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Abstract

Understanding the computational complexity of
manipulation in elections is arguably the most cen-
tral agenda in Computational Social Choice. One
of the influential variations of the the problem in-
volves a coalition of manipulators trying to make
a favorite candidate win the election. Although the
complexity of the problem is well-studied under the
assumption that the voters are weighted, there were
very few successful attempts to abandon this strong
assumption.

In this paper, we study the complexity of th@-
weighted coalitional manipulation problem (UCM)
under several prominent voting rules. Our main re-
sult is that UCM is NP-complete under tineax-
imin rule; this resolves an enigmatic open question.
We then show that UCM is NP-complete under the
ranked pairsrule, even with respect to a single
manipulator. Furthermore, we provide an extreme
hardness-of-approximation result for an optimiza-
tion version of UCM under ranked pairs. Finally,
we show that UCM under thBucklinrule is in P.

Introduction

always choose the most-preferred candidate of a single fixed
voter). However, the mere existence of beneficial manipula-
tions does not imply that voters will use them: in order to do
S0, voters must also be ablediscoverthe manipulation, and
this may be computationally hard. Recently, the approach of
using computational complexity to prevent manipulatios ha
attracted more and more attention.

In early work[Bartholdiet al, 1989; Bartholdi and Orlin,
1991, it was shown that when the number of candidates is
not bounded, the second-order Copeland and STV rules are
hard to manipulate, even by a single voter. More recent re-
search has studied how to modify other existing rules to make
them hard to manipulatgConitzer and Sandholm, 2003;
Elkind and Lipmaa, 2005

One of the most prominent problems considered in the
context of manipulation in elections is known aighted
coalitional manipulation (WCM)In this setting, there is a
coalition of manipulative voters trying to coordinate the-
tions in a way that makes a specific candidate win the elec-
tion. In addition, the voters are weighted; a voter with virtig
k counts ask voters voting identically. Previous work has
established that this problem is computationally hard unde
a variety of prominent voting rules, even when the number
of candidates is constant (see, el@pnitzeret al, 2007,
Hemaspaandra and Hemaspaandra, D007

\Voting is a methodology that enables a group of agents (or However, the current literature contains very few results
voters) to make a joint choice from a set of candidates. Eacregarding theunweightedversion of the coalitional manip-
agent reports his or her preferences over the candidaas; th ulation problem (UCM), which is in fact more natural in
a voting ruleis applied to aggregate the preferences of thgmost settings. This is not completely surprising since, un-
agents—that is, to select a winning candidate. Howeverike WCM, the UCM problem is quite unwieldy under many
sometimes a subset of the agents can report their preferenceoting rules, that is, it has proven mathematically difftcul
insincerely to make the outcome more favorable to them. Thi$o resolve its complexity, despite some effort by various re
phenomenon is known asanipulation A rule for which no  searchers over the past few years. Notice that, as UCM
group of agents can ever beneficially manipulate is said to bis a special case of WCM, any tractability results from the
group strategy-proofif no single agent can ever beneficially weighted setting carry over to the unweighted setting. How-
manipulate, the rule is said to serategy-proof{a weaker re-  ever, hardness results do not carry over. We argue thateif on
quirement). wishes to claim that a given voting rule is resistant to coali
Unfortunately, any strategy-proof voting rule will fail to tional manipulation, in most cases hardness of UCM would
satisfy some natural property. The celebrated Gibbardbe more relevant than hardness of WCM.
Satterthwaite theoreffGibbard, 1973; Satterthwaite, 1975 A few very recent papers have directly dealt with UCM.
states that when there are three or more candidates, thereRaliszewski et al.[200d have shown that UCM is NP-
no strategy-proof voting rule that satisfies non-impoaifor =~ complete under a family of voting rules derived from the
every candidate, there exist votes that would make that car€opeland rule, even when there are only two manipulators. In
didate win) and non-dictatorship (the rule does not simplyaddition, Zuckerman et al200§ have established, as corol-



laries of their main theorems, that unweighted coalitional e Ranked pair§Tideman, 198F This rule first creates an
manipulation is tractable under the Veto and Plurality with entire ranking of all the candidates, as follows. Define

Runoff voting rules. However, Zuckerman et al. also conjec- advp(c;, ¢;) as for the maximin rule. In each step, we
tured that UCM is intractable under the prominent Borda and ~ consider a pair of candidates ¢; that we have not pre-
Maximin voting rules. viously considered (as a pair): specifically, we choose

Zuckerman et al. further observed that the unweighted the remaining pair with the highest agfe;, c;). We
coalitional manipulation setting admits an optimizatioalp then fix the order; > ¢;, unless this contradicts previ-
lem that they calledunweighted coalitional optimization ous orders that we fixed (that is, it violates transitivity).
(UCO). The goal is to find the minimum number of manip- We continue until we have considered all pairs of can-
ulators required to make a given candidate win the election.  didates (hence, in the end, we have a full ranking). The
They gave a 2-approximation algorithm for this problem un- candidate at the top of the ranking wins.

der maximin (even though this problem was not previously

known to be NP-hard), and an algorithm for Borda that find%léggggisnz rlljle;ea:j"?g i?]retcv?npo'?:é?]"rﬁ)c/;nat trr?grlgg(reem?he
an optimal solution up to an additive term of one. P ’ Y Y

are reallyvoting correspondencea correspondence can se-
Our results. In this paper, we study the computational com-lect more than one winner. In the remainder of this paper,
plexity of the unweighted coalitional manipulation prable we will sometimes somewhat inaccurately refer to the above
under several voting rules. Our main result is that the UCMcorrespondences as rules.

problem under maximin is NP-complete for any fixed number Let us now turn to the definition of the problems that we
of manipulators & 2); thus we resolve the abovementioned are interested in investigating. We study domstructivema-
conjecture of Zuckerman et al. in the positive. We next shownipulation variations, in which the goal is to make a given
that the UCM problem under ranked pairs is NP-completecandidate win.

even when there is only one manipulator. This means thghofniion 2.1, The Unweighted Coalitional Manipulation
ranked pairs is a member of a very exclusive club of natu—(UCM) problem is defined as follows. An instance is a tu-

ral” voting rules that have this property (which previouisly le (r, PNM ¢, M), wherer is a votin NM ;
, PR e, M), g rule,P is the
cluded only second-order Copeland and STV). We strengtheﬁon_ anipulators’ profiles is the candidate preferred by the

this res_,ult tt.)y prOVIﬂl?g %cs:grprlsgng, exliredme .h"’?r(.jtn.eshs'o(];manipulators, and/ is the set of manipulators. We are asked
approximation resuft ot unaer ranke p?',rf" " IS NATCy hether there exists a profile™ for the manipulators such
to approximate the problem within a factor 6f* —¢ where thatr(PNM U PM) = {c}

N is the input size and > 0 is an arbitrary constant. Fi- U _ _ _
nally, we present a polynomial-time algorithm for the UCM  The above definition uses thaique winnerformulation,

problem under Bucklin. which is the common one in the literature. It is also possible
to consider &o-winnerformulation which is similar, only we
2  Preliminaries require that € r(PNM U PM), that is, instead of being the

unique winnerg¢ should be included among the set of win-
ners. Our results hold for the co-winner formulation as well
For anyk € N, we let UCM, be the subproblem of UCM
in which the number of manipulatorsis That is, an UCM
instance is a tuplér, PNM ¢, M) where|M| = k.
Zuckerman et al2009 suggested that the unweighted ma-
nipulation setting allows for a natural optimization preii:
; \ ; ) theunweighted coalitional optimizatioproblem. Given, es-
A voting ruler is a function from the set of all profiles on sentially, %n unweighted copalitionalqr%ranipulation ins@an

CtoC, thatis,r : P(C) — C. Below we formally define : :
the three prominent voting rules that we study in this paper\.Ne askhow manymanipulators are needed in order to make

L : . ¢ win. Formally:
For a definition of other voting rules that we mention, the
reader is referred to the book by Tidem@®0d, or to the  Definition 2.2. The Unweighted Coalitional Optimization
preliminaries of one of the many papers on the subject (e.g(UCO) problem is defined as follows. An instance is a tu-
[Conitzeret al, 2007). ple (r, PNM ¢), wherer is a voting rule,PN is the non-
manipulators’ profile, and is the candidate preferred by the
manipulators. We must find the minimuinsuch that there
exists a set of manipulator® with |M| = k, and a profile
PM that satisfies(PYM U PM) = {c}.

LetC be the set o€andidatesA linear order orC is a transi-
tive, antisymmetric, and total relation @n The set of all lin-
ear orders o@ is denoted by.(C). An n-voter profileP onC
consists of: linear orders of€. Thatis,P = (R, ..., R,),
where for every < n, R; € L(C). The set of all profiles on
C is denoted byP(C). In the remainder of the paper, we let
m denote the number of candidates (tha{@s).

e Maximin Let theadvantageof ¢; overc; with respect
to P, denoted ady/(c;, ¢;), be the number of votes iR
that ranke; ahead ofc;. The winner is the candidate
that maximizesnin{advp(c,c’) : ¢ € C\ {c}}.

e Bucklin (see, e.g.[Tideman, 200h: A candidatec’s i
Bucklin score is the smallest numbersuch that more 3 MaX'm'n .
than half of the votes rankamong the to candidates. In this section, we prove our main result: the UCM prob-
The winner is the candidate that has the smallest Bucklitem under maximin is NP-complete. We thus resolve an an

scoret T —— N . .
candidate among the tdg but for simplicity we will not consider

'Sometimes, ties are broken by the number of votes that rank this tie-breaking rule here.



open question that has proved quite enigmatic over the past3. For any(s,t) € E such thatDp~u (2, s) is not defined

few years (see, e.glZuckermanet al, 200d). The proof
uses a reduction from thivo vertex disjoint paths in di-
rected antisymmetric grapproblem, which is known to be
NP-completdFortuneet al, 1984.

above, we leDpnu (L, 8) = —2| M| — 2.

4. For anys,t € C such thatDp~u(t,s) is not defined
above, we letDp~a (6, s)| = 0.

The existence of such BVM, whose size is polynomial in

Definition 3.1. The two vertex disjoint paths in directed ,, g guaranteed by Lemma 3.2.
graphproblem is defined as follows. We are given a directed  \y can assume without loss of generality that each manip-

graphG and two disjoint pairs of vertice@:, v') and(v, v’),

whereu, v/, v, v’ are all different from each other. We are

asked whether there exist two directed paths— w; —

.= up, — v andv — vy — ... — v, — v’ such
thatu, v, u1, ..., uk,,v,v",v1,..., v, are all different from
each other.

For any profileP and any pair of candidates, cs, let
Dp(c1,c2) denote the number of times thaf is ranked
higher thanc, in P minus the number of times that is
ranked higher than; in P, that s,

Dp(Cl,Cg) = |{R€ P:ci >R CQ}|—|{RE P:co =g Cl}l .

We shall require the following previously known lemma.

Lemma 3.2. [McGarvey, 195BGiven a functionF" : C x
C — Z such that

1. foralley,ea € C, 1 # ¢, Fc1,c2) = —F(ca,¢1),and

2. either for all pairs of candidates;, co € C (with ¢; #
¢2), F(c1,c2) is even, or for all pairs of candidates
c1,c2 € C (with ¢ # ¢2), F(c1,¢2) is odd,

there exists a profild such that for allcy, co € C, ¢1 # o,
Dp(Cl,Cg) = F(Cl, 02) and

>

c1,C2: c17#C2

1
|P| < 3 |F'(c1,c2) — Fca, c1)]| -

Theorem 3.3. The UCM, problem under maximin is NP-
complete for any number of manipulatdrs> 2.

Proof of Theorem 3.3: It is easy to verify that the UCM

problem under maximin is in NP. We now show that UCM is
NP-hard, by giving a reduction from the two vertex disjoint

paths in directed graph problem.

Let the instance of the two vertex disjoint paths in di-

rected graph problem be denoted &y = (V, E), (u,u’)
and(v,v’") whereV = {u, v, v,v',¢1,...,cm—5}. Without

loss of generality, we assume that every vertex is reachable
from v or v (otherwise, we can remove the vertex from the

instance). We also assume thiatv’) ¢ E and(v,v’) ¢ E
(since such edges cannot be used in a solution).d’et
(V,EU{(¥,u),(u,v)}), that is,G’ is the graph obtained
from G by adding(v’, u) and(v/, v).

We construct a UCM instance as follows.
Set of candidateL = {c,u, v/, v,v',¢1,...,Cm_5}.
Candidate preferred by the manipulators
Number of unweighted manipulatorst/| (for some|M| >
2).
Non-manipulators’ profile: PN satisfying the following
conditions:

1. Foranyd # ¢, Dpnu(c,c) = —4|M].
2. DpNM (u,v’) = DpNM (v,u’) = —4|M|

ulator ranks: first. Therefore, for any’ # ¢,
—3|M]| . 1)

We are now ready to show that there exiB¥ such that
Mazximin(PNYM U PM) = {c} if and only if there exist two
vertex disjoint paths from to «" and fromw to v’ in G. First,
we prove that if there exist such pathginthen there exists a
profile PM for the manipulators such thaf azimin(PNMu
PMY = {c}.

Letu — up — -+ — u, — v andv — vy — -
v, — v’ be two vertex disjoint paths. Further, let

oy 'ng} .

Then, because any vertex is reachable fioan v in G, there
exists a connected subgrapti of G’ (which still includes
all the vertices) in whichy — uy — ---
v — v — vk, — v — wis the only cycle. In
other words, such a subgragft can obtained by possibly
removing some of the edges G6f. Therefore, by arranging
the vertices o/ \ V"’ according to the direction of the edges
of G*, we can obtain a linear ordér overV \ V' with the
following property: for anyt € V'\ V', it holds that either

1. there exists € V' \ V' such that >0 t and(s,t) € F,
or

2. there exists € V' such tha(s, t) € E.
We defineP™ by letting|M | — 1 manipulators vote

DpNMUpM (C, Cl) =

—

! I !
V= {u, v 0,0 ug, .o ugy, v,

— Uk, —u —

Com U= U == U, U v =y
=v =0

e Vg,

and letting one manipulator vote
Cm U=V = Uy =V U U = U,
=u' -0 .
Then, we have the following calculations:
Dpwarpu (u,0') = =4[ M| + (IM| = 1) — 1
=-3|M|-2< =3|M| ,

and DPNMUpM(U,uI) = —4|M| +1- (|M| — 1)
=—5|M|+2< -3|M| .
Moreover, forany € C\ {c, u, v}, there exists € C\ {c}

such that(s,t) € E andDpuw (t,s) = —|M]|, which means
that
Dprvuypu(t,s) = —=2|M|—2—|M| = -3|M|—2
< =3|M]| .

It now follows from Equation (1) that

Mazimin(PYM u PM) = {c} .



Next, we prove that if there exists a profi' for the 4 Ranked pairs

H S NM MY __ . . . . .
manipulators such thatl azimin(P™" UP™) = {c}, then  we now turn to investigating the ranked pairs voting rule.
there exist two vertex disjoint paths fromto u” and fromv This interesting voting rule satisfies some important docia
tov. ] ] choice desideratilideman, 198, Moreover, we assert be-

We define a functiorf : V' — V such that low that ranked pairs is hard to manipulate even by a single
B manipulator, making it one of very few “natural” voting rsle
Dpnagpu(t, f(1)) < —3|M] . with this property. The hardness easily extends to multiple

Indeed, such a function exists since manipulators as well.
L NM M Theorem 4.1. The UCM, problem under ranked pairs is NP-
Mazimin(P™ U PY) = {c} , complete for any number of manipulators.
hence for any # ¢ there must exist such that Crucially, we can prove an even stronger result regarding
ranked pairs: the UCO problem under this rule is extremely
Dpvugpu(t,s) < =3|M| . hard to approximate. More accurately, we have the following
theorem.

Moreover,s must be a parent afin G'. If there exists more
than one such, definef(¢) to be any one of them.
It follows that if (¢, f(¢)) is neither(wu,v’) or (v,u’), then

Theorem 4.2. Let N be the size of the non-manipulators’
profile in the UCO problem. For every constant> 0, it is

(f(£),4) € E andDpx (£, (1)) = —|M], which means that NP-hard to approximate UCO under ranked pairs within a
) pML, - = ’

1—e¢
F(t) = t in each vote ofP; otherwise, if(¢, £(1)) is (u,0’) RSN OFNT, - o
or (v, u'), thenDpu (¢, f(t)) < [M]| — 2, which means that In particular, we show that it is NP-hard to distinguish be-
£(t) = tin at least one vote aP™ . tween the following two extreme cases: there is a successful
Now, sincelV'| = m is finite, there must exigi < l, < m m_ampt_JIatlon viaa single manipulator, or any successful ma
such thatf" (u) = f'2(u). Thatis, nipulation requires more thal'' < manlpylators. It can be
argued that this result makes ranked pairs especially &ppea
fr(u) — o) — - = 2N w) — f2(u) ing in terms of its resistance to manipulation. In fact, ikis
the strongest hardness of manipulation result currentiykmn
is a cycle inG’. We assume that for arly < I/ <15 < l»,  for any voting rule.
fY(u) # f'2(u). Now we claim tha{v’, u) and (v, v) must The proofs of Theorems 4.1 and 4.2 are the most involved
be both in the cycle, because in this paper (considerably more so than the proof of The-
orem 3.3). The proof of Theorem 4.1 requires an elaborate
reduction from 3SAT. In order to obtain Theorem 4.2, we
extend the proof of Theorem 4.1 using an interesting prop-
F2(u) = 2 (w) = 1 (u) = f2(u) erty of ranked pairs: if there is a successful manipulatan f
a set of manipulatord/, there is a successful manipulation
which contradicts the assumption that each vote is a linwhere all the manipulators vote identically. This allows us
ear order, to design instances where manipulations using one manipula
tor and many manipulators are equivalent. Unfortunatedy, w
must omit the details of the proofs due to lack of space.

5 Bucklin

f2) = f27 ) = o= 1 (w) = 2 (u) In this section, we present a polynomial-time algorithm for
the UCM problem under Bucklin.
" For any candidate € C, any natural numbef € N, and

1. if neither of them is in the cycle, then in each vote of
PM we must have

2. if exactly one of them is in the cycle—without loss of
generality,f'* (u) = v, f4(u) = u'—then in at least
one of the votes oP™, we must have

which contradicts the assumption that each vote is a lin

ear order. any profile P, let B(z,d, P) denote the number of times
Without loss of generality, let us assume thfat(u) =  thatx is ranked among the top candidates inP. The idea
u, futl(w) = o, fB3(u) = o, fB3T(u) = «/, where behind the algorithm is as follows. L€t,;, be the minimal

I3 < 1, — 2. We immediately obtain two vertex disjoint paths: depth so that the favorite candidatis ranked among the top
z z . z dmin Candidates in more than half of the votes (when all of
w=f"(u)=f2u) — 2" u) — ... — f* () =’ ,  the manipulators rankfirst). Then, we simply check if there
o a1 Ld1/ oy is a way to assign the manipulators’ votes so that none of the
jT_Rd” o f ?LJ((%?\/I_) (J;S (u) — :"N; f 1+|(“) - ”ID' other candidates is ranked among the dgp,, candidates in
eretore, uncer maximin is NP-complete. more than half of the votes. In other words, the order of the

Notice that the NP-completeness of UCM implies the NP-c4ngigates is not crucial, only their membership in the get o
hardness of UCO under maximin. Zuckerman ef2009 dymin top-ranked candidates is relevant.

have designed a 2-approximation algorithm for UCO under

maximin,.even though it was unplear at j[he time that the prObAIgorithm 1.

lem was indeed NP-hard. It still remains open whether the ) NM
approximation ratio can be improved, or whether a hardnesdDPut. A UCM instance(Bucklin, PY, ¢, M),
of-approximation result precludes this. C=A{c,c1y ... ¢m-1} -



Stage 0.
0.1 Calculate the minimal depth,,;,, such that

1
B(C, dminaPN]u) + |M| > §(|NM| + |]\/‘[|) .
0.2 Ifthere existg’ € C, ¢’ # ¢ such that
1
B(c, dmin, PMM) > FUNM[+[M]), ()

then output that there is no successful manipulation.

Aside. Notice thatd,,;, is defined under the assumption that

all the manipulators rankfirst. Consider a candidaté # c

that satisfies the condition in Equation (2). Such a candidat

is ranked in the tog,,;, positions of half the vote®V ™ U
PM regardless oPM . Hencec cannot be a unique winner.

Stage 1.
1.1 Forevery! € C'\ {c}, let

1
der = qum + |M|>J - B(¢/, dpin, PMM)

and letk,, = min{d., |M|}.
1.2 If
> ke < (dmin — 1)|M] (3)
c’'#c
then output that there is no successful manipulation.
Aside. k. is the number of times that we can placen the
first d,,:», positions of the votes aP™, without compromis-
ing the victory ofc. In particular,k., cannot be greater than
[M].

Notice that there are exactlyl,,;, — 1)|M| problematic
positions to fill, since: is ranked first by all the manipulators.
Now, if the condition in Equation (3) is satisfied, for ary’
there must be a candidatethat appears too many times in
the firstd,,;,, positions, that is,

ke < B(c,dmin, PM) .

Since B(c', dmin, PM) < |M]|, we have in particular that
ko < |M]|, hence it must hold thdt., = d... It follows that

B(¢, dmin, PYM U PM)
:B(C/vdminvaM) + B(C/adminvplu)
>B(¢, dmin, PN + d o

1
= | swa+ |

Therefore¢ cannot be a unique winner.

Aside. Given that (3) does not hold, it is clearly possible to
constructP™ such that (4) holds for every # c. Moreover,
this can be done in polynomial time, e.g., by enumerating the
candidates and placing each candidate in the next position i
k. of the votes of the manipulators, until the crucial posision
are filled.

Now, for everyt = 1,...,m — 1 it holds that

B(ct, dmin, PN U PM) < B(cy, din, PYM) + ke,
1
< 5(INM|+[M])

which implies thatBucklin(PNYM U PM) = {c}.
We have obtained the following result.

Theorem 5.1. Algorithm 1 correctly decides the UCM prob-
lem in polynomial time.

Itis easy to see that the tractability of UCM under Bucklin
implies that UCO can be solved in polynomial time as well.

6 Discussion

We have studied the computational complexity of the UCM
and UCO problems under the maximin, ranked pairs, and
Bucklin rules. The UCM problem is NP-complete under the
maximin rule for any fixed number (at least two) of manip-
ulators. The UCM problem is also NP-complete under the
ranked pairs rule; in this case, the hardness holds eveeri th

is only a single manipulator, similarly to the second-order
Copeland[Bartholdi et al,, 1989 and STV[Bartholdi and
Orlin, 1991 rules. Furthermore, we have shown that UCO
under ranked pairs is NP-hard to approximate to a factor of
N'~¢, whereN is the size of the input andis an arbitrary
constant. Finally, we have given a polynomial-time alduorit

for the UCM problem under the Bucklin rule. Table 1 sum-
marizes our results, and puts them in the context of previous
results on the UCM problem.

These results may seem to be at odds with the results of
Conitzer et al[2007 about weighted coalitional manipula-
tion (WCM). In particular, they show that WCM under max-
imin is in P if the number of candidates is two or three. Even
though UCM is easier than WCM, there is no conflict since
our results rely on the number of candidates being a parame-
ter. In fact, if the number of candidates is constant, UCM is
tractable under any voting rule (that can be executed in-poly
nomial time), via simple enumerati¢@onitzeret al., 2007.

It should be noted that all of our hardness results, as well as
the ones mentioned in the introduction, ai@rst-caseesults.
Hence, there may still be an efficient algorithm that can find
a beneficial manipulation famostinstances. Indeed, nearly
a dozen recent papers suggest that finding manipulations is
easy with respect to some typical distributions on prefer-
ence profiles (see, e.dRrocaccia and Rosenschein, 2007b;
2007a; Conitzer and Sandholm, 2006; Friedgal., 2008;

Stage 2. ConstructP by assigning the candidates to the pohzinski and Procaccia, 2008: Xia and Conitzer, 2008a:

first d,,.;, positions of the votes in a way that for every=
1,....m—1,

B(Ct7 dmiTH P]w) S kct . (4)

Complete the rest of the votes arbitrarily. Retut? as a
successful manipulation.

20084 and the references therein). However, the fascinating
question of the frequency of manipulation in elections is fa
from being resolved, and it is even not completely clear how
this question should be approached. Hence, worst-case hard
ness still remains the primary tool in the study of complexit
of manipulation.



| Number of manipulators | One | At least two |

Copeland (specific tie-breaking) P [Bartholdiet al,, 1989 NP-c  [Faliszewskeet al,, 2009
STV NP-c [Bartholdi and Orlin, 19911 | NP-c [Bartholdi and Orlin, 19911
Veto P [Bartholdiet al,, 1989 P [Zuckermaret al,, 2009
Plurality with Runoff P [Zuckermaret al., 2009 P [Zuckermaret al., 2009
Cup P [Conitzeret al,, 2007 P [Conitzeret al, 2007
Maximin P [Bartholdiet al., 1989 NP-c (Thm 3.3)
Ranked pairs NP-c (Thm4.1) NP-c (Thm 4.1)
Bucklin P (Thm 5.1) P (Thm 5.1)
Borda P [Bartholdiet al,, 1989 ?

Table 1: Complexity of UCM under prominent voting rules. 8flce results appear in this paper.

There are many interesting problems left for future re-[Elkind and Lipmaa, 2005 E. Elkind and H. Lipmaa. Hybrid vot-
search. For example, settling the complexity of UCM under ing protocols and hardness of manipulation. Aligorithms and
positional scoring rules such as Borda is a challengingprob Computation volume 3827 ofLNCS pages 206-215. Springer-
lem that remains open despite several attacks. An especiall Verlag, 2005.
intriguing open problem concerns the hardness of approxifFaliszewskeet al, 2004 P. Faliszewski, E. Hemaspaandra, , and
mating UCO. We have seen that UCO under ranked pairs is H. Schnoor. Copeland voting: Ties matter. Rroc. of 7th AA-
extremely hard to approximate. We conjecture that hardness MAS pages 983-990, 2008.
of approximation results can also be obtained with respedtFortuneet al, 1980 Steven Fortune, John E. Hopcroft, and James
to other voting rules where manipulation is hard even for a Wyllie. The directed subgraph homeomorphism probl&imeor.

single manipulator (e.g., ST{Bartholdi and Orlin, 199}, Comput. Scj.10:111-121, 1980.

although the inapproximability ratio may not be as extremeFriedgutet al, 200§ E. Friedgut, G. Kalai, and N. Nisan. Elec-

as it is for ranked pairs. tions can be manipulated often. Rroc. of 49th FOCSpages
243-249, 2008.
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