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Communication and Cooperation

Abstract

Intelligent agents need to coordinate their actions in pursuit of common goals. When
communication is possible, cooperating agents must decide what information to pass in
order to agree on a single course of action. This paper outlines several communication
strategies (under monotonic and nonmonotonic planning assumptions), proving that some
are convergent while others are not. An analysis is also made of the advantages of passing
false information.

§1. Introduction

Recent years have seen increasing interest in Distributed Artificial Intelligence (DAI)
systems, that is, in groups of intelligent agents whose members cooperate in carrying
out tasks. Considerable work has gone on in this area, producing a number of tentative
approaches to cooperation; notable among these research efforts are Smith and Démvis’ work
on the Contract Net [1], Davis’ investigations of Cooperative Problem Solving strategies
[2], Georgeff’s approach to assuring non-interference among distinct agents’ plans (3, 4],
and Lesser and Corkill’s empirical analyses of distributed computation [5].

Despite some genuine insights that these researchers have gained, however, DAI has
lacked much of the formal foundation needed for progress. Recent work by Appelt [6],
Moore [7, 8] and Konolige [9, 10, 11, 12| has begun to develop the formal descriptions
necessary for one agent to rcason about another agent’s knowledge and beliefs; this is a
key step in the dcvélopment of 311cce§sful DAI systems.

This paper begins to lay the groundwork for another aspect of Distributed Artificial
Intclligence’s foundation; it presents a description and analysis of information passing
stralegics between intelligent agents. Through use of a formal descriptive language, certain
information passing behavior is proven to be convergent. In addition, an analysis is made
of the role that can be played by the passing of false information, i.e., information that is
logically inconsistent with the beliefs of the sender.

Consider, for example, two individuals who have lost contact with each other in a

department store [13]. Both have a common interest in reuniting, but communication
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may either be impossible or limited in some way (through the store’s paging system, for
example). To succeed, the individuals need to use tacit or explicit coordination techniques.
Our concern is with the sorts of reasoning these agents would go through in planning their

actions; more specifically, we are here concerned with what communication strategies such

agents, with common interests, would pursue.
§2. Initial Global Assumptions

We shall consider the case of two agents, each possessing identical logical deduction
capabilities and a separate database of propositions that describes the environment. In
addition, each of the agents has meta-level knowledge regarding the other’s database. As
an initial assumption, we shall consider all information in our agents’ world (including
meta-level information) correct; that is, it describes the true state of the environment.
Subsequently, we shall remove this assumption, and consider the case where the agents
possess incorrect inforrfmtion. However, even under our initial assumption of correct in-
formation, base level and meta-level information will sometimes be incomplete.

Both agents are operating under the identical global utility function; they are thus
motivated by exactly the same “desires” (i.e. have the same goals), and will, to the best
of their abilities, cooperate to further global utility. Each agent accepts all facts that are
passed by the other. | |

The agents use standard Al techniques [14, 15] to devise plans; specifically, each goes
through a process of theory extension. Sets of axioms are derived by an agent such that
its database, plus any of these sets, will logically imply the goals; each sct prescribés an
alternate executable plan of action to achicve these goals (i.c., the plan consists of a set of
axioms describing the actions each agent should exccute). Note that any plan developed
by an agent speciﬁes. a global plan of action, that is, it specifies the actions of both agents.

The agents will communicate until they agree upon some one plan; only then will
actions be taken that alfect the external environment. The agents communicate using

a fixed language and a fixed vocabulary. In the case where the agents’ communication
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overlaps, we assume that there is a way for them to determine whose message originated
first (and to resolve ties through some unique ordering).

Convergent information passing strategies are defined to be strategies guaranteed
to cause the agents to agree on the execution of a single plan after a finite number of
communications. This paper will examine strategies of information passing, and prove

that some are convergent.
§3. Notation

Our two agents are labeled agent A and agent B. A’s database, consisting of propo-
sitions that describe the environment, will be denoted by D,4. Similarly, B’s database
will be denoted by Dp. A’s meta-level propositions (that define A’s knowledge of B’s
database) will be called Dp/, while B’s propositions describing A’s database will be called
Djr. Dp and Dp are assumed to be finite.

It will sometimes be necessary to refer to the total (possibly infinite) set of propositions
that describe the environment; we denote this set by Dr. The global set of goals, by
definition possessed by both agents, will be called G. |

To denote the sct of plans provable from a database D and a goal set G we write
H¢ (D).

In this paper we will assume that all plans are consistent with the identical goal set, and
will therefore simplify our notation by using II(D) to denote the plan set. Using this
convention, II(D4) is the set of plans provable from A’s knowledge of the world; similarly,
I(Dp) is the set of plans derivable from B’s knowledge. The total set of plans that are
provable from the environment is II( D). This set of plans is assumed to be non-empty.

Analogously, we introduce the terms II(D4/) and [1(Dp:). [I(Da) is the set of plans
provable from what agent B knows of A’s database, and II{D ') is the set of plans provable
from what A knows of B’s database.

A plan « in, for example, II(D,4) will generally be proved using some proper subset

of the agent’s database D 4. We will denote this subset of D4 that is sufficient to prove «
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by da(c). The subset of D, that is sufficient to prove all of the plans in II(D4) will be
denoted by d4(II(D4)). ‘
Having presented our notation, we now formalize, for future reference, two of the

initial global assumptions that were presented in the last section.

Assumption 1. Both agents’ information about the world is correct, but may be incom-

plete: D4y C Dt and Dg C Dr.

Assumption 2. Both agents’ information about the other agent’s database is correct,

but may be incomplete: Dy C D4 and Dp C Dp.

§4. Convergent Strategies: The Monotonic Case

In this section, we present convergent strategies of information transfer subject to two
assumptions not mentioned above. The first is monotonicity of plan generation by agents
A and B. Informally, this means that if database D’ is a subset of database D, then any

plan that an agent generates with D’ will also be generated with D. Formally, we write
vDvD'((D' € D) > ((D') C TI(D))).

The second assumption is that the agents’ meta-level information is limited to that
expressible by ground clauses. Spccifically, we assume that if agent A knows that agent
B has a piece of information, A knows that information as well. To simmplify matters, we
might think of the agent’s meta-level propositions as being represcented in the same form
as its base level propositions; an axiom is then meta-level due to its being in a meta-level
database. Thus, direct statements can be made comparing, for example, axioms in D4

and Dp/. The following formalizes the above assumption.

Assumption 3. If A knows that B knows some fact, then A knows the fact as well:

Dp: C D4. Similarly, Dy C Dp.

As we shall sce, this assumption, along with monotonicity, has major implications on

our analysis of information passing: they guarantee that if cither agent has a non-cmpty
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set of plans that are provable from its database, the two agents will eventually converge

and agree on a single plan for execution. Throughout this monotonic section, we assume
that II(D4) and/or II(Dp) is non-empty.
4.1 Consequences of Monotonicity

There are several important consequences in our assuming monotonicity of plan gener-
ation. Each of these consequences is directly derivable from the definition of monotonicity
and one of the assumptions presented above.

The first consequence is that, because an agent’s information is correct (though par-
tial), any plans that are provable from its database are also provable from the true state

of the world.

Consequence 1. In the monotonic case, I1(D4) C II(D7) and II(Dp) C II(D7).

Substituting into our definition of monotonicity (D4 for D’, and Dr for D) we have
(Da € Dr) o (II(D4) € T(D7)).
D, C Dy is true by Assumption 1. The situation is analogous for Dg C Dr. W

A second consequence is that any information that an agent has about another agent
is “pessimistic,” in the sense that the other agent can only possess more plans than the

original agent suspects.

Consequence 2. In the monotonic case, II(D4/) CII(D,) and II(Dp/) C II(Dp).

Substituting into our definition of monotonicity (D4 for D', and D, for D) we have
(Dar € Da) > (Tl(Da) S T(D4)).
Dpr C Dy is true by Assumption 2. The situation is analogous for D C D. W
Third, the plans of B that A is aware of are a subset of A’s own plans.

Consequence 3. In the monotonic case, II(Dp:) C II(D4) and II(D 4/) C II{Dp).

Substituting into our definition of monotonicity (Dp: for D', and D4 for D) we have
(DBr c .DA) D (H(DD:) - H(.DA)).
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Dp: C D, is true by Assumption 3. The situation is analogous for Dy» C Dg. ®

4.2 Information Passing vs. Plan Passing

In much of our analysis below, we will be concerned with “information passing!” that
is, with the transfer of sets of database propositions between agents. In general, these
propositions will be sent from one agent to the other so that the latter will have sufficient
information to derive plans already generated by the former. Why not instead design the
agents differently, allowing the first agent to transfer a single plan, instead of transferring
database propositions and forcing the other agent to duplicate deductive steps?

In our scenario, where all propositions are correct and plans are generated monoton-
ically, it may indeed be the case that plan transfer is superior. It is certainly true that

passing a plan to the other agent will cause convergence to a correct plan, i.e., onc in

T(Dr).

Theorem 1. In the monotonic case, if each agent picks a plan that is provable from its

own database and sends it to the other, the agents will converge to a plan in II( D).

Proof: Any plan in TI(D,) is also in TI(Dr) (Consequence 1); similarly, any plan in
M(Dyg) is also in II(Dr). If agent A sends B a plan in II(D,4), B will accept it (by
assumption); likewise if B sends A a plan in I1(Dp). If both agents send plans, then there
is an assumed mechanism for deciding which was sent first (and resolving ties). In any
case, both agents will have agreed on a plan in II(D7) after (at most) onc communication
act cach. W

The decision as to whether information or plans will be sent in the monotonic case
could be based on relative cost. It may be the case that communication is far more
expensive than computation, and thercfore it is worthwhile to limit communication cven
at the cost of the receiver’s having Lo rederive old results. In this case, it may be cheaper to
transfer a few short axioms than a substantially longcr‘pla.n. Conversely, if communication
is cheap, or the plan length is shorter than the axiom length, plan transfer may be supcrior.

Another consideration is whether we want to allow agents to carry out plans whose
exccution is not warranted by their own databases (this becomes more of an issuc when

information cannot be assumed correct or plans are not generated monotonically). In the
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sections that follow, we assume that an agent will only execute plans that, along with
its own database, imply the goals. Thus, we examine strategies that lead both agents to
agree on a single plan that is provable from both of their databases and the goal set. Note
that this does not limit the agents to pure information transfer, since it will sometimes be

possible for one to transfer a plan that is already provable from the other’s database.

4.3 Primitive Strategy

We presented above a simple strategy of transferring plans that was guaranteed to
cause convergence. There is likewise a simple strategy of information transfer that is
guaranteed to allow eventual convergence to a plan in II(Dr): both agents transfer their

entire axiom set to the other agent.

Theorem 2. In the monotonic case, total information transfer allows eventual conver-
gence to a plan in I1(D7).

Proof: 1If both agents share their databases, then both A and B end up with identical
D aup propositions. Since D4 € Dayp and Dp C Dayp, and II(D4) and/or II(Dp) is
non-empty, monotonicity guarantees that II(D sy p) is non-empty, i.e., A and B will agree
on a non-empty set of plans. Since Dy C Dy and D C Dp, Dayp C Dr; thus every
member of this set (II(D4up)) is also a member of TI(Dr) by monotonicity. Specification
of a single plan in this set (if there is more than onc) can then occur. If both agents specify
different plans at this stage, the first message determines which will be followed. W

Actually, a transferral of the agents’ entire databases is not necessary, since not all of
the axioms in a database are relevant to the plans that need to be proven (relative to a
particular goal). In place of the entire database, each agent could transfer the subset of its
axioms that prove all the goals of which it is aware, e.g., agent A would transfer d 4(II(D4)).
This strategy of total relevant information transfer still allows trivial convergence to a plan
in II(Dr), and is a more realistic strategy than attempting to transfer all of ones axioms
to the other agent. While D4 can be expected to be quite large, do(II(D4)) may be a
more managcable size. '

Note, however, that if the agents only share information that they consider relevant,

they may miss some interactions between their data. For example, if A and B both know
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that P and @ imply R, but A only knows P and B only knows @, then neither agent might
consider the facts P or Q relevant in isolation (though they are in tandemj and will not
send them. As long as II(D,4) or II(Dp) is non-empty, though, this missed conclusion will
not matter. If it did for any reason, the agents could define “relevant axioms” as any that
appear on the left side of pertinent rules, even if the rules were not used in the derivation

because of missing facts. That way, fact interaction will be enabled.

4.4 Sophisticated Strategies

Still, the heavy-handed strategy of total information transfer (or even total relevant
information transfer) is far from attractive. While it allows convergence, we might wonder
if there are not more elegant strategies that do the same. In fact, such strategies do
exist; as we shall see, they depend on the specific view that each agent has of the other’s

database.

Our task is to show that either agent, having any particular database and information
regarding the other’s database, can send a plan (or information and a plan) that is both
correct and provable from that other’s database.

The simplified convergent strategy is as follows. There are two actions that agent A
can takev (similar rules exist for agent B); they cover all possible cases (as seen from the
perspective of agent A with non-empty II(D4)):

1. When II(Dp) # 0, send a message of the form “I am pursuing plan 8” where 8
is a member of II(Dp:) (8 will also be in II(D,4), from Consequence 3);

2. When II(Dp/) = 0, send an axiom set ¢ such that : C Dy and Dp: Ut U B = G,
along with a message “I am pursuing plan §” (such an 7 will exist since D € D4 and,
since II(D4) is non-empty, there exists a 8 such that Dy U 8 = G; at the very worst, ¢
could simply be the axiom set such that Dp: U4 = D4; note also that, by monotonicity,
we are guaranteed that any B chosen will be in II(D,)).

Because A only proposes a plan in II(D 4 ), we know that the proposed plans are correct

(Consequence 1). Because A is pessimistic (Consequence 2), B will always accept the plan
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that it proposes. Thus, along with our assumption that B is following analogous rules and
that transmissions are ordered, we now have a strategy that converges to a correct plan.
Note, however, that a convergent strategy may not exist if both II(D,) and II(Dp) are

empty. If II{D 4) = 0, agent A may do best by transferring its entire database D4 to B.

Determining axiom set 1t

When we discussed the axiom set 7z above, we simply noted that it existed—we did
not mention how A might find the minimal set 2 and so minimize communication costs.
One method would be for A to keep track of the number of axioms not in Dp that are
used to generate each of the plans in II(D,); the plan generation is done such that plans
that require fewer non-Dp axioms are proven first (to take care of an infinite II(D4)).
A “dovetailing” computation would be performed to avoid being caught in an infinite
derivation when attempting to generate any of the plans in II(D,4) [16]. The first plan
generated is then the one to propose to B, after sending it the relevant missing axioms z.

Note that this produces a minimum axiom set 7 from A’s perspective. However, A
may send facts to B without realizing that B. already has them, since A knows only a
subset of B’s database (e.g., if Dg = Dp.but Dp = 0, A will transfer a set of axioms
to B, when a simple commitment to a plan would suffice). Thus, there may in fact be a
smaller set z that would work. Note also that in the discussion above we have not merely
shown that strategies of convergence (short of total information transfer) exist—we have

shown how an agent can operationally pursue them, a stronger result.
§5. Convergent Strategies: The Nonmonotonic Case

Nonmonotonicity means that, even if a plan and a database D' imply a goal, and
there exists a D such that D’ C D, the plan and D may not imply the goal. In relaxing
the assumption of m'onotonicity that played such a crucial role in our analysis above, we
discover a radically different convergence situation. In particular, we find that there is no
strategy of information transfer that is guaranteed to converge onto a correct plan, i.e., a

plan in II(D7), even if II(D,4) and/or II(Dp) are non-cmpty.
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The problem we encounter is the unpredictable nature that information might play on
plan generation in the nonmonotonic case. It is possible that B, with partial information,
can generate all the plans in II(Dr); after one axiom is received from A, the set of B’s
plans could become empty, while after receipt of another axiom, the set of plans could
become equal to II(Dr) again. It is not difficult to write nonmonotonic rules that give
rise to such oscillating behavior, and it makes general analysis of strategies very difficult.

Since A cannot be sure of all of B’s information, it cannot always avoid these problems.

5.1 Information Passing vs. Plan Passing

New arguments appear in favor of information passing over plan passing in the non-
monotonic case. First of all, simply passing a plan from A to B (or vice versa), a strategy

that guaranteed convergence to a correct plan in the monotonic case, may fail here.

Theorem 3. In the nonmonotonic case, if each agent picks a plan that is provable from its

own database and sends it to the other, the agents may not converge to a plan in II( Dr).

Proof: Even if both agents have identical databases, and thus identical plan sets, their
plans need not be in II(Dr). Thus they could trivially agree on the communicated plans,
and still be agreeing on a plan outside of II(Dr). W

In addition, there now appear other advantages to information passing over plan pass-
ing (besides potential cost advantages). For example, consider the case where A believes
that by passing axiom set z to B, the latter will derive some plan, but in fact this is not so
(because B has more information that A thinks it has). If B were simply presented with
the plan, it would know only that A derived it in good faith, but would not have any idea of
the facts that supported it; being presented with some facts that A considered convincing
evidence in favor of the plan would allow B to make a more appropriate response.

Unl‘ortunately; however, for arbitrary D4 and Dp there nced not be any guaranteed

strategy of information transfer that will cause A and B to converge to a correct plan.

Theorem 4. In the nonmonotonic case, there is no guaranteed strategy of information
transfer for arbitrary D 4 and Dp that will cause A and B to converge to a plan in I1{ Dr),

even if II(D4) and II(Dp) are non-empty.
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Proof: For many universes D7, it is possible to find a non-empty subset U of axioms
that can be used to derive a set of plans, none of which are in II{D7); we then assign U
as D4 and Dp. Under these circumstances, no matter what information transfer goes on,
A and B will not converge to a plan in II(D7). ®

5.2 Correct Convergence vs. Acceptable Convergence

Faced with the prospect that no plan passing or information passing strategies will
necessarily converge to plans in II(Dr), we wish to find an alternate definition of conver-
gence, one more reasonable for the nonmonotonic case. One such acceptable definition is
that A and B should agree on a plan in II(D4yp). Though other convergence definitions
are plausible (e.g., convergence to plans in II(D4) UII(Dp) or in II(D4) NTI(Dg)), this
definition mirrors a “most-informed” single agent: the agents will accept plans that would
also be accepted by a single agent possessing all of their knowledge. We call tHis correspon-
dence to the single-agent case the “single-agent isomorphism.” Intuitively, it is as close as
we can come in the nonmonotonic case to having agents converge to correct plans.

There is an aspect of safety in using the “single-agent isomorphism” as the convergence
criterion. In the real world, agents may be operating with widely varying models. Unless
they are restrained, they may pursue plans that, while warranted by their own knowledge,
are not warranted by others’ knowledge. By requiring plans to satisfy the union of agents’
databases, we are making surc that actions conform to all the knowledge that can be

brought to bear on the situation. This is a conservative approach.

5.3 Primitive Strategy

Armed with our new definition of “acceptable convergence,” there is a primitive in-
formation transfer strategy that trivially guaranteces it: both agents transfer their entire
databases to the other. Then both A and B will have identical Dayp facts, and will
agree on plans in the set II(D4yp), if any exist. Note once again that these plans may
not be in II(D7); in fact, before the information transfer both agents might conceivably
have possessed plan sets equivalent to IT(Dr), only Lo sce their plan sets change when the

new information arrived. At least they will now agree on a (possibly empty) set of plans,
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isomorphic to what would be generated by a fully-?nformed single agent.

A variation on this strategy is one of total relevant information transfer, where each
agent sends those axioms that it feels are relevant to the plans it has generated (e.g., A
sends d 4 (II(D 4))). It is necessary here, however, to define “relevant” in a slightly broader
sense, as we did above. Fach agent needs to send all facts that appear on the left-hand side
of pertinent rules (and that it believes), even if the rules were not used in the agent’s actual
derivation, since these facts, combined with the other agent’s facts, could have unforeseen
consequences in the nonmonotonic planning world (allowing new plans to be derived, or

disproving old plans that had been derived).

5.4 Sophisticated Strategies

Unfortunately, there is little more that can be presented in the way of other nonmono-
tonic strategies that guarantee acceptable convergence. There is, however, one special sit-
uation that warrants mentioning: the case where we are guaranteed that Dp will always
be a subset of D 4. This will be true, for example, when D4 = Dr (the D4 C Dp case is
analogous). . L

With this design assumption, it may be possible for A to successfully “convince” B of
one of the plans in II(D,4). Since Dp C D4 this will certainly be an acceptable convergence
(i.e., TI(D4) = I(D pyp) under these circumstances); if D4 = Dy this will actually be a
correct convergence, that is, a convergcncé to a plan in II(Dr).

One main assumption must be made: A is assumed to know all the nonmonotonic

rules [17, 18] under which B is operating, and the ordering in which B will use them.

Theorem 5. In the nonmonotonic case, if Dp is guaranteed to be a subsct of D4, and A
knows the order and content of B’s nonmonotonic rules, there is an acceptable convergent

strategy for A.

Proof: Note that we are not concerned here with Dp, but rather with Dp itself; A will
effectively have to ignore the contents of II(D /) because, due to insuflicient knowledge, it
may bear absolutely no relation to II(Dp). However, A can assume that any information
it has about B is correct. By examining B’s nonmonotonic rules in order, A can generate
a finite list of axioms that B nceds in order to accept any particular plan in TI(D,); any
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members of this list that D g/ does not indicate B already has are then sent to B. Although
B may possess other information, because of the ordering on the nonmonotonic rules it
can have no effect on the plan that B derives using the earlier rules; thus the plan will be
agreed upon by both agents, and the strategy is convergent. Since this plan is in II(D4)
and D4up = D,4, the plan is also acceptable. W

§6. Agents Possessing Incorrect Information

Initially, we made the assumption that all information possessed by the agents, both
about the environment as well as about the other agent’s database, is correct. This assump-
tion, while restrictive, might be appropriate for agents whose domain of action is limited.
If there is no chance (or extremely little chance) that incorrect information might be in-
troduced into the agents databases, the analysis above is sufficient to categorize available
strategies.

However, it is obvious that agents operating in a more complex environment could
be expected to hold incorrect beliefs about the world and about each other. Information
passing strategies that they employ must take into account the potential inconsistencies
between their databases. In this section we consider the implications that incorrect infor-
mation has on the analysis presented above.

In a general sense, what concerns us is discrepancies between agents’ d#tabases, and
how to resolve them. The issue of whose information is correct, relative to the outside
world, is more difficult. If the discrcpancies can be resolved by combining facts from
both databases, our agents should adopt appropriate resolution strategies. In some cases,
however, there will be no clear way to resolve disagreements over the basic facts; we will

touch on this issue only briefly, noting that much work remains to be done on this subject.

6.1 The Sources of Incorrect Information

.

There arc several potential sources for an agent’s incorrect information. Tirst, it is
possible that the agent was initially configured with incorrect axioms or incorrect rules.
Second, an agent may rely on faulty sensor information, and believe some fact to be true

of the environment when it is not. Third, a conclusion may have been derived from a non-
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monotonic rule, when further information would have shown that the rule was inapplicable

under the circumstances.

The first cause listed above, that of an incorrect initial configuration, is difficult to
remedy. Particularly if an agent holds a consistent, though spurious, world-view, it may be
impossible to correct his assumptions (in fact, it is not at all clear why the corrector can be
assumed to have a more accurate set of beliefs, relative to the environment). Arbitration
between two distinct, consistent world-views is not our concern. If, on the other hand, an
agent’s initial incorrect configuration contains internal inconsistencies, or has the potential
for containing inconsistencies (e.g., through the introduction of new sensor data), such a
problem might be discovered by the agent itself or through the communication of another
agent.

The other two possibilities, where faulty sensors or non-monotonic assumptions have
introduced errors into a database, are of more interest to us. In the sections below,
we examine the immediate consequences that these errors have on information transfer

strategies, as well as approaches to resolving the inconsistencies between databases.

6.2 Changed Assumptions, Changed Consequences

In dropping-thc “correct information” requirement, we are in effect dropping Assump-'
tions 1 and 2, presented above. Assumption 1 stated that both agents’ information about
the world was correct, though possibly incomplete; Assumption 2 stated that both agents’
information about the other agent’s database was correct, though possibly incomplecte.

The: consequence of Assumption 1 (and monotonicity) had been that all plans that
an agent proved were guaraniced correct. The consequence of Assumption 2 (and mono-
tonicity) had been that all plans that an agent suspected another agent of having, were,
in fact, possessed by the second agent.

The removal of the monotonicity assumption had a delcterious effect on both con-
sequences above, as well as the information passing strategies that these consequences

engendered. We have a similar situation if we withdraw Assumptions 1 and 2, cven if
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monotonicity is maintained. In particular, the plan passing strategy and information
transfer strategies presented in the monotonic section above are invalid in the incorrect

information case, as they were in the nonmonotonic case.

Lemma 1. In the incorrect information case, if each agent picks a plan that is provable
from its own database and sends it to the other, the agents may not converge to a plan in
(Dr).

Proof: Same as Theorem 3. H

Lemma 2. In the incorrect information case, there is no guaranteed strategy of informa-
tion transfer for arbitrary D4 and Dp that will cause A and B to converge to a plan in
II(Dr), even if TI(D 4) and II(Dp) are non-empty.

Proof: Same as Theorem 4. B

In the nonmonotonic case, we proceeded to define a new type of convel:gence (“accept-
able convergence”) and showed that total information transfer allowed it to occur. Here,
we have a more vexiné problem, since total information transfer (or even total relevant
information transfer) may result in an inconsistency in the agents’ databases. Clearly,
facts cannot be accepted at face value, and there must be an approach to resolving facts

that are inconsistent with one another. The following section will examine this issue.

6.3 An Approach to Resolving Information Disagreement

The discovery by an agent that another agent’s database disagrees with its own can
occur in one of several ways. Most fortuitously, onc agent might be pursuing one of the
strategies presented above (information transfer), and the second agent simply recei\./es a
fact inconsistent with its own database. This may involve a direct contradiction, or it may
require a more lengthy deduction to discover (and thus may not be apparent at first).

Another possibiiity is that agent A has sent B a sct of facts which it believes implies
a plan when added to B’s database. In fact, since A has incorrect information about B,
no plan is implied (or a different plan is implied). The discovery may then occur when

the plan fails for lack of coordination, or, if the agents are carcful, when they compare

15



prospective actions. In the presence of potentially incorrect information, such plan cross-
checking should in general occur.

Let us assume, then, that the discrepancy has been discovered, and that the agents
are now interested in proceeding. As an example, let us assume that agent A believes that
fact z is true, and that agent B believes that z is false (i.e., =z is true). Of course, there
would be no problem if B did not believe z or —z, but our assumption is that there is an
active disagreement between the two agents. We are interested in developing an algorithm
for A and B to use in resolving their disagreement about fact z.

Actually, the facts £ and —z may be believed by the agents due to a chain of deductions.
Each agent sends “justifications” (in the truth maintenance sense [19]) to the other agent.
For example, let us suppose that ¢t and u imply z, and that A believes ¢ and u (and therefore
z). Similarly, e and f imply -z, and B believes e and f (and therefore —z). Clearly, if
the implications being used are correct and/or accepted by both agents, B cannot believe
t and u, and A cannot believe e and f. Eventually, a core group of facts is discovered on
which the two agents disagree, and which are not themselves based on any other database
assertions. The initial problem is thus for the two agents to identify this core group of
facts.

In the nonmonotonic case, the identification of the core group procceds in the same
way, though the process may be simplified by the invalidating of certain rules that had
been used. Either one of the agents (or both!) will discover that, in the light of their new
information, their original conclusions were unwarranted, or they will identify the core
group of facts upon which they disagree.

It should be n9tcd that the process of discovering the core group can be simplificd by
communicating each step of the scarch. For exmnple,‘pcrlmps B belicves u but does not
believe ¢&. In this case, agent A can restrict its search to the ¢t branch of the deduction;
similar pruning can occur at each stage of the tree.

Once the core group has been identified, the agents need to compare the support they

have for cach conflicting fact. Beyond having arrived at a fact by deduction (which is
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irrelevant for the core group of facts), there are three kinds of support for a fact: 1) the
fact may be “hard-wired,” in the sense that it was built into the original configuration of
the system, 2) the fact may be sensor-based, or 3) the fact may have been transmitted by

another agent and belicved by the recciver.

The resolution of conflicting core facts can be achieved in a variety of ways. There
are a variety of heuristics to consider, for example, an ordering of the support categories
(e.g., hard-wired facts take precedence over sensor-based facts, sensor-based facts take
precedence over transmitted facts). Belief in the ultimate reliability of hard-wired facts may
be particularly appropriate if these facts are kept to a reasonable minimum. Transmitted
facts can be converted into one of the other two types of facts if the original transmitter
can be contacted and traces the fact’s support.

The problem of resolving disagreements at the same level may also be treated heuris-
tically, with, for example, certain sensor-based readings considered most reliable (e.g., a
satellite robot can be considered to know its own rotation speed reliably). A more difficult
problem would be for an agent to deduce a method of convincing the other agent that, for
example, a particular sensor has stopped working. Such a strategy might involve creating
a situation whereby belief in the faulty sensor’s measurements would introduce an inconsis-
tency in the other’s database. Although such a deduction is certainly possible, the gencrai
problem of designing such a test is very difficult. We look to simpler mecasures (such as the

heuristics mentioned above) to resolve the vast majority of disagrcements among agents.
§7. The Limited Utility of Lying

In all of the discussion above, we have only analyzed the transfer of consistent infor-
mation, i.e., facts that arc consistent with the database of the sender. What utility might
there be to having agents send each other locally inconsistent information, that is, axioms
that are inconsistent with the sender’s database? Although in some sense the sender be-
lieves these inconsistent facts to be false, he may still be able to further global utility by

making creative use of them.
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Consider, for example, the case where the glo.bal utility function specifies that com-
munication between agents A and B should be kept to a minimum. A knows that by
transferring a (locally consistent) set of axioms ¢ to B, B will accept some plan in II(D,);
however, there is a much shorter set of (locally inconsistent) axioms f that will also cause
B to accept the same plan. Moreover, it can be shown that B’s possession of the “false”
facts f will have no other effects in the future (e.g., execution of the plan removes those
facts from B’s database). Under these circumstances, global utility might warrant the
passing of locally inconsistent information.

The usefulness of passing incorrect information has been considered for several reasons.
For example, the concept of “loosening” honesty requirements so as to achieve common
knowledge appears in [20]. The authors show that the practice is actually required under
certain circumstances, i.e, when simultaneity among the agents cannot be achieved. In
another example, [21] considers the practice of a system “telling white lies” so as to simplify

the introduction of a new concept to a user (the way a teacher often does).

In fact, current Al systems have no explicit mechanisms to keep them from commu-
nicating inconsistent information; if they can deduce that such communication will help

reach their goal state, they will use it. At issue is the desirability of such behavior [22, 23].

7.1 Economic and Specificity Arguments

There are several economic rationales for inconsistent information transfer (IIT) in
the presence of a global utility function (the local utility of this practice when local utility
functions are involved can be trivially demonstrated, as discussed below). The economic
benelits of IIT can take various forms, particularly savings in communication costs and in

the costs of deduction for the sender and the receiver of the information.

The actual circumstances when these benefits accrue without potentially catastrophic
side-cffects are not easily discovered. Particularly when there is uncertainty about future
world states, IIT can be a risky business. These unforeseen states might cause the other

agent to use the inconsistent information in unexpected ways, lessening global utility.
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Consider also the case where the passing of inconsistent information is later discovered by
the other agent; there may be a subsequent refusal to accept information, leading to a loss
of global utility (though we might choose to design the agents not to react this way).

In addition to economic arguments that can be made for IIT, there is also a “speci-
ficity” argument: A may get B to accept some set of plans A using IIT that B would not
specifically accept if it were only passed consistent information (i.e., consistent information
might cause it to accept a superset or a subset of A). However, there are no plans that B

could be made to accept only by IIT. More precisely, we prove the following:

Theorem 6. No reasonable results (that are discoverable by the sender) can be derived
from the passing of locally inconsistent information that cannot be derived from the passing
of locally consistent information.

Proof: A “reasonable” result in the monotonic case is simply making the other agent
accept a plan in II(Dr). The only such plans known by the sender are those implied by its
own database (all of which are in TI(D7) by Consequence 1). But the whole local database
could be sent (which is, of course, locally consistent), causing the receiver to accept the
entire set of plans that it implies. Thus, there are no correct plans (of which the sender
can be awarc) that the receiver could only be convinced of through locally inconsistent
information.

In the nonmonotonic case, there is no way for the sender to discover which plans are
correct, since it only knows about the plans implied by its own database-(which need not
be in TI(Dr)). Thus, we use a diflerent definition of a “rcasonable” result. Following
our “single-agent isomorphism” argument above, we say that a reasonable plan is one in
the set TI(Dayp). Our proof then follows as above. The sender’s entire database could
be transferred to the receiver; having Dayp as its database, it will now accept all plans
in II(Dayp). Thus, there is no Dyyp consistent plan that the recelver could only be
convinced of through locally inconsistent information. M

§8. Future Research

Strategics in the presence of sophisticated inter-agent knowledge must be cxa.minéd.
In the above work, we have generally restricted oursel‘vcs to inter-agent knowledge of the
ground clause variety; cxistentially instantiated knowledge nceds to be allowed (agent A
knows that B knows some fact, without A itself knowing what the fact is), along with

“knowledge about knowledge” (agent A knowing that B knows that A knows something),
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disjunctive knowledge (A knowing that B knows fact p or fact ¢) and “common knowledge”
[20]. '

Future work will examine some consequences of agents having non-identical goals. For
example, agent B might ask A for the location of the blue block nearest B (all blue blocks
being out of B’s sensing range, or out of its line of sight). A might then give the location
of another blue block, not the one closest to B but one which A itself desires to see moved.
B’s desire may be satisfied suboptimally, while A may further its local utility through IIT.

The aim of this investigation is to develop a framework for understanding cooperative
behavior. With such a framework in hand, it will be possible to design intelligent agents
with an appropriate cooperative bent; machines, working together in practical domains,
will flexibly aid one another as they carry out their tasks. Such cooperation is ultimately
beneficial since the agents, helping each other, can accomplish their jobs more efficiently
(perhaps even accomplish tasks that are impossible without cooperation). The move to
distribution of computel;s has begun; with a better understanding of cooperation, the full

power of autonomous agents can be exploited.
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