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Cooperation without Communication

Abstract

Work in distributed artificial intclligence has until now addressed the issues of multi-
agent interaction only under the strict assumption of “agent benevolence,” where each
participant in an interaction freely aids all others. The approach taken in game thcory,
however, assumes “agent selfishness,” where each participant acts solely to ensure its own
well-being. This paper attempts to clarify the differences between these two approaches
by developing a model general enough to describe both of them, and by investigating the
consequences of this model in some specific instances, such as the problems of coordination
of actions among non-communicating agents and the prisoner’s dilemma. In particular,
the expanded model includes multi-agent interactions where the participants have distinct
or conflicting goals. The mechanism presented ensures harmonious interactions without
communication under many circumstances.

§1. The Need for Cooperation

1.1 Ubiquity of interaction and conflict

The world functions through interacting agents. Each person pursues his own goals
through encounters with other people or machines. Items are purchased, schedules coor-
dinated, arrangements made so that the original goals can be satisfied. Only in extremely
limited situations can an individual’s goals be pursued without interaction; when such
circumstances do arise, it is only becausc of careful preparation (and this preparation has
invariably been accomplished through interactions).

When pcople deal with one another, they often bring to the encounter differing goals,
and the interaction process takes this conflict into account. People promise, threaten, and
together find compromises that will satisfy all parties, without such outcomes necessarily
being ideal for al].. The process of negotiation takes place in both formal and informal
contexts; it is so much a part of daily life that it ofl,cin passcs unnoticed. Deciding on a
meeting time or place, for example, often involves suboptimal satisfaction of conflicting
interests.

It would seem that such negotiation only takes place ammong humans, and that human-

machine interactions occur without such processes having a role. In a sense this is correct.
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Man-machine interactions currently take place in very restricted, formal environments due

to the imperatives of unintelligent machines.

The rigidity of the protocols governing these interactions is not so much a consequence
of their non-communicative nature as of general assumptions regarding the inflexibility of
the machines involved. In this paper, we will discuss formalisms that allow machines to

interact flexibly with other agents without communicating directly with them.

1.2 Extreme cases

There are two extreme cases in the study of interaction. The first is when participants
are engaged in a “pure” conflict: any advantage gained by one is exactly balanced by a loss
to another. This case is often called “zero sum,” and has been examined in great detail by
game theorists [16]. The other extreme is the absence of conflict, when two participants
have identical goals. Under these circumstances, the agents are mainly concerned with

sound and efficicnt methods of helping each other with their shared tasks [22].

“Pure” conflicts in the real world are extremely rare, and it is difficult to generate
compelling examples of their occurrence. War, or battles within a war, are often taken as
canonical examples of pure conflict; in fact, the options available in most military situations
allow for outcoxﬁes that are mutually preferred by both parties (e.g., retreat of onec side,
rather than annihilation of that side at a great cost to the victor). Thus, although the
game theory work on zero-sum conflicts is iimpressive in its elegance, it has achieved this

elegance by abstracting away significant features of conflict.

Conllict-free interactions are also extremely rare. Overlapping of interests notwith-
standing, there is almost always ecnough variation among the participants’ desires to cause
them to prefer slightly different outcomes. Two agents may want the saine event to occur
but may differ as to which should exert itself in order to bring it about, for example.

The vast majority of recal-world interactions lic between the two extremes of total
conflict and absence of conlflict, and it is these partial conflict interactions that will be the

primary concern of this paper.



1.3 Real world examples

Current Al programs, when they deal with human-machine or machine-machine in-
teractions at all, assume a formal and rigid protocol for those interactions. This approach
is inadequate for many tasks. The reasons for this invariably stem from the need for
flexibility, even with machine-machine interactions. If a machine is going to act as a sur-
rogate for a human, and is to accomplish tasks at a level comparable to that of a human,
the machine must not operate under restrictive, crippling assumptions. What follows are
three scenarios where intelligent agents would need sophisticated and flexible interaction

capabilities in order to perform satisfactorily.

Resource management applications

People manage a variety of resources in their daily lives. The most conspicuous of
these is time; humans continually interact with one another in order to alfocate their time
satisfactorily. One task for an automated personal secretary would certainly be to manage
its owner’s time effectively. It would have to be able to negotiate with other similar entities
(or human secretaries) and arrive at, for example, compromise meeting schedules.

The typical human would be thoroughly unsatisfied with an automated secretary that
performed less well at this task than its human counterpart. The full complexities of
this scenario (commitments, threats, quid pro quo offers, hiding of information) require
fully flexible interacting agents, beyond the capabilities currently addressed in Al systems.

Management of other resources (such as space) would require similarly capable systems.

Space applications

Intelligent autonomous agents can be expected to operate under extreme circum-
stances; indeed, it is precisely under extremes that are diflicult for humans that automated
capabilitiecs become ;\ttractive. Construction of vehicles or stations in space is an example
of a scenario where automated builders could uscfully be employed. Such construction
agents can be expected to have certain intelligent characteristics, since the location and

fitting of frec-floating segments requires considerable skill.
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In addition to the robotics and vision capabilities required, however, are abilities of
coordination and synchronization. Although there may be rigid solutions to the problem of
construction (and there does exist a globally accepted set of goals), it is much more likely
that flexible capabilities, similar to those that would be employed by human builders, will
be more appropriate for the job. Uncertainties over such things as the order in which
pieces will be located (or the fuel that an agent will have expended at a particular point
in the process), and the negotiation needs of synchronization argue for a flexible approach

to interaction.

Military applications

Much attention has been paid recently to the possibility of autonomous land vehicles
(ALV’s), intelligent automated agents that would be capable of independently carrying
out military missions. While well-specified, rigid missions might be performed without

sophisticated interaction skills, such rigid missions are exceedingly rare.

As pointed out above, even conflicts arising in war are not of the zero-sum variety;
there are cases where mutually preferred outcomes can be tacitly or explicitly agreed upon.
In encounters with allies this is especially important. An ALV from one NATO country
may be allied with an ALV from another NATO country, but in an encounter their goal
structures could be very different (this is true even of two ALV’s that have been sent out
on different missions by the same commander). They must have some way of reconciling
their conflicting goals. A sophisticated method of interaction is especially necessary in
cases (such as this one) where encounters among the agents will occur haphazardly, the
domain of intcmct.ion is complicated and unpredictable, and the possibilitics of central

arbitration ol disputes are minimal. -

1.4 Payoff matrices as examples.

The game theory literature has adopted a simple and elegant notation to represent

multi-agent interactions: the payoff matrix. Here is an example:
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A B
Al 3/1 | 2
B| 2/5 | 0/1

Our notation here is that the first player selects a move labeling one of the two rows
and the second selects one of the two columns. A single number indicates an identical
payoff for both players, while ‘3/1’, for example represents a payoff of 3 for the first player
and 1 for the second.

We will use the same mechanism to illustrate several types of interactions that can
occur among agents. These are only a few of the many possibilities, and will be discussed
in further detail below. For a full discussion of the types of interactions that can occur,
even within the simplified world of abstract matrices, see [21] (which includes a 78 member

taxonomy of two player games).

Best plan

One kind of interaction is that in which there is a mutually agreed-upon “best plan.”
Although the participants might disagree among themselves as to what the second best
or third best alternatives are, they do agree (and might be expected to converge without
communica.tion)‘on a unique first choice. Rapoport and Guyer [21] call these “no-conflict

H

ames,” and variations on the basic theme occupy positions 1-6 and 58-63 in their taxon-
g

omy. An example of a best plan game is the following:

A B
Al 7 4
Bl 5 6

In this case the joint move (A,A) is preferred by both players.

Prisoner’s Dilemma

One of the best known examples of a two-person interaction is the so-called “prisoner’s

dilemma.” Its motivating scenario involves two prisoners being held by the police. Each is
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questioned individually and is offered some incentive to implicate the other, but they will
be better off maintaining collective silence than if both talk. Thus each would really prefer
to confess while the other remains silent, failing that, to mutually remain silent, and least

of all, to mutually confess. The payoff looks like this:

C D
Cl[ 3 [ o/5
D| 5/0 1

The dilemma revolves around the fact that each player sees that it is better for him
to defect regardless of the other’s action. Yet if both defect, they end up with an outcome
that is worse for both than if they both had cooperated. This “temptation” to defect
is the hallmark of the prisoner’s dilemma (Rapoport and Guyer characterize the matrix,
number 12 in their taxonomy, as having a “single strongly stable deficient equilibrium?”; it
is the only matrix in their taxonomy having this characteristic). Attempts to surmount the
unpleasant conclusion that both players will defect have preoccupied much game theory
and philosophy literature [2,5,11,20,24|. Below, we present an approach that solves the

prisoner’s dilemma under a particular set of assumptions.
§2. Rationality

Although any individual agent can assume the rationality of its own behavior, it is
important for that égent to be able to remain flexible with regard to the rationality of the
others. We will therefore investigate the behavior of an individual rational agent under a
variety of assumptions regarding the rationality of the agents with which it is interacting.
By “rational” here we mean an agent capable of deriving the logical consequences of the
precise definition of rationality we will present shortly.

We will also investigate only that small set of interactions to which we referred in the
last section—specifically, situations where there is no communication between the players
and where the goal of cach participant is to maximize his return as measured by some sort

of payoff function.



To formalize these notions, let P be a set of Pla.yers and, for each player z € P, let
M; be a set of possible moves for i. For S C P, we denote P — S by S; we will also write
i instead of {¢} where no confusion is possible. Thus 7 = P — {¢}. We also write M for
[ies M.

We will denote by mgs an element of Mg; this is a collective move for the players in
S. To mg € Mg and mg € Mg correspond an element nt of Mp. By a game we will now

mean a real-valued function

p:PxMp—R; (1)

p(z,7) is the payoff for player ¢ if move 77 is made. Note that we think of a game not as a
sequence of moves or interactions but as a single situation, and we identify the game with
the function which describes the outcomes of the actions available to the various players.

Rather than analyze specific moves in specific games, it will be more appropriate for
us to discuss the manner in which the players decide to make these moves. Each player
¢ is thus assumed to have some decision procedure D; by which he decides what move to
make in any given game g. Thus if we denote by g; the set of possible moves for 7 in g, and
write G for the set of all games and G; for the set of all moves legal for ¢ in some game,

we can define a decision procedure to be a function
D;: G — G;

such that D;(g) € g; for all games g. A decision procedure therefore assigns to any game a
specific move which is legal in that game; intuitively, cach player uses his decision procedure
to select from his legal alternatives in any given game. For a fixed game g and set'S of
players, we will denote [];cq [Di(g)] by Ds(g). Ds can be thought of as a “collective”
decision procedure by which a group S of players sclects a joint move.

Suppose now that player ¢ uses his décision procedure D; to make a move m; in a
game g with payoff function p. The other players in the game use their collective decision

procedure D; to make a move m; and the resulting payoff to ¢ is therefore

pay(i)Diyg) = p(i) 7?")' (2)
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The function pay here gives the payoff to ¢ in game g if he uses decision procedure Dy;
note that the appearance of 7 in (2) means that pay is implicitly a function of all of the
D;’s, and not just D;.

We are now in a position to define what it means for a decision procedure to be
rational. Specifically, we will say that a decision procedure D; is irrational if there exists

a decision procedure C; such that

pay(i, Ds, g) < pay(¢, Ci, g) (3)

for all games g, with the inequality being strict in at least one case. In other words, a
decision procedure is irrational if there is another decision procedure which is better in
some specific game, and no worse in all others.

The power of the characterization (3) depends on the decision procedure D; which
provides us with m; in the right hand side of (2). This in turn depends on the individual
decision procedures D; for ;7 # ¢. If we had complete knowledge of these other decision
procedures, we would effectively be moving with the knowledge of what the other players’
moves would be, and our decision procedure would be easily determined. In practice, of
course, this will not be the case, and gaps in our knowledge of D; will make it iinpossible for
us to climinate all of the strategics which are deemed to be irrational by (3). Our interest
will be in finding constraints on our own decision procedure given various assumptions
about the others.

At this point we have made no such assumptions at all. Speciﬁca.lly, we have not
assumed that the other decision procedures are independent of our decision procedure D;.
In fact, the ability to drop this independence assumption is the reason we are working not
with the moves themselves, but with -the analyses whic\h lead to them. By working in this
fashion, it is possible to assume that the players have knowledge of each others’ strategies
without being led to the circular arguments that otherwise pervade this sort of analysis.

We will in fact deal with a hierarchy of assumptions regarding the decision procedures

of the other players. Here are the definitions we will adopt:
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1. Minimal rationality: In this case, we make no assumptions at all about the other
players, although any particular agent still assumes its own rationalit.y. The effect
of this is for us to make our decisions as if the other players were moving randomly.
Perhaps this would be a suitable assumption for robots to make when decaling with
humans.

2. Separate rationality: The decision procedures D; of all players are assumed to be
rational. A reasonable approach for robots dealing with other robots.

3. Unique rationality: D; and D; are functionally independent for 7 # 5. The func-
tional independence means that each player’s decision procedure does not influence
the others. This assumption is generally made in the game theory literature, and
amounts to assuming that the moves of the other players are fixed in advance (since
their decision procedures are), although the exact nature of those moves is unknown.

4. Common rationality: D; = D; for all ¢ and j. This assumption (which cannot
be described in the conventional game-theoretic formalism) is peculiarly appropriate
to an artificial intelligence setting; it would be straightforward to equip potentially
interacting agents (such as those described in the first section of this paper) with
identical decision procedures.

It is clear that minimal rationality is entailed by any of the other conditions, in that
if a decision procedurc can be shown to be irrational assuming minimal rationality, it
will also be irrational under any of the other delinitions. Separate and unique rationality
arc independent but consistent; there are decision procedures which are rational under
one assumption but irrational under the other. We will refer to the combination of both
separate and unique rationality as individual rationality.

Common and unique rationality are inconsistent. This is intuitively clear from the
definitions; we will show that there is no decision procedure that is rational under both
definitions, since they generate conflicting strategies for the prisoner’s dilemma. Finally,

we have:

Common rationality implies separate rationalily if at least one of the players has a rational
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dectsion procedure.

If the common decision procedure D; were irrational for some player 2, with C; being
an improvement, it would follow from the completely symmetric definition of common

rationality that C; would be an improvement for all of the other players as well.

Note that it is not true in general that a decision procedure that is rational for one
player is rational for all others. A third player whose actions are known to be biased in
favor of one of the others can introduce asymmetry of this sort, since we approach problems
differently if there are additional agents present upon whose support and cooperation we

can rely.
§3. Results

In this section we will investigate the consequences of our definitions of rationality.
We will assume throughout that g is some fixed game with payoff function p, and that D;

is a rational decision procedure for player <.

Theorem 1 (Case analysis). Assuming unique rationality, if for some moves c¢; and d;,

for all m;,

p(2,d; x m;) < p(%,¢; x my),
then D;(g) # d;.

Proof. Suppose that D;(g) = d;, and let C; be the decision procedure given by

1 Di’).f,‘ )
ailg) = { D0 Kot

and set m; = D;(g). Now

pay(i, Ditg) = p(iidt' X m?) < p('i’ci X m?) = pa'y(ia C’.-,g),

while pay(z, Ci, ¢') = pay(s, D;,g’) for g’ # g, so that the decision procedure D; is irrational.

a
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It is important to realize that this proof depends critically upon the independence of
the decision procedures of the various players. If this were not the case, we would not be
able to show that pay(, Ci,¢') = pay(s, D;,g') for g’ # g, since we could not be sure that
the other players would not change their strategies for ¢’ in reaction to ¢’s changing his
strategy for g.

We define a single move m; to be rational if there is a rational decision procedure D;

which produces it, and now have:
Corollary 2 (Iterated case analysis). Assuming individual rationality, if for some
moves ¢; and d;, for all rational ms,

p(%,di x m;) < p(,¢i X ms),

then D;(g) # d;.
Proof. Clear. a

If this result allows us to conclude that D;(g) = ¢; for some specific ¢;, this is known
as the solution in the complete weak sense in the game theory literature.
The consequences of case analysis are quite well known. Consider the example used

to introduce our payoff matrix notation:

A B
Al 3/1 | 2
B| 2/5 | 0/1

Independent of the second player’s choice, the first will be better if he makes move A, since
his payofl will be 3 as opposed to 2 if the other player chooses move A, and 2 as opposed
to 0 if B is chosen. Case analysis thercfore implics tlmt. A is the only rational move for the
first player in this game.

There is no such implication for the sccond player. If we assume individual rationality,
however, the sccond player will realize that the first can be counted on to make move A,

and will thercfore respond with move B (receiving a payoff of 2 instead of 1).
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Alternatively, consider the prisoner’s dilemma, presented earlier:

C .D
C| 3 0/5
D| 5/0 1 (4)

Since the two strategies are independent, each player can reason that whatever the other
does, his best move is D (defection). The paradox lies in the fact that this move produces
payoffs for each player which are less than if they both choose move C (cooperation).

Another difficult problem for individual rationality is presented in the best plan game:

A B
Al 7] 4 |

It is fairly clear that both players should choose move A, since this will result in their
obtaining the highest payoff available to them. It is impossible to reach this conclusion
assuming individual rationality, however, since it is not enough to assume merely that
the other player in this game is rational. One must also assume that he knows you are
rational, that hQ knows you know he is rational, that he knows you know he knows you
arc rational, and so on. (This is a consequence of what is referred to in [10] as common
knowledge.) The usual game-theoretic approach is to address this problem dircctly by
finding characterizations of the joint move (A,A) which can then be incorporated into a
definition of group rationality. No attempt is made to derive this sort of “coordinated
action” from the definition of rationality for an individual. We find this unsatisfactory.
Finally, we should mention that case analysis (and therefore individual rationality
gencrally) has difficulty dealing with altruism. Iowever much of a hurry we may be in to
get our laundry, it seems reasonable to stop and help someone who has just been hit by
a truck, even though our personal utility does not go up by doing so. The conventional
solution is to build some sort of “altruism factor” into the payoff matrices, but this is

unnccessarily ad hoc.
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We should point out here that just as we objeFt to a formalism that forces one away
from altruistic behavior, we would have similar difficulties with one which forced the players
toward it. What is needed is a theory that is uncommitted on this point, leaving it in some
sense as an implementation detail. We will see presently that common rationality is such

a theory. Before doing so, however, we return to the game (5):

Theorem 3 (Coordination). Assuming common rationality, if there exists a collective
move ¢ such that

p(i, &) > p(i,d)
for all ¢ and d, then D;(g) = ¢;.

Proof. Let G’ be the set of all games for which the conditions of the theorem are satisfied,
i.e., for which there is a single move which maximizes the payoffs to all of the players. For
a game g in G’, let 77i(g) be this uniformly best move, and define a new decision procedure

C; given by:

. Ay — mi(gl)a ifg’EG,
Ci(g") = {D;(g’); otherwise.

Since the description of the games in G’ is symmetric under interchange of the players
involved, we have pay(¢, Ci, g') = pay(s, D;,g') for ¢’ ¢ G', and pay(z, Ci,g') > pay(s, D;,g')
for gi € G'. If Di(g) # ci, the incquality will be strict for g and D; will be irrational. o

The game (5) is of course handled as a special case of this result. To decal with the

prisoner’s dilemma and related games, we have:

Theorem 4 (Cooperation). Assume common rationality, and suppose that g has moves
¢ and d such that

p(5,d) < 9(3,€)
for all j, with the inequality being strict in at least one case. Then there cxists an ¢ such

that d,' 9& D.-(g).

In other words, if mutual defection is to everyone’s disadvantage, then at least one

player will cooperate. Tor a game such as (4) which is symmetric (in that the payoff
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function is), it follows that all of the players cooperate. This conclusion has an analog in
the informal arguments of [5] and [11].

Proof. The technique is the same as that of the earlier proof. We let G’ be the set of
games which are obtained from g by permuting the players in g in somne (possibly trivial)
fashion, and consider the decision procedure which agrees with D except on the games in
G', where the move ¢ is made. This produces unchanged payoffs for all of the games not
in G', and payoffs which are no worse in G’. Since at least one player actually benefits
from the change in the original game g, it follows that there is some game in G’ which

benefits any particular player . The conclusion follows. o

It is important to realize both that the cooperation theorem does not imply that all
of the players cooperate, and the reason for this. The possibility of one player cooperating
while the others defect (undoubtedly beneficial to the defectors and disastrous for the
cooperator) is typical of the “altruism” allowed under common rationality. Consider the

following non-result:

Non-theorem 5 (Restricted case analysis). Assuming minimal rationality, if for some

¢; and d;, for all ¢; and ds,

p(z,J) < p(‘i,a),
then d; # D;(g).

Proof? If d; = D;(g), consider the decision procedure given by

Ci, otherwise.

Aa'Y. if .
Cilg) = {D.(g), if g' # g;
Whatever the potential dependence of the other decision procedures on D;, we will still
have pay(z, Ci, g) > pay(t, Dy, g). a
The problem is that we cannot show that

pay(s, Ci,g') > pay(z, Di, g') (6)
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for games g’ other than g without additional assumptions, such as unique rationality (since
restricted case analysis is indeed a special case of case analysis) or the assumptions in the
coordination theorem. In fact, assuming common rationality, if the “better” move c; forces
a reduction in the payoff for some other player, then (6) will specifically not hold for some
permutation of g. This of course does not mean that C; is irrational; it merely means that
C; cannot be used to prove that D; is.

Restricted case analysis is in fact independent of the assumption of common rational-
ity, although it is consistent with it. This is the precise version of our earlier comment

that common rationality is ambivalent with regard to altruism.
§4. Previous Work

The problem of interacting agents has been examined in several areas; in this section,
we briefly review related work in distributed artificial intelligence (DAI) and in game

theory, noting where our work differs from previous approaches.

4.1 AT background

DAI has attempted to address the problems of interacting agents through an artiﬁ;
cial intelligence perspective. The single unifying assumption in this work is that one 01;
more of the interacting agents will be using artificial intelligence techniques to guide their
actions (including, of course, their communication actions). We call this the “intelligent-
agent paradigm.” Within this broad categorization, the many individual cfforts to give
AI systems the capability to interact with other rational systems are seen as potentially
increasing efficiency (by harnessing multiple reasoners to solve problems in. parallel) or as
nccessitated by the distributed nature of the problem (e.g., distributed air traffic control
).

Smith and Davis’ work on the contract net [7] produced a tentative approach to
cooperation using a contract-bid metaphor to model the assignment of tasks to processors.
One agent, upon recciving a task, decomposes it into smaller subtasks; the subtasks are

then announced, other agents bid for the right to perform them, and the original agent,
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after examining the bids, assigns each subtask. A gimilar method, using a more explicitly
economic model, is employed by others in the enterprise system [17]. Davis has also
investigated cooperative problem-solving strategies that lead to easier interactions among
agents [6)].

Lesser and Corkill have made empi;ical analyses of distributed computation, trying
(through use of a testbed) to discover cooperation strategies that lead to efficient problem
solutions for a network of nodes [4]. Georgeff has attacked the problem of assuring non-
interference among distinct agents’ plans [8,9]. He has made use of operating system
techniques to identify and protect critical regions within plans, and has developed a general

theory of action for these plans.

These DAI efforts have made some headway in constructing cooperating systems; the
field as a whole, however, has lacked the formal foundation that might .speed progress.
Over the past few years, several researchers have begun to construct the theoretical under-
pinnings. In particular, Appelt [1], Moore [18,19] and Konolige [12,13,14,15] have worked

on the formalisms necessary for one agent to reason about another’s knowledge and beliefs.

Earlier assumptions

Previous DAI work has assumed that agents are mutually cooperative through their
designef’s fiat; there is built-in “agent Bcncvolence.” Work has focused on how agents can
cooperatively achieve their goals when there are no conflicts of interest. The agents have
identical or compatible goals and freely help one another. Problems to be overcome include
those of synchronization, communication, and (inadvertent) destructive interference.

Occasionally, this cooperation arises naturally out of the sense of shared goals the
agents are assumed to have. Since, for example, in Lesser and Corkill’s systems the agents
are always assumed i‘,o be working on the same problem overall, it makes little sense to ask
why they are helping one another: they help each other because they have been designed
that way, and they have been designed that way because, in some sense, they are all part

of a single problemi-solving entity.
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Other systems, however, have agents with potentially distinct goals. Nevertheless,
these systems have avoided dealing with the issue of non-cooperative agents. Thus, for
example, Georgeff’s theory treats agents as having distinct plans that can potentially
interfere with one another (e.g., through uncoordinated access to the identical resource).
Still, he does not deal with the common occurrence of truly conflicting plans: what if
agents cannot simply avoid conflict, but must deal with it directly? What principles guide
activity under such circumstances? Previous AI work has not addressed these questions.

Our model of agent interaction allows for true conflicts of interest. As special cases,
it includes pure conflict (i.e., zero sum) and conflict-free (i.e., common goal) encounters.
By allowing conflict of interest interactions, we can address the question of why rational
agents would choose to cooperate with one another, and how they might coordinate their

actions (even without communication) so as to bring about mutually preferrcd outcomes.

4.2 Game theory background

Game theory has examined the issues of rational agent interaction for over thirty
years, and there is much to be gained from their theoretical treatment of the subject. Here
we touch only briefly on some of the ideas that are related to our work; a general survey

of game theory can be found in [16].

Related work

Game thcory has trcated the zero-sum interaction in impressive detail, effectively
“solving” it in the gencral case (the generated solution is conditionally normative in that
it specifies what action should be taken for a particular result, such as getting no less than
some specified puygﬂ' ). Communication plays no useful role in the zero-sum theory; since
interests of the parties are diametrically opposed, thcr‘c can be no chance for cooperation
or purpose to collusion.

The non-zero-sum interaction, the specific type of encounter in which we are most
interested, has not becn “solved” in the same way. There are, to be sure, special cases

where particular actions arc clearly warranted and lead to specific results, but the complete
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formal results to be found in zero-sum theory have eluded game theorists working on the
more general case. ‘
Nevertheless, much energy has been expended on the non-zero-sum interaction both
with and without communication (the former is termed “cooperative” by game theorists).
When communication is present, it is possible for participants to arrive at compromises
that reconcile their conflicting interests. Nash’s “solution” to the bargaining problem, for
example, satisfies certain axiomatic assumptions as to what characteristics we might want
a solution to have; yet it is in no sense completely satisfactory, since the axioms are not
necessarily accepted by the agents posited in the theory. In contrast, we need only assume

utility maximization in the zero-sum theory to arrive at its normative conclusions.

Their assumptions

Agents in the game theory literature are assumed to be utility maximizers, in the sense
that they have a consistent (i.e., transitive) pattern of preferences, and strive to achieve
more preferred outcomes over less preferred ones. Game theory assumes that each player is
also fully aware of the well-dcfined set of alternative actions for itself and for other players,
and the preference pattern that every agent has over the potential outcomes. In a sense,
all agents are assumed to have common knowledge [10] of the payoff matrix (however, they
cannot be sure that the other agents sce the matrix in the same way—there may be a
diffcrent encoding of the agents and their choices; this assumption that the agents and
choices are “unlabeled” removes certaih contextual clues that could lecad to solutions, and
is severely criticized in [23]).

The comnmon terminology for these assumptions is that the agents are “rational,” but

as Luce and Raifla [16] point out

Though it is not apparent from some writings, the term “rational” is far from
precise, and it certainly mecans different things in the different theorics that have
been developed. Loosely, it seems to include any assumption one makes about
the players maximizing somcthing, and any about complete knowledge on the
part of the player in a very complex situation... [Games and Decisions, p. 5

The assumption of “rationality,” never made quite precise, has restricted some of the
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kinds of results that game theorists are able to derive. Within the setting of artificial
intelligence, however, it makes sense to define the term in considerably greater detail.
Once the definition of rationality has been made concrete (in a variety of alternative

formulations), more definite progress can be made on the issues of cooperative interactions.
§5. Conclusion

Intelligent agents will inevitably need to interact flexibly with other entities. While
previous Al research has been concerned with the development of protocols for use in
conflict-free i.nteractions,. game theorists have considered instances of total conflict, the
zero-sum games. Our interest has been in situations where there may be only partial
conflict between the goals of the agents involved.

Given the assumption of no communication, we have developed a formalism for dealing
with these partial-conflict situations by considering the decision procedurés of the various
participants. This approach is flexible enough to subsume many of the earlier results; our
notion of individual rationality, for gxa.mple, shares many features with the game theorists’
usual assumptions.

The decision procedure formalism does not force individual rationality on us, however,
and we have also investigated the results of another choice which we referred to as common
rationality. Common rationality allows for (but does not require) altruistic behavior on
the part of the agents involved and also produces attractive features of coordination and
cooperation. The former of these is apparent in its treatment of the best plan game (4),

while the latter is demonstrated by its satisfactory handling of the prisoner’s dilemma.
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