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Abstract

Symbolic music segmentation is the process of dividing sym-
bolic melodies into smaller meaningful groups, such as melodic
phrases. We proposed an unsupervised method for segment-
ing symbolic music. The proposed model is based on an en-
semble of temporal prediction error models. During training,
each model predicts the next token to identify musical phrase
changes. While at test time, we perform a peak detection algo-
rithm to select segment candidates. Finally, we aggregate the
predictions of each of the models participating in the ensem-
ble to predict the final segmentation. Results suggest the pro-
posed method reaches state-of-the-art performance on the Essen
Folksong dataset under the unsupervised setting when consid-
ering F-Score and R-value. We additionally provide an ablation
study to better assess the contribution of each of the model com-
ponents to the final results. As expected, the proposed method
is inferior to the supervised setting, which leaves room for im-
provement in future research considering closing the gap be-
tween unsupervised and supervised methods.
Index Terms: symbolic music, sequence segmentation, tempo-
ral prediction

1. Introduction
Symbolic music segmentation is the task of dividing symbolic
melodies into smaller meaningful groups. These can be groups
such as the chorus, verse, intro, outro, and bridge in popular
music or maybe smaller groups such as phrases or even motifs.
Symbolic music segmentation is an important task in Music In-
formation Retrieval (MIR) and it serves as a basis for other ap-
plicative tasks, such as melodic feature computation, melody
indexing, and retrieval of melodic excerpts [1] as well as for the
use of musicological research [2]. Measuring the performance
of an automatic segmentation method is usually done via its
degree of agreement within human annotators. The task of mu-
sic segmentation is made more difficult by the fact that there
is more than a single possible segmentation solution. Certain
boundaries can be subjective or ambiguous, a fact demonstrated
by multiple researchers who have compared music segmenta-
tions of both listeners and musicians [3, 4, 5, 6, 7].

Previous studies in MIR have suggested different methods
to automatically segment musical phrases [8, 9, 1], consider-
ing rule-based systems, supervised learning, and unsupervised
learning. As annotating music is known to be both time-
consuming, expensive [10], and subjective in nature, labeled
datasets of segmented symbolic music are hardly found. Hence,
there is a growing need for unsupervised segmentation methods
for handling this task.

Segmentation based on temporal prediction errors is the pro-
cess of detecting peaks in the error curve of a model trained
to predict a sequence frame by frame as potential boundaries.
This method was first tested and shown to be significant as a

Figure 1: An example for a segmentation of a song from our
test set. The human label segmentation (blue) and our model
segmentation results (red))

method for character-based text segmentation [11, 12], but re-
cently showed its great potential for phoneme and word speech
segmentation [13, 14, 15, 16]. Inspired by this work, we explore
an unsupervised ensemble method for symbolic music segmen-
tation based on temporal prediction errors. See Figure 1 of vi-
sual description of the task.
Our Contribution: (i) We show for the first time the use
of temporal prediction error models, and provide an analysis,
in music segmentation, specifically for symbolic music phrase
segmentation. (ii) We show that the proposed approach reaches
state-of-the-art unsupervised results both with relation to F-
Score and R-Value on the Essen Folksong Dataset. (iii) We
show the potential of using ensemble learning as a method to
enhance the performance of temporal prediction error methods
for symbolic music segmentation.

Musical Notations

We start by briefly describing some of the used musical nota-
tions throughout the paper.
Musical phrase is defined as a unit of musical meter that has a
complete musical sense of its own and is considered one of the
most important units of music content [17].
Bar in music is a segment of time corresponding to a specific
number of beats, which is part of the score input.
Time signature (also known as meter signature) is a notational
convention used in Western musical notation to specify how
many beats or pulses are contained in each musical bar.

2. Related Work
Tenney and Polansky [18] were perhaps the first to suggest
models of symbolic melody segmentation based on musicolog-
ical rule-based systems. Other common musicological rule-
based systems include Grouper by Temperley [19], the pref-
erence rules for grouping as defined in A Generative Theory
of Tonal Music (GTTM) [17], the quantization of the GTTM
offered by [20], the Implication-Realization theory by Nar-
mour [21, 22] and its quantization [23]. More recent rule-based
segmentation methods were offered by Lopez [24] and Cen-
kerova [8]. A common rule-based method that is widely used
(also relevant to our approach) is the Local Boundary Detection
Model (LBDM) [25], which operates on the basis of identify-
ing segment points on local changes in pitch, Inter Onset Inter-



Table 1: Essen Folksong distribution over time signatures

Meter Percentage in corpus

4/4 26.65
2/4 22.03
3/4 20.44
6/8 13.00
3/8 5.22

other 12.56

vals (IOI’s), and rests. Whereas that model looks at unexpected
changes in a piece based on rule-based approaches, it does not
employ any capability of identifying these changes based on
prediction errors of a machine learning prediction model.

Other approaches that were offered are based on compu-
tational or learning algorithms. The Data-Oriented Parsing
(DOP)-Markov parser [9] learns probabilities to rewrite rules
from a set of examples. It was shown that this method is able to
detect phrase-ending patterns that were not shown on musico-
logical rule-based systems. Another work that is relevant to ours
is that of Juhasz [26] that uses a memory-based maximum en-
tropy model for finding less predictable areas in a score that are
marked as segments. Other models combined rule-based sys-
tems with computational concepts [27, 28, 29, 24, 30, 31]. More
known works include the multiple viewpoint method IDyOM
[1], using a Restricted Boltzman machine to model the prob-
ability of melodic events [32], and using a CNN or an LSTM
together with Conditional Random Field (CRF) for supervised
learning of segment points [33, 34].

Recent work shows improvement in unsupervised speech
segmentation based on the use of temporal prediction errors.
Michel et al. [13] showed a model training of a next-frame
prediction model using HMM or RNN. Areas that had a high
prediction error were chosen as segments using peak detection
and tagged as boundaries of phonemes. More recently, Wang
et al. [14] trained an RNN autoencoder and tracked the norm
of various intermediate gate values (forget-gate for LSTM and
update-gate for GRU). To identify boundaries of phonemes, a
peak detection technique was used on the gate norm over time.
Kreuk et al. [15] trained a CNN encoder for distinguishing
between adjacent frame pairs and random pairs of distractor
frames, where a peak detection algorithm is used to detect the
phoneme boundaries on the outputs of the model. Our work
uses these new concepts, that were shown to be highly effective
for phoneme and word segmentation, on music boundary seg-
mentation, and more specifically on music phrase segmentation.

3. Model
The proposed pipeline is comprised of two main components: i)
a temporal prediction error model, in which our system predicts
the next symbolic representation based on previous input sym-
bols (similar to a language modeling task); ii) a peak detection
algorithm that gets as input segmentation scores and outputs the
segment boundaries. These modules are trained separately, and
during inference, we cascade both modules to predict the final
segmentation.

3.1. Temporal Prediction Model

Consider a single input files as x = (x1, x2, . . . ,xt), where
1 ≤ t ≤ T . The length of x varies between different inputs,
hence T is not fixed. Each xt is represented as four differ-
ent input scalars such that xt,1, xt,2, xt,3, xt,4 ∈ {0 . . .128},
where these corresponds to different states of the note (128 rep-
resents the 128 possible unassigned midi values). Specifically,

Figure 2: An example for a song in our test set. (a) the note for-
mat (opening and closing brackets mark beginning and end of
human segments). (b) the midi format (human segments marked
in red), (c) the corresponding normalized model temporal pre-
diction error plot and (d) the corresponding original model tem-
poral prediction error plot

xt,1, xt,2, xt,3, xt,4 corresponds to: i) a note burst at the begin-
ning of a bar; ii) a note burst occurring at the middle of the
bar; iii) a note continuation at the beginning of a bar; iv) a note
continuation at the middle of the bar, respectively.

We follow the aforementioned input representation approach
so the model could distinguish between the different states of a
symbolic musical note (e.g., beginning of a bar, beginning of a
note, etc.). We sample each note at a constant sampling rate of
size α to produce each xi (e.g., 8th notes, 16th notes, etc.).

We now turn in to describing our temporal prediction model.
Given a training set of n examples S = {xi}

n
i=1, our goal is to

minimize the following objective function,

ℓ(S) =
n

∑

i=1

T

∑

t=1

ℓ(xi
t;x

i
0,⋯t−1), (1)

where ℓ is the negative log likelihood loss function. The pro-
posed model is comprised of an embedding layer to transform
input scalars to dense vectors. To model sequential dependen-
cies we use a Recurrent Neural Network (RNN) (specifically
an LSTM network using one hidden layer), and a linear projec-
tion layer followed by a softmax normalization. The model is
optimized using back propagation through time.

3.2. Peak detection

During inference time, we calculate the negative log likelihood
loss as in Eq. 1. Specifically, we compute the loss at each time
step t. Similarly to [13] we ignore the first several time-steps as
the system predicts probabilities conditioned by the preceding
frames, hence cannot be expected to give meaningful results for
the first inputs. Next, similarly to [35] we smooth the losses
outputs by subtracting adjacent frames as follows,

nℓ(j) =max(0, a ⋅ ℓ(xi
j+1; ⋅) + ℓ(x

i
j ; ⋅)−

ℓ(xi
j−1; ⋅) − b ⋅ ℓ(x

i
j−2; ⋅))

(2)

where nℓ(j) is the normalized loss in the j’th place of the
input, and a and b are two more hyper-parameters added to sta-
bilize the peak prediction procedure. We perform the peak pre-
diction on top of the normalized losses, where we control the
level of segmentation by shifting the prominence of the peak
detection. See Figure 2 for an example prediction of the pro-
posed method. We specifically visualize the musical notes,



midi-format, loss function, and normalized loss function to-
gether with the boundaries of the phrases.

The peak detection procedure is done by controlling the
prominence δ. To find the prominence for the peak detection
of a certain song we perform a binary search (increasing the
prominence for more peaks and decreasing it for fewer peaks)
where we limit the number of peaks to be less than a certain
threshold. We set the threshold to be the number of bars in the
song divided by 2. In other words, the maximum amount of
peaks that we allow the model to segment is the number of bars
divided by 2 (notice the model can segment less than that).
Constraint Search. To further improve model performance,
we constraint the search space of the boundaries detection. We
limit the search using two main constraints: i) Pause selects
boundaries after musical rests and doesn’t select peaks within
a range of distance ∆ from each rest; ii) Bar selects loss peaks
only if they are at the beginning of a bar. In the case of songs
that do not start at the beginning of a bar (denoted as anacrusis),
we shift the bar notation such that the first strong beat occurs on
the first onset.

3.3. Ensemble learning

We follow the ensemble approach by training k different mod-
els for each time-signature independently. To construct the final
outputs segmentation, we perform a union vote phase where we
take all the segment candidates from all models. Next, we sort
the segments according to the number of votes they got from
the different models. Lastly, we output the top segments until
either we take all segments or we reach the pre-defined thresh-
old (number of bars in the input divided by 2).

4. Experiments
4.1. Dataset

We evaluate our model on the Essen Folksong Collection [36]
dataset, a widely used benchmark for evaluating boundary de-
tection predictions of musical phrases. It consists of 6,236 Eu-
ropean folksongs in a symbolic format, most of them from Ger-
many. The corpus was annotated by musical experts, contain-
ing phrases boundaries at the note level. We used the standard
train/test split, where we randomly sampled 10% of the train-
ing set for validation. We consider six different musical time-
signature groups. Table 1 summarizes the distribution over the
different time signatures in the Essen collection.

4.2. Evaluation Function

Following previous work on music and phoneme segmenta-
tion [8, 9, 15, 13] we evaluate the performance of the proposed
method and the evaluated baselines using Precision (P), Recall
(R), and F1-Score. Previous studies [39], pointed out a poten-
tial drawback in the F1-Score for boundary detection due to its
sensitivity to over-segmentation. A naive segmentation model
that outputs a boundary every constant time of seconds (in our
case notes) may yield a relatively high F1-Score by achieving
high recall at the cost of low precision. Thus the authors of [39]
suggested using the R-Value metric defined as follows:

R-value = 1 − ∣r1∣ − ∣r2∣,

r1 =
√

(1 −R)2 + (OS)2, r2 =
(−OS +R − 1)

√

2
(3)

where R is the Recall value, P is the Precision value and OS is
the over segmentation measure defined as OS = R/P − 1. For

Table 2: Comparison of our model to other baseline models
on the Essen Folksong dataset. Results are listed in increas-
ing order by F-score per setting. Since some of the models are
rule-based they were evaluated on the entire data-set and thus
denoted by: *

Model Precision Recall F-Score R-Value

R
ul

e
ba

se
d

∆IOI* [8] 79 54 58 67
Pause* [8] 98 48 60 63
Meter* [19] 59 70 61 65
Meter Finder* [37] 70 64 64 72
LBDM* [25] 81 60 65 71
Grouper without meter* [19] 68 66 66 68
∆IOI, Meter Finder, Pause* [8] 64 81 68 63
Grouper with meter* [19] 77 73 74 78

U
ns

up
.

IdyOM [1] 76 50 58 64
RBM (10-gram) [32] 83 50 60 64
Hybrid IdyOM [38] 87 56 66 69
∆IOI Compound (BIC) [8] 92 68 75 77
Ours 77 81 77 82

Su
p.

Ripper [30] 78 63 69 73
RandomForest [30] 83 69 76 77
DOP-Markov [9] 77 86 81 81
CNN-CRF [33] - - 82 -
BI-LSTM-CRF [33] - - 84 -

Table 3: The proposed model results based on the different time
signatures in the test set

Meter Precision Recall F-Score R-Value

4/4 81.36 84.08 81.70 85.06
2/4 75.30 76.36 74.14 79.30
3/4 71.33 81.33 73.67 76.77
6/8 83.51 87.02 84.69 87.11
3/8 61.12 83.16 68.60 61.43

other 80.92 72.76 73.94 79.41

a fair comparison we calculate the R-values based on the mean
precision and recall in all settings.

4.3. Experimental Setup

We train k different models as part of the ensemble. We
launch a grid search over learning rate, batch size, and input
sequence length and used the best configuration over the held-
out set. Models were trained with one of the following input
pre-processing pipelines: transposing each song by 5 semitones
or scaling all songs to the same musical key. These are standard
pre-processing pipelines in symbolic music modeling [40, 41].
We train the models with the ADAM optimizer, with one hidden
layer and a constant dropout rate of 0.2. Finally, we perform
a peak detection procedure, as described in section 3 to each
model separately and aggregate the results for our final model.

4.4. Results

We compare our method to unsupervised baselines proposed
by [8, 32, 38], rule-based methods proposed by [8, 19, 37, 25]
and supervised models as in [33, 30, 9]. We additionally com-
pare to a naive approach denoted as Pause. It was shown to
be a comparative baseline in previous work [1]. The basic idea
is straight-froward, where we annotate a segment boundary on
every rest in the music melody.

Results are summarized in Table 2. Results suggest the pro-
posed method reaches state-of-the-art results considering both
F-Score and R-Value. When considering recall our model is
comparable to the method proposed in [8] however with a sig-
nificantly better precision value. Interestingly, although the
proposed method is inferior to the supervised setting, it sig-
nificantly closes the gap between supervised and unsupervised



Table 4: Model performance using single, multiple temporal
prediction models and an ensemble

Model Precision Recall F-Score R-Value

Single-Temp 75.62 74.32 73.14 78.66
Multi-Temp 80.51 75.59 75.96 80.95

Ensemble-Multi-Temp 76.96 80.81 77.03 81.53

Table 5: The single-temp model without the use of the pause and
bar search constraints, within comparison to the bar and pause
search constraints without temporal prediction

Model Precision Recall F-Score R-Value

Bars,Pause 47.34 89.83 60.87 19.06
Bars 45.47 83.32 57.63 22.2
Pause 98.28 48.74 61.09 63.76

Single-Temp 75.62 74.32 73.14 78.66
Single-Temp without Pause 64.16 61.82 60.97 68.61
Single-Temp without Bars 59.7 63.67 60.5 66.34

Single-Temp without Bars,Pause 46.86 52.07 48.39 54.53

methods for symbolic music segmentation, which leaves room
for future work to be done.

To better understand how the proposed method performs un-
der different time-signatures, we report Precision, Recall, F-
Score, and R-value as a function of six different time signatures
in Table 3. It can be seen that the proposed model performs
significantly better on 4/4 and 6/8 time signatures. The lowest
results are for 3/8 meter which is the least common of the above
5 time signatures in the Essen Folksong Dataset.

4.5. Ablation

In order to further assess the importance of each of the compo-
nents composing our overall method, we analyze a few differ-
ent model variations which contain only a subset of the mod-
ules comprising our pipeline. Specifically, we define “Single-
Temp”, a single model trained with using temporal prediction
errors additionally with the search constraints that were de-
scribed in section 3. The second method, “Multi-Temp”, uses a
separate model for each time signature. The last one denoted as
“Ensemble-Multi-Temp” is the full proposed method, aggregat-
ing the results of a few different models for each time signature
separately. A new hyper-parameter search was performed for
each ablation configuration. Results are summarized in Table 4.

It can be seen that splitting the learning procedure into a few
different models improves the results, especially with respect
to the precision (Single-Temp reaches 75.62 precision while
Multi-Temp reaches 80.51 precision). This brings the model
to an overall high precision on account of low recall. Whereas
for the proposed model (Ensemble-Multi-Temp), aggregating
the results of a few ensemble models balances the precision and
recall yielding a total higher F-Score and R-Value.

Next, we present the results of the proposed method (for sim-
plicity using a single model only) with and without limiting the
chosen boundaries. In other words, we evaluate the contribution
of the constraint search described in Section 3 to the final model
performance. We do this for both the ”Pause” and ”Bar” search
constraints. Results are summarized in Table 5.

Using a temporal prediction error model without constrain-
ing the search yields considerably low results on the evaluated
benchmark with regards to F-Score. Adding the Pause and Bar
methods to the model provides a significant increase of the F-
Score values, from 48.39 to 73.14, which is already close to the
previous best state-of-the-art unsupervised setting by itself.

Next, we plot the precision and recall as a function of the

Figure 3: Precision and Recall as a function of the number of
notes for the Single-Temp model without the search constraints.

Table 6: The different model F scores by Time signature

Meter Single-Temp without Bar,Pause Single-Temp Ensemble-Multi-Temp

4/4 49.88 79.73 81.70
2/4 51.65 73.87 74.14
3/4 48.37 69.19 73.67
6/8 50.02 78.57 84.69
3/8 47.33 61.37 68.60

other 39.36 64.72 73.94

number of notes in a given input example for a single model
without the search constraints. This obviously excludes the first
few notes that were discarded for evaluation as mentioned in
section 3. Figure 3 depicts the results. Increasing the number
of notes in a song decreases the quality of the overall segmen-
tation. We hypothesize this is due to the RNN model having
trouble capturing long-term dependencies. Interestingly, we ob-
served an increase in performance after 80 notes, however, due
to a low number of testing files in that region it is hard to make
a firm conclusion.

Lastly, we report the results of a single model with and with-
out the constraint search compared to the full pipeline for differ-
ent time-signatures separately on Table 6. Results suggest that
the most common time signatures in the data-set have a similar
F-Score when considering the temporal prediction model only,
whereas the less common time signatures such as 3/8 or other
less common meters have a lower F-score. Nevertheless, the ad-
dition of the Pause and Bar constraints greatly affects the results
providing a significantly higher F-Score for both 4/4 and 6/8.
This is an indicator that the performance differences between
different time-signatures, considering the final proposed model,
are due to the constraint search being biased towards specific
time signatures. This also has to do more with the data-set bias
and less with the temporal prediction method.

5. Conclusion & Future Work
We empirically demonstrated the efficiency of using temporal
prediction errors for symbolic music segmentation and showed
how to enhance this procedure by using an ensemble method.
Our model reached SOTA results on the Essen Folksong Dataset
when considering F1-score, and R-Value, under the unsuper-
vised setting. This is a promising result in terms of closing
the gap between unsupervised and supervised methods for sym-
bolic music segmentation.

For future work, we would like to explore the semi-
supervised setting, where we provide the model with a limited
amount of human-labeled segments. Additionally, we would
like to explore extending this work to both performance-midi
segmentation as well as music audio segmentation.
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