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Evolutionary Patterns of Agent Organizations
Claudia V. Goldman and Jeffrey S. Rosenschein

Abstract—Problems approached by multiagent systems (MAS)
are typically complex. It is usually difficult to know at system de-
sign stage how many agents need to be in the system, what each
agent’s role is, and how the agents should interact to get optimal
performance out of the group. The aim of the testbed presented
here is to investigate which kinds of multiagent systems could be
developed to solve ranges of problems, avoiding the need to reor-
ganize the agents from scratch for each task.

The agent organization process explored here is based on the
agents’ knowledge, and not on their tasks. This opens up a new
approach for Distributed Artificial Intelligence designers, to have
their domain organized before the allocation of tasks among
agents. These kinds of organizations should be more robust for
solving different problems related to the same knowledge. We
define information oriented domains (IODs) for that purpose.

An evolutionary approach to the design of a multiagent system
is suggested. Our model is based on a cellular automaton whose
rules of dynamics induce the formation of an organization of
agents. Patterns of organization obtained empirically are pre-
sented. Our knowledge-based organization approach is analyzed
both from theoretical and practical perspectives.

Index Terms—Organization, expert agents, information domain.

I. INTRODUCTION

T HERE are several approaches that one can take to de-
signing multiagent organizations. One approach is to focus

on the division of tasks and subtasks among agents, in order to
balance the load on each of the agents, avoid redundant work,
and achieve globally accurate solutions. Much research in dis-
tributed artificial intelligence (DAI) has been focused on these
issues.

We are interested in a variation on this question of multiagent
organization, which focuses on first organizing the knowledge
that exists in the agent domain. In principle, this would enable
the same agent organization to solve a range of different prob-
lems in a given information space, and could also serve as a
preliminary step to the distribution of tasks among agents. So-
ciability then evolves from the structure of the information do-
main, and from the different patterns of agents’ organizations.

Our approach is that in certain domains, knowing thestruc-
ture of information contentcould guide us in the design of an
appropriate agent system. Multiagent systems often operate in
environments where access to, and manipulation of, informa-
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tion is paramount. We formally characterize these domains as
information oriented domains.

In these domains, the information that the agents hold or are
pursuing characterize their interaction, rather than the goals the
agents are expected to achieve. Agents in these domains, in con-
trast to state oriented domains [1], do not have to deal with con-
flict. Information can be shared. Agents, for example, might
approach the same server in parallel without preventing other
agents from working on the same knowledge.

Our first step was to partition the information domain, using
an evolutionary algorithm and a similarity criterion. This parti-
tioning step resulted in a group of agents, each with a particular
area of “expertise,” assigned to handle the available informa-
tion. Because of the nature of the evolutionary algorithm, the
number of final agents and their assignments arose naturally
from the information content of the environment, and were not
determineda priori. This organization of agents, spanning the
information space, could then be exploited in problem solving
and information retrieval tasks. The partitioning of the informa-
tion space lead to greater efficiency at run time.

In general, these partitioned systems are appropriate for in-
formation retrieval systems, or (more specifically) as an orga-
nizational structure for libraries of reusable plans [2] and as a
means to organize different recipes [3] for plans in a given do-
main.

Possible emergent patterns within an organization of agents
are demonstrated, and the evolutionary algorithm itself is dis-
cussed.

II. I NFORMATION ORIENTED DOMAINS AND NETLIFE

We provide a general definition of information oriented do-
mains, and consider the queries that might be submitted in such
domains. In this paper, we focus on the agent organization that
can evolve in such scenarios. In a separate paper, we studied
how this organization can be approached by users and how it
can solve queries [4].

An information oriented domain (IOD) is a tuple
, where

1) IS is the information set, e.g., a set of documents;
2) is the set of possible states of the world. In an IOD,

we define a state at timeas a pair , where
is the query a user submits, and is the partial an-
swer derived at time. In this case, a partial answer is
measured by the worth of the state, which represents to
what degree the information derived is useful and related
to . The state is the agents’ state of information relative
to a query . is a vector whose components repre-
sent how much each agent knows at time, relative to

. There are local states that represent the information a
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single agent has relative to a given query. This local state
might also represent which part of the query the single
agent is working on. There is a global state that is a vector
of the local states. The global state refers to the whole
query. It might also represent how the query has been dis-
tributed among the agents (e.g., all the agents work on
the whole query, each agent works on a different sub-
query, etc.). Agents move between local states, inducing
the system to move between global states;

3) is the set of agents, ;
4) is the set of operators agents can apply. If the agents

know different operators, then this set should be inter-
preted as a vector of sets, such that the componentcor-
responds to the set of operators of agent;

5) is the cost of answering a querythat was submitted to
in the context of IS. The cost is defined as the cost to

get to the most useful state (not necessarily the one that
completely solves );

6) is the value of an agent, or a group of agents, i.e., how
much information the agents hold. It is a function that
quantifies the amount of information held by the agents;

7) is the worth of a state in the context of IS, i.e., how
much information there is in the agents’ state with respect
to IS and the query . This function represents the use-
fulness of a state relative to a query posed to the agents.

The approach in this work is to exploit domain knowledge
in system design; in information oriented domains, knowing
the domain’s structure can guide us in the design of the agent
system (i.e., the number of agents, their interactions, and roles).
Different patterns of organization might influence the way in
which we would interact with the agent society (e.g., exploiting
specialist agents or an agent hierarchy), and the social interac-
tions among the agents. We designed and implemented a multia-
gent testbed to investigate the emergence of an organization in a
multiagent system, and its dynamics. In the implementation the
agents were homogeneous, in the sense that they had the same
capabilities, and were capable of carrying out the same group
of actions (although each agent’s information might differ); the
agents did not have selfish interests.

The model’s design was along the lines of the game of Life
[5]. The main idea was to organize the agents according to the
information they use for achieving the tasks to which they have
been assigned. Work done on the topic of agent organization
in DAI has usually dealt with different ways of dividing tasks
among agents (see Section VII-A). The organization might
change its structure depending on the performance of the
agents; in this sense, the organization itself istask-dependent.
In contrast, we are interested in dividing information among
the agents and not in distributing tasks among them; the
structure of our organizations would beinformation-dependent.
In cases where the organization is task-dependent, new tasks
might require new organizations for the agent society. If the
organization is driven by information, it can remain constant
across multiple tasks that use the same information.

The domain is considered to be given. For example, the infor-
mation domain might be composed of a collection of files, a site
composed of documents on the Internet, etc. Another domain

might be the software domain, consisting of programs such as
finger, ftp, etc. The aim of this research is to evolve an organiza-
tion of agents, such that each agent will be responsible for, and
eventually become an expert on, a subset of disjoint pieces of
this domain. Ultimately, the organization might be approached
by other agents and serve as a source of information (that could
be further assisted by a system like Musag [6]), or it could itself
solve problems, as a multiagent system (e.g., [4]).

Usually, memetic models (for an overview, see [7]) have con-
sidered the evolution of the information that could be transferred
among a fixed number of agents in a given system. Here, the in-
formation set is fixed. The agents’ population changes as long
as they collect documents from a given site. Agents might die,
or clone themselves, as described in the algorithm presented in
Section IV-A. The knowledge of each agent is given by the doc-
uments it holds, i.e., the information in these documents.

First, the notion of a cellular automata as a basis for our model
is presented. We proceed by presenting our approach, and the
architecture of the testbed we have implemented, together with
results from experiments that were carried out. The paper con-
cludes by showing how our model fits the “six essentials” con-
sidered by Calvin [8] to bootstrap a Darwinian process.

III. A C ELLULAR AUTOMATA MODEL FOR

ORGANIZING INFORMATION

Cellular automata (CA) are models for studying spatially dis-
tributed dynamic systems. They were introduced by Von Neu-
mann in the 1940s [9], [10]. For additional historical notes about
related concepts, see [10].

Time is considered discrete. The space of a CA is a grid. Each
cell in the grid contains data (e.g., a string of bits). In addition,
a set of rules needs to be defined on the data in the cells. These
rules determine to which state each cell moves in the next period
of time. The rules are uniform (i.e., the same laws apply to every
cell), and they are local (i.e., the laws are applied on neighbors
of the cells). The locality characteristic of the laws requires the
definition of a measure of distance among the contents of the
cells.

Parallel platforms enable better performance of the CA for
large experiments that require the computation of many interac-
tions among all the cells in the grid (which can be very large).
Dedicated architectures were built as CA machines (e.g., the
CAM architecture [11]). An extensive overview of applications
of CA for studying physical systems appears in [11]. More ap-
plications related to pattern recognition and vision can be found
in [12].

Complex behaviors that emerge from local interactions
among simple units can be studied with CA. In our case, we
chose to study the evolution of a population of software agents
that became experts on a given set of information using a
CA. A cell represents a single document at a given site on the
Web. The rules of the system control the growth, death and
actions taken by the agents in the population. These rules take
into consideration the relative number of documents relevant
to the agent, and the number of related documents held by
other agents in the same population. The Game of Life is first
described; it is one of the most popular CA, and our model and
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approach which are based on it are then presented. These two
models are compared, and results from experiments performed
in the information space are also presented.

The Game of Life. In 1970, the game ofLife, invented by
John Horton Conway, began to attract many enthusiasts who
were interested in dynamic societies of living organisms. The
game [5] takes place in a two-dimensional (2-D) grid (assumed
to be an infinite plane). Each cell in this board has eight neigh-
boring cells. The game was designed as a one-person game,
where an initial configuration of the grid is submitted (i.e., spec-
ifying which cells are empty and which cells are occupied by a
counter). From then on, the rules of the game control and change
the configurations of the grid leading to interesting patterns of
organization.

Conway’s rules were as follows.

• Survivals—Every organism with two or three neighboring
organisms survives to the next generation.

• Deaths—Each organism with four or more neighbors dies
(i.e., is removed) due to overpopulation. Every organism
with one neighbor or none dies from isolation.

• Births—Each empty cell adjacent to exactly three neigh-
bors is a birth cell. An organism is placed on it at the next
move.

Note that all births and deaths occur simultaneously. There
are three known behaviors that could emerge in different con-
figurations with the rules explained above. There are stable pop-
ulations, that achieve some structure and then do not change it.
There are configurations that fade away, i.e., the grid remains
totally empty after a number of iterations of the game. An-
other pattern of behavior involves periodic or oscillating pop-
ulations. These populations are composed of subconfigurations
that change among them in a definite cycle (larger or equal to
one).

Another kind of interesting pattern was discovered later and
lead to the proof thatLife can be universalized, i.e., it can sim-
ulate a Turing machine. Gosper at MIT and Conway at Cam-
bridge independently showed that the gliders pattern could be
used as pulses to simulate a Turing machine [13]. This new kind
of behavior created a pattern that keeps growing as long as the
game is played.

These examples stress the unpredictability of the results in
Life even though the rules of the game are very simple, and
seem predictable. Other characteristics of commonly evolved
patterns include patterns that tend to become symmetrical al-
though they were not symmetric in the initial configuration. The
results of collisions among different forms were also analyzed
(e.g., the vanishing collision, and the kickback collision [13],
[5]). William Gosper, in 1971, found aLife form called the fish-
hook [13] capable ofeatingother patterns and returning to its
original form.

Many variants of the original game have been worked out
including playing by other rules, and playing on different ge-
ometries and dimensions of grids (e.g., [5]). The original game
remained the most interesting and exciting, in particular due to
the unpredictability of its simple rules. Other attempts tried to
invent competitive games for two or more players, but no sig-
nificant results were reported.

Dresdenet al.. [14] developed a set of equations that enable an
analytical analysis of the growth, death and survival processes
that take part inLife games. The degree of nonlinearity is di-
rectly related to the number of interacting neighbors. They sug-
gested studying the interesting evolving patterns by using their
equations. They found that the formalism and the methods de-
veloped for problems in nonequilibrium statistical mechanics
are appropriate for an analytic description of theLife games.

Eigen [15] referred also to the unpredictable patterns that may
evolve in the game ofLife from the simple and deterministic
rules. He had, however, pointed out the lack of an environment
in the standard game, i.e., in real biological processes there are
stochastic elements that affect the evolution. In our work, we do
take into consideration the domain of action of the agents, and
observe the patterns of organization that might evolve.

Schulmanet al. [16] investigated the properties of a dynamic
system with deterministic rules such as those defined for the
game ofLife to learn about the microdynamics of a nonequi-
librium system, about reproduction and evolution, and to learn
about different patterns that can evolve and their relation
to physical and biological formalisms. Since the analytical
approach is very complex to handle, they were more concerned
with understanding the parameters of theLife system. These
parameters include temperature (i.e., a finite probability for
birth or death of an organism independent of the number
of its live neighbors), the average density of living entities
as a function of temperature, and entropy (a measure of the
increasing order in a system controlled by Conway’s rules).

Some practical uses were found for the game ofLife [5]. Life
was applied to socioeconomic systems, to explain nebulae with
spiral arms, and to identify edges in solid shapes.

As described in the following sections, we developed a
model for organizing information that was based on a cellular
automaton. Our grid is the information space. The “cells” of
this grid are assigned to software agents, who are responsible
for the information in them. That is, the agents are able to
process the information, answer queries, and plan solutions
alone or cooperatively. The rules that control the agents’
growth, death, and behavior have been designed along the lines
of the rules of the Game of Life. In addition, the environment
of the agents in the definition of the rules, (i.e., the information
space) has been considered.

IV. NETLIFE MODEL

We suggest finding a division of an information oriented do-
main based on a division criterion (i.e., a similarity measure
among the pieces of information in ) and based on a bal-
anced number of agents. We are not dividing tasks among the
agents, but rather are dividing knowledge and expertise among
the agents. The quality of a partition of a domain depends also
on the future performance of the experts responsible for these
pieces of expertise. This division depends on a similarity crite-
rion that induces a matrix of nearness values among the pieces of
expertise in . Thelocal goodnessof an emergent organization
depends on the utility of the organization for a given task in.
Theglobal goodnessof an organization depends on the utility
of the organization for a set of tasks in the same domain.
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The assumptions about the domain and agents follow.

• The organization is composed of cooperative agents.
• The domain has a flat structure (i.e., all information

pieces are equally regarded). This is in contrast to hierar-
chies where agents might be parents of other agents. There
is no information held by one agent that includes (or is
about) other information held by another agent. Dealing
with hierarchies remains for future work.

• The domain is finite.
• There is a measure of similarity defined among the parts

of (i.e., the neighborhood relation).

A domain consists of a finite set of pieces of information
. Each is a basic unit of knowledge or expertise. An expert

can process each unit to answer a query. A set of these is a set of
pieces of expertise and will be denoted by . In particular,
can be of size one (i.e., one), or it can be a cluster of related
information. The ’s in a specific cluster are related by a
similarity criterion defined by a user. consists of basic units
of expertise (e.g., a document, a file, a picture, a plan recipe, a
partial global plan, a speech act, a manual, a software program
[e.g., finger, search engines, ftp]). For a given, there are a
number of tasks that can be solved in.

A domain is denoted asstructuredif there is a criterion of
division of into parts such that these parts are disjoint
and their union is . For example, a site on the Internet with a
neighborhood relation such as TFIDF (Term Frequency, Inverse
Document Frequency) [17] is structured. The Postman Domain
[1] is not structured: there, is the set of all possible letters the
agents might be assigned, andis not finite. If a finite set of
addresses is considered, then a division criterion might be the
nearness among the addresses, and thenwould be structured.

Our approach models an organization of agents with their
knowledge as a Cellular Automaton. The grid in our case is the
graph composed of documents taken from a given site on the
Web. The edges among the nodes in this graph are given by the
links that connect documents in this site. Each agent can hold
a set of documents, that is one agent is responsible for several
nodes in the graph. The neighborhood relation among the agents
is defined based on the similarity between the documents these
agents hold. The neighborhood relation is defined among these
documents. The rules designed are local, since they refer to the
nearness relation defined on the documents that are held by the
agents (see Section IV-A1).

Formally, an organization is a tuple:
NeighborhoodRelation, Parameters, Division

of Dintodisjoint where is the group of agents
comprising the organization over the domain. is the
common language the agents can communicate with, and with
which they can “understand” their knowledge. An expert

is an agent responsible
for a set of pieces of expertise and knows the language .
Each expert’s expertise is represented by a database described
in . For example, when is a site on the Internet, each
agent might hold a set of words that characterize most the
documents it is holding. The agents can analyze this database
to decide which expert they need to consult. induces a
range of solutions (i.e., answers) that the expertcan achieve.

For a task in the domain , expert , organization , and
domain .
refers to the expert and its knowledge about the task. A task
is an information-based query posed to the agent. The task could
request the agent to gather information, to apply a software tool,
to retrieve pieces of information held by the agent, or it can also
be the execution of a program (that is, the implementation of a
plan that achieves). If is not in then null. If is
partial to then describes a cooperative solution among
different experts.

When a task is given to such an organization, each agent
in can retrieve its cluster as the answer (this is closer to the
indexing approach), do some processing on the information in
its cluster and retrieve a more focused answer, or cooperate with
other agents to retrieve an answer. For a given query, an agent
that addresses the organization can address a specific expert
once, or several times, each time with a more refined query, ad-
dress several experts, each one once, or address several experts
several times.

The cost of performing a task by approaching
the expert is:

.
The first term considers all the refinements needed to achieve

, by addressing only . That is, as ’s cluster is bigger, then
there is more chance that this term will be larger. The second
term considers tasks that cannot be performed by alone.
That is, needs to cooperate with other agents (a group of
agents: represents all the possible groups of agents
from with which cooperates). The tasks to be performed
by several agents are denoted. Thus, as ’s cluster is smaller
there is more chance that this term will be larger.

The utility of an organization for performing a task ,
starting with expert , is the inverse of ; the values
will be in the range [0, 1].

Given that agent asks the organization , a task , the
quality of the answerof is the distance between the goal that

wanted to achieve and the responsethe organization has
given for task .

Two organizations can also be compared by the utility they
achieved starting from expert, for task , and the quality of
their solution.

A. The General Architecture and Algorithm

The model presented above was implemented in two sepa-
rate modules (one in C, and one in Java). For a fixed informa-
tion set, a population of agents evolved. Our approach combines
clustering, indexing and evolutionary ideas (see related work in
Section VII). The testbed enabled us to experiment with the be-
havior that might emerge from interactions among agents. The
system was composed of homogeneous agents that were added
to the system and were dropped out of the system dynamically
during each experiment. This dynamic was controlled by a set
of rules, that regulated the size of the system based on available
resources. In particular, the domain in which the testbed was im-
plemented consisted of a collection of documents.

Based on the rules of the game defined, and the domain of the
system, the agents would develop into experts. Their expertise
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is given by the information existing in the set of expertise
(e.g., the documents) that each agent holds. The testbed enables
us to run simulations that show how the agents become experts.
Each agent collects related’s (e.g., documents) and decides
to keep collecting, or decides to return its’s to a general pool
(and die), or decides to split its’s among its children, based on
a relative size defined by the number of agents already existing
with ’s that are neighbors of the agent’s’s.

The rules for the testbed were designed along the lines of the
game ofLife. The main addition to the game is the consideration
of the environment.

Two concepts need to be defined in the game ofLife: the
neighborhood relation and the rules of the game. Separate mod-
ules in the testbed described each one of these.

A set of parameters could be set by the user to test different
scenarios, initial conditions of the system, and different thresh-
olds needed by the rules that will influence the behavior of the
agents. These parameters include

• —the set of documents currently owned by agent;
• —the size of ;
• Free—the set of documents not owned by any agent;
• PopulationDensity—the ratio between the number of

agents assigned to the documents that are neighbors
of the documents was assigned (call it AgentsOn-
Docs), and the number of documents that are neighbors
of the documents was assigned (i.e.,NumDocs).

;
• —the number of documents the agentis cur-

rently holding;
• NumDocs—the number of neighbor documents the agent

will collect at most at each iteration;
• NumAdded—This is the number of nearest documents the

agent might add to its current cluster (chosen fromNum-
Docs);

• HighPopDensity—determines when the population is
overcrowded;

• MaxDocs—the maximum number of documents that each
agent might hold in its cluster;

• MinDocs—the minimum number of documents that an
agent can have in a stable state;

• thresholds for the splitting procedure;
• the rule set that comprises the evolutionary algorithm.

The main algorithm for evolving an organization of experts
is presented in Fig. 1.

This program was run after a matrix of the similarity values
among all the pairs of’s was computed. This algorithm relates
to the specific implementation. In the general case, the docu-
ments should be changed with a basic piece of expertise. This
algorithm was run on an IOD (e.g., a site on the Internet, files
from a directory). The rules of death, birth, and survival were
defined based on the resources (i.e., the information in the doc-
uments) that the agents held.

During the evolutionary process, the population size might
decrease by one, when an agent decides to stop its process based
on the rules of behavior (the rules of the game). The total knowl-
edge of the population (given by all the documents held by these

Fig. 1. Main loop of the evolutionary engine.

agents) changes too, since when an agent dies, it returns its doc-
uments to the free pool from which all agents pick their docu-
ments.1

In the second case of the algorithm, the size of the population
might increase by one, when an agent spawns a child. Then,
the total knowledge of the population does not change but it is
distributed among the agents in a different way. The agent that
decided to spawn, passes part of its documents to its new child.

In the third case, the agent collects additional documents re-
lated to the ones it already holds, thus updating its knowledge.
The population size remains the same. The individual knowl-
edge of the agent, and therefore the total knowledge of the pop-
ulation, changes.

A testbed was developed to empirically examine different
patterns of organization with their respective distributions of
knowledge. Based on the rules defined, we aspired to having
the system achieve some reasonable balance between the do-
main information (contained in documents) and the number of
agents.

1) The Neighborhood Relation:The aim of this module is
to build a neighborhood matrix. In the original game, the neigh-
borhood relation was defined as a geometric relation in the grid
of the game. In our case, the nearness among the documents in
the set on which the simulation is run, is computed. Therefore,
each time an agent needs to calculate its neighbors, it actually
looks for the agents that are holding documents that are neigh-
bors of the documents it is holding.

1In the implementation, the set Free of documents not assigned to any agent,
might remain nonempty. The agents collected documents that were neighbors
of the documents the agents already held. The number of documents that were
collected depended on the maximal number of documents an agent can hold, and
the population density. Therefore, the most distant documents might remain in
the set Free. An interesting extension to our testbed consists in adding a new
agent for a document in Free, after the actual population reached equilibrium.
Then, let the whole population continue until the next equilibrium is reached,
and continue in the same way of adding a new agent, until Free gets empty.
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The matrix consists of the proximity values calculated for any
pair of documents found in the collection. Although the process
of downloading documents from a site, and building an inverted
index of them can be time consuming, it should be noted that
this process is done only once. Then, simulations can be run
many times, by different users, using different parameters. The
proximity value is a measure of how similar two documents are.
The more similar two documents are, the larger their respective
proximity value is. This measure should not be confused with a
mathematical distance.

We deal with a site of HTML documents found on the Web.
This is a finite set of documents that are connected by hypertext
links. The parameters set by the user are as follows.

• HomeSite—all the documents that will be collected reside
in this site.

• Root—this is the root of the site to be scanned.
• MaxPages—the maximal number of collected pages.
• MaxDepth—the maximum search depth.
• NeighborsThres—a pair of documents will be considered

neighbors if their proximity value is above this threshold.
• LowThreshold—only words that appear at least

LowThreshold times will be considered.
• StopFile—a file containing very common words that will

be ignored when a document is analyzed.
An inverted index of all the words that appeared in these doc-

uments is then built. For each word, the total number of times
the word appears in all the documents is stored together with the
total number of documents in which the word appears, and for
each document in which the word appears, the total number of
appearances in that document is also kept. Afterwards, the prox-
imity values among all the documents collected is computed,
and the neighborhood matrix is built out of these values.

We implemented two relations to decide when two documents
are considered neighbors. However, as opposed to the game of
Life, the computed relations were not binary. In both cases, the
neighborhood relation implied a gradual relation (in contrast to
a binary relation, in which we could only say whether two doc-
uments were neighbors or not).

One neighborhood relation considered the words that ap-
peared in the documents, that is two documents were neighbors
when they werekeyword similar. The other relation considered
the links to which each document pointed. That means that
two documents would be considered neighbors if both of them
pointed to the same links.2 A square matrix with rows and
columns equivalent to the number of documents collected was
implemented. Each cell held a similarity measure between
any two documents. Each cell was initialized with zero. In the
implementation presented here, the words were weighted in
each document following the TFIDF (term frequency, inverse
document frequency) method described in [17]. This is one
example of a weighting function that can be used to compute
the similarity between documents.

For each word that appeared in the inverted index, and
documents and in which the word appeared,

2All the experiments we present were carried out with the first kind of neigh-
borhood relation. Experiments with the second relation were performed sepa-
rately.

the value of the cell was incremented by an amount
based on the TFIDF weighting for-

mula. This formula assumes that the word’s importance is
proportional to the occurrence frequency of each word in each
document and inversely proportional to the total number of
documents in which the word appears. To define the term

, we need the following parameters:

• —the total number of documents in the collection.
• —the number of documents in the collection in which

the word appears.
• UC—a Uniqueness Constant (usually its value is between

one and three). We chose it to be two based on empirical
observations.

• —any two documents in the collection.
• —the number of appearances of word in

.
• (notice that this

factor will be large for words that appear in only a few
documents).

Then, the weight of a word in a document
, was given by

. Now,
was the sum of and
if both weights were not zero, and zero otherwise. The
neighborhood matrix was stored in a file and used by the
evolutionary engine of the testbed. The agents would check
this matrix to choose documents that were neighbors of the
documents they are holding.

The organization of software agents evolves together with the
information. The society of agents is not fixed, nor given.

2) The Evolutionary Engine:A system populated with
agents that gather resources was simulated. Eventually, each
agent thatsurviveduntil the end of the simulation was expected
to hold a cluster of documents that were similar to one another.

All the information the agents had about the documents in
the given collection was taken from the neighborhood matrix al-
ready built by the other component of the system. In this testbed,
we dealt with homogeneous agents coming from a general class
of agents. A set of rules was defined to regulate the birth, death,
and survival of the agents in the system. This set was based on
the number of agents relative to the number of documents that
each one of them already held, and the number of documents
the other agents in the system held. In the design of these rules,
we tried to keep as close as we could to the original rules ofLife,
taking into consideration the addition of the environment.

Any simulation starts with an initial number of agents set by
the user. The user also assigns an initial document to each agent.
Then, the agents collect more documents that are close enough
to their seed document, based on the neighborhood matrix. The
number of additional documents is set by the user. From then
on, the agents are involved in a loop in which they might be
able to collect more documents from the given collection, they
might die when they have very few documents in relation to the
other agents, they might split into two agents if they have too
many documents in relation to the other agents, and they might
do nothing. In other words, this main loop (see Fig. 1) and the
different actions that the agents follow influence the dynamics
of the system.
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The population of agents changes based on rules the agents
follow, and the values of the parameters of the running system.
The main loop of the algorithm presented ends after an iteration
in which all the agents do nothing, i.e., no changes are made to
the sets of documents the agents held so far. The main algorithm
consists of a loop, that each agent performs in turn; this algo-
rithm stops when no agent performs any action. At that point,
the agents have reached a stable pattern. Each surviving agent is
holding a group of documents that are very close to one another
and quite distant from the other documents held by the other
agents. We show in Section V a variety of interesting patterns
of organizations that have evolved running simulations with this
testbed. During the simulation, each agent is described by a per-
sonal window in which the current addresses of the documents
it was assigned are presented. At the end of the simulation, all
the sets of documents held by each agent, together with their
characterizing words, are stored.

When agent has to reproduce and spawn a new agent, the
same algorithm that was described is used on’s database (i.e.,
use instead ofFree). The difference here is that and its
new child cannot die or multiply; they will only divide the doc-
uments in between them. An additional factor on which the
quality of the clusters depends is the agent multiplying/splitting
algorithm. Here, the program first assigns each child an initial
seed document. This seed must have had enough neighboring
documents on the one hand, and they must not be similar to
one another, on the other hand. Then, each child proceeds to
cluster documents from the parent’s collection around its as-
signed seeds.

V. EXPERIMENTS

One of the points that is most attractive inLife is the unpre-
dictable behaviors that might emerge from very simple rules,
that determine the next state of the system very clearly. Multia-
gent systems are also very complex to predict; given a problem
or range of problems it is very difficult to decide on the optimal
division of tasks among the agents such that the load on them
will be minimal. In the case of our algorithm, a set of simple
rules were defined, very similar to those ofLife. Even though
these rules also determine the next state of each of the agents
in the system, the general organization pattern of the agents is
unpredictable from the initial situation, or from an initial set of
parameters. Therefore, we suggest running simulations with dif-
ferent parameter sets, understanding the possible patterns of or-
ganization that might evolve, and after a multiagent system has a
known organization of experts we are able to use this expertise
for further problem solving or as an information or assistance
source.

The parameters that can be tuned by an agent’s designer
include HighPopulationDensity, MaxDocs, MinDocs, initial
number of agents, what the seed documents are, and the number
of documents added per iteration. Patterns of organization that
were gotten along the lines of the game ofLife (i.e., stable,
periodic, and vanishing) are presented. There were different
kinds of possible stable patterns, given the initial parameter
values set in the simulation. In addition, there might emerge
oscillating organizations. In the case of multiagent systems,

this might increase the robustness of the system. For example,
when is a collection of documents distributed on different
servers, one of the servers might be down, busy or performing
very slowly. In that case, it is beneficial to have another agent
on another computer (with the same document) that is capable
of working. If different agents can hold the same area of
expertise then we can achieve the same task when there is an
agent available on a faster server. This should be evaluated as a
tradeoff with the cycle of the pattern. If the cycle is very large
it might be very expensive to wait for the available agent to do
the job.

We experimented with different initial settings to see which
kinds of organizations we could arrive at given a set of infor-
mation (e.g., in our case we chose a site on the Web). The sites
reported included the Institute of Computer Science at The He-
brew University (http://www.cs.huji.ac.il), the home page of Tel
Aviv University (http://www.tau.ac.il), and the Israel Museum
(http://www.imj.org.il).

When the agents were run on the Tel Aviv University site,
stable organizations were gotten composed of two, three or four
agents, being responsible for issues like admission, the science
library, the faculty of medicine, and art studies. When testing the
Israel Museum stable systems were gotten of two or three agents
responsible for the shrine, archaeology, and for the museum
shop information. We tested the site of the Institute of Computer
Science at the Hebrew University in greater depth. A matrix of
the neighborhood relation among 166 documents taken from the
Computer Science site at this university was built.

Stable Patterns.The stop condition of our algorithm is trig-
gered by a state in which every agent has nothing to do, i.e.,
the conditions for dying, reproducing, or collecting more docu-
ments do not hold. Each agent holds a defined cluster of docu-
ments.

The system stabilized in a pattern of two agents for the fol-
lowing parameters: the number of documents added at each iter-
ation was three, there were two agents in the initial population,
the threshold for high population was 0.2, the maximal number
of documents was 16 and the minimum number of documents
was set as ten. The same result was gotten for a different initial
number of documents that each agent held (i.e., for two, five,
and eight initial documents).

When the minimal number of documents was changed to five,
a stable pattern of three agents was gotten for an initial number
of documents ranging from one to eight. These three agents in
the system were responsible for three topics respectively: mate-
rial about writing in HTML, pages about a specific project de-
veloped in the Distributed Systems Laboratory, and pages about
the learning group.

When the threshold for the high population was increased to
0.6, we got two different sets of stable patterns. One was reached
with eight agents when the initial number of documents was one,
two, four, five, orseven. A pattern of ten agents was reached for
three or six initial documents. The eight agents were respon-
sible for pages on HTML, the programming laboratory, the Data
Base group and information for students, the Distributed Sys-
tems group, three agents for three different exercise materials in
a course about learning, material about the learning group and
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Fig. 2. HighPopDensity = 0:2;MaxDocs = 16;MinDocs = 10, two
agents in the initial population.

additional material about the Distributed Systems group, respec-
tively.

When the threshold for high population density remained at
0.6 and the minimal number of documents was raised to ten,
we got three different sets of stable patterns: seven agents com-
posed the final structure starting from one, four, or seven initial
documents, five agents were the result starting from two or five
initial documents, and six agents resulted when the initial two
agents started with three or six initial documents.

When the threshold for high population was set to 0.6, the
minimal number of documents in a cluster was ten, and the
number of initial documents was five, we got two sets of stable
patterns: in one the final structure was composed of six agents
(when the number of documents added at each iteration was one,
five, 20 or 30), in the other stable organization there were eight
agents (at each iteration ten documents were added if possible
for each iteration).

When the threshold for high population density was 0.8, the
minimal number of documents was five, the initial number of
documents for each agent was three and the number of docu-
ments added at each step was also three, the system reached a
stable pattern of 11 agents (four agents for four different ex-
ercises, three agents for a project of the Distributed Systems
group, two agents for the Data Base group, one agent for the
programming laboratory course, and another agent held docu-
ments related to writing in HTML).

In Figs. 2–5, the number of agents in the organization is pre-
sented as a function of the initial number of seed documents
given to each of the two agents in the initial population. We de-
note a loop between agents by a value of . For example,
in Fig. 2, when there were three documents given to each agent,
the organization arrived at a group of one agent and a loop be-
tween two other agents. In Figs. 6 and 7, we present the number
of agents in the organization that evolved from an initial popu-
lation of two agents that were given five initial documents.

Ever-Growing Patterns.One of the results inLife is that the
population grows without limit. To find an analogous result in
our implementation, it would mean that the agent population
would also grow without limit. Following our algorithm, and

Fig. 3. HighPopDensity = 0:2;MaxDocs = 16;MinDocs = 5, two
agents in the initial population.

Fig. 4. HighPopDensity = 0:6;MaxDocs = 16;MinDocs = 10, two
agents in the initial population.

Fig. 5. HighPopDensity = 0:6;MaxDocs = 16;MinDocs = 5, two
agents in the initial population.

model, this can happen if there are an infinite number of docu-
ments, for which new agents should be cloned so that they will
become responsible for them. Theoretically we might think of
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Fig. 6. HighPopDensity = 0:6;MaxDocs = 16;MinDocs = 10, two
agents in the initial population, five initial documents for each agent.

Fig. 7. HighPopDensity = 0:2;MaxDocs = 16;MinDocs = 10, two
agents in the initial population, five initial documents for each agent.

the set Free (of documents not assigned to any agent) as a set to
which documents are added during the simulation. So it might
be the case that new agents would be needed for these new doc-
uments, and in this way the pattern would keep growing. In the
simulation presented here, the site of documents was finite.

There was a possibility in which, for example, one agent split
into two agents, one of them died, and the remaining agent re-
peated this process of splitting into one agent that died, and the
other agent split again and so forth, without stopping. The agent
that split itself (i.e., the father) and the agent that remained alive
and would reproduce, exchanged the clusters of documents they
held. In the implementation, each time an agent reproduced, its
two sons got two new names, but we could think of an agent
spawning itself into another agent, and the same agent remained
alive with part of its original documents. This example would be
presented as ablinker pattern. Therefore in the current imple-
mentation with a finite site of documents, we could not reach an
ever-growing pattern of organization.

Fading Away Patterns.Following the analogy to the results
found inLife, settings for which the agents vanished were also

tested. Agents could die, leaving other agents alive in the organ-
ization, when the appropriate condition is fulfilled.

For the following parameters: threshold for the high popula-
tion set as 0.2, maximal number of documents as 16, minimal
number of documents as 10, three documents added at each it-
eration, two agents in the initial population with 39 or 40 initial
documents, the agents vanished. The same result was achieved
for high population threshold set to 0.6 and minimal number of
documents set to five, and also for five as the minimal number
of documents and the threshold set to 0.2.

Oscillating Patterns (Blinkers).Oscillating patterns in mul-
tiagent systems are those patterns consisting of agents that pass
their documents from one agent to another continuously.

For example, when the number of documents added per iter-
ation was three, the threshold for high population was 0.2, the
maximal number of documents was 16 and the minimal number
of documents was ten, and there were two agents in the initial
population, a blinker pattern was gotten for different initial num-
bers of documents (one, three, four, six, and seven). The system
entered a loop of one agent holding documents related to the
learning group and another agent holding documents related to
a project in the Distributed Systems group. Every three itera-
tions of the simulation, the agent that survived held one of these
two clusters, and after three more iterations, the agent that re-
mained alive held the other cluster.

Another case was when the threshold for the high population
was 0.6, the minimal number of documents was ten, and the
initial number of documents was eight. The system evolved
into five agents (responsible for the Data Base group and
information for the students, an exercise in a course about
learning, the programming laboratory course, the learning
group, the Distributed Systems group), and a loop between two
other agents (one cluster included material about a specific
exercise in the learning course, and the other about tools for
the learning course).

Collisions. Other behaviors analyzed inLife [5], concerned
distinct kinds of collisions among different patterns. This
was also relevant in our scenario. There occurred a collision
between clusters of documents (i.e., between the agents respon-
sible for them) when one agent died, and its documents were
redistributed among the other agents, i.e., other agents took
control over these documents like aLife pattern that ate another
pattern (see Section III), or when we got to oscillating behavior
(i.e., agents passed their documents among themselves in a
cycle).

VI. THE ORGANIZATION AS A MEMETIC MODEL

The approach presented here differs from the classic memetic
approach. The concept of amemeanalogous to a gene was de-
vised by Richard Dawkins [18] as aunit of cultural transmis-
sion, or a unit of imitation.3 We are concerned about software
agents and their pattern of organization. Moreover, we are also
concerned about the knowledge this organization has, and how
it is divided among the agents.

3Works on memetics are published in [19].
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Usually in evolutionary memetics, the set of agents is re-
garded as a fixed set that is given. Then, the different approaches
deal with how information evolves in this scenario. In our case,
it is both that are evolving, the set of agents and the information
they hold. That is, we are evolving patterns of organization that
differ in their social structure, and together with this, the infor-
mation known by each agent evolves. Our point is in showing a
model of information transmission that is dynamic. Namely, the
organizational structure also evolves.

The population of the agents together with the information
they hold evolves. Each agent collects documents. The informa-
tion contained in these documents comprises the agent’s knowl-
edge. This knowledge varies along the time axis, as the agent
collects more documents, or passes part of them to its child. If
we look at the simulation along the time axis, then looking at the
same agent, all the time, we will come across different states:

1) the agent vanishes, and then the population size decreases
by one. The total knowledge of the population (given by
the set of all the documents held by the agents in the pop-
ulation) changes too, since when an agent dies, it returns
its documents to a pool (from where all the agents pick
their documents according to their similarity);

2) the agent spawns itself, and then a new agent is added
to the population; the size of the population increases by
one. At the time of the spawning, the total knowledge of
the population does not change but it is distributed among
the agents in a different way. The agent that decides to
spawn, passes part of its documents to its new son;

3) the agent varies its knowledge. It collects more documents
related to the ones it is already holding. The population
size remains the same. The individual knowledge of the
agent and therefore the total knowledge of the population
varies.

On the one hand, our algorithm evolves a population of
agents. The agent organization changes as long as the agents
die, or spawn children that are added to this organization.
Then, we could get different patterns of organizations starting
from different sets of initial parameters. At this point we have
a structure that changes over time, given the agents that are
dropped out of the society, the agents that remain, and the new
agents that are added.

On the other hand, we could also look at the information the
agents have. These are the same agents that participate in the or-
ganization. These are the agents that might die, spawn, or live.
This information varies along the evolutionary process of the
organization. Each agent “knows more” as long as it collects
more documents. This is true assuming the agent’s knowledge
is monotonic; new facts do not contradict knowledge that was
acquired previously. This knowledge decreases when it spawns
a child and transmits to it part of its knowledge. The agents do
not mutate in the classical sense of genetics, but whenever an
agent reproduces by spawning one child (in our current imple-
mentation), its knowledge varies. The new agent is born with
part of its parent’s knowledge (it inherits it from the agent that
created it). The knowledge of the father also changes since it is
responsible for the part that remained (that is the original set of
documents it holds without the documents it has passed to its
child).

We consider these two processes together, the evolution of a
social structure together with the information distributed among
the experts in the evolved population.

The forces that make children spawn or die, or remain un-
changed, are the rules of the game, developed along the lines of
the rules of the game ofLife. In our case, the main difference be-
tween our rules, andLife’s rules is that we also take into account
the content of the cells in the grid. That is, the agents’ decision
to spawn or die depend also on the knowledge held by them, and
their neighbors (defined by the similarity of their documents).
These rules move the world of the agents from one state to an-
other, where these states differ in the number of agents in the
society and in the way the information held by current agents is
distributed.

The forces that drive the agents reside in the will to balance
the number of agents in the society, and to have them evolve as
experts, namely, that nobody will know too much nor too little.
We look at an effective way to develop a society of experts, and
at the same time, we look at how to divide knowledge among
them. Instead of doing this artificially, and off-line, we want
to test how this process develops in an automatic way, e.g., by
evolution.

This evolutionary process entails different patterns of organ-
ization, when we look at these evolving agents as a society. We
might get stable, oscillating, and vanishing organizations.

A testbed was suggested to empirically test different patterns
of organizations with their respective distributions of knowl-
edge. Based on the rules defined, the system was expected to
balance the knowledge and the number of agents.

The Organization of Agents as a Darwinian Process.A
computational approach has been shown for a population that
evolved dynamically, given a finite set of information. Here, it
is shown that our model also fits the six essential requirements
for a Darwinian bootstrapping of quality [8].

1) There must be a pattern involved—The pattern in our case
is the structure of the agents’ society, e.g., which doc-
uments are assigned to which agents, how many agents
there are in the group, which patterns of organization
evolve.

2) The pattern must be copied somehow—From one iter-
ation of the algorithm to the other, the organization is
copied and it continues to evolve following the given
rules.

3) Variant patterns must sometimes be produced by
chance. Superpositions and recombinations will also
suffice—Different patterns of organizations of agents can
evolve by following the rules. The agents might die or
might spawn a new agent (and divide their documents
appropriately).

4) The pattern and its variant must compete with one an-
other for occupation of a limited work space—In our case
the space is an information space: e.g., a finite site of
HTML documents on the Web. The agents compete over
owning the documents in the finite collection.

5) The competition is biased by a multifaceted environ-
ment—The rules implemented depend on the words in
the respective documents. The agents’ behaviors change
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based on different parameters such as the number of rel-
evant documents, and the relative number of neighbors.

6) New variants always preferentially occur around the
more successful of the current patterns—The agents
divide the documents according to the thresholds in the
rules. The agents’ aim is to balance their number and the
number of clusters of related documents.

With respect to the catalysts and stabilizers presented in
Calvin’s paper, we found in our experiments that stable patterns
as well as oscillating patterns might occur. We limited our
algorithm to divide one agent into only one new agent (parcel-
lation), and we also found vanishing (local as global) patterns.
As stated in [8]:When the six essentials are present, and no
obvious stability or relative-rate issue seems to be precluding
process,we are then entitled to predict that our candidate
process is capable of repeatedly bootstrapping quality.

VII. RELATED WORK

A. The Organization of Agents in DAI

The organization and self-organization of agents operating in
multiagent systems have been studied in the distributed artificial
intelligence (DAI) community, in relation to the agents’ tasks. A
goodorganization will balance the load on the agents, and will
cause the agents to improve their performance. Different ways
of dividing tasks among the agents can influence their perfor-
mance. Most work published on this topic considers the organ-
ization of the agents as a means that enables the agents to per-
form the tasks needed to solve a specific problem and achieve a
shared goal. The system might reorganize dynamically as a re-
sponse to a decrease in its performance while solving a specific
problem.

Ishida [20] proposed a model in which a predetermined
number of agents organized themselves by decomposing the
problem they had to solve. Agents, individually, created plans
and acted so that the whole group solved a given problem. If
the system performance decreased, as a result of conflicting
actions, for a while, the agents were triggered to reorganize
themselves by changing their current goals, i.e., refining their
knowledge, or partitioning a goal into subgoals. Each agent
always evaluated its actions based on how each action con-
tributed to the agent’s goal, and on how each action contributed
to the other agent’s goal.

Guichardet al. [21] introduced two primitives of reorganiza-
tion: composition (i.e., regrouping several agents into one), and
decomposition (i.e., the creation of several new agents). The au-
thors only mentioned several examples based on the number of
tasks, the importance of tasks, or the required time for resolving
the problem. The agent then must decide if delegation to another
existing agent might take place, or if an agent had to be created
first.

Huberman and Hogg [22] looked into communities of prac-
tice, i.e.,informal networks that generate their own norms and
interaction patterns. They considered a group of individuals that
were trying to solve a problem. Individuals could interact with
one another, and they might do so with an interaction strength
proportional to the frequency with which they exchanged infor-
mation with one another. The authors suggested characterizing

the structure of a community by counting the number of neigh-
bors an individual has, weighted by how frequently they inter-
acted. They studied the general evolution of such networks and
found the conditions that allowed the community to achieve the
optimal structure purely through adjustments. Huberman and
Hogg stated that as the system grew in size or in complexity,
the values of the parameters that brought the system to an equi-
librium caused the system to move from flat to a more clustered
structure.

An interesting concept introduced by Glance and Huberman
[23] was the amount offluidity an organizational structure ex-
hibits. This referred to the level of flexibility of the structure, to
the readiness of the agents to modify the structure by changing
the strength of their interaction with the other agents.

Nagendra Prasadet al. [24] investigated the usefulness of
having heterogeneous agents learning their organizational role
in a multiagent parametric design system. The agents need to
find a set of values for the set of parameters of the problem. The
agents could initiate designs, extend them, or critique them, until
they got to a final design that was mutually accepted by all of
them. It was noted that the designer of the system cannot know
beforehand the best assignment of roles to the agents, because
he lacks knowledge about the solution distribution in the space.
The agents were trained to evaluate their possible roles at each
one of all possible states while searching for a solution to spe-
cific problems. Then, the agents would select the role that max-
imized their evaluation.

In all the cases reviewed, the reorganization of a group of
agents was strictly related to a specific problem the agents were
trying to solve. The study presented in [24] was more general,
in the sense that a still predefined number of agents was trained
for all the possible states that could occur while searching for
a solution to a multiparametric design. The changes produced
in their organizational structure were induced by a decrease in
performance, or in the latter case [24], for maximizing an eval-
uation function. In summary, the agents searched for an internal
organization while achieving a shared goal, balancing the load
imposed on them as a group, and improving their performance.
The organization in these works was related to the agents’ tasks
and their distribution among the agents. In our work, we are in-
terested in organizing the space in which the agents act, e.g., the
information domain.

B. Populations of Information Retrieval Agents

With the growth of the Internet and the easy access to
semistructured information that it provides, many approaches
have been adopted for gathering information in an automated
fashion. This work focuses on evolutionary algorithms that
create populations of agents that inhabit and exploit the Web.

There are two known systems composed of evolving software
agents that retrieve information for users. There are many other
single agents applications for information retrieval. For a survey
on Web mining techniques for resource discovery, and infor-
mation extraction see [25]. Here, we have concentrated on evo-
lutionary approaches that are similar to ours. Even though our
work is related to societies of information retrieval agents, our
approach is different.
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The ARACHNID system [26] was aimed at searching for in-
formation. The authors were not concerned with the organiza-
tion of the information and how it could be distributed among a
society of agents. The search on the Web was performed for lo-
cating information requested by a user. In contrast, we modeled
the information in a given site, for a given domain. Each agent
in ARACHNID was given an energy amount needed to survive
and move, that was updated when the agent got to a document.
The energy was increased if the document was relevant, and
decreased otherwise. Our output was the organization pattern,
that eventually might be used for performing multiagent tasks
such as information retrieval or planning. In the ARACHNID
system the answer was given finally by one agent; the agents
did not coordinate during the search process. In our system, the
answer might be distributed among the agents in the society. In
ARACHNID, the search was for one user. For each new user, or
new query, the whole evolutionary process started again.

Amalthea [27] assisted a user in finding sites of interest to
him. The system could be viewed as a single agent, and there-
fore the organizational pattern of its elements (in our case, the
experts) was not the focal point. Amalthea was not concerned
about the organization of the knowledge found nor the patterns
of the multiagent system. The knowledge was not stored for fur-
ther use. In our system, the answer might be distributed among
all agents in the organization. In Amalthea, for each new user,
or for each new request, the whole process started from the be-
ginning.

C. NetLife—Related Implementation Areas

Our approach combines clustering, indexing, and an evolu-
tionary algorithm for developing a dynamic multiagent system
in a specific domain of action.

As a preparatory step to the organization-emerging algorithm,
we needed to build a similarity matrix between the basic pieces
of information of which the domain consisted. In our applica-
tion, the documents from a site on the Internet were indexed
using the term frequency, inverse frequency indexing method
(TFIDF) [17]. These indexes then were used to measure the sim-
ilarity among the documents in the given site. These similarity
values induced a neighborhood relation that could induce dif-
ferent partitioning of the given domain.

Clustering procedures were suggested to learn without su-
pervision about a space of data (for a survey see [28], and for
file clustering, [17]). We do not know the number of agents we
would like to have in the organization, therefore we do not know
the number of clusters prior to the evolution of the organization.
There are other clustering algorithms in which data is clustered
without knowing beforehand the number of clusters [28]. In our
case, we aimed at evolving the agents together with the division
of information so that the number of agents will be balanced.

Classical clustering algorithms and indexing methods alone
do not take into account the domain of action, and in addition
they do not consider the future use of the information comprised
in it for performing tasks. In our case, each cluster or set of ex-
pertise (e.g., set of textual documents) defined the range of in-
formation an expert agent had. Therefore, we were interested in
the information and characteristics of individual clusters. The
amount of information that each agent held would affect its fu-

ture performance, i.e., whether a single expert could perform a
task or answer a query, or whether a single expert needed to co-
operate with other agents in the organization to achieve such a
goal.

Our concern was to combine the quality of the partition of
the data together with the quality of the performance of agents
assigned to each cluster. Thus, the experts in our case were also
a parameter of the clustering algorithm, and their organization
evolved together with the partitioning of their domain of action.
An example in which the difference between these approaches is
relevant can be a case in which the clustering algorithm divides
a domain into two main clusters, based on a similarity criterion
and some testing function. In one case, we might want to have
smaller clusters so that the corresponding experts will have a
smaller load during their work. In another case, we might have a
limit on the number of agents that can run on our system, so even
if the clustering procedure produced many clusters, we might
want to compose several clusters into a bigger one, to conserve
the number of processes the agents run.

Moreover, the agents in our system were created and deleted
dynamically through the execution of the algorithm. Although
this seems to be related to ideas from evolutionary program-
ming, e.g., genetic algorithms [29], we lack a general fitness
function that could evaluate the performance of a population be-
fore the organization of agents is actuallyused.

Kohonen features map is an unsupervised learning algorithm
for self-organization applied to artificial neural networks [30].
No reference was mentioned to the performance of tasks, given
such a feature map. The number of nodes in the map depends
on the clusters found among the input vectors. We were inter-
ested in tuning this number according to the number of agents
that would need to use the information in the nodes. This is in
addition to the clustering done based on the similarities among
the input vectors. An application of the Kohonen feature map
algorithm was used to build a semantic map of 140 documents
indexed by the keywords Artificial Intelligence, for information
retrieval [31].

Our idea was to evolve a multiagent system that would be-
have as a group of experts that could service other agents with
information (e.g., help in achieving a goal) or as a system that
was already preorganized and could achieve goals by itself.

VIII. PRACTICAL ASPECTS

Having an organization of expert agents can serve the agents
themselves, other applications or users in cases where specific
information is requested or when a task has to be solved. In other
words, there are two main purposes or uses for an organization
of experts in a given domain: as a source of information, and
as preparatory step toward achieving a goal in the given domain
(i.e., the agents involved in finding a solution to a given problem
will not need to start planning from scratch, but they will be
already organized in such a way that each of them has specific
expertise in order to suggest an initial [at least] plan).

An organization as a source of information.
Information Retrieval Systems.We refer to a general class of
problems that can be stated in a domain of information. The
general and typical query that might be asked is to retrieve all
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documents that are related to a keyword X. In such cases, the or-
ganization is approached to give an answer, given that the infor-
mation is already organized according to a similarity measure.

In this case, we can use the accepted (standard) measures of
recall and precision when calculating the utility and quality of
the organization [17].

If we do not know who the appropriate expert is, and
there are experts in the organization, then it will take

steps to find expert, and check
whether it is the relevant one. If we address all the experts,
it will take , and if we address times

experts, . In addition, it is necessary to take into
account the processing time of the expert or experts when they
work on the query. Without having the organization, it will take

actions to go over all the documents in, and
process each one in time to find the answer to the query.

Planning. Deckeret al. mentioned in [2], their intention to
develop a library of reusable coordination mechanisms. We
might think of as a domain of coordination mechanisms.
Our algorithm divides this domain into groups of mechanisms
that are related according to some measure of similarity. A
corresponding organization of agents will be developed as
well. These agents’ expertise will be in the features of these
mechanisms, and include the conditions under which they can
be used. Other agents that need to coordinate their actions
could approach the expert organization and get help as to which
coordination mechanism they would be best off using.

Grosz and Kraus [3] used the term recipe, to describe the
actions that need to be done to achieve a goal. These actions
might have to satisfy certain constraints, and might involve a set
of agents that have to perform the actions at different times (i.e.,
these are the variables of the recipe). The model they presented
included agents that held libraries of recipes, and the agents’
success in achieving their goals was also based on the integra-
tion of different recipes from different agents. When an agent
was aware of a partial individual plan, and needed to find a
recipe for an action in its plan, two options were proposed in
[3]: contract the execution of the action and do research, i.e.,
ask an expert.

In our model, we suggest evolving an organization of agents
that would be responsible for recipes in a given domain. Instead
of having an agent facing a problem and starting to plan from
scratch, it might approach an organization in its domain and ask
for an initial solution. Another possibility is that agents might
approach the expert agents when they need a specific recipe,
and might be able to evaluate similar recipes with regard to the
cost and efficiency of the different ways proposed by the expert
to achieve the agent’s goals. Therefore the query that an expert
will be asked will be of the following form:how do I achieve
goal G? How do I get to state S?Then the utility and quality of
an organization could be computed in terms of the steps needed
to perform the plan, and what is each agent’s cost, and how far
is the goal the system arrived at from the real goal (i.e., the one
they actually intended to achieve).

Another option is to have a domain consisting of cases [32],
and corresponding solutions. During the organization evolution
process, the agents will learn about the similarities between the
cases, and divide among them the existing experience. This kind

of organization can be approached by agents willing to find pre-
pared solutions for situations similar to those in which they find
themselves.

In this case, a user that approaches the organization is acting
like a person that approaches a library of reusable plans that have
been organized (i.e., catalogued).

Tools and Skills.An agent might not have an ability to run
a program or use a tool for achieving a goal to which it was
assigned. Maybe it cannot access a specific program in its com-
puter at that time (e.g., the mail-server is down).

The domain can consist of a set of software. For example, a
set of expertise can include programs for finding people (e.g.,
finger), search engines, access to DBs, news, ftp, etc.

An agent can approach the organization with a query:look for
person X. The expert that knows how to look for people suggests
the use of one of its programs, or it chooses one according to the
resources available, and performs the associated action.

If we did not have the organization, the cost of performing the
task by an agent that does not have the appropriate skills would
be essentially infinite, since the agent could not achieve its goal.
If we have the organization, it will take steps to find the
corresponding expert out of the in the organization.

For a more efficient division of labor. The organization
of experts can also act as a multiagent system that achieves
the goals assigned to it. When the organization gets a goal,
each expert can suggest the best partial plan or recipe it has for
achieving the closest goal to the one they were assigned. The
best partial plan or recipe is chosen (e.g., by a synchronization
procedure, or by known cooperative problem solving paradigms
for coordination, such as voting [33], [34], negotiation [1], or
communication; for an overview on coordination mechanisms
see [35]). The partial plan or recipe includes what each agent
needs to do and a schedule for doing it.

Another (related) use of such an agent organization is to con-
sider the organization as a multiagent system that solves prob-
lems presented to it. Each agent’s expertise or knowledge is
given by the part of the domain for which it is responsible, after
the evolutionary algorithm has been run. Were the agents simply
approached as a source of information, they might retrieve a
plan, or advice as to how it is possible to solve the goal. Here,
though, the agents are also actively performing the plan instead
of just suggesting it.

We have implemented a multiagent planner based on the evo-
lution algorithm presented here [4]. This implementation, how-
ever, is beyond the scope of the current paper.

IX. CONCLUSION

An evolutionary approach was presented for creating agent
organizations. This is a framework that can be used to test dif-
ferent patterns of organization that might emerge given a set of
information. Since parameters such as the size of a multiagent
system, and division of roles, are very difficult to determine be-
forehand, a model was proposed to test different organizations,
and then enable a designer to choose the one that best matches
the structure of his domain for future actions. First, the approach
serves as a tool to analyze emerging organizations of agents.
Second, the same tool can serve to analyze the structure of in-
formation domains in which agents will eventually act.
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