Agents and Multiagent Systems [8].

1 Introduction

Suppose that an intelligent agent accepts as input a caenplah from a supervisor
agent, human or automated (this is related to the “supervissubordinate” model
from Ephrati and Rosenschein’s work [6]). Provision of tieenplete plan implies that
for the supervisorhow the goal is achieved and the exact intermediate states are of
some concern.

A real world analogy might be a police patrol that receivemmand to go to
a specific location. The command also instructs the patrgletothere via a specific
route, with special neighborhoods or locations along thg W¢hile getting to the final
location is important, the path that is taken is also spetitid of some independent
value.

The plan is intended to achieve a goal stajeand the agent is assumed to be
starting in states;. The original plan that was given contained a sequence téssta
and will be denoted here by = {s1,s2,...,s, = s4} (We use botiplan and path
to denote a sequence of states). When the agent examinesthét pealizes that the
supervisor that generated it did not have accurate data afweurrent domain. The
agent realizes that this particular plan fremto s, cannot be followed because of one
of the following reasons:

— The supervisor that generated the original path did not khevagent’s exact initial
location, and generated a plan for the wrong initial state.

— One or more states in the plan do not exist in the given dorfrainexample, in the
blocks worldthe plan might have the intermediate state
{ON(A, B),ON(B,C),ON(C, D)}, but a stack of more than 3 blocks might not
be allowed (in our world). The supervisor that generatedotha was not familiar
with this restriction.

— One or more operators cannot be applied. For example, sephas one of the
operators wasross the bridge to the islantiut the bridge has collapsed.

When the original plan cannot be followed, the agent triesetrch for an alter-
native path from its current state to the goal state. Howevermake the following
assumptions:

1. The most important consideration for the agent is to gdtdgoal state;

2. Since the input plan contains a complete sequence ofssatnot just the goal
state, we assume that each of the intermediate states hasisgortance of its
own. Otherwise, the supervisor might have givengbal state to the agent (allow-
ing the agent to do its own planning from scratch).

If there is more than one alternative plan that leads to tla gfate, we would like
the agent to pick the plan “closest” to the original plan amah potential candidates.
This problem differs from classic search problems becausestthe agent has to find
the shortest path to the goal, while in our problem it miglekpa longer path that is,
nevertheless, closer to the original path. Figure 1 showexample of such a situation.
Plan B is shorter than plarl, but we want our agent to pick plahbecause it is closer
to the original plan.

plan B
Initial state Goal state

The original plan

Fig. 1. Plan B is shorter, but plan A is closer to the original plan

In a way, we can view the states of the original plan as sulkgoalas goals with
lower priority than that of reaching the goal state. For tbége patrol example men-
tioned above, the goal is to reach the desired location,Haretare subgoals, namely
to get there through specific neighborhoods or locationsisTthe search should be
guided towards the goal state but should be biased in favoatbis or prefixes of paths
that are close to the original path. Note that neither thgiral plan nor its alternative
are necessarily the shortest path to the goal.

Two basic questions arise here, and answering these quegithe crux of this re-
search. The first question is, given a number of alternatths which one should the
agent follow? To answer this, distance metridbetween plans or paths should be de-
fined. The agent should pick the plan closest to the origioedaling to such a distance
function. We show in this paper that while there is a gendrairte among distance
functions, there are many domain dependent issues thatodedconsidered. In Sec-
tion 3, we propose a number of distance functions with diffiécharacteristics that are
applicable in different problem domains and circumstan@éss study these functions
and their respective attributes and advantages, and trivéoggneral guidance as to
what distance function to use under what circumstances.

The second question the research addresses is, given damy figgested distance
functions, how does the agent efficiently find a path closeewtiginal path? We have
developed a general search algorithm based on best-finssti@search; this algorithm
searches the domain (usually represented as a state gnagialer to find a path from
the current initial location of the agent to the goal statee Thost important attribute
of our search algorithm is that it should prefer paths thatzarclose as possible to the
original path. Thus, during the search, the cost functiayukhtry to predict whether
the current path from the initial state to the current statlkely to be a prefix of a
path that is close to the original path. States with sucheditikod will be favored to be
expanded first. Below, we suggest a number of such heuraitstudy their attributes.

To show the generality of our approach, we then present imgeations of our
algorithm in three different domains: 1) physical roadmeagosleled by random Delau-
nay graphs (which simulate real-world road maps), 2) thekslavorld domain, and 3)
task scheduling. Experimental results support the effigierf our algorithm for finding
closest paths in all three domains.

The paper is organized as follows. Section 2 describesbladrk. Section 3 intro-
duces the various distance functions between plans. Otgtsakgorithm is introduced

in Section 4. Implementation and experimental results eritiree different testbed do-
mains are provided in Sections 5, 6, and 7. Finally, our agichs, and possibilities
for future work, are discussed in Section 8.

2 Related Work

The fact that planning agents work in dynamic environmeantsl, therefore previously
prepared plans cannot always be followed, has been unddrsip a variety of re-
searchers. The field oéactive planningonsiders agents that must choose the best ac-
tion for the state in which they find themselves, while avoidihe complexities of clas-
sical planning in dynamic, inaccessible environments.drgnt work in this field in-
cludes the work of Jensen and Veloso [13], Stentz [31], arehi¢pand Likhachev [16].

Another related area is replanning and plan reuse. When ant sgmdizes that its
intended plan cannot be followed, an alternative plan mastrbated. The search for
a new plan consumes many resources, SO an agent may try toeysequ plans. Re-
planning algorithms help the agent find the best way to gebtiggnal plan back on
track, as in the work of Russell and Norvig [27], Ambros-Iregm and Steel [1], Koenig
and Likhachev [15], and Brock and Oussama [5]. Plan reuserastification help an
agent choose one plan among several prepared plans, andlify it fit the current
situation [25].

A focused example of plan reuse is presented in the work djtiHand Veloso [9].
They create real maps in computer applications that autoatigtfind good map routes.
In their work, they accumulate and reuse previously traersutes, thus demonstrat-
ing a route-planning method that retrieves and reuses preilpiast routing cases that
collectively form a good basis for generating a new routitagnpOther plan reuse work
has been done by Liu [19], where an integrated approach Ismex}y using knowledge
about the road network, past cases, and an efficient segyaifithin for route finding.

Lifelong-planning A* [16] and its dynamic version D*-litelp] also assume that a
path to the goal has already been found, but that the enveohhas changed. Instead
of starting a new search from scratch, these algorithm®toge old parts of the open-
list (of A*) for the new search on the changed graph wheneussible.

Other related work includes the Distributed Task Plan (D[IB]. A mobile agent
plans a DTP according to the current user’s objectives, anmiviedge about current
environments — not necessarily seeking the shortest path.

All the above work uses previously prepared plans in ordeethice the search
effort and the complexity of creating a new plan from scratébwever, none of them
assign importance to the intermediate states or actioedsriginal plan, as our work
does.

2.1 Plan Distance Metrics

Ephrati and Rosenschein [6] considered a situation camgistf two agents, one of
them the supervisor and the other the subordinate. The\dapecreated a plan for
the subordinate, but the latter realizes that the supetsisttended plan cannot be
followed. Thus, the subordinate tries to find an alternagilen that will please the

supervisor, whichnter alia involves assessing the distance between plans. Measuring
distance between plans or paths is a non-obvious problethaagreat deal of work
needs to be done so as to define a distance metric that wikrppédins that satisfy
intuitive notions of closeness.

In their work, Ephrati and Rosenschein suggested a numbdistdénce metrics
between plans. One class of metrics they suggested contpaoastor theutility of the
two plans. If, for example((P) is the cost of plar® then the distance between the two
plans will beD.(P;, P;) = |C(P;) — C(Pz)|. Since we assume that intermediate states
have importance of their own, this class of metrics is obsfpunsuitable. Imagine two
plans, both leading to the same goal and having the sameltastach plan reaches
the goal via a completely different path (via different imediate states). Theost
metric described above will evaluate them as equal, disregardiaglifference in the
intermediate states.

Related research was carried out by Mayers and Lee [24]einwork, the inten-
tion is to generate a set of qualitatively different plamenf which the user can pick
one. This was achieved by defining metrics that estimateweval a set of plans, and
using biases created from metadata over the domain to @ingleinner towards differ-
ent sections of the search space. The metric used to estavalee for a set of plans
was based on the distances between plans in the set. In thikiy thie distance metric
between two individual plans is similar to thignamic deviation metrif6], discussed
below. An interesting follow-on to Mayers and Lee’s resbasould be to employ their
framework to generate sets of plans, but to use the newandistmetrics discussed in
this paper.

Line generalization is yet another subject that is relatembtnparing a set of points.

In line generalization, the objective is to take a line witpoints and create an approx-
imation of that line withm points. As with a set of states in a plan, there are many ways
to measure how close one set of points is to another set ofspdinarge variety of
line generalization methods and measures of line apprdianshave been discussed
by McMaster [21-23].

3 Distance between Sequences of States

Ephrati and Rosenschein [6], in addition to the cost metentioned above, also ex-
plored another class of metrics that have more geometrag@ais. They suggested
measuring distances between states of the two paths, anidgica number of ways
for doing that.

As one example, they considered using Heusdorff metric[11, 2, 3], which is
used in the field of image processing to measure distancesbattwo shapes. Taking
the state in the first set that is closest to any state in thensleset, one measures the
distance between this state in the first set and the farthestis the second set. They
also suggested thehifting distance metridn which measurement is done by summing
the distance of each state in one plan from the set of statbs iother.

More formally, if P, and P, are two plans theshi fting Distance Metric(Py, Py) =
>, D(p}, P,) wherep} is thei-state in the plarP;, D(z, P) = minycpd(z,p’),
andd(z,y) is the distance between two nodes.

plan A
z
Y
inital state
)
e gJoal state
plan B °

Fig. 2. The shifting distance metric

The Hausdorff metric loses a lot of information, as we calteithe distance of just
one representative state. Moreover, both these metrias &imnherent flaw because
they treat a plan as setof states, while a plan should more correctly be considered a
sequencef states (we would like the beginning of plainto be close to the beginning
of plan B, and so on). Thehifting distancg6] might map a state at the beginning of
one plan to a state at the end of the other plan, only becaageath very close to one
another. Figure 2 illustrates such a scenario. Skate plan B is very close to stat®
in plan A, so the shifting distance will take their distance as thtadise betweeX and
plan A. However, considering the internal order of the plansgstaof plan B should
be mapped to statg of plan A.

In that sense, the best distance metric suggested by Ephaat[6] was thelynamic
deviation metricwhich sums the sequential relative deviation produceddeyators of
each plan, and is defined &4, (P1,) = >_.—, d(p;, p?), wherep} is thei-state in
Py, p? is thei-state inP,, andm is the minimum between the number of states in the
two plans.

This metric does treat a plan as a sequence of states, anthéhimternal order is
taken into account. However, this metric is rather basic eamdbe further enhanced.
Below, we introduce a number of distance functions that dompositive aspects from
both thedynamic deviation metriand theshifting metric

3.1 The Monotonic Mapping Function

In this section, we define theonotonic mapping functioMMF). We assume that
there exists an efficient way to calculate distances bet@agrhwo states in the search
space (e.g., the straight line distance if the domain is dmag).

We assume that the original plan hastates and denote it By = {s1, s2, ..., Sn }-
We also assume the agent’s plan hastates and denote it by = {a;, a2, ...,am }.
Like the shifting distance above, we want to map a state ofpaitie to the closest state
in the other path, but also to take into consideration thath [a sequence of states.
This means that some kind of monotonicity must be maintaikéaltherefore use the
following restriction on the allowed mapping:

The monotonic restriction: If a nodea; was mapped to a nods;, then nodes
that appear later il such asi;; cannot be mapped to nodesSrthat appear before
s;j. Mapping functions between the patdsand S, Fi,.., : A — S, that keep this
restriction must maintain the followingionotonic rule: F,,q,(a;) < Frap(@it1). In

other words, we cannot alloarossingsn our mapping function. Such a crossing might
occur in the shifting distance (as in Figure 2).

We therefore introduce thdonotonic mapping functioMMF), which calculates
distances between paths as follows.

We first find all the different mappings of statesinto states of5, Fi,qp : A —
S, that maintain the monotonic rule (i.e., thB,.p(a;) < Frep(ai1). For each of
these different mappings, we define the distance betweemp&tits according to this
mapping to be

Dmap(A7 S) = Z d(ai7 Fm,ap(ai))-
=0

There are many such mappings that obey this monotonic rukeividl example
for such a mapping is that all the states4dfire mapped into the same stateSofwe
want to choose the particular mapping that minimizes thensation of the distances
between the states. Through simple mathematical analgstawshow that the number
of potential mappings of: states ofA into n states ofS that obey the monotonic rule
is (" + ZL -1 . However, théestsuch mapping can be found by a simple algorithm
(based on dynamic programming), in time complexity(gf: « m). The main idea of
the algorithm is to have a two-dimensional array of sizex n. Each entryz, y in this
array corresponds to the best monotonic mappings of thexfgtdte inA into the first
y States inS. An entryz, y is easily calculated from its predecessors. The exactldetai
and complexity analysis of the algorithm are provided bynEe[7].

The above formulation, which takes the sum of the mappingaohef the states
into a state in the target plan, has a flaw — two long paths ntigh¢ a large distance
between them, even though the states themselves are vegy tclane another. The
solution would be to add these distances and then take theiage. Therefore, the
MMF is defined as follows:

>y d(ai, Frnap pin(@i))

MMF(A, S) =
m

Frap,,in 1S, Of course, the best mapping among all mapping candidatest — S
that obey the monotonic rule that,.p,(a;) < Fap(@iti).

DMMF: Double Monotonic Mapping Function We now have to answer the question
of which path should be the source of the mapping, and whiehstwould be the desti-
nation. In Figure 3, both plans have 9 states. However, agrshothe figure, the states
at the beginning and end ¢f are two moves away from states.h and the states in
the middle ofS are three moves away.

Note that mappingl — S will yield MMF(A, S) = 2 while mappingS — A will
yield MMF(S, A) = 3. Both mappings lose some information by having some states
in the destination plan with no state mapped into them. Ohgien is to take the sum
or average of each of the mappings. This leads us t@thele Monotonic Mapping
function

DMMF(4, S) = MMF(A — S) + MMF(S — A).

S 71 S BT
1//‘\ /’ﬂ /AN\ : : ! N | AR
’ VoY Ny oy
A GO o o0 0o o o0 A ee o 6o o o eo-o
2424 2424242424242
D(A—>8)= +2+2+ +9+ 22, D(S—>A)= 2+2+2+5-;5+5+2+2+2 -3

Fig. 3. Mapping both ways

S1 S2 S3

Fig. 4. Mapping both ways, again

IDMMF: Improved DMMF Still, there are cases when the DMMF fails to provide
a viable distance metric, as shown in Figure 4. There are ttgonative paths in the
figure: A is a simple path to the goal state, aBds another path that first circles the
initial state of the original path. If we calculate the dista between the paths with
DMMF (assuming that the distance between each of the statbeicircle toS; is 5
and that the distance betwedn and B; to .S, is 30), then we get tha¥lMF(A, S) =
543940 — 11.66 while MMF(B, §) = 2H5+545454543040 — 75 |n this scenario,
we will prefer a plan that circles around a state if it staysselto it, even though it is
not moving forward. To solve this problem, we introduce thMF (Improved MMF)
distance function. In IMMF, if we have a number of states negbjmto the same state,
we do not sum them, but rather take their average. We dividihealstates inA into
different groups according to the stateSrihat they were mapped into.

We defineG; as follows: given an original plas, an alternative plam, and a
mappingF.,.., betweend ands, then for every; € S we define the group
G;=Ua; € A|Fpqp(a;) = s;. For example, suppose that ..a;, were all mapped into
s;. These nodes are all placed into a group that weall

We denoteD; as the average distance of nodes frémto s;. If the number of
different groups isV then we define

Di+Dy+...+ Dy

IMMF (4, S) = ¥

(8

+

=}

In Figure 4 the values of IMMF will belIMMF(A4,S) = it = 11.66 and

IMMF (B, S) = M* 1 _ 11.66. Al the states in the circle of plai

are now combined into one group, and therefore both plans tiee/same distance to
the original planS. We then, once again, map the two paths both ways, and define a
“double-version” of the mapping function:

w

IDMMF (A, S) = (IMMF (A, S) + IMMF(S, A))

3.2 TDMF: Time Dimension Mapping

In this section we suggest another distance metric whichallgre Time Dimension
Mapping Function(TDMF). In TDMF, the mapping is done according to the time di-
mension, i.e., each state in the original path is mappedtrelttive state in the des-
tination path according to the proportion of its relativedtion on the path. For each
statea; in A, we denotel,, as the length of a path fromy to a;. We denotel 4 as the
length of pathA, and A[z] as the location on patH located at distance from the be-
ginning of the path. We map a statgfrom A to the corresponding state $has follows:
Frap(a;) = S[LL‘Z * Lg]. If there is no corresponding state at Iocati@[n% * Lg],
then we choose the neighboring state that minimizes theTID&F mapping function.
For the complete distance we define

m L,
> i1 Aai, S[F°F * Ls])

TDMF(4, S) =

Fig. 5. TDMF mapping

Figure 5 shows a mapping according to the TDMF distance fomcStateas is
closer to statess, but according to the time dimension it is mapped to statesince
both of them are located at the same relative location irr fheths. Again, similar to
DMMF, we define

DTDMF(A, S) = TDMF(A, S) + TDMF(S, A)

Here again we define ITDMF such that if more than one state [spetinto the same
state, we take their average instead of their sum. The coibple this mapping func-

tion is much smaller than IDMMF, as we only have to calculatedorrect mapping for
each of the states. This is unlike DMMF, where we had to lookife minimum among

many relevant mappings.

10

3.3 Comparison between the Distance Metrics

Fig. 6. IDMMF versus ITDMF

We now provide an example for comparing the above two “impdi\approaches,
namely the IDMMF and ITDMF distance metrics. Figure 6 shows alternative plans
AandB. In A, there are many states that form a “circle” close to thedhgiate of the
original planS; (i.e., A; throughAsg). In B, we have only one stat8, near states,
but it is located quite far fron%;. With ITDMF, many of the states in the circle df
(e.g., A4, A5 and Ag) will have to be mapped t65. This will cause a large distance
to be measured between the two paths. With IDMMF, howevithalcircle states will
be mapped int®;, and the distance between the two paths will be much smaleis
ITDMF will prefer plan B, while the IDMMF function will prefer plamA.

The question of which metric is better is ultimately not ahesatical question, but
is situation dependent. If the desire is to always be locatediose as possible to the
original plan, then IDMMF will be preferred. If, howeverdliesire is to try to imitate
the original plan in other aspects (like the number of sjatesl the time dimension is
more important, then ITDMF is more suitable.

In fact, since “distance between paths” is not well-defirmlder metrics might very
well be considered, as long as these metrics do measure sathefksimilarity be-
tween the two paths. For example, if we desire that the sitatelagent visit as many
intermediate original states as possible, then we showt lgigher priority to plans
that have as many such states as possible. This can actaalbne rather easily by ID-
MMF, for example by taking the distance metric between tvebest to bel(x,y) = 0
if © = y whiled(z,y) = K otherwise, for some constaht.

4 The Search Process

We now describe the search process that the agent showdciarso as to find the best
alternative path as quickly as possible. We introduce abeslgorithm that is based on
best-first search, which starts from the initial state ammt@eds until the goal state has
been reached.

The input for our problem is:

11

1. The graph that represents the domain;
2. The original patft;
3. The selected distance metric.

The output of our search algorithm is an alternative patimftbe initial state to
the goal state that is as close as possible to the originh) patording to the selected
distance metric (chosen from the metrics that were definedegb

4.1 The Search Algorithm

To find such an alternative path to the goal state, we actavatest-first search process
from the initial state towards the goal state. This searatisfrom the initial location of
the agent and proceeds forward; thus, a search tree is shdfaeh node in the search
tree contains a partially developed path from the initiabliion of the agent. A best-first
search chooses to expand a node that minimizes some cosa({oaton) function. A
cost function of a node in this search space will be an estimatf the likelihood of
this partial path being a prefix of a plan that will be as clos@assible to the original
path. A number of relevant cost functions that estimateategpresented below. At each
expansion cycle, we expand next the state with the lowebtestimation, until the goal
state has been reached for the first time. When that happemstwe the branch of the
search tree with the goal node as the alternative path todak §ote that the search
need not stop at this point, and that it could continue in #raes manner until other
alternative paths to the goal have been found.

4.2 The Cost Function for the Search

How do we define a cost function to estimate the likelihood pfadial path being a
prefix of a path that will be as close as possible to the origiath? At first glance, one
might suggest using the same cost function as that of thekmellvn A* algorithm [10]
for our best-first search. A* is a best-first search with a éasttion of f(n) = g(n) +
h(n) whereg(n) is the elapsed distance from the initial state to the cumeden and
h(n) is an estimate of the distance betweeand the goal state.

To return the optimal path, A* has some conditions that dcapgly in our domain.
In a classic heuristic function of A*, if the estimate is ajygaa lower bound of the exact
distance to the goal, then we say that the heuristadimissible With an admissible
heuristic the complete cost functiofi,= g + h, is monotonically increasingnd is
always a lower bound on the shortest path. Thus, the firstisnlthat is found by A*
is the optimal solution. A hidden condition for the fact thla¢ cost function will be
monotonically increasing is that thecomponent is always increasing as we proceed
with the search.

In our case, we do not divide the cost function iptandh, but rather want to try to
estimate the distance of the partial path to the originai.pfaince our defined distance
functions take the average of all the state mappings bettteetvo paths, the distance
between the paths might decrease during the course of thehsdais happens if a
path starts at a large distance from the original path bstgeser in later stages. Thus,
a heuristic that will always be a lower bound is not possildechAs a consequence,

12

due to the nature of our distance metrics, we cannot guaramit the first solution that
will be found will be the best one available. However, ourerkmental results showed
that it often is.

4.3 |IDMMF as Heuristic Evaluation Function

We now turn to defining the heuristics used in our best-firatde As a first step, we
would like to take the IDMMF distance of a partial path frore tompleteoriginal plan.
However, such a heuristic function results in a problem weatall thetail problem

Al A2

S1 S2 3 4 S5

'.
1 B2

W e==

Fig. 7. Tail problem

In Figure 7 we have an original pathand two partial pathsl and B. Suppose that
both partial paths were developed (after generating twestar each), and now we
have to decide which one looks more promising. Suppose dh#té heuristic we take
the regular IDMMF function and measure the distances beatwaeh of these paths to
S. A problem arises when we make the reverse mapping of thaafigathS into A.
SinceA is only a partial path, all the states in the tail%#re forced to be mapped into
A, even though they are located very far from it. For the papiah B, however,B;
is closer to the middle of and states from the tail f are mapped better (closer) to
B. Thus, using IDMMF the process will prefer pldh while it is obvious that plam,
though partial, better imitates the behavior of the origpian.

4.4 The Prefix Heuristic (PH)

A possible solution to handling the tail problem is to coesjdor purposes of the
heuristic value, only the mapping of those states of thdmaigathS that are close to
the relevant prefix of the alternative path. We call this modttheprefix heuristiqPH),
which carries out the following steps:

1: First, a full mapping is done from to S. Let s;, be the last state frorfi that any
node fromA was mapped into.

2: We now only mapsy, sz ... s, into A. Other nodes of are not mapped, since
they are in the tail o and are far fromA.

For example, in Figure 8 the mapping of the original pétimto the partial alterna-
tive pathA = {A;, A>} only considers nodeS; and.S; of the original pathS, since
these are the nodes that are targets of mappings fromhile the tail nodes of are not

13

Al A2

L N

L d
1 B2

Fig. 8. The PH heuristic

mapped. With this formulation, the mapping of the originalpS into B = {B;, B>}
considers the nodeS;, S», S3, and S, of the original pathS. With this calculation,
plan A will be preferred because it is closer to the relevant pa&.of

4.5 PH for the ITDMF Distance Function

As explained above, ITDMF maps each stateliimto its relative state it$ according
to the proportion of its relative location on the path. StateS are mapped into states
of A in the same manner. In order to do that, the length of bothspathuld be known.
However, during the course of the search the length of theaftdrnative pathA is
not known, since we only have a prefix df Therefore, for properly using the prefix
heuristic with the ITDMF distance metric we need to estintagelength of the entire
alternative path while only given its prefix.

SO

s1 s2 s3
10K 0% 20 >
: 725

Al A2

Fig. 9. Estimating the length aft

For any nodev in A, we definepredecessdw) as the node that appears Anjust
beforev. For any two nodes;, y in A, we defined4(x,y) to be the total distance in
A from x to y. We propose three approaches for estimating the lengthegbaissible
complete alternative patd when we want to develop nodein the current prefix of
path A that ends at node.

Using the Exact Tail in S In this case, since we do not know the length of the tal pf
we replace it by the relevant tail 6f. Sincev was not mapped yet, we consider the tail
of A from its predecessor. We therefore define the length of ttimated complete al-
ternative patiLl 4 (v) = da(start, predecessdw))+ds(Fi.qp(predecessdn)), Goal).
For example, in Figure 9 we are now developing naddn the search tree. Its parent

14

is nodeA;, and it was mapped t8;. According to our definition, we gdtl4(A4s) =
da(Ao, A1) + ds(S1,S3) = 15 4+ (10 4+ 20) = 45. Note that the dashed line in the
figure is not an edge, but only signifies that the actual tailldde 25 if we knew it —
but we estimate it here as 20.

The Approximated Tail in A In this approach, since is the last state in the prefix,
we just take the straight line distance (which we will denSteDist, and which we
assumed above is easily calculated) frorto the goal as an estimation of the tail of
A. That is, we defind.24(v) = da(Start v) + SLDis{v, Goal). In Figure 9, we get
L24(Ag) = (154 10) + 25 = 50.

Maximum of Both The third approach simply takes the maximum of the two approx
imations abovet max12 (v)=max(L14(v), L24(v)).

These estimated lengths df(L1, L2, or Lmax13 are then used as the lengthAf
when calculating the PH heuristic (as described above)IfDMF.

5 Experimental Results for Simple Path Finding

Fig. 10.Delaunay graph with 20 nodes

We have experimented with Delaunay graphs [26], which siteutoadmaps. De-
launay graphs comprise Delaunay triangulations of planantpatterns that are gener-
ated by aPoisson point procegd26] that distributes points at random over a unit square
using a uniform probability density function. Delaunatrjulation of a planar point
pattern is constructed by creating a line segment betwesnper of pointqu,v), such
that there exists a circle passing througgndv that encloses no other point. This char-
acteristic simulates roadmaps. To construct Delaunayhgrégr our experiments, we
used the Qhull software package [4], which is a well knownkpge that generates
Delaunay graphs on a square frame with unit size of 1.

In Delaunay graphs, nodes are connected to the nodes thearhem. In roadmaps,
however, nearby locations might not have roads between, fperhaps due to some sort
of an obstacle like a mountain or a river. To imitate this elegristic in our graphs,

15

we deleted some of the edges in some of our experiments. Anottaracteristic of
roadmaps is the existence of highways that connect disieatibns. To add this effect
to our graphs as well, we added additional random edges tD¢hmunay graphs in
some of the experiments. The size of the graph, as well asutivder of edges that we
add or delete, are variables. Figure 10 illustrates a Delpgnaph with 20 nodes.

5.1 Creating the Environment

Once the domain graph was created, we used two methods &vingy¢éhe original path:

(1) Shortest path: The start and goal nodes are randomly selected. Then, the A*
algorithm is carried out and the shortest path between Hreatd goal nodes is used
for the original path.

(2) Random path: Here, we first determine the number of states in the path.,Then
we choose the start node and make a number of random movetetoiee the inter-
mediate states as well as the goal state.

At this stage, we have to make some changes to the graph (wimtHates envi-
ronmental changes in the domain) to prevent the origindl fsatn being followed (and
force the search for an alternative). Thus we randomly delettices and edges from
the graph (some of these edges and vertices were used bydheabplan).

The size of the graph, the length of the original path, and hwamy changes will
be made in the graph are all parameters of the system. Weimqrged with many
values for these parameters. Below, we present experimérgge the graphs were
built as follows. The number of edges in the Delaunay graps veaied from 200 to
6000. Then, 50% of the edges were deleted, and 20% of randges ecere added by
randomly choosing two nodes in the graph and creating an leetyeeen them. On this
graph we determine the original path according to the twdhoug presented above.
After the original path was determined we change the grapiolesvs. 40% of the
vertices of the original path were marked and all the edgasdbnnected them were
deleted. Then, given an instance of a problem, a best-fisstBewith the different
heuristic functions and the different metrics was actigaie this modified graph.

We tested both the IDMMF and the ITDMF, as well as other distametrics that we
do not mention here (we present only the data on ITDMF and bulnéuristic function
in this paper). However, similar results and conclusionsvedtained for the IDMMF
distance metric and for the other distance metrics. Deta#sults can be found in
Felner’s thesis [7].

5.2 Original Path Created with the A* Algorithm

Figure 11 presents a graph with 200 nodes. The dashed lihe @&xiginal path created
by A*. The black line is the alternative path that was foundrbgning our algorithm.
The black square nodes are the nodes that were developed theisearch. Our alter-
native path was found quickly, as evidenced in the figure kyfdict that only a small
number of nodes were generated by our algorithm, and thagitteeall located close to
the original and alternative paths.

As mentioned above, we have three approaches for a hedtistition, based on
three different methods to estimate the length of the atéra path when using the

16

Gaph e Fropertiss Mlgorithms Alexalponithms Setiser Help

DEHE| &2 =8|

Fig. 11. Alternative and original paths

Number of nodes developed untill the first solution using ITDMF distance function.
250 T T T

First approach——
Second approach-->-"
Third approach-:-=-
200 | Number of nodes in original gfap B

Number of nodes developed.

0 o Il Il Il Il Il
0 1000 2000 3000 4000 5000 6000
Number of nodes in the graph.

Fig. 12.Number of generated nodes, ITDMF

17

Best pathNumber of runs
1 119
2 107
3 46
>4 28

Table 1. When the best path was found, in 300 runs; each row corresponddiffer@nt case
(that is, row 1 signifies that in 119 cases the best path was the first pathed.

prefix heuristic with the ITDMF distance metrdcEigure 12 presents the number of
nodes generated by each of the heuristics until the firstnaltise path was found. All
datapoints are the average of 300 random instances withathe sharacteristics. The
figure also presents a curve with the average number of nddée original path. It
shows that all three heuristics behave approximately theesand they all generate
only four times as many nodes as the original path. For exanipt a graph of size
6000 the length of the original path was 50. Our algorithmdeeleto generate only
200 nodes in order to find an alternative path. This suppbgscontention that our
algorithm is quite efficient and finds the alternative patihea quickly. The results of
the three approaches are not significantly different in slisof experiments because
the original path was generated as the shortest path betieenitial and goal node.
Therefore, it tends to be a path that is relatively straight the heuristics measure
similar values. These approaches performed differentilgérset of experiments below
where the original path was created randomly.

As discussed above, our heuristics cannot guarantee thaltersative path since
they are not admissible. However, when we continued to rumlgorithm, more alter-
native paths were created, and experiments confirmed thafptimal alternative path
was found very quickly. In most runs it was either the firstloe second alternative
path that was found, as illustrated in Table 1. Furthermweefound that the distance
between the first solution that was found by our algorithmhtodriginal path is larger
than the distance between the optimal solution to the algiath by an average of only
2.2%.

Since the original path was found by A* and was a shortest pativeen the two
nodes in the original graph, one might consider running Attom current graph (i.e.,
after all the changes were made) in order to determine wh#ibeurrent shortest path
is also close to the shortest original path. Figure 13 ptesgvo curves that measure
the distance between an alternative plan and the origiaal dlhe first curve presents
solutions that were found by our algorithm. The second cpresents shortest paths
that were found by A* after the graph was changed. The distexmeasured according
to the ITDMF distance function. Both algorithms found theajpode rather quickly,
and both generated approximately four times as many nodie aize of the original
path. However, Figure 13 clearly shows that the alterngtath found using the ITDMF
distance function is always closer to the original path ttlenalternative path found

2 We used straight line distances for measuring distance between two states.

18

200 T T

TDMF distance function——
A* algorithm ----- i

180 ft
160 | |

1ob N .

Difference between original and alternative paths

40 Il Il Il Il Il
0 1000 2000 3000 4000 5000 6000
Number of nodes in the graph.

Fig. 13.ITDMF versus A*

by running the A* algorithm, even though the original pathsweaeated with the A*
algorithm.

5.3 Randomly Created Original Path

We now consider our experiments that used original pathswieee generated by a
random walk on the graph (and are not the shortest paths,cag)alihe number of
random walks was 5% of the number of nodes in the graph forhgragth less than
1000 nodes, and a constant of 40 nodes for larger graphs.

Fig. 14.Randomly created original path

19

Figure 14 presents an original path (the dashed line) andtemmative path found
by our algorithm (the black line). Again, the similarity dfe two paths is intuitively
clear.

250 T

First approach——
Second ap) -~
Thi

200 in the original paﬂth’,,,,,

150

100 S §

Number of nodes developed.

50

0 1000 2000 3000 4000 5000 6000
Number of nodes in the graph.

Fig. 15.Number of generated nodes, ITDMF

Figure 15 presents the number of nodes generated by each approaches (for
measuring the estimated length of the alternative pathT®@MF) compared to the
number of nodes in the original path. The quality of the fididon found by all these
approaches was the same, and again, was larger than theabgtilution by no more
than 2.2%. However, the difference in speed between the tipproaches of reaching
the goal is much larger than in the previous case (where tbgestt path was used
for the original path); it seems that the combined versidnictv takes the maximum,
produced the best results and was the fastest. This is dbe tature of the path which
was randomly created and could go in different directionsteHagain the number of
generated nodes was never larger than the number of nodesdniginal by more than
a factor of 5, which confirms that the alternative path wasébquickly by all three
approaches.

The experimental results support the applicability andcetiveness of our search
algorithm and the various heuristics. It also illustratesdifferences between the three
heuristics. They perform similarly for the set of experinsewhere the shortest path
was used as the original path, but perform differently whea path was randomly
generated. The combined heuristic — where the maximum legtwlee previous two
heuristics is used — performed best because it incorponades information.

6 Example in the Blocks World

We presented a number of geometric metrics for measurinditieeence between two
plans. We now demonstrate how these metrics might be useddfomain that is not in
itself geometric, namely a modified blocks world.

20

Fig. 16. A modified Blocks World example

Consider the blocks world in Figure 16 which is describedhgyfollowing predi-
cates:
Blocks(n)— The total number of blocks in the world.
On(A, B, S)— Block A is on block B and located at slot S.
Color(A,C) — The color of block A is C.
At(S) — The robot is at slot S.

The domain operators are:
Go(S, T)- The robot goes from slot S to slot T.
Carry(A, S, T) — The robot carries block A from the top of slot S to the top ot dl.
Destroy(S)— The robot destroys the block at the top of slot S.
Create(A,S,C)- The robot creates a new block A at the top of slot S with color C

The initial state is at the left-most frame in the middle rawd the goal is to move
the white box (marked by W) to the third slot, as can be seergimt4most square of
that row (which models a goal state). There are three diftggkans in Figure 16 that all
reach a goal state. The original pléns illustrated in the middle of the figure while two
alternative plang! and B are illustrated below and aborespectively. In the original
plan .S, the robot takes the white block and puts it on top of the blalokks in slot
2, and then moves it again to slot 3; this is done by perfornivigcarry operators.
Suppose that there is a restriction on the number of bloclesdiven slot and that a
stack of three blocks is not allowed. Both alternative planand B must obey these
restrictions. In plard, the robot first destroys the black block at slot 2, moves thitgew
block to its destination, and then creates the black blo@inadn planB the agent
destroys the white block in slot 1 and creates it again inZlot

We would like to use the IDMMF function and measure the distametween these
two plans to the original plan. The IDMMF function assumes there exists a distance
function between any two states in the domain. While thigugairfor a physical graph,
we should first define a distance metric between the statdeedilocks world. There

21

are several sensible ways to define such a distance metfisiddmain. We introduce
two metrics that were also proposed in the work of Ephratl.§6a

Since we consider each state to be described by a set of ateslia straightforward
metric can be generated by the summation of the differenetgeen the conflicting
predicates of the two states in question. In our exampleiffezehce between different
predicates can be defined in the following way:
Diff(Blocks(N),Blocks(M)¥ 3 x |N — M|
Diff(At(S),At(T))=1|S — T
Diff(On(A,B,S),On(A,C, T 2 x |S — T

Another approach would be that the distance between anytatessis defined by
the plan needed to bring about the differing predicates efgiate, starting from the
other. Therefore, we defin&x, y) to be the minimal plan from to y. In this example,
we set the following values for the different operataB&stroy = 2, Create = 3,
Go(S,T) = |S — T| and finallyCarry(A, S,T) = 2 x |S — T|. Of course, in some
circumstances finding this minimal plan might be costly andther distance function
should be used.

By defining a distance function between any two states in tbekb world, we
make it possible to use any of the geometric distance funstitefined in the previous
section in the context of the blocks world. This is mainly purposes of illustration,
and in more realistic domains other distance functionsccbalexplored.

6.1 Using IDMMF in the Blocks World

Here we describe the steps of our algorithm on the examplégof& 16. For the dis-
tance metric between the states we use a plan that unifiesalstates. For the distance
between paths and for the PH heuristic we use the IDMMF dist&mnction.

The purpose of the search is to find an alternative plan tiasislose as possible”
to the original planS. During the search, a tree is developed and at every stadpe of t
search each leaf defines a unique partial plan that corrdsgorits branch in the tree.
Each branch is given a heuristic value. Based on this heyrigé activate a best-first
search that prefers those branches that are most likelytteeh@efixes of the plans that
are very close to the original plan.

The search starts at state According to the best-first search, statds expanded
and its two neighbors, andb, are generated. In order to decide which state to expand
next,ay or be, we use our PH heuristic function. The branches{akeas } and{b;, b2 }.
The closest branch to the original plan according to theikgtiwvill be expanded next.

We now calculate the heuristic value of the braath= {a;, as}. For this we first
need to map the states dfinto the states of. a; is mapped into itselfy;). Foras, we
need to find the closest statesh We get the following:
d(as, s1) = Destroy2) + Go(2,1) = 3
d(ag, s2) = Creatg A, 2, Bl) + Go(2,1) + Carry(4,1,2) =6
d(ag, 83) =13

Thus,as is also mapped inte;. Sinces; was the last state if that was a desti-
nation, then for the reverse mapping we only need to map tdg 3+, to the closest
node fromag andsy, as. Of course, since; ands; are identical, it is mapped to itself.

22

Thus we get that
ph({al,ag} S) = m,,p({a12a2}—>81) + map(SlT{al az}) —9

In the same manner, we need to find the distance betygeh, } and the original
plan S. Similar calculations show thath({b1,b2},S) = 4.5. Thus, the node in the
search tree that include$ = {a;, a2} is selected and expanded. However, in the end
we get that plarB is closer, and this is the plan that is chosen.

7 Searching for an Alternative Schedule

The basic idea considered above, of applying best-firsthedarfind alternative plans,
is also relevant to problem domains that are not purely stadéee domains. To further
explore the generality of our approach, we expand it to tieblpm of rescheduling. In
this domain, a given schedule of tasks (i.e., the interndéioin which they should be
executed) cannot be followed as planned, and thus an diteyrsghedule is required.
There are many real world examples, such as flight or deliseinzduling.

Consider the flight scheduling problem. Flights are oftdayted or canceled due to
mechanical failures or weather. When this happens, thenalifight schedule cannot
be executed as planned and a new schedule is required. Cmeiofriortant properties
of the new schedule might be that it should require “a smathiner” of changes from
the original schedule, so as to minimize the discomfort afspagers. Therefore, we
might want to find a plan — a schedule — that is “as close as ple$db the original
plan.

Scheduling algorithms attempt to create good schedulesrundet of constraints.
The field of scheduling algorithms is both broad and compleae exist many surveys,
reviews, and handbooks of scheduling problems and algosiite.g., [12, 28, 14, 17]).
In this section, we do not present a general schedulingitigorbut rather an algorithm
for finding a schedule that is as close as possible to a giigimal schedule. We show
how our approach to finding an alternative solution (disedsshove), is also applicable
to scheduling. We propose distance metrics, and employ tefibgissearch algorithm
similar to the search described in previous sections.

7.1 The Scheduling Model

There are many classes of scheduling problems, and mangiatgsbways to model
them. However, since our focus is not on scheduling per gesadboer on the search
for an alternative plan (or schedule), we choose a simplevegiiknown domain-
independent scheduling problem and its associated model; Lj», . .., j, be a set
of homogeneous jobs (i.e., jobs requiring exactly the samauat of time to execute),
that can be executed sequentially. A schedutiefines the order of job execution, such
that S(j;1) designates the position in the sequence of execution. Famgbe, if the
schedule defines performinyg first, thenj. followed by js, S(j1) would be 1, with
S(j2) = 2 andS(j3) = 3. Therefore, a schedule can be viewed as a permutation of
the job indices. For example far = 3, a schedules =< 3,1,2 > states that job; is
executed first, thepy, and therys.

23
7.2 Distance between Schedules

Ouir first need is to define distance metrics between two sée®dLhere are many con-
siderations that apply to schedule comparison, dependirigeospecific probleri We
have used here two simple and intuitive approaches, andaftaenthem into distance
metrics that will later be used in the search process.

There are many research fields in which distances betweenupations are con-
sidered. For example, in the sorting community distanceiosghetween permutations
are used to measure the amount of “presortedness” of antads®quence, as can be
seen in the work done by Mannila [20]. A comprehensive disicusof various dis-
tance metrics between permutation-type representatsuth @s the scheduling model
mentioned here) is provided in the work of Sorensen [29, 30].

We now turn to defining metrics between schedules for theqaapof our research.
These metrics can be used along with other metrics.

Mismatch and Index-based Metrics In mismatch metricstwo schedules are con-
sidered closer to one another if they contain many jobs trefparformed, in both
schedules, in the same time slot. A simple distance mettatsathe number of jobs
that are not executed in the same time slot in both scheddlm® formally, we define
eq(a,b) = 0if a = b, andeq(a, b) = 1, otherwise. We then define the mismatch metric
as:

mismatchiS;, So) = zn:eq(&(i), Sa(i))

wheren is the number of jobs.

However, this approach to counting the number of misplaced pnly measures
how many jobs were given different time slots in the compaseltedules. The mis-
match metric does not consider how many time slots each jabmaved (i.e., the
distance between a job’s position in the two schedules)ekample, consider sched-
ulesS,rg =< 1,2,3,4,5,6 >, 51 =< 6,2,3,4,5,1 >, andS; =< 1,2,3,4,6,5 >.
According to the mismatch distance metric, schedWesnd S, have the same dis-
tance toS,,, — that is, mismatcfSy, S,,) = mismatctiSs, S,.,) = 2. However, the
two misplaced jobs iy, (jobs 1 and 6) were moved by five time slots from the original
schedule, while irb; the change was of only a single time slot (for each misplackey
To address this issue, we generalize the above metric todleg-basednetric:

indexBasedS:, Sy) = » _ [S1(i) — Sa(i)]-
=1

Thus, for the example above, indexBa&gd Syrg) =5+0+0+0+0+5 = 10,
while indexBaseflSs, Sorg) =04+04+0+0+1+1=2.

8 Of course, there may be many domain-specific considerations thatonakschedule “closer”
to another. We are exploring domain-independent aspects of the proble

24

Sequence metricAnother distance metric of schedules might take as its nrétirion
the comparison of internal sequences in the schedule. Airpto this notion, a sched-
ule is considered close to another schedule if they contkirga identical sequence of
jobs. Formally, we define thengest sequendenction as:

longestSequen¢8;, So) = n — MaxSequence
where
MaxSequence max(Q) s.t. 3t 1<t<n, Vi t<i<(t + Q) | S1(i) = S2(7).

MaxSequences therefore the maximal internal sequence of jobs that ajgpie
both schedules.

Consider the distance between the following scheddlgs, =< 1,2,3,4,5,6,7 >,
andS; =< 2,3,4,5,6,7,1 >, computed by the different distance metrics described
above. Then:

— mismatcliSi, Sprg) = 7;
— indexBase@S:, Sorg) =6 +1+1+1+14+1+1=12;
— longestSequen¢s, Sorg) =7—6 = 1.

Of course, one can suggest hybrids incorporating featurésese metrics (and
others), but the overall principles remain the same.

7.3 The Search Process

After having defined distance metrics, we now turn our aitberio a search algorithm
for finding a schedule close to the original. We can easilypatite same search mech-
anism that was used above for state spaces, with only a feessaxy modifications;
here too, each node in the search tree will be a partial ptathi$ case, of course, a
partial plan is a schedule where not all the jobs have beégreeska time slot. Here
we also require a heuristic that will evaluate the probgbtlat the partial schedule
will lead to a full schedule that will be close to the origirsahedule (according to the
distance metric).

In domains we previously considered, the cost functionsl lsethe search algo-
rithm to evaluate nodes on the open list were not admissitiat is, we were not
guaranteed that the current distance between the two Ippatilas is a lower bound
on the final distance between the two complete paths. Therefidien expanding the
first possible goal node (the first node representing a ftérahtive plan), we did not
necessarily have the alternative plan with the smallessiplesdistance to the origi-
nal plan. In the scheduling domain, however, it is possibladve an admissible cost
function, i.e., distances between a partial schedule andl adhedule will always be
a lower bound on the distance between the two full schedulle=refore, when using
a best-first search mechanism to expand nodes, when thedakhgde is chosen for
expansion we are guaranteed to have the solution with thesibeost — in our case,
the closest schedule.

Creating admissible cost functions for the distance mettescribed above can be
done via problem abstraction by deleting constraints. Thischieved by computing

25

the distance metric between the partial schedule and tilginalischedule, while not
considering any jobs that have not yet been scheduled (ipdht&al schedule). This
is easy to calculate in all distance metrics we presentedhfoischeduling problem.
For example, suppose that,,=< 1,2,3,4,5,6,7 > is the original schedule, and
Spar=< 3,4,2,1,*,%,x > is the partial schedule for which the heuristic is needed. Fo
the mismatch metric the heuristic distancé (s, Sory) = 4 because all 4 jobs are
mismatched. For the index-based metric iS4, Sorg) = 2+2+1+3+04+040 =

8. Finally, for the sequence metric since the maximal sequén®f size 1 we get
h(Spar, Sorg) = 3.

7.4 Experimental Results for the Scheduling Environment

Since in the scheduling domain we use admissible heuristiefiave the best alterna-
tive schedule as soon as the first full alternative schedutdhdsen for expansion. In
this subsection we assess the performance of our searafsgrempirically, by experi-
menting on a number of randomly created problem instances.

We experimented on what we refer to scheduling search tree§€ach node in
this tree corresponds to a partial or full schedule (i.e.adig or full permutation
of the tasks). The root of this tree contains the empty sdeedixpanding a node
means adding the next task to the end of the partial schetlhteleaves of this tree
are complete schedules.

In real life, there are usually scheduling constraints agnttre various tasks as-
signments that define which partial and full schedules doevetl. Therefore, when
expanding a node in the scheduling search tree we only aks tiaat will not violate
scheduling constraints.

To better simulate a wide variety of scheduling rules, weaganexperiments on
randomly createdcheduling search treghat were created as follows. We first deter-
mined two parameters, tlsehedule sizévhich is the number of tasks to be scheduled),
and thetree sizgwhich is the number of nodes in the trééle built the tree as follows:
we randomly generated a schedule, then added it to the seaechWe continued this
process as long as the number of nodes in the tree did notcitoetece sizgparameter.
Schedules that were not added to the tree are assumed todsiishthat violate the
constraints.

We performed several experiments on random schedulinglsé@es with differ-
ent schedule sizes and tree sizes. For each of these treeanwer best-first search
algorithm with the various heuristics and distance metiefined above.

Figure 17 shows the average number of nodes generated doeisgarch with the
various heuristics, as a function of the number of nodesertrie. Figure 18 provides
the ratio of generated nodes to the number of nodes in théngoapthe same set of
experiments. Each data point in these figures is the avefat@aandom scheduling
search trees with the same characteristics.

The curves denoted “Indices 20” and “Sequence 20" referitigube index-based
and longest sequence metric, respectively, for scheddilsgze® 20. “Indices 30" and
“Sequence 30" correspond to the same metrics, but for stéedbisize 30. The size of

4 Note that schedule size is actually the depth of the tree.

26

Number of generated nodes

Number of generated nodes

25000 T

T
Number of nodes——
Indices metric 30-----
Sequence metric 30 --
Indices metric 2
Sequence metri

20000

15000 -

10000

1 1 1
5000 10000 15000 20000 25000
Number of nodes

Fig. 17.Number of nodes generated during the search

0.65 T T
L Indices metric 30——+—
T Sequence metric 30--><---
e Indices metric 20----x----
0.6 - T, Sequence metric 205
0.55 | -
0.5 -

0.35 | * .
T B
0.3 T
0.25 L . '
5000 10000 15000 20000 25000

Number of nodes

Fig. 18.Percentage of nodes that were generated during the search

27

the search tree was varied between 5,000 and 25,000. To eetfghasize our results,
we also added to Figure 17 another line, denoted “noded,tibplays the number of
nodes in the tree (graph).

As would be expected, when the tree size is larger, we neexptne more nodes
in order to find the best alternative schedule. However, fanatrics and graph sizes,
the number of generated nodes is always significantly smiéiga the actual number
of nodes in the tree. This shows the benefit of our approach -resd to generate only
a part of search tree to find the optimal alternative schedigieexample, search using
the index-based metric in a scheduling search tree of siZ#QFequired generating
6,499 nodes for a schedule of size 30, and only 4,726 nodesli@dule size 20.

Furthermore, as can be seen in Figure 18, the ratio of gatkraides decreases
when the size of the graph increases. This is because asritgenof nodes increases,
the graph becomes denser, and thus enables the heuristign®® more nodes during
the search. This also suggests that for even larger graphgenefit of our algorithm
would increase.

Note that even though the graphs used here were extremetsesf@afull tree for
schedule size 20 will contai20! nodes, which is much larger than the 25,000 nodes
used here), the search was able to prune large portions gfadiph — thus suggesting
the efficiency of our method.

Another observation is the following. Figure 17 shows thhewthe search is per-
formed to find the best alternative schedule according tantthex-based metric, it gen-
erates a smaller number of nodes than when it searches flantpest sequence metric.
This was valid for all sizes of schedules and schedule tfe@sreason for this is that
the index-based metric allowed a wider range of values thatargest sequence met-
ric. In the largest sequence metric, the maximum value tisahadule can have is the
schedule size minus 1 (which happens when the compareddebdthve no identi-
cal sequences), while in the index-based metric, valueggeamuch higher. A larger
range of values suggests a larger variety of node costsgithsearch. This enables
the heuristic to prune more nodes, thus explaining the irgatgerformance of the
index-based metric.

Notice also from Figure 18 that when comparing searches iffareint schedule
sizes on afixed tree size, we see that it is harder to find amattee schedule for longer
schedules. This is because, for a given tree size, a largedste size will produce a tree
with a smaller branching factor. A smaller branching fa@pables a smaller amount
of pruning with admissible heuristics, and thus more nodéde generated during the
search.

8 Conclusions and Future Work

We have presented an algorithm that efficiently helps antdgehan alternative path
that is close to an original path it has been given. We haveodstrated the use of this
algorithm in three different environments: physical roags, the blocks world, and
scheduling. For the physical environment, we presentedcwvoplex metrics for the
purpose of assessing path “closeness”, and presented iaticefuction to guide the
search. Experimental results confirm that such an altemnagth is reached relatively

28

efficiently. For the scheduling environment, we have disedstwo distance metrics
that enable the use of admissible heuristics during thebgapbcess. With admissible
heuristics, the “closest” schedule can be found efficiebihpruning parts of the search
space.

Future work can proceed in four different directions. Thetfdirection is to fur-
ther explore the heuristics and distance metrics that weed.uNew “closeness” dis-
tance metrics can be devised for various environments;X¥amele, a hybrid metric
for physical environments that is a combination of IDMMF dm®MF may be a good
metric for considering both time and distance considenatid\ll examples presented
in this paper show a simple model with simple distance metfizeating more sophis-
ticated distance metrics for more interesting models, aedteally creating a method
for creating distance metrics, is in our view a subject wpdhfuture study. A general
automated method for providing distances could also be jesutf future research.

The second direction is to focus on the search algorithnif.ittsethis paper, we
presented a general (domain independent) search methadifgrroblem. Devising
domain-specific search algorithms may prove useful.

The third direction is to explore more intricate models ofr@ins. In this work, we
assumed that the domain can be modeled as a state graph aamesehy node in the
original plan is equally important. Future work can addmdifferent types of domains
where these assumptions do not hold. For example, the sapettvat defined the orig-
inal plan may be able to define which states in the originai pl& not important, and
thus the distance from them in the alternative plan may berigh

Finally, in this paper we dealt only with discrete domainstufe work could ad-
dress the implementation of our various techniques in nantis domains.

References

1. J. Ambros-Ingerson and S. Steel. Integrating planning, executidmenitoring. InPro-
ceedings of AAAI-8&ages 735-740, St. Paul, Minnesota, 1988.

2. E. Arkin, L. P. Chew, D. P. Huttenlovher, K. Kedem, and J. S. B. Mditc An efficiently
computable metric for comparing polygonal shapesPioceedings of the first ACM-SIAM
Symposium on Discrete Algorithnmages 209-216, 1990.

3. M. J. Atallah. A linear time algorithm for the Hausdorff distance betweamvex polygons.
Information Processing Letterd7:207—209, 1983.

4. C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The Quickhullrélyn for convex hull.
Geometry Center Technical Report GCG53, University of Minnes@931

5. O. Brock and K. Oussama. Real-time replanning in high-dimensiamdiguration spaces
using sets of homotopic paths. Rroceedings of the IEEE International Conference on
Robotics and Automatigpages 550-555, San Francisco, USA, 2000.

6. E. Ephrati and J. S. Rosenschein. Planning to please: Followingesrambnt’s intended
plan. Group Decision and Negotiatio2(3):219-235, 1993.

7. A. Felner. Searching for an alternative plan. Master’s thesis, frepat of Computer
Science, The Hebrew University, Jerusalem, Israel, 1995.

8. A. Felner, A. Pomeransky, and J. S. Rosenschein. Searchiranfalternative plan. In
Proceedings of the Second International Joint Conference on AutmmAgents and Multi-
Agent Systemgages 33—-40, Melbourne, Australia, 2003.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

29

. K. Z. Haigh and M. Veloso. Route planning by analogyPhoceedings of the International

Conference on Case-Based Reasonirg5s.

P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for theistec determination
of minimum cost paths.|IEEE Transactions on Systems Science and Cybern&B€-
4(2):100-107, 1968.

F. Hausdorff Grundzuege der Mengenlehréiet, Leipzig, 1914.

A. Jain and S. Meeran. A state-of-the-art review of job-shopduling techniques, 1998.
R. M. Jensen and M. M. Veloso. OBDD-based universal plan8pgcifying and solving
planning problems for synchronized agents in non-deterministic domAitiicial Intelli-
gence Today, Recent Trends and Developmeatges 212-248, 1999.

D. Karger, C. Stein, and J. Wein. Scheduling algorithms. In M. Jlaktaeditor,Handbook
of Algorithms and Theory of Computatid®@RC Press, 1997.

S. Koenig and M. Likhachev. D* lite. IRroceedings of the Eighteenth National Conference
on Artificial Intelligence pages 476—483, Edmonton, Canada, July—August 2002.

S. Koenig and M. Likhachev. Incremental A*. Aalvances in Neural Information Processing
Systems 14 (NIPSMIT Press, Cambridge, MA, 2002.

J. Leung and J. H. Andersodandbook of Scheduling®RC Press, May 1, 2004.

W. Li and M. Zhang. Distributed task plan: A model for designing aatwous mobile
agents. IrProceedings of the International Conference on Atrtificial Intelligepeges 336—
342, Las-Vegas, 1999.

B. Liu. Intelligent route finding: Combining knowledge, cases andfficient search algo-
rithm. In Proceedings of ECAI-96pages 380—-384, Budapest, Hungary, 1996.

H. Mannila. Measures of presortedness and optimal sorting algaritEEE Transactions
on Computers34(4):318-325, 1985.

R. B. McMaster. Measurement in generalizationPtaceedings of the 20th International
Cartography Conferengéugust.

R.B. McMaster. A statistical analysis of mathematical measures farlisimplification.
The American Cartographef3(2):103-117, 1986.

R.B. McMaster. The integration of simplification and smoothing algosthmiine general-
ization. Cartographica 26:101-121, 1989.

K. L. Myers and Thomas J. Lee. Generating qualitatively diffepéants through metatheo-
retic biases. IrProceedings of the Sixteenth National Conference on Artificial Intelligence
pages 570-576, Menlo Park, CA, USA, 1999. American Associatiorftficial Intelli-
gence.

B. Nebel and J. Koehler. Plan reuse versus plan gener&itificial Intelligence 76:427—
454, 1995.

A. Okabe, B. Boots, and K. Sugihar8@patial Tessellations, Concepts, and Applications of
Voronoi Diagrams Wiley, Chichester, UK, 1992.

S. Russell and P. Norvidrtificial Intelligence, A Modern Approach, Second Editiétren-
tice Hall, 2005.

J. Sgall. Line scheduling — a survey, On-Line Algorithmkecture Notes in Computer
Science. Springer-Verlag, Berlin, 1997.

K. Sorensen. Distance measures based on the edit distancenfutgtgon type represen-
tations. InProceedings of the Workshop on Analysis and Design of Represestatizh
Operators pages 29-35, Chicago, USA, 2003.

K. Sorensen, M. Reimann, and C. Prins. Permutation distanceiraeder memetic algo-
rithms with population management. Rroceedings of MIC 6th Metaheuristics Interna-
tional ConferencgVienna, Austria, 2005.

A. Stentz. Optimal and efficient path planning for partially-knowniremments. InPro-
ceedings of ICRApages 3310-3317, 1994.

