
Optimally Efficient Bidirectional Search

Eshed Shaham1∗ , Ariel Felner2 , Nathan R. Sturtevant3 and Jeffrey S. Rosenschein1

1School of Engineering and CS, Hebrew University of Jerusalem, Jerusalem, Israel
2ISE Department, Ben-Gurion University, Be’er Sheva, Israel

3CS Department, University of Alberta, Canada
eshed.shaham@mail.huji.ac.il, felner@bgu.ac.il, nathanst@ualberta.ca, jeff@cs.huji.ac.il

Abstract
A∗ is optimally efficient with regard to node ex-
pansions among unidirectional admissible algo-
rithms—those that only assume that the heuristic
used is admissible. This paper studies algorithms
that are optimally efficient for bidirectional search
algorithms. We present the Fractional MM algo-
rithm and its sibling, the MT algorithm, which is
simpler to analyze. We then develop variants of
these algorithms that are optimally efficient, each
under different assumptions on the information
available to the algorithm.1

1 Introduction and Background
Given a graphG, the shortest-path problem is to find the least-
cost path from state start to state goal in G. The traditional
approach is to use the A* algorithm [Hart et al., 1968]. A* is a
unidirectional best-first search that priorities nodes according
to f(n) = g(n)+h(n) where g(n) is the shortest known path
from start to the node n and h(n) is an admissible heuristic
(lower bound) on the cost of the path from n to the goal.

Bidirectional heuristic search algorithms (denoted hence-
forth by Bi-HS) interleave two separate searches, a search
forward from s and a search backward from g. these algo-
rithms usually halt once both frontiers include the same node.
Bi-HS algorithms differ on which node they expand next and
when exactly they stop such that optimality is guaranteed (see
a survey in [Holte et al., 2017]).

Recent research defined conditions on the node expansions
required by Bi-HS algorithms to guarantee solutions optimal-
ity [Eckerle et al., 2017]. Following work reformulated these
conditions as a must-expand graph (GMX), showing that the
Minimum Vertex Cover (MVC) of GMX corresponds to the
minimal number of expansions required to prove optimal-
ity [Chen et al., 2017]. In this paper we study the GMX struc-
ture, characterize properties of the MVC and develop algo-
rithms that expand exactly the MVC.

Let d(x, y) denote the shortest distance between x and y
and let d(start, goal) = C∗.

∗Contact Author
1This paper is a is a summary of two papers [Shaham et al. 2017;

2018] which are the basis for the M.Sc thesis of the first author.

We use fF , gF and hF to indicate f -, g-, and h-values in
the forward direction and similarly, fB , gB and hB to indicate
f -, g-, and h-values in the backward direction. The forward
heuristic, hF , is forward admissible iff hF (u) ≤ d(u, goal)
for all u inG and is forward consistent iff hF (u) ≤ d(u, u′)+
hF (u

′) for all u and u′ in G. The backward heuristic, hB , is
backward admissible iff hB(v) ≤ d(start, v) for all v in G
and is backward consistent iff hB(v) ≤ d(v′, v) + hB(v

′)
for all v and v′ in G. Front-to-end algorithms use these two
heuristic functions coupled with the g-value of the corre-
sponding node (v or u). Front-to-front bidirectional search
algorithms use heuristics between pairs of states on opposite
frontiers coupled with their respective g-values.

Let IAD be the set of solvable problem instances in which
the heuristics are admissible, and let ICON be the subset of
problems in IAD where the heuristics are consistent. Admis-
sible algorithms are algorithms that must be able to optimally
solve all instances from IAD. Admissible algorithms have no
further knowledge about the problem or the heuristic (besides
the fact that it is admissible), and they do not exploit such
knowledge even if it is available. We deal with three different
settings distinguished by the assumptions on the algorithms
and the problem instances.

Case 1: Recent papers on bidirectional search (e.g., [Eck-
erle et al., 2017]), followed the classic analysis of A∗
[Dechter and Pearl, 1985] and analyzed admissible algo-
rithms running on problem instances with consistent heuris-
tics. That is, the behavior of admissible algorithms was only
studied when running on instances from ICON . We denote
these assumptions as the base case and label it by IAD/ICON
along the following notation: What can be assumed by the al-
gorithm on the problem instances / The instances the algo-
rithm is executed on.

Case 2: In many domains (e.g., with unit-cost edges)
the cost of the smallest edge (ε) is known. We label this
case, where the algorithm knows ε and is allowed to ex-
ploit this knowledge as IADε/ICONε and show the adapta-
tions that are needed to generalize existing theory and algo-
rithms from IAD/ICON to IADε/ICONε. Nevertheless, both
of these cases have an inherent discrepancy — the assump-
tions on the knowledge available to the algorithm and the as-
sumptions on the problem instances it will run on are differ-
ent. This is the main motivation for the next case.

Case 3: The algorithm is allowed to exploit the fact that

start goal

u v

Figure 1: A path from start to goal that goes via u and v

both the forward and backward heuristics (hF and hB) are
consistent. We label this case ICON/ICON . In this case algo-
rithms can assume that they are running on instances from
ICON and we show that they can exploit a front-to-front
heuristic that is induced by the consistency of the underlying
heuristics.

1.1 Necessary Expansions in Bidirectional Search
Given an admissible heuristic, any admissible unidirectional
algorithm must expand all states with f(n) < C∗ in order to
prove a solution is optimal [Dechter and Pearl, 1985].

A new line of research was initiated by Eckerle et al.
[2017] who generalized this theory to Bi-HS showing that
necessary expansions are defined on pairs of states u and v
in the forward and backward frontiers, respectively. Here we
need to reason whether there can be an optimal path that goes
from start to u to v to the goal, as depicted in Figure 1.
Three conditions are required to reason about potential paths
between u and v:

1. fF (u) < C∗

2. fB(v) < C∗

3. gF (u) + gB(v) < C∗

If all conditions are met, the algorithm must explore to see
if there is a shorter path between u and v. In bidirectional
search, a pair of states (u, v) is called a must-expand pair if
all three conditions are met. Unlike unidirectional search, in
a must-expand pair only one of u or v must be expanded, not
both. An algorithm that does not expand either u or v cannot
be admissible because it may not find an optimal solution.

1.2 The Must-Expand Graph (GMX)
The unique property of the must-expand condition is that it
contains an or between the nodes, also a feature of the vertex
cover problem. Thus, the conditions for necessary expansions
can be represented as the problem of finding a vertex cover on
the must-expand graph denoted by GMX [Chen et al., 2017].
Definition 1. The Must-Expand GraphGMX on a problem in-
stance is an undirected, unweighed bipartite graph. For each
state u ∈ G, there are two vertices in GMX, the left vertex
uF and the right vertex uB . For each pair of states u, v ∈ G,
there is an edge in GMX between uF and vB if and only if
(u, v) is a must-expand pair.

It follows that the minimum number of node expansions
required to solve a problem using Bi-HS is determined by
the size of the minimum vertex cover of GMX (denoted here-
after as MVC). Naturally, the exact set of vertices in GMX
depends on the heuristic used in the problem instance. There-
fore, MVC is heuristic dependent as well.

(a) Problem
Instance ~

2
~0

s ~
0
~1

A

~
1
~0

B

~
0
~2

g

1

2 1

2
3

(b) GMX (c) GMXε

Forward

sgF=0

BgF=1

AgF=2

Backward

A gB=1

B gB=2

g gB=0

Forward

sgF=0

BgF=1

AgF=2

Backward

A gB=1

B gB=2

g gB=0

Figure 2: Case Study - Different versions of GMX

Figure 2(b) shows the GMX graph for the problem instance
in Figure 2(a) where the numbers inside nodes are the h-
values. The left vertices are sorted by increasing gF -costs,
while the right vertices are sorted by decreasing gB-cost.
In this ordering, each horizontal pair of states u and v has
gF (u) + gB(v) = C∗. C∗ = 3 in Figure 2.

2 MVC of GMX in the IAD/ICON case (Case 1)
The MVC of GMX has the following properties [Shaham
et al., 2017]. First, the MVC is contiguous in each direc-
tion. That is, if a node n with gF (n) = k is in the MVC,
then all nodes with gF (n) ≤ k in GMX must also be in the
MVC, and similarly for gB . Second, there exist thresholds
t∗F , t

∗
B such that (1) t∗F + t∗B = C∗ and (2) a forward node

u from GMX is included in the MVC iff gF (u) < t∗F , and
a backward node v from GMX is included in the MVC iff
gB(v) < t∗B = C∗ − t∗F . In Section 3 we will generalize this
to Case 2 (IADε/ICONε).

To demonstrate this, consider all pairs of values of tF and
tB where tF + tB = C∗. There is a family of contiguous ver-
tex covers (VCs) for all such pairs (tF , tB), where all nodes
with gF < tF in GMX are included in the forward direction
of this VC, and all nodes with gB < tB are included in the
backward direction of this VC. One such (tF , tB) partition is
the MVC and is denoted by (t∗F , t

∗
B). The number of nodes of

the (tF , tB) VC partitions is determined by summing up the
nodes with gF < tF and with gB < tB . In Figure 2, nodes
that correspond to each (tF , tB) pair are aligned horizontally.
Nodes that are included in MVC have a double outline —
these are nodes with gF < t∗F = 2 and with gB < t∗B = 1.

2.1 Fractional MM
MM is a Bi-HS algorithm that is guaranteed to meet in the mid-
dle [Holte et al., 2017]. That is, MM will never expand a state

whose g-value exceeds C∗/2. Fractional MM (fMM) general-
izes MM and can meet at any fraction of the optimal solution
cost [Shaham et al., 2017]. fMM(p) uses the following prior-
ity functions on nodes in the open lists, where 0 < p < 1:

prF (u) = max(gF (u) + hF (u), gF (u)/p)
prB(v) = max(gB(v) + hB(v), gB(v)/(1− p))

fMM(p) expands a state with minimum priority in either
direction. fMM(p)’s forward and backward searches meet at
(p ·C∗, (1−p)·C∗) by similar reasoning for why MMmeets in
the middle. That is, fMM(p) will never forward expand a state
whose gF -value exceeds p · C∗ and never backward expand
a state whose gB-value exceeds (1 − p) · C∗. This attribute
is called restrained with respect to p. As a result, a restrained
algorithm will always return the optimal solution because it
can only meet at the meeting point along the optimal path.
MM is a special case of fMM(p) for p = 1/2. Forward A∗ and
reverse A∗ (searching from goal to start) are also special
cases corresponding to p = 1 and p = 0 respectively.

For every problem instance, there exists a fraction 0 ≤
p∗ ≤ 1 such that fMM(p∗) is optimally efficient and will ex-
pand the minimal number of necessary nodes — those in the
MVC [Shaham et al., 2017]. In practice, however, the exact
value for p∗ is not known a priori, as it depends on C∗ and
GMX . Both are not known in advance before the execution of
the algorithm. But, given C∗ and GMX it is possible to find
p∗ in time linear in the number of distinct g-values. Finding
p∗ and then running fMM(p∗) can serve for research purposes
as an oracle—any algorithm can now be compared to the the-
oretical optimum.

The definition of fMM through fractions resulted from the
attempt to generalize existing algorithms such as MM and A∗.
Since the MVC theory uses thresholds it is more natural to
use an algorithm that uses such thresholds.

2.2 Meet at the Threshold
Given a threshold t, the meet at the threshold algorithm
(MT) [Shaham et al., 2018] is restrained with respect to t, or
equivalently, MT meets at (t, C∗ − t). That is, MT will never
forward expand a state whose gF -value exceeds t and never
backward expand a state whose gB-value exceeds C∗ − t.
MT(t) uses the following priority functions:

prF (u) =

{
gF (u) + hF (u) if gF (u) < t

∞ if gF (u) ≥ t

prB(v) = max(gB(v) + hB(v), gB(v) + t)

The same line of proof for MM and fMM fits here as well.
The fact that MT is restrained ensures an optimal solution.

For t = 0, MT(t) is identical to backward A∗. Similarly, for
t ≥ C∗, MT(t) is identical to forward A∗. It is easy to see that
MT(t) will expand the same set of nodes in GMX (not neces-
sarily in the same order) as fMM(p) when t = p · C∗ . For
example, MM is identical to MT(t) for t = C∗/2. Therefore,
for any value of t, MT will return the optimal solution. More-
over, when choosing the optimal value for t (t∗ = p∗ · C∗),
MT(t) is also optimally efficient, i.e., it expands exactly the
nodes in the MVC. In the next sections we study GMX and
its MVC, and generalize MT (and fMM, where possible) to

the cases where the algorithm can assume more knowledge
in the graph and on h.

2.3 Other GMX-based Algorithms
The structure of GMX is not given as input and is not known
in advance. NBS [Chen et al., 2017] is a Bi-HS algorithm that
aims to find some VC of GMX by picking a and expanding
both its vertices. Similarly, DVCBS [Shperberg et al., 2019]
is a Bi-HS algorithm that grows GMX on the fly and always
expands the MVC of the growing GMX. NBS has a guarantee
that the size of its VC is at most twice the size of the MVC.
DVCBS does not have that guarantee but had better average
case performance.

3 Case 2: Knowing ε (IADε/ICONε)
In many cases, the problem instance is coupled with a lower
bound (ε) on the edge costs. For example, in unit edge-cost
domains ε = 1. In other domains, one might iterate over all
actions costs and take their minimum. This bound provides
an admissible front-to-front heuristic of ε between any two
distinct nodes. We now study the case where algorithms are
allowed to assume the existence of ε but as done in previ-
ous work can still only assume an admissible heuristic. Sim-
ilarly, we assume that they are evaluated in instances where
the heuristic is consistent. In our notation, this case is labeled
by IADε/ICONε. For this case we adapt the conditions for
must-expand pairs in domains with front-to-front heuristics
as defined by Eckerle et al. [2017] with ε as the front-to-front
heuristic. In such cases two nodes u, v are a must-expand pair
if the following conditions are met:
1. fF (u) < C∗

2. fB(v) < C∗

3. gF (u) + gB(v) + ε < C∗

Condition 3 is more informative than the front-to-end ver-
sion of the IAD/ICON case (Case 1) due to the addition of
ε. In Figure 1, ε is a lower bound on the cost of the path
from u to v. Therefore, some edges that exist in the old
GMX no longer exist in the new GMX. Figure 2(c) shows
such a GMX for the instance in Figure 2(a). In this instance,
ε = 1 and thus (B,A) is no longer a must-expand pair, since
gF (B) + gB(A) + ε = 1 + 1 + 1 = C∗.

Similar to the IAD/ICON case we show that there exist
thresholds t∗F , t

∗
B such that a forward node u from GMX is

included in MVC iff gF (u) < t∗F , and a backwards node v
from GMX is included in MVC iff gB(v) < t∗B . The main
difference being that this time t∗F + t∗B + ε = C∗.

We now define the following four terms:
Definition 2.

gF I = maxu∈(GMXF
∩MVC){gF (u)}

gF O = minu∈(GMXF
\MVC){gF (u)}

gBI = maxv∈(GMXB
∩MVC){gB(v)}

gBO = minv∈(GMXB
\MVC){gB(v)}

Based on these terms we define the following thresholds:

t∗F =
max {gF I , C∗ − ε− gBO}+min {gF O , C∗ − ε− gBI}

2

t∗B =
max {gBI , C∗ − ε− gF O}+min {gBO , C∗ − ε− gF I}

2

Note that t∗F + t∗B+ ε = C∗. Furthermore, these thresholds
indeed satisfy the following theorem.

Theorem 1. For a forward node u, u ∈ MVC iff gF (u) <
t∗F . For a backward node v, v ∈ MVC iff gB(v) < t∗B .

For Figure 2(c) we have t∗F = 1 and t∗B = 1 (as opposed to
the IAD/ICON case which had t∗F = 2).

Theorem 1 implies a simple algorithm for finding MVC
given that GMX and C∗ are both known. We iterate over
all possible thresholds that satisfy tF + tB + ε = C∗ and
sum up the costs of the forward nodes u ∈ GMX for which
gF (u) < tF as well as the costs of the backward nodes
v ∈ GMX for which gB(v) < tB . This algorithm runs with
complexity linear in the number of distinct g-values of states
in GMX . It is similar to the Calc-VC() algorithm provided
by Shaham et al. [2017].

3.1 Meet at the Threshold ε (MTε)

The priority function of MT can easily be adapted to create a
new algorithm MTε:

prF (u) =

{
gF (u) + hF (u) if gF (u) < tF
∞ if gF (u) ≥ tF

prB(u) = max(gB(u) + hB(u), gB(u) + tF + ε)

Similar to MT(t) in the IAD/ICON case, for any given
problem instance I in ICONε there exists t∗F such that MTε(t)
is optimally efficient—it expands the minimal number of
nodes in GMX of I . The proof for this is nearly identical to
the respective proof on fMM.

4 Case 3: Consistency ICON/ICON
As explained above, the analysis of Bi-HS by [Eckerle et al.,
2017] and subsequent papers [Chen et al., 2017; Shaham et
al., 2017] assumed admissible algorithms. However, they all
analyzed the case where such algorithms are executed on in-
stances from ICON . We next investigate the case where the
algorithms know that the heuristics are consistent (i.e., they
know that the instances are from ICON) and they are allowed
to exploit that knowledge.

Given consistent heuristics, |hF (u) − hF (v)| is a lower
bound on the distance between u and v, so |hF (u) − hF (v)|
can be used as a front-to-front heuristic between u and v. Sim-
ilarly, |hB(u)−hB(v)| can be used as a heuristic as well. This
was called the Add method by Kaindl and Kainz [1997].

Definition 3. (Front-to-front heuristic) For each pair of
nodes (a, b) define the following admissible heuristic:

hC(a, b) = max{|hF (a)− hF (b)|, |hB(a)− hB(b)|}

This heuristic results from the combination of assuming
both forward and backward consistency (hence hC).

4.1 Necessary Node Expansions
Using the conditions for must-expand pairs [Eckerle et al.,
2017] in problems with hC as a front-to-front heuristic results
in the following claim: two nodes u, v are a must-expand pair
if the following conditions are met:
1. fF (u) < C∗

2. fB(v) < C∗

3. gF (u) + gB(v) + hC(u, v) < C∗

Any pair of nodes u, v that satisfy these conditions is a
must-expand pair and induces an edge in GMX between u
and v. Condition 3 is more informative than the front-to-end
version due to the addition of hC . Therefore, some edges that
exist in the old GMX no longer exist in the new GMX .

4.2 Equivalence Classes
In the IAD/ICON case hC(u, v) did not exist. To imitate this
in the ICON/ICON case, we partition GMX into equivalence
classes, such that any given pair of nodes in each class (u, v)
has hC(u, v) = 0.

Definition 4. (heuristic equivalence) Two nodes u, v are
heuristically equivalent (or h-equivalent) iff hC(u, v) = 0.

Directly from the definition, two nodes u, v are h-
equivalent (belong to the same h-equivalence class) iff
hF (u) = hF (v) and hB(u) = hB(v).

Lemma 2. (Restrained with respect to t∗FQ) For every h-
equivalence class Q there exist thresholds t∗FQ + t∗BQ = C∗

such that MVC ∩ Q contains exactly the forward nodes in
Q for which gF < t∗FQ. and exactly all backward nodes for
which gB < t∗BQ.

Another way of looking at this would be to describe t∗FQ
as a function of the h-values of Q:

Corollary 3. There exists a function b : R+ × R+ →
R+ such that a forward node u is in MVC iff gF (u) ≤
b(hF (u), hB(u)) and a backward node v is in MVC iff
gB(u) ≤ C∗ − b(hF (u), hB(u)).

Below we use b(u) as shorthand for b(hF (u), hB(u)).
We can now adapt MT to work in the ICON/ICON case. We
define the algorithm MTCON (b) with the following priorities:

prF (u) =

{
gF (u) + hF (u) if gF (u) < b(u)

∞ if gF (u) ≥ b(u)
prB(u) = max(gB(u) + hB(u), gB(u) + b(u))

4.3 Attributes of b
As discussed above, given any threshold tF ∈ R+, MT and
MTε (and similarly, fMM and fMMε) will always return an op-
timal path, although they might do more work than the min-
imal number of necessary expansions (as achieved by t∗F).
MTCON , however, is not guaranteed to return an optimal path
for any b : R+ × R+ → R+.

Fortunately this issue can be solved by constraining b to
be a member of the following set of functions B:
B = {b : R+ × R+ → R+ | ∀hF ′, hB ′, hF ′′, hB ′′ ∈ R+∣∣b(hF ′, hB ′)− b(hF ′′, hB ′′)∣∣

≤ max{
∣∣hF ′ − hF ′′∣∣ , ∣∣hB ′ − hB ′′∣∣}

Case IAD/ICON IADε/ICONε ICON/ICON

MVC Restrained ε-Restrained b ∈ B
Optimal Alg. fMM / MT MTε / fMMε MTCON

Clusters |G| |G| |G| × |H|2

Complexity O(|G|) O(|G|) O(|G|2 × |H|4)

Table 1: A summarizing table. |G| and |H| are the numbers of dis-
tinct g- and h-values respectively.

This is a stronger version of the global 1-Lipschitz attribute
on the continuity of functions. We prove two theorems:
(1:) Given a function b ∈ B, MTCON (b) will return an opti-
mal path on any problem instance in ICON .
(2:) Given a problem instance in ICON there exists b∗ ∈ B
such that MTCON (b) will expand the minimal number of nec-
essary expansions on that instance.

From these theorems we can deduce that MTCON is op-
timally efficient in the ICON/ICON case, provided that only
functions b ∈ B are allowed as the argument. A detailed anal-
ysis and related proofs are provided in [Shaham et al., 2018].

5 Summary and Conclusions
We have shown the nature of MVC for GMX for cases with
different assumptions on the knowledge of the algorithm
about the heuristics used and on the nature of the underly-
ing graph. This enriches the theory on GMX to more cases.
We have also developed MT, which is equivalent to fMM but
is simpler for our purposes.

Table 1 summarizes our findings. Each column represents
a different case. The first row presents the structure of MVC.
The second row presents the optimally efficient algorithm.
The third row gives the number of clusters of indistinguish-
able nodes inGMX, i.e., clusters that are either fully contained
within an MVC or not at all. The complexity row gives the
complexity of the best-known algorithm to calculate MVC
given thatGMX andC∗ are known. While an algorithm for the
IAD/ICON case and the IADε/ICONε case were provided,
for the ICON/ICON case one should resort to the known al-
gorithm for finding a MVC in a bipartite graph [Papadim-
itriou and Steiglitz, 1982].

Future work can further expand this theory to more cases
such as the case where we add ε to the ICON/ICON case. In
addition, an important line will be to develop such a theory to
the case where we have a full front-to-front heuristic.

6 Acknowledgments
The work was supported by the Israel Science Foundation
(ISF) grant #844/17, by BSF grant #2017692, by NSF grant
#1815660 and by the HUJI Cyber Security Research Cen-
ter in conjunction with the Israel National Cyber Directorate
(INCD) in the Prime Minister’s Office.

References
[Chen et al., 2017] Jingwei Chen, Robert C. Holte, Sandra

Zilles, and Nathan R. Sturtevant. Front-to-end bidirec-
tional heuristic search with near-optimal node expansions.
In Proceedings of IJCAI, 2017.

[Dechter and Pearl, 1985] Rina Dechter and Judea Pearl.
Generalized best-first search strategies and the optimality
of A*. J. ACM, 32(3):505–536, 1985.

[Eckerle et al., 2017] Jurgen Eckerle, Jingwei Chen,
Nathan R. Sturtevant, Sandra Zilles, and Robert C. Holte.
Sufficient conditions for node expansion in bidirectional
heuristic search. In ICAPS, 2017.

[Hart et al., 1968] Peter E. Hart, Nils J. Nilsson, and Bertram
Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE Trans. Systems Science and
Cybernetics, 4(2):100–107, 1968.

[Holte et al., 2017] Robert C. Holte, Ariel Felner, Guni
Sharon, Nathan R. Sturtevant, and Jingwei Chen. Bidi-
rectional search that is guaranteed to meet in the middle.
Artificial Intelligence Journal (AIJ), In press, 2017.

[Kaindl and Kainz, 1997] Hermann Kaindl and Gerhard
Kainz. Bidirectional heuristic search reconsidered. J. Artif.
Intell. Res., 7:283–317, 1997.

[Papadimitriou and Steiglitz, 1982] Christos H Papadim-
itriou and Kenneth Steiglitz. Combinatorial optimization:
algorithms and complexity. Courier Corporation, 1982.

[Shaham et al., 2017] Eshed Shaham, Ariel Felner, Jingwei
Chen, and Nathan R. Sturtevant. The minimal set of
states that must be expanded in a front-to-end bidirectional
search. In SoCS, pages 82–90, 2017.

[Shaham et al., 2018] Eshed Shaham, Ariel Felner,
Nathan R. Sturtevant, and Jeffrey S. Rosenschein.
Minimizing node expansions in bidirectional search with
consistent heuristics. In SOCS, pages 81–98, 2018.

[Shperberg et al., 2019] Shahaf Shperberg, Avi Hayoun,
Ariel Felner, Solomon Eyal Shimony, and Nathan R.
Sturtevant. Enriching non-parametric bidirectional search
algorithms. In AAAI, 2019.

	Introduction and Background
	Necessary Expansions in Bidirectional Search
	The Must-Expand Graph (GMX)

	MVC of GMX in the IAD/ ICON case (Case 1)
	Fractional MM
	Meet at the Threshold
	Other GMX-based Algorithms

	Case 2: Knowing (IAD/ ICON)
	Meet at the Threshold (MT)

	Case 3: Consistency ICON/ ICON
	Necessary Node Expansions
	Equivalence Classes
	Attributes of b

	Summary and Conclusions
	Acknowledgments

