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Abstract

Decentralized Reputation Systems have recently
emerged as a prominent method of establishing
trust among self-interested agents in online envi-
ronments. A key issue is the efficient aggregation
of data in the system; several approaches have been
proposed, but they are plagued by major shortcom-
ings.
We put forward a novel, decentralized data man-
agement scheme grounded in gossip-based algo-
rithms. Rumor mongering is known to possess al-
gorithmic advantages, and indeed, our framework
inherits many of their salient features: scalabil-
ity, robustness, globality, and simplicity. We also
demonstrate that our scheme motivates agents to
maintain a sparkling clean reputation, and is inher-
ently impervious to certain kinds of attacks.

1 Introduction
In open multiagent environments, self-interested agents are
often tempted to employ deceit as they interact with others.
Fortunately, dishonest agents can expect their victims to re-
taliate in future encounters. This “shadow of the future” mo-
tivates cooperation and trustworthiness.

However, as the size of the system grows, agents have an
increasingly small chance of dealing with another agent they
already know; as a consequence, building trust in domains
teeming with numerous agents becomes much harder. Repu-
tation systems address this problem by collecting and spread-
ing reports among agents, so that agents may learn from oth-
ers’ experience. To put it differently, agents are intimidated
by the “shadow of the future” today, even though tomorrow
they are most likely to meet total strangers.

Reputation systems can be decomposed into two major
components: 1) the trust model, which describes whether an
agent is trustworthy, and 2) the data management scheme.
The latter component poses some interesting questions, since
it is imperative to efficiently aggregate trust-related informa-
tion in the system. A simple solution is maintaining a central
database that contains the feedback gathered from past trans-
actions. Unfortunately, this solution is inappropriate indis-
tributed environments where scalability is a major concern, as

the database soon becomes a bottleneck of the system. More-
over, this approach is not robust to failures. Previous work
on decentralizedreputation schemes suffered from their own
major problems: agents have to maintain complex data struc-
tures, evaluation of trust is based only on local information,
or there are restrictive assumptions on the trust model.1

We approach this hornets’ nest by designing a novel
method of trust aggregation (i.e., a reputation system’s data
management scheme). The method is demonstrated in this
paper for a simple trust model, but it can be extended to more
complex models.

The roots of ourgossip-basedapproach can be traced to a
seminal paper by Frieze and Grimmett[1985]: a rumor starts
with one agent; at each stage, each agent that knows the ru-
mor spreads it to another agent chosen uniformly at random.
The authors show that the rumor reaches all agents quickly
(a result that coincides with real life). We directly rely on
more recent results, surveyed in the next section. It has been
shown that aggregate information, such as averages and sums
of agents’ inputs, can be calculated using similar methods of
uniform gossip in a way that scales gracefully as the number
of agents increases. Furthermore, the approach is robust to
failures, and the results hold even when one cannot assume a
point-to-point connection between any two agents (as is the
case in peer-to-peer [P2P] networks).

In our setting, each agent merely keeps its private evalua-
tion of the trustworthiness of other agents, based on its own
interactions.2 When an agent wishes to perform a transaction
with another, it obtains theaverageevaluation of the other’s
reputation from all agents in the system, using a gossip-based
technique. Although the presented algorithms estimate the
averagereputation, they can be easily adapted to estimating
whether a certain agent has a high reputation in the eyes of
the majority of the agents, or certain other similar metrics.
Thus, the framework we advocate for aggregating reputation
information accommodates more sophisticated trust models.

Some advantages are immediately self-evident. Each agent
stores very little information, which can be simply and effi-
ciently organized, and evaluation of trust is based on global
information. Additionally, this framework inherits the advan-

1The “or” is not exclusive.
2The question of how agents set this valuation is outside the

scope of this paper.



tages of gossip-based algorithms: scalability, robustness to
failure, decentralization, and as a consequence, applicability
in peer-to-peer networks.

We show that our scheme has two other major advantages.
An important desideratum one would like a reputation sys-
tem to satisfy is motivating agents to maintain an untarnished
reputation, i.e., to be absolutely trustworthy (as opposedto,
say, being generally trustworthy but occasionally cheating).
We show that our data management scheme, together with an
extremely simple trust model, satisfies this property. We also
demonstrate that our scheme is inherently resistant to some
attacks (with no assumptions on the trust model). This is a
positive side effect of the exponential convergence rates of
the algorithms we use.

In this paper we donot address the problem of designing
a trust model. Rather, we suggest an approach for agents to
aggregate distributed trust information so as to decide with
whom to carry out transactions.

2 Gossip-Based Information Aggregation
In this section, we survey the relevant results of Kempe, Do-
bra and Gehrke[Kempeet al., 2003]. These algorithms allow
us to estimate the average of values held at network nodes (in
our case, these values will be the reputation values concern-
ing a particular agent).[Kempeet al., 2003] also shows how
to calculate other functions over these values, such as the ma-
jority function and sum. Thus our algorithms can be adapted
for other, more sophisticated models of trust.

We begin by describing a simple algorithm, PUSH-SUM, to
compute the average of values at nodes in a network. There
aren nodes in the system, and each nodei holds an input
xi ≥ 0. At time t, each nodei maintains asumst,i and a
weightwt,i. The values are initialized as follows:s0,i = xi,
w0,i = 1. At time 0, each nodei sends the pairs0,i, w0,i to
itself; at every timet > 0, the nodes follow the protocol given
as Algorithm 1.

Algorithm 1
1: procedure PUSH-SUM
2: Let {(ŝl, ŵl)}l be all the pairs sent toi at timet− 1
3: st,i ←

∑

l ŝl

4: wt,i ←
∑

l ŵl

5: Choose a targetft(i) uniformly at random
6: Send the pair( 1

2st,i,
1
2wt,i) to i and toft(i)

7:
st,i

wt,i
is the estimate of the average at timet

8: end procedure

Let U(n, δ, ε) (thediffusion speedof uniform gossip) be an
upper bound on the number of turns PUSH-SUM requires so
that for allt ≥ U(n, δ, ε) and all nodesi,

1
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k xk
·
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∣

∣

∣

∣

≤ ε

(the relative error is at mostε) with probability at least1− δ.

Theorem 1([Kempeet al., 2003]).

1. U(n, δ, ε) = O(log n + log 1
δ + log 1

ε ).

2. The size of all messages sent at timet by PUSH-SUM is
O(t + maxi bits(xi)), where bits(xi) is the number of
bits in the binary representation ofxi.

A major advantage of gossip-based algorithms is their ro-
bustness to failures: the aggregation persists in the face of
failed nodes, permanent communication failures, and other
unfortunate events. Further, no recovery action is required.
The assumption is that nodes can detect whether their mes-
sage has reached its destination; PUSH-SUM is modified so
that if a node detects its target failed, it sends its messageto
itself.
Theorem 2 ([Kempeet al., 2003]). Let µ < 1 be an upper
bound on the probability of message loss at each time step,
and letU ′ be the diffusion speed of uniform gossip with faults.
Then:

U ′(n, δ, ε) =
2

(1− µ)2
U(n, δ, ε).

In several types of decentralized networks, such as P2P net-
works, point-to-point communication may not be possible. In
these networks, it is assumed that at each stage nodes send
messages to all their neighbors (flooding). When the under-
lying graph is an expander, or at least expected to have good
expansion, results similar to the above can be obtained. Fortu-
nately, it is known that several peer-to-peer topologies induce
expander graphs[Panduranganet al., 2001].

In the rest of the paper, we havexi ≤ 1, and in particular
∑

i xi ≤ n. Therefore, it is possible to redefineU to be an
upper bound on the number of turns required so that for all

t ≥ U and all nodesi, theabsolute error
∣

∣

∣

st,i

wt,i
− 1

n

∑

k xk

∣

∣

∣

is at mostε with confidence1 − δ, and it still holds that
U(n, δ, ε) = O(log n + log 1

δ + log 1
ε ). Hereinafter, when

we refer toU we have this definition in mind.
Remark 1. The protocol PUSH-SUM is presented in terms of
a synchronized starting point, but this assumption is not nec-
essary. A node that poses the query may use the underlying
communication mechanism to inform all other nodes of the
query; convergence times are asymptotically identical.

3 Our Framework
Let the set of agents beN = {1, . . . , n}. Each agenti ∈ N

holds a numberrj
i ∈ [0, 1] for each agentj ∈ N (including

itself). This number representsj’s reputation with respect to
i, or to put it differently, the degree to whichi is willing to
trust j. As agents interact, these assessments are repeatedly
updated. We do not in general concern ourselves with how
agents set these values.

When an agenti is deliberating whether to deal with an-
other agentj, i wishes to make an informed evaluation of the

other’s reputation. Let̄rj =
P

k
rj

k

n be the average ofj’s rep-
utation with respect to all agents. Knowledge ofr̄j would
give i a good idea of how trustworthyj is (this is, of course,
a simple model of trust).

We show that in this scenario, agents can use gossip-based
algorithms to decide with whom to carry out transactions.
Also, in such a setting, agents are encouraged to keep a com-
pletely untarnished reputation. Similar results can be ob-
tained for more complex trust models.



Algorithm 2

1: procedure EVAL -TRUST(i, j, δ, ε) . i evaluates̄rj with
accuracyε, confidence1− δ

2: for all k ∈ N do
3: xk ← rj

k . Inputs to PUSH-SUM arej’s
reputation w.r.t. agents

4: end for
5: run PUSH-SUM for U = U(n, δ, ε) stages
6: return sU,i

wU,i

7: end procedure

A simple way to compute the average trust is via
PUSH-SUM.

The protocol EVAL -TRUST is given as Algorithm 2.
PUSH-SUM is executed forU = U(n, δ, ε) stages. At time
U , it holds for allk ∈ N , and in particular for agenti, that
∣

∣

∣

st,i

wt,i
− r̄j

∣

∣

∣
≤ ε, with probability1 − δ. In other words, the

algorithm returns a very good approximation ofj’s average
reputation.

In practice, when two agentsi andj interact,i may eval-
uatej’s reputation (and vice versa) by calling EVAL -TRUST.
The protocol quickly returns the approximation ofr̄j , based
on the valuesrj

k at the timeEVAL -TRUST was called. Each
agenti keeps different valuesst,i andwt,i for every differ-
ent query that was issued by some other agent in the system,
and updates these values repeatedly according to PUSH-SUM.
Thus, at any stage every agent participates in many parallel
executions of PUSH-SUM.

A possible cause for concern is the amount of communi-
cation each agent has to handle at every turn. However, the
quick convergence of PUSH-SUM guarantees that the burden
will not be too great. Indeed, it is plausible to assume that
the number of new interactions at each turn is bounded by a
constantc (or at worst is very small compared ton). Each
such new interaction results in at most two new executions
of EVAL -TRUST, but the execution lasts at mostU turns. To
conclude the point, each agent sends at mostc ·U = O(log n)
messages per turn.

Remark 2. The size of messages depends on how therj
i are

calculated, and as mentioned above, this issue is outside the
scope of this paper. Nevertheless, there would usually be a
constant number of reputation levels (say, for instance,ri

j ∈
{0, 0.1, 0.2, . . . , 1}), so the message size would normally be
constant.

As the above method of aggregating an agent’s average
reputation relies on the gossip-based algorithm PUSH-SUM,
it inherits all the latter’s benefits, in particular robustness to
failure and applicability in peer-to-peer networks.

4 The Benefit of an Unstained Reputation
It is very desirable (indeed, crucial) that a reputation system
be able to induce truthfulness in agents. Naturally, an agent
with a stained reputation would be shunned by its peers, while
an agent with a good reputation would easily solicit deals
and transactions. A further step in this direction is motivat-
ing agentsneverto cheat. Indeed, an agent with agenerally

good reputation, that only occasionally cheats, would proba-
bly be able to win the confidence of peers; there is seemingly
no reason why an agent should not play false now and again.
Nevertheless, we consider in this section an extremely simple
and general trust model, and show that with the data manage-
ment scheme that we have presented, there is a social benefit
to having a very high reputation: the higher the agent’s repu-
tation, the shorter the time required to close deals.

We consider a model in which each agenti has a reputa-
tion thresholdrthr

i (similar to [Xiong and Liu, 2003]) and a
confidence levelδi: agenti is willing to deal with an agent
j iff i knows thatj’s average reputation is at leastrthr

i , with
confidence1 − δi. i evaluatesj’s reputation as above, us-
ing EVAL -TRUST. Recall that when the algorithm terminates,
agenti only has anε-close approximation of̄rj . If st,i

wt,i
is very

close torthr
i , i would have to increase the accuracy.

Remark 3. We still do not commit to the way the valuesri
j

are determined and updated, so the above trust model is quite
general.

Algorithm 3
1: procedure DECIDE-TRUST(i, j) . i decides if it wants

to deal withj
2: ε← 1/2 . Initialization
3: k1 ← 0
4: loop
5: k2 ← U(n, δi, ε)
6: run EVAL -TRUST(j) for anotherk2 − k1 stages.

A total of k2 stages
7: if st,i/wt,i < rthr

i − ε then
8: return false
9: else ifst,i/wt,i > rthr

i + ε then
10: return true
11: end if
12: k1 ← k2

13: ε← ε/2
14: end loop
15: end procedure

The procedure DECIDE-TRUST, given as Algorithm 3, is
a straightforward method of determining whetherr̄j ≥ rthr

i .
Agenti increases the accuracy of the evaluation by repeatedly
halving ε, until it is certain of the result. In this context, a
stage of EVAL -TRUST corresponds to a stage of PUSH-SUM.

Proposition 3. Let i, j ∈ N , and∆ij = |r̄j − rthr
i |. With

probability at least1− δi, DECIDE-TRUSTcorrectly decides
whether agentj′s reputation is at leastrthr

i after O(log n +
log 1

δi
+ log 1

∆ij
) stages ofEVAL -TRUST.3

Proof. Assume w.l.o.g. thatrthr
i < r̄j , and that the algorithm

reached a staget0 whereε < ∆ij/2. At this stage, it holds

3The probability is the chance that the algorithm will answer in-
correctly; the bound on the number of stages is always true.



that| st,i

wt,i
− r̄j | ≤ ε (with probability1− δi), and therefore:

st,i

wt,i
≥ r̄j − ε

= rthr
i + ∆ij − ε

> rthr
i + ε.

Hence, the algorithm surely terminates whenε < ∆ij/2.
Now the proposition follows directly from the fact that
U(n, δi,∆ij) = O(log n + log 1

δi
+ log 1

∆ij
).

To conclude, Proposition 3 implies that there is a benefit for
agentj in maintaining a high reputation: for any agenti with
a reasonable threshold,∆ij is significant, and this directly
affects the running time of DECIDE-TRUST.

Remark 4. The result is limited, though, when the number of
agentsn is large, as the time to evaluate an agent’s reputation
is also proportional tolog n.

5 Resistance to Attacks
We have seen that information about an agent’s reputation
can be efficiently propagated, as long as all agents consis-
tently follow EVAL -TRUST. However, with reputation sys-
tems we are usually dealing with self-interested agents. In
our context, a manipulative agent may artificially increaseor
decrease the overall evaluation of some agent’s reputationby
deviating from the protocol.

In the framework we have presented, trust is evaluated on
the basis of global knowledge, i.e., the average of all repu-
tation values in the system. Therefore, any small coalition
cannot significantly change the average reputation of some
agentj by setting their own valuationsrj

i to legal values in
[0, 1], and then following the protocol EVAL -TRUST.4

This is, of course, not the case when a manipulator is al-
lowed to set its reputation value arbitrarily. As a simple mo-
tivating example, consider a setting where agents propagate
agentj’s average reputation (xi = rj

i for all i), and a ma-
nipulatorim wants to ensure that for alli, st,i

wt,i
converges to

a high value as the timet increases. At some staget0, the
manipulator updatesst0,im to ben, but except for this harsh
deviation follows the protocol to the letter. In particular, the
manipulator might initially setrj

im = xim = n. We refer to
this strategy asStrategy 1. Clearly, for alli, st,i

wt,i
eventually

converges to a value that is at least 1.
Despite the apparent effectiveness of Strategy 1, it is easily

detected. Indeed, unless for alli 6= im it holds thatst0,i = 0
at the timet0 when the manipulator deviated by assigning
st0,im = n, the expressionsst,i

wt,i
would eventually converge

to a value that is strictly greater than 1; this would clearly
unmask the deceit. It is of course possible to updatest0,im to
be less thann, but it is difficult to determinea priori which
value to set without pushing the average reputation above 1.

We now consider a more subtle way to increase the val-
ues st,i

wt,i
, a deceit that is indeed difficult to detect; we call this

4In fact, this holds for every coalition that does not constitute a
sizable portion of the entire set of agents.

strategyStrategy 2. For the firstT stages of the algorithm, the
manipulatorim follows PUSH-SUM as usual, with the excep-
tion of the updates ofst,im : after updatingwt,im =

∑

l ŵl

(as usual),im updates:st,im = wt,im . In other words, the
manipulator sets its personal evaluation of the averagest,im

wt,im

to be 1 at every staget = 1, . . . , T . For timet > T , the ma-
nipulator abides by the protocol. Using this strategy, it always
holds thatst,i

wt,i
≤ 1 for all i. In addition, for allt, it still holds

that
∑

i wt,i = n. Therefore, without augmenting the system
with additional security measures, this manipulation is diffi-
cult to detect. We shall presently demonstrate formally that
the manipulation is effective in the long run:st,i

wt,i
converges

to 1 for all i.

Proposition 4. Under Strategy 2, for alli ∈ N , s2T,i

w2T,i

T→∞
−→ 1

in probability.

Proof. We first notice that
∑

i st,i is monotonic increasing in
staget. Moreover, as noted above, it holds that at every stage,
∑

i wt,i = n, as for alli ∈ N : st,i

wt,i
≤ 1, and thus:

∑

i

st,i ≤
∑

i

wt,i = n.

Let ε, δ > 0. We must show that it is possible to choose
T large enough such that for allt ≥ 2T and all i ∈ N ,
Pr[

st,i

wt,i
≥ 1− ε] ≥ 1− δ.

Assume that at timet it holds that:
∑

i st,i

n
< 1− ε/2. (1)

Let It = {i ∈ N :
st,i

wt,i
≥ 1− ε/4}, w(It) =

∑

i∈It
wt,it

. It
holds that:

n(1− ε/2) ≥
∑

i∈N

st,i

≥
∑

i∈It

st,i

≥
∑

i∈It

wt,i · (1− ε/4)

= w(It)(1− ε/4).

It follows that w(It) ≤ n · 1−ε/2
1−ε/4 . The total weight of

agents inN \ It is at leastn−w(It). There must be an agent
it ∈ N \ It with at least a1/n-fraction of this weight:

wt,it
≥

n− w(It)

n
≥

ε

4− ε
. (2)

In order for the choice ofit to be well-defined, assumeit is
the minimal index that satisfies Equation (2).

Now, let s′t,im be the manipulator’s sum had it updated it
according to the protocol, i.e.,s′t,im =

∑

l ŝl for all messages
l sent toim. With probability1/n (and independently of other
stages),ft(it) = im; if this happens, it holds that:

s′t+1,im ≤ (wt+1,im − 1/2 · wt,it
) + 1/2 · st,it

≤ (wt+1,im − 1/2 · wt,it
)

+ 1/2 · wt,it
· (1− ε/4).

(3)



For all stagest it holds that
∑

i st+1,i −
∑

i st,i =
st+1,im − s′t+1,im , as the manipulator is the only agent that
might change

∑

i st,i. Therefore, in the conditions of Equa-
tion (3),

∑

i

st+1,i −
∑

i

st,i = st+1,im − s′t+1,im

= wt+1,im − st+1,im

≥ 1/2 · wt,it
·

ε

4

≥
ε2

32− 8ε

= ∆(w).

So far, we have shown that for each staget where Equa-
tion (1) holds andft(it) = im, it is the case that

∑

i st+1,i −
∑

i st,i ≥ ∆(w). This can happen at mostn(1−ε/2)
∆(w) times

before Equation (1) no longer holds, or to put it differently,
before

P

i
st,i

n ≥ 1− ε/2.
Let Xt be i.i.d. binary random variables, that are 1 iff

ft(it) = im. It holds that for allt where Equation (1) is
true,E[Xt] = 1/n. By Chernoff’s inequality, it holds that:

Pr[
1

T1

T1
∑

t=1

Xt ≤
1

2n
] ≤ e−

T1

2n2 .

It is possible to chooseT1 to be large enough such that this
expression is at mostδ/2, and in addition1

2n ·T1 ≥
n(1−ε/2)

∆(w) .

Therefore, at timeT1, the average
P

i
ST1,i

n ≥ 1 − ε/2 with
probability1− δ/2.

Recall that afterT stages (whereim deviated from the pro-
tocol), it still holds that

∑

i wT,i = n. Assume that indeed
P

i
ST1,i

n ≥ 1 − ε/2. By modifying the proof of Theorem
3.1 from [Kempeet al., 2003], it is possible to show that
after anotherT2 = T2(n, δ, ε) stages where all agents ob-
serve the protocol, it holds with probability1 − δ/2 that for

all i,
∣

∣

∣

sT1+T2,i

wT1+T2,i
−

P

i
ST1,i

n

∣

∣

∣
< ε/2, and thus for alli and

t ≥ T1 + T2, st,i

wt,i
> 1− ε with probability1− δ.

The proof is completed by simply choosingT =
max{T1, T2}.

Proposition 4 implies that Strategy 2 poses a provably acute
problem, when PUSH-SUM is run a large number of turns.
Fortunately, PUSH-SUM converges exponentially fast, and
thus it is usually the case that the manipulator is not able to
significantly affect the average reputation, as the following
proposition demonstrates.

Proposition 5. Let T1 ≤ T . Under Strategy 2 it holds that

E

[
P

i
ST1,i

n − r̄j
]

≤ T1

2n .

Proof. Let {ŝl, ŵl} be the messages that the manipulator
received at timet + 1. The manipulator setsst+1,im =
wt+1,im =

∑

l ŵl. Essentially, this is equivalent to setting
for all l ŝl = ŵl, or in other words, raising eacĥsl by ŵl− ŝl.
At turn t it was already true thatst,im = wt,im (w.l.o.g. this

is also true fort = 0), so it is enough to consider messages at
time t from all i 6= im.

Therefore, for all stagest, it holds that:

E

[

∑

i

st+1,i −
∑

i

st,i

]

=
∑

i6=im

(Pr[ft(i) = im]

· (
1

2
wt,i −

1

2
st,i))

=
1

2n

∑

i6=im

(wt,i − st,i)

≤
1

2n

∑

i6=im

wt,i

≤
1

2n

∑

i∈N

wt,i

=
1

2
.

The last equality follows from the fact that for allt,
∑

i wt,i = n.

As r̄j =
P

i
s0,i

n , and from the linearity of expectation, we
obtain that

E

[∑

i sT1,i

n
− r̄j

]

=
1

n
E

[

T1−1
∑

t=0

(

∑

i

st+1,i −
∑

i

st,i

)]

=
1

n

T1−1
∑

t=0

E

[

∑

i

st+1,i −
∑

i

st,i

]

≤
1

n
T1 ·

1

2
.

In particular, sinceU(n, δ, ε) = O(log n + log 1
δ + log 1

ε ),
PUSH-SUM is executedO(log n) stages, and thus the differ-
ence in the average is at mostO( log n

n ), which is quite insub-
stantial.

Remark 5. It is not guaranteed at timeT1 that each st,i

wt,i

is close tor̄j , because the inputs were dynamically changed
during the execution of PUSH-SUM.

Remark 6. The above discussion focused on a setting where
the manipulator attempts to increase the average reputation of
an agent. It is likewise possible for a manipulator to decrease
an agent’s average reputation, or indeed set it eventually to
any value it wants.

6 Related Work
P2PRep[Cornelli et al., 2002] and Xrep[Damiani et al.,
2002] are P2P reputation systems that can be piggybacked
onto existing P2P protocols (such as Gnutella). P2PRep
allows peers to estimate trustworthiness of other peers by
polling. No guarantees are given with respect to computa-
tional efficiency and scalability.

Aberer and Despotovic[2001] introduce a reputation sys-
tem that consists of both a semantic model and a data manage-
ment scheme. The latter relies on P-Grid[Aberer, 2001], and



uses distributed data structures for storing trust information;
the associated algorithms scale gracefully as the number of
agents increases. This approach, however, suffers from sev-
eral shortcomings compared to ours. Agents in this scheme
assess others’ reputation only on the basis of complaints filed
in the past; the framework is generally limited to such binary
trust information. In addition, trust is evaluated only accord-
ing to referrals from neighbors, whereas in our approach the
evaluation is based on all the information in the system.

Xiong and Liu[2003] presented a sophisticated framework
specifically applicable in P2P networks, where the decision
whether to trust a peer is based on five metrics: satisfaction,
number of transactions, credibility of feedback, transaction
context, and community context.[Srivatsaet al., 2005] ex-
tended this work. Both papers focus on the trust model, and
generally do not elaborate on the data management scheme.
Specifically, in [Xiong and Liu, 2003] a P-Grid [Aberer,
2001] is used. Thus, this work is in a sense orthogonal but
complementary to ours. Dewan and Dasgupta[2004] propose
self-certification and IP-Based safeguards as ways of induc-
ing trust; this work also complements ours.

Finally, gossip-based algorithms5 have many applications
in other domains, for instance replicated database mainte-
nance[Demerset al., 1987].

7 Conclusions

We have presented a data management scheme built on
gossip-based algorithms, and have demonstrated that it pos-
sesses several interesting features. Our method is decentral-
ized, and uses no central database. It is also applicable in
networks where point-to-point communication cannot be as-
sumed. It is scalable: the time to evaluate an agent’s av-
erage reputation with confidence1 − δ and accuracyε is
O(log n + log 1

δ + log 1
ε ). The evaluation of trust is global,

and based onall relevant information in the system, rather
than only local information. We have used simple data struc-
tures: each agent merely keeps an assessment of the agents
with which it personally interacted. Our method motivates
absolute truthfulness, as the time to close deals may decrease
as reputation increases. It is also resistant to some attacks,
such as carefully tampering with the updates performed by
PUSH-SUM.

We have focused on the data management scheme, and
have largely ignored the trust model. However, we believe
that many existing trust models can be integrated with our
framework. A simple example is the binary trust model
of [Aberer and Despotovic, 2001], where agents can file com-
plaints against other agents. In our framework, each agenti

sets its valuerj
i to be 0 if it wishes to file a complaint against

j; otherwise, the value is 1. More sophisticated models may,
however, require modifications to the framework. For exam-
ple, an agent may give higher credibility to agents that havea
high reputation (in its opinion), and weight their estimations
accordingly. An interesting direction for further work would
be to use gossip techniques to take even such considerations
into account.

5Also calledepidemic algorithms.
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