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Abstract

Vickrey-Clarke-Groves (VCG) mechanisms are a
framework for finding a solution to a distributed
optimization problem in systems of self-interested
agents. VCG mechanisms have received wide at-
tention in the AI community because they are ef-
ficient and strategy-proof; a special case of the
Groves family of mechanisms, VCG mechanisms
are theonly direct-revelation mechanisms that are
allocatively efficient and strategy-proof. Unfortu-
nately, they are only weakly budget-balanced.
We consider self-interested agents in a network
flow domain, and show that in this domain,
it is possible to design a mechanism that is
both allocatively-efficient and almost completely
budget-balanced. This is done by choosing a mech-
anism that is notstrategy-proofbut ratherstrategy-
resistant. Instead of using the VCG mechanism, we
propose a mechanism in which finding a beneficial
manipulation is an NP-complete problem, and the
payments from the agents to the mechanism may
be minimized as much as desired.

1 Mechanisms for Network Flow
Mechanisms face the problem of finding a system-wide so-
lution to an optimization problem based on private informa-
tion given by self-interested agents. A well-known solution to
such problems in the case of quasi-linear preferences is that
of Groves mechanisms. A special case of the Groves fam-
ily of mechanisms are VCG mechanisms, which are budget-
balanced, allocatively-efficient, and strategy-proof.

A significant disadvantage of VCG mechanisms is that they
are onlyweaklybudget-balanced. We would in principle pre-
fer a strongly budget-balanced mechanism, where the total
sum of payments to the mechanism is zero:

∑
i ti(θ) = 0.

Impossibility results ([Green and Laffont, 1977] and [Hur-
wicz, 1975]) show that in a quasi-linear environment, it is
impossible to achieve a mechanism that is strategy-proof,
allocatively-efficient, and strongly budget-balanced.

We address this by slightly relaxing the strategy-proof re-
quirement, replacing it withstrategy-resistance. A mecha-
nism is strategy-proof if the dominant strategy of each agent
is to reveal its true type to the mechanism. Strategy-resistance

only requires that even if an agent is given the reported types
of the other agents, it has a computationally intractable prob-
lem to solve if it wishes to find a beneficial manipulation (i.e.,
report a false type to the mechanism to gain higher utility).

In this work, we consider the domain of network flows.
In that domain, the edges of a network flow belong to sev-
eral self-interested agents. Each agent reports its edges to the
mechanism. The mechanism is then required to choose a flow
from the source vertex to the target vertex. Agents gain utility
from flow units on their edges. Agents can lie, and declare a
subset of the edges they really own. This manipulation may
change the flow that the mechanism chooses, and agents may
try to take advantage of this. However, we show that it is
possible to use the fact that agents have computational lim-
itations and are not unboundedly rational, so as to construct
mechanisms with beneficial properties.

1.1 Self-Interested Network Flows

We explore the problem of designing a mechanism for
bounded-rational agents in a distributed flow problem. We
demonstrate that for this domain, we can find a mechanism
that is allocatively-efficient,ε-budget-balanced, and strategy-
resistant. This means that if we assume the agents are
bounded-rational and would not try to manipulate the mech-
anism if such manipulation is an NP-complete problem, they
would all truthfully report their preferences. Once the mech-
anism gets their true preferences, it chooses the outcome that
maximizes total utility of the agents. To achieve this truth-
fulness, the mechanism requires payments; however, the total
sum of these payments can be minimized as much as required.

We now present the self-interested layered-graph network
flow problem. Consider a flow network on a layered graph.
We have a graphG =< V, E >, with source vertexs and
target vertext. The vertices of the graph are partitioned into
n + 1 layers,L0 = {s}, L1, ..., Ln = {t}. The edges only
run between consecutive layers. We have a capacity function
c : E → R which is the maximal flow allowed on the edges.
We also have a setI of agents. Each agent controls a subset
Ei ⊂ E of the graph’s edges. No two agents control the same
edge:∀i 6=jEi ∩ Ej = φ.

The mechanism chooses a valid flow froms to t.
A valid flow is a function f : E → R such that
∀(u,v)∈Ef(u, v) ≤ c(u, v), ∀(u,v)∈Ef(u, v) = −f(v, u), and
∀u∈V −{s,t}

∑
v∈V f(u, v) = 0.



Each agent values the flow according to the total flow go-
ing through its edges. Letf be the valid flow chosen by the
mechanism, andEf the set of edges inf through which there
is a positive flow:Ef = {e ∈ E | f(e) > 0}. We denote the
set ofAi’s edges used in the flowf by: Ef,i = Ef ∩Ei. The
agent’s valuation of the flow isvi(f) =

∑
e∈Ef,i

f(e).
When the mechanism is given the agents’ true types,

θ = E1, E2, ..., EI , we want it to choose the flow that
maximizes the total utility of the agents. The mecha-
nism would be allocatively-efficient if it choosesf∗(θ) =
arg maxf

∑
i

∑
e∈Ef,i

f(e). In a layeredgraph the flow that
maximizes the sum of agents’ utilities is the maximal flow
(proof of this is given in the full paper). Thus, if each agent
truthfully declares its subset of edges, the mechanism can eas-
ily computef∗(θ) by running a maximal flow algorithm, such
as the Edmonds-Karp algorithm.

As shown in the full version of this paper, a naive mecha-
nism for the self-interested flow problem, with no payments
to the mechanism, is not strategy-proof. An agent may de-
clare a subset of the edges it controls, to change the flow that
the mechanism chooses to a flow that the agent values more.

1.2 Self-Interested Network Flow Mechanism

We assume quasi-linear utility. Each agent pays the mech-
anism a paymentpi, and its utility isui(f) = vi(f) − pi.
We now show that by using a straightforward payment rule,
we make finding a beneficial manipulation NP-hard. The
payment rule we use is simple: each agent pays the mech-
anism a constant ofc for each edge it declares it owns. Let
E′

i ⊂ Ei be the subset of edges an agent declares it owns.
Thenpi(E′

i) = c|E′
i|. We also give a minor correction to

make sure the mechanism is individual-rational. The payment
pi gives the agent autility of 0 when the agent’s valuation of
the chosen flow is less than the payment to the mechanism.
Assume thatAi knowsE′

j for all j 6= i. It can easily calcu-
late the utility it would get by truthfully declaring all its edges.
How hard is it fori to find a subset of edges it could declare
to the mechanism so as to gain a higher utility? We define the
problem offindinga useful manipulation in the self-interested
network flow domain as follows.

FLOW-EDGE-SUBSET: We are given a layered graph
flow network, with the capacity functionc : E → R, E−i

the declared edges of the other agents, andEi, the set of our
edges. We are also given the constantc of the payment, and
we know that if we declare that we havek edges, our pay-
ment to the mechanism would bepi = ck. We assume the
mechanism prefers a maximal flow that maximizesour util-
ity of all the possible maximal flows. We are also given a
constantk, the target utility forAi. We are asked if there is
a subset ofAi’s edgesE′

i ⊂ Ei, such that the maximal flow
chosen by the mechanism,f∗(E1, ..., Ei−1, E

′
i, Ei+1, ..., EI)

givesAi a utility of at leastk: ui(f∗, pi) = vi(f∗) − pi =∑
e∈Ef∗,i

f(e)− c|E′
i| ≥ k.

A reduction, given in the full version of this paper, indi-
cates that FLOW-EDGE-SUBSET is an NP-complete prob-
lem. The reduction given is from a general VERTEX-
COVER instance to a FLOW-EDGE-SUBSET problem.

Although we do not include the full details of the reduc-

tion here, we do give some intuition about how it was con-
structed. Given the original VERTEX-COVER instance, we
build a layer graph, where one of the agents,A1, controls
all the edges between two consecutive layers. Each edge
A1 owns corresponds to a vertex in the original VERTEX-
COVER graph. The network flow graph is constructed so
that in order forA1 to maximize its valuation, it must declare
a subset of edges that is avertex coverof G. However, in
order to minimize its payment to the mechanism,A1 must
choose as few edges as possible. If the payment constantc is
small enough,A1’s top priority is to make its chosen vertices
a vertex-cover, and only then choosing as few edges as possi-
ble. This makes its preferred choice the minimal vertex cover
of the original graph.

2 Conclusions and Future Directions
We have suggested a mechanism for the distributed network
flow problem with self-interested agents. With a proper
choice of the payment constantc, finding a beneficial manip-
ulation is an NP-complete problem. Since finding a beneficial
manipulation is intractable, we encourage agents to truthfully
report their preferences. In this case, the mechanism would
choose the result maximizing the sum of agents’ utilities, and
we have an allocatively-efficient mechanism.

Given someε > 0, we can make the mechanismε-
budget-balanced, by choosing a small enough payment con-
stant c < ε

n(|E|+|V |) , where n is the number of agents.
This way, all of the agents together pay less thanε. The
mechanism we have described is also individual-rational.
Therefore, in the domain of network flows, this achieves an
individual-rational, allocatively-efficient,ε-budget-balanced,
and strategy-resistant mechanism. The standard VCG solu-
tion in this domain would be only weakly budget-balanced,
but strategy-proof.

Impossibility results ([Green and Laffont, 1977] and[Hur-
wicz, 1975]) indicate that no direct-revelation mechanism
can achieve strong budget-balance without sacrificing either
allocative-efficiency or strategy-proofness. We believe that in
many cases, trading strategy-proofness for strategy-resistance
is a fair price to pay for achieving strong budget-balance.

Our strategy-resistance rested on the worst case assump-
tions of NP-hardness, which only indicates that a certain
problem hassomehard instances. A stronger notion of
strategy-resistance could also require the manipulation prob-
lem to have no approximation methods, that it be in some
harder complexity class, or that it be hard to findany(not just
the optimal) beneficial manipulation. This work constitutes a
first step in establishing the notion of strategy-resistance.
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