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Abstract

We consider an automated agent that needs to coor-
dinate with a human partner when communication
between them is not possible or is undesiratde-

tic coordination games Specifically, we exam-
ine situations where an agent and human attempt to
coordinate their choices among several alternatives
with equivalent utilities. We use machine learning
algorithms to help the agent predict human choices
in these tactic coordination domains.

Learning to classify general human choices, how-
ever, is very difficult.  Nevertheless, humans
are often able to coordinate with one another in
communication-free games, by usifagal points
“prominent” solutions to coordination problems.

We integrate focal points into the machine learn-
ing process, by transforming raw domain data into
a new hypothesis space. This results in classifiers
with an improved classification rate and shorter
training time. Integration of focal points into learn-
ing algorithms also results in agents that are more
robust to changes in the environment.

Introduction

points [Janssen, 1998 In the second approach, there were
assumed to be two automated agents, and both agents ran the
same focal point finder algorithfiKrauset al,, 200d. How-

ever, the use of focal points when an automated agent needs
to coordinate with an arbitrary human partner has yet to be
explored, and it raises new challenges.

The main motivation for such research comes from the in-
creasing interest in task teams that contain both humans and
automated agents. Human-Agent collaboration can take the
form of robots working with human partners. Another sce-
nario is the development of user interfaces that diverga fro
a master-slave relationship with the user, adopting alzolla
orative, task-sharing approach in which the computer expli
itly considers its user’s plans and goals, and is thus able to
coordinate various task&rosz, 2004

One important type of natural human-machine interaction
is the anticipation of movementvithout the need for prior
explicit coordination. This movement can be physical, such
as the movement of a robotic arm that is assisting a human
in a construction task (e.g., a machine helping a human weld
pipes). As humans naturally anticipate their partnersia®
in certain situations, we would like automated agents to als
act naturally in their interactions with humans. Coordéuht
anticipation can also take place in virtual environmemis, i
cluding online games, where humans and automated agents

Agents often need to coordinate their actions in a cohererftan inhabit shared worlds and carry out shared activities.
manner. Sometimes, achieving coherent behavior is théiresu There are several constraints implicit in the above scenar-
of explicit communication and negotiation. However, com-i0s. First, the human partner with whom our automated agent
munication is not always possible, for reasons as varied a$ trying to coordinate may not always be known ahead of
high communication costs, the need to avoid detection, daniime, and we want coordination strategies suitable for hove
aged communication devices, or language incompatibility. partners. Second, the environment itself is not fully sfpedi
Schelling [1969 called coordination-without-communi- ahead of time, and may be configured somewhat randomly
cation scenariofactic coordination gamesind named these (although the overall domaiis known, i.e., the domain ele-
games’ “prominent solutionsfocal points A classic exam- ments are a given, but not their specific arrangement). Third
ple is the solution most people choose when asked to dividéhere is no option to “hard-wire” arbitrary coordinatiorlesi
$100 into two piles, of any sizes; they should attempt onlyinto all participants, since we are not dealing with cooalin
to match the expected choice of some other, unseen playdion between two centrally-designed agents.
Usually, people create two piles of $50 each, and that is what We specifically consider environments in which a human
Schelling dubbed a focal point. and automated agent aspire to communication-free coerdina
The use of focal points to solve coordination gamestion, and the utilities associated with coordinated choime
has previously been studied, both theoretically and experequal. Clearly, if utilities for various choices differethe
imentally, from two different perspectives. In the first, agent and human could employ game theoretic forms of anal-
there were assumed to be two human coordinators, and rgsis, which might specify certain strategies.
search explored a formal theoretical framework for focal Our integration of machine learning algorithms and focal



point techniques (which we cadfbcal Point LearnindFPL]) e Singularity — give prominence to choices that are
is done via a semi-automatic data preprocessing technique. unique or distinguishable relative to other choices in the
This preprocessing transforms the raw domain data into a  same set. This uniqueness can be, for example, with re-
new data set that creates a new hypothesis space, consisting spect to some physical characteristics of the options, a
solely of general focal point attributes. We demonstrage th special arrangement, or a cultural convention.

using FPL results in classifiers (a mapping from a coordina- . . .
tion problem to the choice selected by an arbitrary human co- V€ €mploy learning algorithms to help our agent discover
ordination partner) with a 40% to 80% higher correct classifi coordination strategies. Training samples, gathered from
cation rate, and a shorter training time, than when using reg"ans Playing a tactic coordination game, are used to create
ular classifiers, and a 35% higher rate than when using onlgn automated agent that performs well when faced with a
classical focal point techniques without applying any fear NeW human partner in a newly generated environment. How-

ing algorithm. In another series of experiments, we show thaEe": Pecause of the aforementioned problems, applying ma-

applying these techniques can also result in agents that ap@lne learning on raw domain data results |n_cIaSS|f|e_rs hav-
more robust to changes in the environment. ing poor performance. Instead, we udeaal Point Learning

In Section 2, we describe the motivation and approach offPProach: we preprocess raw domain data, and place it into

Focal Point Learning. We then describe the experimental Seg_new reprdesent_at’ion spgc% based onl foc"t’" poifnt protperties
ting (Section 3), its definitions (Section 3.1), and the dimma >'VEN OUr domain's raw data’;, we apply a transtormation

that were used in the experiments (Section 3.2). In Section 4+ Such thatV; = T'(0;), wherei, j are the number of at-

we discuss our results. Related work is considered in Seé_ributes before and after the transformation, respegtivel
tion 5. and we conclude in Section 6. The new feature spacd; is created as follows: each

v € O; is a vector of sizé representing a game instance in
2 Focal Point Learning the domain (world description alongside its possible obs)c
o The transformatior?” takes each vectar and creates a new
Coordination in agent-human teams can be strengthened Rysctory, N;, such thatj = 4x[number of choices]T iter-

having agents learn how a general human partner will makges over the possible choices encoded iand for each such
choices in a given domain. Learning to classify humancpgice computes four numerical values signifying the four f
choices in tactic coordination games, however, is difficult o5 hoint properties presented above. For example, given a ¢
1) No spec_:|f|c funct'|on to genera_llze— there is no anWH ordination game encoded as a veatof size 25 that contains
mathemgtlcal_ function nor beha\_/loral theory that predicts 3 choices €, c2, c3), the transformatiofi” creates a new vec-
man choices in these games\B)isy data— Data collected toru = (¢, ¢, el es, 5, e o o5 e e o ¢3) of size 12
from humans in tactic coordination games tends to be very b D T T R T 8 8 ) T
noisy due to various social, cultural, and psychologicat fa (3 Possible choices 4 focal point rules), where,” """ de-
tors, that bias their answers; Bpmain complexity— train-  notes t_hecentral|ty/ext_rerr_1eness/flrstness/5|ngularwylues
ing requires a large set of examples, which in turn increasefr choice |. Note thaj might be smaller than, equal to, or
required training time. On the other hand, human-humargreater than, depe_ndlng on the doma|_n_
teams are relatively skilled at tactic coordination gant®s. The transformation from raw domain data to the new rep-
periments that examined human tactic coordination stratgesentation in focal point space is done semi-automaicall
gies[Schelling, 1963; Mehtat al, 1994 showed that people To transform raw data from some new domain, one needs to
are often able to coordinate their choices on focal poinene Provide a domain-specific implementation of the four gehera
when faced with a large set of options. focal point rules. However, due to the generic nature of the
Several attempts have been made to formalize focal pointdiles, this task is relatively simple, intuitive, and susfgel
from a game theoretic, human interaction point of viewby the domain itself (we will see such rules in Section 3.2).
([Janssen, 199%rovides a good overview). However, that When those rules are |mplementeq, the agent can itself easily
work does not provide the practica| tools necessary for uséarry out the transformation on all instances in the data set
in automated agents. However, Kraus e{2004 identified
some domain-independent rules tiatild be used by auto- 3 The Experimental Setting
mated agents to identify focal points (and discussed two ap- ) ) ) ] ] ]
proaches for doing so). The following rules are derived fromVe designed three domains for experiments in tactic coordi-

that work, but are adjusted in our presentation (by addindiation. For each domain, a large set of coordination problem
Firstness, and making minor changes in others). was randomly generated, and the solutions to those problems

were collected from human subjects.

_ We used the resulting data set to train three agents: 1) an

agent trained on the original domain data sdd@main Data

i . i agen); 2) an agent using focal point rules without any learn-

e Extremeness— give prominence to choices that are ex- |ng procedure (arFP agen); and 3) an agent usin&)ca'
tl‘.eme relative.to Other ChOiceS, either.in the phySical en‘Point Learning(an FPL agen)_ We then Compared Coordina_
vironment, or in the values of the choices. tion performance (versus humans) of the three types of agent

e Firstness— give prominence to choices that physically In the second phase of our experiments (which tested ro-
appear first in the set of choices. It can be either thebustness to environmental changes), we took the first domain
option closest to the agent, or the first option in alist. described in Section 3.2, and designed two variations of it;

e Centrality — give prominence to choices directly in the
center of the set of choices, either in the physical envi
ronment, or in the values of the choices.



one variant YSD a very similar domain) had greater simi- experimental setup with both types of classifiers usingtixac
larity to the original environment than the other variaBD(  the same domain encoding.

had. Data from human subjects operating in the two variant The transformation to focal point encoding provides focal-
settings was collected. We then carried out an analysis-of alty values in terms of our low-level focal point rules (First
tomated coordination performance in the new settingsgusinness, Singularity, Extremeness, and Centrality) for edch o

the agents that had been trained in the original domain. the possible choices. Their values were calculated in a pre-
o processing stage, prior to the training stage (and by antagen
3.1 Definitions when it needs to output a prediction). It is important to note

Definition 1 (Pure Tactic Coordination Games). Pure Tac-  that following the transformation to the focal point enaugli
tic Coordination Games (also calledatching gamgsare  we deprive the classifier of any explicit domain information
games in which two non-communicating players get a posiduring training; it trains only on the focal point informeuti.
tive payoff only if both choose the same option. Both player
have an identical set of options and the identical incertbve . .

To check agent robustness in the face of environment

succeed at c'oordlna.\tlon. ] o changes, we took the “Pick the Pile” domain (described be-
Our experiments involvpure tactic coordination games  |ow), and designed two variations of it, in which one variant

Definition 2 (Focality Value). Let R be the set of selection is moresimilar to the original environment than the other is:

rules used in the coordination domainge C' be a possible  Definition 4 (Environment Similarity). Similarity between

choice in the domain; € R be a specific selection rule, and environments is calculated as the Euclidean distance:
v(r, ¢) be its value. Then thiocality valueis defined as:

Z’I‘GRU(T? c) dij =
i/

A focality value is a quantity calculated for each possiblewhere the environment vectoris constructed from the num-
choice in a given game, and signifies the level of prominencder of goals, number of attributes per goal, number of values
of that choice relative to the domain. The focality valuesak per attribute, and the attribute values themselves.

into account all of the focal point selection rules used B th |, our experiments, we put original agents (i.e., agents tha
coordination domain; their specific implementation is doma 54 been trained in the original Pick the Pile game) in the new

dependent (e.g., what constitutes Centrality in a given dognironments, and compared their classification perfooan
main). Since the exact set of selection rules used by human

players is unknown, this value represents an approximatio8.2 The Experimental Domains
based on our characterization of the focal point rule set.

SChanges in the Environment

FV(c) =

. X ; e now present three experimental domains that were de-
the experiments, ouFP agentwill use this value to deter-  gjgneq 1o check FPL's performances. The design principles
mine its classification answer to a given game. for constructing them were as follows: 1) cregdetic coor-
Definition 3 (Focality Ratio). LetC be the set of all possible dination gamegequal utility values for all possible choices);
choices in the coordination domain afd (c¢) be the focality ~ 2) minimize implicit biases that might occur due to psycho-
value ofc € C, maxbe the maximum function arghdmax logical, cultural, and social factors; 3) consider a range.c

be the second maximum function. Then fbeality ratiois  tic coordination problems, to check the performance of FPL
defined as: learning in different domains.

F_Ratio(C) = max(FV(c)) — 2nd-max(FV(c)). Pick the Pile Game
ecC et We designed a simple and intuitive tactic coordination game

A Focality Ratio is a function that gets a set of possiblethat represents a simplified version of a domain where an
choices and determines the difficulty level of the tactic co-agent and a human partner need to agree on a possible meet-
ordination game. Naturally, a game with few choices thating place. The game is played on a 5 by 5 square grid board.
have similar focality values is harder to solve than a gamézach square of the grid can be empty, or can contain either
that might have more choices, but with one of the choices pile of money or the game agents (all agents are situated in
much more prominent than the others. the same starting grid; see Figure 1). Each square in the game

For each of the experimental domains, we built classifierdoard is colored white, yellow, or red. The players were in-
that predict the choice selected by most human partners. Waructed to pick the one pile of money from the three ideitica
worked with two widely used machine learning algorithms: piles, that most other players, playing exactly the samesgam
a C4.5 decision learning tr@uinlan, 1993, and a feed would pick. The players were told that the agents can make
forward back-propagation (FFBP) neural netw@vMerbos, horizontal and vertical moves.
1974. Each of these was first trained on the raw domain data In a simple binary encoding of this domain, for encoding
set, and then on the new preprocessed focal point data. 25 squares with 9 possible values (4 bits) per square, we used

The raw data was represented as a multi-valued feature blt00 neurons for the input layer. Training such a massive net-
vector. Each domain feature was represented by the miniwork required a large training set, and we built the game as a
mal number of bits needed to represent all its possible galueweb application to be played online. The web site was pub-
This simple, low level representation helped standardiee t licized in various mailing lists. To maintain the generalit



BE < (1) Male 25 [1.75
& . (Z) Female 45 1.85
B (3) |Male 25 |1.78
= {4) Male 25 |1.78
| [ (5) [Female |31 [1.75
Figure 1: Pick the Pile Game board sample Figure 2: Candidate Selection Game sample

of the data, each game sequence was limited to 12 game imniqueness of each of its values (i.e., a sole female catedida
stances; thus, the data set of approximately 3000 games wasa set of males will have a high singularity value). The Ex-
generated by 250 different human players from around théremeness property gave high values to properties thabiexhi
world. Each instance of the game was randomly generated. extreme values in some characteristics of the candidate (fo
The transformation to the focal point space was done irexample, a candidate who is the oldest or youngest among
the following way: the only distinguishable choice atttibu the set of candidates would get a higher Extremeness value
is the color, thus the Singularity of each pile was calcalate than a candidate who is not). The Firstness and Centrality
according to the number of squares having the same coloproperties simply gave a constant positive value to the first
Naturally, a pile of money sitting on a red square in a boardand third candidates on the list.
having only 4 red squares, would have a higher degree of sin: :
gularity than a pile of money sitting on a white square, iféhe rbhape Matchmg Game .
were 17 white squares on that board. The Firstness properfy/@Yers were given a random set of geometric shapes, and had
was calculated as the Manhattan distance between the age mark their selected shape in order to achieve successful ¢

square and each pile of money. Centrality was calculated g&dination with an unknown partner (presented with the same
an exact bisection symmetry, thus giving a positive value to S€0)- The shapes were presented in a single row. The game

pile that lies directly between two other piles either horiz ~ Was randomly generated in terms of the number of shapes
tally, vertically, or diagonally. The Extremeness propevas (that ranged from 3 to 7) and the shapes themselves (which

intuitively irrelevant in this domain, so we gave it a unifor ~cOUld be a circle, rectangle, or triangle). Questionnaires
constant value. taining ten game instances were distributed to students (78

students overall). As before, monetary prizes were guaran-
Candidate Selection Game teed to students with the highest coordination scores.r&igu
Players were given a list of five candidates in an election foshows a sample question in the domain.
some unknown position. The candidates were described us-
ing the following properties and their possible values:

1. sexx{Male, Femalé O OO Al A
2. age={25, 31, 35, 42, 45

3. height (in meterg){1.71, 1.75, 1.78, 1.81, 1.85
4.

professiog{Doctor, Lawyer, Businessman, Engineer,
Professof This domain is the easiest among our games to represent

Each list was composed of five randomly generated can@s & simple binary encoding, because each goal has only a
didates. The (pen and paper) experiments were carried o§thgle property, its type. In any game instance, each shape
when subjects (82 first-year university students) wereeseat ¢an be a circle, rectangle, triangle, or “non-existing”ttie
in a classroom, and were told that their coordination pastne case where the randomized number of shapes is lower than 7.
were randomly selected from experiments that took place irf he focal point transformation was implemented as follows:
other classes, i.e., their partner's identity is compjetei-  the Singularity of a choice was determined by the number of
known. For a candidate to be elected, it needs to get these twihoices with the same shape (for example, in a game where
votes (the player's and its partner's); thus, both sidesinee all shapes are circles and only a single shape is a triangle,
choose the same candidate. To create the necessary motiVe triangular shape will have a high singularity value)eTh
tion for successful coordinatiohye announced a monetary Extremeness property gave higher focality values to the firs
reward for success. Figure 2 shows a sample question. and last choicesin 'the set. Those values becam'e higher as t_he

The binary encoding for this domain is a set of 65 inputnumber of shapes increased (the extremeness in a game with
neurons in the input layer that encodes 5 candidates, eachshapes was lower than the extremeness in a game with 6
with 13 possible property values. The focal point transfmrm Shapes). Centrality gave additional focality value to the-m
tion had the following intuitive implementation: the Singu dle choice, when the number of shapes was odd. In an even

larity of a candidate was calculated according to the nedati number of shapes, no centrality value was given. Firstness
gave a small bias to the first shape on the list.

!Itis awell-known phenomenon that coordination in these games  This domain is an example of a transformation in which
deteriorates without sufficient motivation. j > i; the transformation actualipcreasegshe search space.

Figure 3: Shape Matching Game sample



4 Results and Discussion Note also that in the first domain, when using FPL instead
4.1 Prediction Performance of regular raw data learning, the marginal increase in perfo

: mance is higher than the improvement that was achieved in
For each of the above domains, we compared the correct Clag;e so:ond domain (an increase of 30% vs. 21%), which is in
sification performance of both C4.5 learning trees and FFBRy . higher than the marginal increase in performance of the
neural network classifiers. As stated above, the comparisofii.y qomain (an increase of 21% vs. 14%). From those re-
was between a domain data agent (trained on the raw dom

; ) . Its, we hypothesize that the difference in the marginal pe
encoding), a focal point (FP) agent (an untrained agent thaf, ., ance increase is because the first domain was the most
used only focal point rules for prediction), and a focal poin

. b AT complex one in terms of the number of objects and their prop-
learning (FPL) agent. “Correct classification” means that t erties. As the domain becomes more complex, there are more

%gent made mg same choice as that of the human who play%%ssibilities for human subjects to use their own subjectiv
€ Same game. e . rules (for example, in the Pick the Pile domain, we noticed
We optimized our classifiers’ performance by varying theya+ tew people looked at the different color patterns therew
Eetvtvork alzchl\t/(\a/cture gndl learning p?ér)e:jr}fneters, u?tllrattgt| randomly created, as a decision rule for their selected)goal
est resulls. VVe used a leaming ra » momentum raté = Aq more rules are used, the data becomes harder to gener-

of 0.2, fl hlddent Iayéerf randon;] |tn|t_|a_l welghts,dand ?t? bé' alize. When an agent is situated in a real, highly complex
ases of any sort.  Belore €ach training procedure, e atéhvironment, we can expect that the marginal increase i per
set was randomly divided into a test and a training set (a sta

dard 33%-66% division). Each instance of those sets cor?—0 %aggg’it\igug? :ds\llr;%tzzlé’ g\fllugﬁg (?:r;el_s?so[lhdénrgel()j/lﬁ:%% in

talneg.the ga(rjn;ahder:]scrlptlon (elthet[ th.f’ ?A”?Iarly or_gr(])cal lpOIr]training time (e.g., in th&ick the Piledomain we saw a re-
enco LEQWEKAdet uman ansvf\ﬁ/r o1t hi ha' gori Irlns twereduction from 4 hours on the original data to 3 minutes), due
run in the ata mining software, which IS a COIeCion ., yne requction of input size. Moreover, the learning tres t

sion tree algorithms were very close (maximum difference o
3%). Figure 4 compares the correct classification percentag4.2  Robustness to Environmental Changes

for the agents’ classification techniques, in each of theethr Follow-on experiments were designed to check the robustnes

experimental domains. Each entry in the graph is a result avot agent-human tactic interaction in a changing envirortmen

eraged over five runs of each learning algorithm (neura_tl net- We created two different versions of tRiek the Pilegame,
work and C4.5 tree), and the average of those two algor'thm!?/vhich had different similarity values relative to the ongl

version. In the first varianMSD), we added a fourth possible
value to the set of values of the color attribute (four colors

_ instead of three). In the second variaB0}, in addition to
— — the first change, we also changed the grid structure to a 6 by

4 grid (instead of the original 5 by 5). Moreover, in both
‘r 4‘_@7 variants, we changed all four color values from actual clor
: to various black and white texture mappings.

Additional experiments were conducted in order to collect
human answers to the two new variants of the game. The
[Random Guess 0Domain Data Agent DIFP Agert BFPL Agert | agents that had been trained on the original environment (us

ing the neural network algorithm), were now asked to coordi-
nate with an arbitrary human partner in the new environments
Figure 4: Average Correct Classification Percentage  Figure 5 summarizes performance comparison of the agents

o o _ in each of the new environment variants.
Examining the results, we see a significant improvement

when using the focal point learning approach to train classi
fiers. In all three domains, the domain data agentis not able t
generalize sufficiently, thus achieving classificatiomsahat

are only about 5%-9% higher than a random guess. Using
FPL, the classification rate improved by 40%—-80% above the
classification performance of the domain data adefthe
results also show that even the classical FP agent performs
better than the domain data agent. However, when the FP
agent faces coordination problems with Idecality ratios

its performance deteriorates to that of random guesses.
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2If there were multiple occurrences of a specific game instance,F. 5 Cl ification P in Ch ina Envi
the choice of the majority of humans was considered the solution. igure 5: Classification Percent in Changing Environments

3Since even humans do not have 100% success with one another
in these games, FPL is correspondingly the more impressive. The prediction results on the first variant (VSD) show that



all three agents managed to somehow cope with thevey, In the next step we created two variants of one of the do-
similar domain and suffered only a small decrease in per-mains, collected human data for them, and then checked the
formance. However, when looking at the results of ¢ire-  coordination performance, in these variants, of each of the
ilar domain (SD), we see that the domain data agent’'s peragents that had been trained in the original domain. Here
formance decreased all the way to its classification perforagain, the FPL agents outperformed the others, and demon-
mance’s lower bound, that of random guessing. At the samstrated robustness in a changing environment.
time, our FPL agent did suffer a mild decrease in performance When building agents to coordinate with unfamiliar human
(around 5%), but still managed to keep a considerably higlpartners, without communication, machine learning classi
performance level of around 62%. We can also notice thafiers have a difficult task generalizing data to predict human
the classical FP agent copes with the environmental changehoices. Focal point learning can improve performance and
better than the domain data agent, with performance level afobustness to environmental changes. In future work we will
around 45%; however, it is still low when compared to theexplore FPL's performance on more complex problems. The
FPL agent’s performance level. first stage will likely be problems in which the agent has some
uncertainty regarding the environment that the human sees.
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